2020届高考数学(理)二轮复习专题强化训练:(十八)立体几何理

合集下载

广东省广州市2020届高三数学二轮复习 立体几何高考题 理(无答案)

广东省广州市2020届高三数学二轮复习 立体几何高考题 理(无答案)

广东省广州市2020届高三数学二轮复习 立体几何高考题 理(无答案)(06广东理科)如图5所示,AF 、DE 分别世O e 、1O e 的直径,AD 与两圆所在的平面均垂直,8AD =.BC 是O e 的直径,6AB AC ==,//OE AD . (I)求二面角B AD F --的大小; (II)求直线BD 与EF 所成的角.(07广东理科)如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2, 2.CA CB CD BD AB AD ======(I )求证:AO ⊥平面BCD ;(II )求异面直线AB 与CD 所成角的大小; (III )求点E 到平面ACD 的距离。

(08广东理科)如图5所示,四棱锥P ABCD -的底面ABCD 是半径为R 的圆的内接四边形,其中BD 是圆的直径,60ABD ∠=o,45BDC ∠=o,PD 垂直底面ABCD ,22PD R =,E F ,分别是PB CD ,上的点,且PE DF EB FC=,过点E 作BC 的平行线交PC 于G .(1)求BD 与平面ABP 所成角θ的正弦值;(2)证明:EFG △是直角三角形;(3)当12PE EB =时,求EFG △的面积.(09广东理科)如图6,已知正方体1111ABCD A B C D -的棱长为2,点E是正方形11BCC B 的中心,点F、G分别是棱F PG EA B图5D DBOE图5ACFDEO1O111,C D AA 的中点.设点11,E G 分别是点E,G在平面11DCC D 内的正投影.(1)求以E为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积;(2)证明:直线11FG FEE ⊥平面; (3)求异面直线11E G EA 与所成角的正弦值(10广东理科)如图5,¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,点B 和点C 为线段AD 的三等分点。

2020版高三数学新课标大二轮专题辅导与增分攻略数学(理)专题强化训练:20 立体几何

2020版高三数学新课标大二轮专题辅导与增分攻略数学(理)专题强化训练:20 立体几何

专题强化训练(二十)1.(2019·安徽合肥一模)如图所示,在四棱台ABCD -A 1B 1C 1D 1中,AA 1⊥底面ABCD ,四边形ABCD 为菱形,∠BAD =120°,AB =AA 1=2A 1B 1=2.(1)若M 为CD 的中点,求证:AM ⊥平面AA 1B 1B .(2)求直线DD 1与平面A 1BD 所成角的正弦值.[解] (1)证明:连接AC .∵四边形ABCD 为菱形,∠BAD =120°,∴△ACD 为等边三角形.又∵点M 为CD 的中点,∴AM ⊥CD .由CD ∥AB 得,AM ⊥AB .∵AA 1⊥底面ABCD ,AM ⊂底面ABCD ,∴AM ⊥AA 1.又∵AB ∩AA 1=A ,AB ⊂平面AA 1B 1B ,AA 1⊂平面AA 1B 1B ,∴AM ⊥平面AA 1B 1B .(2)∵四边形ABCD 为菱形,∠BAD =120°,AB =AA 1=2A 1B 1=2,∴DM =1,AM =,∠AMD =∠BAM =90°.3又∵AA 1⊥底面ABCD ,则可分别以AB ,AM ,AA 1所在的直线为x轴、y 轴、z 轴,建立如图所示的空间直角坐标系A -xyz ,则A 1(0,0,2),B (2,0,0),D (-1,,0),D 1,3(-12,32,2)∴=,=(-3,,0),=(2,0,-2).DD 1→ (12,-32,2)BD → 3A 1B → 设平面A 1BD 的一个法向量n =(x ,y ,z ),则有Error!得Error!即y =x =z .33令x =1,则n =(1,,1).3∴直线DD 1与平面A 1BD 所成角θ的正弦值为sin θ=|cos 〈n ,〉|==.DD 1→ |n ·DD 1→|n |·|DD 1→ ||152.(2019·山东青岛模拟)如图,在三棱柱ABC -A 1B 1C 1中,已知AB ⊥侧面BB1C 1C ,BC =,AB =BB 1=2,∠BCC 1=,点E 在棱2π4BB 1上.(1)求证:C 1B ⊥平面ABC ;(2)试确定点E 的位置,使二面角A -C 1E -C 的余弦值为.55[解] (1)证明:∵BC =,CC 1=BB 1=2,∠BCC 1=,2π4∴由余弦定理,可求得C 1B =,2∴C 1B 2+BC 2=C 1C 2,即C 1B ⊥BC .∵AB ⊥侧面BB 1C 1C ,C 1B ⊂侧面BB 1C 1C ,∴AB ⊥C 1B .又CB ∩AB =B ,∴C 1B ⊥平面ABC .(2)由(1)知,BC ,BA ,BC 1两两垂直,以B 为坐标原点,BC ,BA ,BC 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则B (0,0,0),A (0,2,0),C (,0,0),C 1(0,0,),B 1(-22,0,),∴=(0,2,-).22C 1A → 2设=λ(0≤λ≤1),则=+λ=(0,0,-)BE → BB 1→ C 1E → C 1B → BB 1→ 2+λ(-,0,)=(-λ,0,-+λ).22222设平面AC 1E 的一个法向量为m =(x ,y ,z ),由Error!得Error!取z =,则m =.2(2(λ-1)λ,1,2)又平面C 1EC 的一个法向量为n =(0,1,0),∴cos 〈m ,n 〉===,解得λ=.m ·n|m |·|n |12(λ-1)2λ2+35512∴当λ=,即点E 是棱BB 1的中点时,二面角A -C 1E -C 的余12弦值为.553.(2019·石家庄二中期末)如图,在三棱柱ABC -A 1B 1C 1中,∠B 1A 1A =∠C 1A 1A =60°,AA 1=AC =4,AB =2,P ,Q 分别为棱AA 1,AC 的中点.(1)在BC 上是否存在点M ,使得AM ∥平面B 1PQ ?请证明你的结论.(2)若侧面ACC 1A 1⊥侧面ABB 1A 1,求直线A 1C 1与平面B 1PQ 所成角的正弦值.[解] (1)在BC 上存在点M ,为靠近点B 的三等分点,使得AM ∥平面B 1PQ .证法一:如图,在平面ABB 1A 1内,过点A 作AN ∥B 1P 交BB 1于点N ,连接BQ ,在△BB 1Q 中,取BQ 的中点H ,连接NH ,则NH ∥B 1Q .∵AN ∩NH =N ,B 1P ∩B 1Q =B 1,且AN ,NH ⊂平面AHN ,B 1P ,B 1Q ⊂平面B 1PQ ,∴平面AHN ∥平面B 1PQ .又AH ⊂平面AHN ,∴AH ∥平面B 1PQ .连接AH 并延长交BC 于点M ,∴AM ∥平面B 1PQ.在△ABC 中,取BC 的中点R ,连接HR ,可知==,HR AC 14MR MC 从而CM =2MB ,则点M 即为所求.证法二:在平面ABB 1A 1内延长BA 交B 1P 于点D ,连接DQ 并延长交CB 于点R ,连接RB 1,则平面B 1PQ 与平面DRB 1重合.在平面ABC 内,过点A 作DR 的平行线交CB 于点M ,则AM ∥平面DRB 1,即AM ∥平面B 1PQ .在平面ABB 1A 1内,易知AP 为△DBB 1的中位线,则A 是BD 的中点;在平面ABC 内,由平面几何性质可得,R 是CB 上靠近点C 的三等分点.于是可知,点M 为CB 上靠近点B 的三等分点.(2)连接PC 1,AC 1.∵AA 1=AC =A 1C 1,∠C 1A 1A =60°,∴△AC 1A 1为等边三角形.∵P 为AA 1的中点,∴PC 1⊥AA 1.又∵侧面ACC 1A 1⊥侧面ABB 1A 1,且平面ACC 1A 1∩平面ABB 1A 1=AA 1,PC 1⊂平面ACC 1A 1,∴PC 1⊥平面ABB 1A 1.在平面ABB 1A 1内过点P 作PH ⊥AA 1交BB 1于点H ,分别以,,的方向为x 轴,y 轴,z 轴的正方向,建立PH → PA 1→ PC 1→ 如图所示的空间直角坐标系P -xyz ,则P (0,0,0),A 1(0,2,0),A (0,-2,0),C (0,-4,2),C 1(0,0,2),∴=(0,-2,2).33A 1C 1→ 3∵Q 为AC 的中点,∴点Q 的坐标为(0,-3,),3∴=(0,-3,).∵A 1B 1=AB =2,∠B 1A 1A =60°,PQ → 3∴B 1(,1,0),3∴=(,1,0).设平面B 1PQ 的一个法向量为m =(x ,y ,z ),PB 1→ 3由Error!得Error!令x =1,得y =-,z =-3,3∴平面B 1PQ 的一个法向量为m =(1,-,-3).3设直线A 1C 1与平面B 1PQ 所成角为α,则sin α=|cos 〈,m 〉|==,A 1C 1→ |A 1C 1→·m |A 1C 1→ ||m ||3913即直线A 1C 1与平面B 1PQ 所成角的正弦值为.39134.(2019·长春调研)如图,在四棱锥P -ABCD 中,面ABCD 为平行四边形,AB ⊥AC ,PA ⊥平面ABCD ,且PA =AB =3,AC =2,点E 是PD 的中点.(1)求证:PB ∥平面AEC .(2)在线段PB 上(不含端点)是否存在一点M ,使得二面角M -AC -E 的余弦值为?若存在,确定点M 的位置;若不存在,1010请说明理由.[解] (1)证明:连接BD 交AC 于点F ,连接EF .由面ABCD 为平行四边形,可知F 为BD 的中点.在△PBD 中,∵E ,F 分别为PD ,BD 的中点,∴EF ∥PB .又EF ⊂平面AEC ,PB ⊄平面AEC ,∴PB ∥平面AEC .(2)由题意知,AC ,AB ,AP 两两垂直,如图,以A 为坐标原点,AC ,AB ,AP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系A -xyz ,则A (0,0,0),B (0,3,0),C (2,0,0),D (2,-3,0),P (0,0,3),E ,∴=(2,0,0),=.(1,-32,32)AC → AE → (1,-32,32)设M (x 0,y 0,z 0),=λ(0<λ<1),PM → PB → 则(x 0,y 0,z 0-3)=λ(0,3,-3),得M (0,3λ,3-3λ),∴=(0,3λ,3-3λ).AM → 设平面AEC 的一个法向量为n 1=(x 1,y 1,z 1),由Error!得Error!取y 1=1,得n 1=(0,1,1).设平面MAC 的一个法向量为n 2=(x 2,y 2,z 2),由Error!得Error!取z 2=1,得n 2=.(0,1-1λ,1)设二面角M -AC -E 的大小为θ,则cos θ===,|n 1·n 2||n 1||n 2||2-1λ|2·(1-1λ)2+11010化简得9λ2-9λ+2=0,解得λ=或λ=.1323∵二面角M -AC -E 的余弦值为,∴=.1010PM → 13PB → 故=时,二面角M -AC -E 的余弦值为.PM → 13PB → 1010。

2020届高考数学专题:立体几何计算问题(答案不全)

2020届高考数学专题:立体几何计算问题(答案不全)

立体几何中的计算问题1.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;2.直观图——是观察着站在某一点观察一个空间几何体而画出的图形。

直观图通常是在平行投影下画出的空间图形。

3斜二测法:1.画直观图时,把它画成对应的轴'',''o x o y ,取'''45(135)x o y o r ∠=︒︒,它们确定的平面表示水平平面;2.在坐标系'''x o y 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。

结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的4倍. 例1.下列命题:①如果一个几何体的三视图是完全相同的,那么这个几何体是正方体;②如果一个几何体的主视图和俯视图都是矩形,那么这个几何体是长方体; ③如果一个几何体的三视图都是矩形,那么这个几何体是长方体;④如果一个几何体的主视图和左视图都是等腰梯形,那么这个几何体是圆台.其中正确的是( )A .①②B .③C .②③D .④ 2、异面直线所成的角(1)定义:a 、b 是两条异面直线,经过空间任意一点O ,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:0°<θ≤90°. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小.例2.在长方体1111ABCD A B C D -中,11BC CC ==,13AD B π∠=,则直线1AB 与1BC 所成角的余弦值为( )ABCD【答案】D例3.直三棱柱ABC ﹣A 1B 1C 1中,若∠BAC=90°,AB=AC=AA 1,则异面直线 BA 1与AC 1所成的角为( ) A .60°B .90°C .120°D .150°例4.在四面体ABCD 中,AC 与BD 的夹角为30°,2AC =,BD =M ,N 分别是AB ,CD 的中点,则线段MN 的长度为________. 【答案】13.二面角 找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法 (iii)三垂线法(Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.例5.已知正三棱锥底面边长为2,侧棱长为3,则它的侧面与底面所成二面角的余弦值为________.【答案】12例6.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,E .F 分别为1A B ,1A C 的中点,D 为11B C 上的点,且11A D B C ⊥.(1)求证://EF 平面ABC . (2)求证:平面1A FD ⊥平面11BCC B .(3)若三棱柱所有棱长都为a ,求二面角111A B C C --的平面角的余弦值.【答案】(1)见解析;(2)见解析;(3)74.空间几何体的表面积、体积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2S rl r ππ=+圆台的表面积:22Srl r Rl Rππππ=+++扇形的面积公式2211=36022n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积 :V S h =⨯底,锥体的体积 :13V S h =⨯底台体的体积 :1)3V S S h =+⨯下上( ,球体的体积:343V R π= 点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法: 1)直接利用定义求①找到(或作出)表示距离的线段; ②抓住线段(所求距离)所在三角形解之.2)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.例8.在长、宽、高分别为a b c ,,的长方体中,以它的各面的中心为顶点可得到一个八面体,则该八面体的体积为________.【答案】16abc例9.如图,在上、下底面对应边的比为1:2的三棱台中,过上底面的一边作一个平行于棱的平面11A B EF ,则这个平面分三棱台成两部分的体积之比为( ).A .1:2B .2:3C .3:4D .4:5【答案】C例10.如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA=AD=4,AB=2,以BD 的中点O 为球心、BD 为直径的球面交PD 于点M.⑴求证:平面ABM ⊥平面PCD ; (2)求点O 到平面ABM 的距离.【答案】(1)见解析(2)3例11.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,//FD EA,且112FD EA==.(1)求多面体EABCDF的体积;(2)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.【答案】(1)103V=多面体;(2)见解析.5.与球有关的组合体7-2 球的结构特征⑴球心与截面圆心的连线垂直于截面;⑵截面半径等于球半径与截面和球心的距离的平方差:r2 = R2– d2★7-3 球与其他多面体的组合体的问题球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:⑴根据题意,确定是内接还是外切,画出立体图形;⑵找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图;⑶将立体问题转化为平面几何中圆与多边形的问题;例11.已知棱长为a的正四面体,其内切球的半径为r,外接球的半径为R,则:r R= ________.【答案】1:3例12.已知棱长为a的正方体,甲球是正方体的内切球,乙球是正方体的外接球,丙球与正方体的各棱都相切,则甲、乙、丙三球的表面积之比为().A.91:3:4B.1:3:2C.D.31:2【答案】B例13.已知,,,S A B C是球O表面上的点,SA⊥平面,,1,ABC AB BC SA AB BC⊥===则球O的体积为__________.例14.已知一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球.求:圆锥内切球的体积.(2)2563Vπ=立体几何中的计算问题一、三视图1.将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.【答案】B2.如图所示,A O B '''∆表示水平放置的AOB ∆的直观图,B '在x '轴上,A O ''与x '轴垂直,且2A O ''=,则AOB ∆的OB 边上的高为______.【答案】二、线线角3.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( ) A.3B.3C.4D.4【答案】D4.如图所示为一个正方体的展开图.对于原正方体,给出下列结论: ①AB 与EF 所在直线平行; ②AB 与CD 所在直线异面; ③MN 与BF 所在直线成60︒角;④MN 与CD 所在直线互相垂直. 其中正确结论的序号是________. 【答案】②④5.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AA AB AC ==,AB AC ⊥,M 是1CC 的中点,Q 是BC 的中点,点P 在11A B 上,则直线PQ 与直线AM 所成的角为( ). A .30° B .45︒C .60︒D .90︒【答案】D 三、二面角问题二面角:关键是找出二面角的平面角。

2020版高考数学大二轮复习 专题 立体几何增分强化练 理

2020版高考数学大二轮复习 专题  立体几何增分强化练  理

增分强化练1.(2019·泉州质检)在四棱锥P ­ABCD 中,PD ⊥平面ABCD ,AB ⊥AD ,AD ∥BC ,AB =1,AD =2BC =2,PD = 3.(1)求证: 平面PBD ⊥平面PAC ;(2)M 为棱PB 上异于B 的点,且AM ⊥MC ,求直线AM 与平面MCD 所成角的正弦值. 解析:(1)证明:在Rt △ABC 与Rt △ABD 中,因为BC AB =22, AB AD =22, 所以BC AB =ABAD,∠ABC =∠DAB =90°,即△ABC ∽△DAB ,所以∠ABD =∠BCA .因为∠ABD +∠CBD =90°,所以∠BCA +∠CBD =90°,所以AC ⊥BD . 因为PD ⊥平面ABCD ,AC ⊂平面ABCD ,所以PD ⊥AC , 又BD ∩PD =D ,所以AC ⊥平面PBD , 又AC ⊂平面PAC, 所以平面PBD ⊥平面PAC .(2)过A 作AE ∥DP ,因为PD ⊥平面ABCD ,所以AE ⊥平面ABCD ,即AE ,AB ,AD 两两相垂直,以A 为原点,AB ,AD ,AE 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,因为AB =1,AD =2BC =2,PD =3, 所以A (0,0,0),B (1,0,0),C ⎝ ⎛⎭⎪⎫1,22,0,D (0,2,0),P (0,2,3), AB →=(1,0,0),BP →=(-1,2,3),CB →=⎝⎛⎭⎪⎫0,-22,0, 设BM →=λBP →,λ∈(0,1].则AM →=AB →+λBP →=(1-λ,2λ,3λ), CM →=CB →+λBP →=(-λ,-22+2λ,3λ).因为AM ⊥MC ,所以AM →·CM →=0,即(1-λ)(-λ)+2λ⎝ ⎛⎭⎪⎫-22+2λ+3λ2=0,解得6λ2-2λ=0,λ=0或λ=13.因为λ∈(0,1],所以λ=13.所以AM →=⎝ ⎛⎭⎪⎫23,23,33,即M ⎝ ⎛⎭⎪⎫23,23,33.所以DC →=⎝ ⎛⎭⎪⎫1,-22,0,DM →=⎝ ⎛⎭⎪⎫23,-223,33,设n =(x 0,y 0,z 0)为平面MCD 的一个法向量,则⎩⎪⎨⎪⎧n ·DM →=0n ·DC →=0,所以⎩⎪⎨⎪⎧23x 0-223y 0+33z 0=0x 0-22y 0=0,所以取n =⎝⎛⎭⎪⎫62,3,2, 设直线AM 与平面MCD 所成角为θ, 所以sin θ=|cos 〈AM →,n 〉|=63+63+6349+29+39·64+3+2=23913,所以直线AM 与平面MCD 所成角的正弦值23913.2.(2019·济宁模拟)如图,在直角梯形ABED 中,AB ∥DE ,AB ⊥BE ,且AB =2DE =2BE ,点C 是AB 中点,现将△ACD 沿CD 折起,使点A 到达点P 的位置.(1)求证:平面PBC⊥平面PEB;(2)若PE与平面PBC所成的角为45°,求平面PDE与平面PBC所成锐二面角的余弦值.解析:(1)证明:∵AB∥DE,AB=2DE,点C是AB中点,∴CB∥ED,CB=ED,∴四边形BCDE为平行四边形,∴CD∥EB,又EB⊥AB,∴CD⊥AB,∴CD⊥PC,CD⊥BC,∴CD⊥平面PBC,∴EB⊥平面PBC,又∵EB⊂平面PEB,∴平面PBC⊥平面PEB.(2)由(1)知EB⊥平面PBC,∴∠EPB即为PE与平面PBC所成的角,∴∠EPB=45°,∵EB⊥平面PBC,∴EB⊥PB,∴△PBE为等腰直角三角形,∴EB=PB=BC=PC,故△PBC为等边三角形,取BC的中点O,连结PO,则PO⊥BC,∵EB⊥平面PBC,又EB⊂平面EBCD,∴平面EBCD⊥平面PBC,又PO⊂平面PBC,∴PO⊥平面EBCD,以O为坐标原点,过点O与BE平行的直线为x轴,CB所在的直线为y轴,OP所在的直线为z 轴建立空间直角坐标系如图,设BC =2,则B (0,1,0),E (2,1,0),D (2,-1,0),P (0,0,3),从而DE →=(0,2,0),PE →=(2,1,-3), 设平面PDE 的一个法向量为m =(x ,y ,z ), 则由⎩⎪⎨⎪⎧m ·DE →=0m ·PE →=0得⎩⎨⎧2y =02x +y -3z =0,令z =2得m =(3,0,2),又平面PBC 的一个法向量n =(1,0,0),则cos 〈m ,n 〉=m ·n |m ||n |=37=217,平面PDE 与平面PBC 所成锐二面角的余弦值为217. 3.(2019·高考全国卷Ⅰ)如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A ­MA 1­N 的正弦值. 解析:(1)证明:如图,连接B 1C ,ME . 因为M ,E 分别为BB 1,BC 的中点, 所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1綊DC , 可得B 1C 綊A 1D ,故ME 綊ND , 因此四边形MNDE 为平行四边形, 所以MN ∥ED . 又MN ⊄平面C 1DE , 所以MN ∥平面C 1DE .(2)由已知可得DE ⊥DA ,以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0). 设m =(x ,y ,z )为平面A 1MA 的法向量,则⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0,所以⎩⎨⎧-x +3y -2z =0,-4z =0,可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的法向量, 则⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0,所以⎩⎨⎧-3q =0,-p -2r =0,可取n =(2,0,-1).于是cos 〈m ,n 〉=m ·n |m ||n |=232×5=155,所以二面角A ­MA 1­N 的正弦值为105. 4.(2019·高考全国卷Ⅱ)如图,长方体ABCD ­A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B ­EC ­C 1的正弦值.解析:(1)证明:由已知得,B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1, 故B 1C 1⊥BE .又BE ⊥EC 1,B 1C 1∩EC 1=C 1, 所以BE ⊥平面EB 1C 1.(2)由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以∠AEB =45°,故AE =AB ,AA 1=2AB .以D 为坐标原点,DA →的方向为x 轴正方向,|DA →|为单位长度,建立如图所示的空间直角坐标系D ­xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),CB →=(1,0,0),CE →=(1,-1,1),CC 1→=(0,0,2). 设平面EBC 的法向量为n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧CB →·n =0,CE →·n =0,即⎩⎪⎨⎪⎧x 1=0,x 1-y 1+z 1=0,所以可取n =(0,-1,-1).设平面ECC 1的法向量为m =(x 2,y 2,z 2),则⎩⎪⎨⎪⎧CC 1→·m =0,CE →·m =0,即⎩⎪⎨⎪⎧2z 2=0,x 2-y 2+z 2=0,所以可取m =(1,1,0).于是cos 〈n ,m 〉=n ·m |n ||m |=-12.所以,二面角B ­EC ­C 1的正弦值为32. 增分强化练一、选择题1.已知直线l ⊥平面α,直线m ∥平面β,若α⊥β,则下列结论正确的是( ) A .l ∥β或l ⊂β B .l ∥m C .m ⊥αD .l ⊥m解析:当直线l ⊥平面α,α⊥β时,假设l ∩β=A ,过A 在平面β内作a ⊥l ,根据面面垂直的性质定理可知:a ⊥α,这样过一点A 有两条直线a ,l 与平面α垂直,这与过一点有且只有一条直线与已知平面垂直相矛盾,故假设不成立,所以l ∥β或l ⊂β,故本题选A. 答案:A2.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ) A .若m ∥α,m ∥β,则α∥β B .若m ⊥α,m ⊥n ,则n ⊥α C .若m ⊥α,m ∥n ,则n ⊥α D .若α⊥β,m ⊥α,则m ∥β解析:设m ,n 是两条不同的直线,α,β是两个不同的平面,则: 在A 中,若m ∥α,m ∥β,则α与β相交或平行,故A 错误; 在B 中,若m ⊥α,m ⊥n ,则n ∥α或n ⊂α,故B 错误;在C 中,若m ⊥α,m ∥n ,则由线面垂直的判定定理得n ⊥α,故C 正确; 在D 中,若α⊥β,m ⊥α,则m ∥β或m ⊂β,故D 错误. 故选C. 答案:C3.(2019·蚌埠模拟)如图,在长方体ABCD ­A 1B 1C 1D 1中,AB =BC =2AA 1=2,E ,F 分别在AB ,BC 上,则下列说法错误的是( )A .直线AD 与A 1C 1所成的角为π4B .当E 为中点时,平面A 1D 1E ⊥平面B 1C 1E C .当E ,F 为中点时,EF ⊥BD 1 D .当E ,F 为中点时,BD 1⊥平面B 1EF解析:对于A 选项,将A 1C 1平移到AC 如图所示,由于四边形ABCD 为正方形,故AD ,AC 所成角为π4,也即AD ,A 1C 1所成角为π4,故A 选项正确.对于B 选项,由于A 1E =B 1E =2,A 1B 1=2,满足勾股定理,故A 1E ⊥B 1E ,而A 1E ⊥B 1C 1,故A 1E ⊥平面B 1C 1E ,所以平面A 1D 1E ⊥平面B 1C 1E ,故B 选项正确.对于C 选项,由于EF ∥AC ,故EF ⊥BD ,EF ⊥BB 1,由此证得EF ⊥平面BDD 1B 1,故EF ⊥BD 1,故C 选项正确.对于D 选项,虽然EF ⊥BD 1,但是BD 1与B 1E ,B 1F 不垂直,故D 选项说法错误.综上所述,本小题选D.答案:D4.(2019·咸阳模拟)在正方体ABCD ­A 1B 1C 1D 1中,E 、F 分别是AB 、B 1C 1的中点,则异面直线A 1E 、FC 所成角的余弦值为( )A.105 B.1010C.102D.45解析:取C 1D 1的中点G ,连接CG ,FG (图略),因为正方体ABCD ­A 1B 1C 1D 1,且E ,G 分别是AB ,C 1D 1的中点, 所以A 1E ∥CG ,所以∠FCG 即为异面直线A 1E 、FC 所成角或其补角, 设正方体边长为2,则FC =CG =5,FG =2, 在△FCG 中由余弦定理得cos ∠FCG =5+5-22×5×5=45,所以异面直线A 1E 、FC 所成角的余弦值为45,故选D. 答案:D5.如图,在四棱柱ABCD ­A 1B 1C 1D 1中,E ,F 分别是AB 1、BC 1的中点,下列结论中正确的是( )A .EF ⊥BB 1 B .EF ⊥平面BCC 1B 1 C .EF ∥平面D 1BCD .EF ∥平面ACC 1A 1解析:连接B 1C 交BC 1于F ,由于四边形BCC 1B 1是平行四边形,对角线平分,故F 是B 1C 的中点.因为E 是AB 1的中点,所以EF 是△B 1AC 的中位线,故EF ∥AC ,所以EF ∥平面ACC 1A 1.故选D.答案:D6.如图,边长为2的正方形ABCD中,点E、F分别是AB、BC的中点,将△ADE,ΔBEF,△CDF分别沿DE,EF,FD折起,使得A、B、C三点重合于点A′,若四面体A′­EDF的四个顶点在同一个球面上,则该球的表面积为( )A.5π B.6πC.8π D.11π解析:由题意可知△A′EF是等腰直角三角形,且A′D⊥平面A′EF.三棱锥的底面A′EF扩展为边长为1的正方形,然后扩展为正四棱柱,三棱锥的外接球与正四棱柱的外接球是同一个球,正四棱柱的体对角线的长度就是外接球的直径,直径为1+1+4= 6.∴球的半径为62,∴球的表面积为4π·⎝ ⎛⎭⎪⎫622=6π.故选B. 答案:B 二、填空题7.在直三棱柱ABC ­A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1则异面直线BA 1与AC 1所成的角等于________.解析:延长CA 到D (图略),使得AD =AC ,则ADA 1C 1为平行四边形,∠DA 1B 就是异面直线BA 1与AC 1所成的角,又A 1D =A 1B =DB =2AB ,则△A 1DB 为等边三角形,∴∠DA 1B =60°. 答案:60°8.(2019·桂林、崇左模拟)在大小为75°的二面角α­l ­β内有一点M 到两个半平面的距离分别为1和2,则点M 到棱l 的距离等于________.解析:由题意,设垂足分别为A ,B ,则在△MAB 中,MA =1,MB =2,∠AMB =105°,∴AB 2=1+2-2×1×2×cos∠AMB =2+3, ∴AB =2+ 3.设M 到棱的距离为l ,则l =ABsin 105°=2+36+24=2.答案:2 三、解答题9.(2019·汕头模拟)如图,等边△PAC 所在平面与梯形ABCD 所在平面互相垂直,且有AD ∥BC ,AB =AD =DC =2,BC =4.(1)证明:AB ⊥平面PAC ; (2)求点D 到平面PAB 的距离.解析:(1)证明:取BC 中点M ,连接AM , 则四边形AMCD 为菱形, 即有AM =MC =12BC,所以AB ⊥AC ,又AB ⊂平面ABCD ,平面ABCD ⊥平面PAC ,平面ABCD ∩平面PAC =AC , ∴AB ⊥平面PAC .(2)由(1)可得PA =AC =23,所以∠ABC =60°,∠BAD =120°, 取AC 中点O ,连接PO , 则PO ⊥AC ,PO =3,又PO ⊂平面PAC ,平面PAC ⊥平面ABCD ,平面PAC ∩平面ABCD =AC ∴PO ⊥平面ABCD ; 所以V D ­PAB =V P ­ABD =13S ABD ·PO=13×12×2×2×sin 120°×3=3, 由(1)有AB ⊥平面PAC ,得AB ⊥PA , ∴S ΔPAB =12×2×23=23,设点D 到平面PAB 的距离为d , 由V D ­PAB =13S ΔPAB ·d .∴d =32.10.如图,E 是以AB 为直径的半圆上异于A 、B 的点,矩形ABCD 所在的平面垂直于该半圆所在的平面,且AB =2AD =2. (1)求证:EA ⊥EC ;(2)设平面ECD 与半圆弧的另一个交点为F . ①试证:EF ∥AB ;②若EF =1,求三棱锥E ­ADF 的体积. 解析:(1)证明:∵平面ABCD ⊥平面 ABE ,平面ABCD ∩平面ABE =AB ,BC ⊥AB ,BC ⊂平面ABCD , ∴BC ⊥平面ABE .又∵AE ⊂平面ABE ,∴BC ⊥AE .∵E 在以AB 为直径的半圆上,∴AE ⊥BE ,又∵BE ∩BC =B ,BC 、BE ⊂平面BCE , ∴AE ⊥平面BCE .又∵CE ⊂平面BCE ,∴EA ⊥EC .(2)①证明: ∵AB ∥CD ,AB ⊄平面CED ,CD ⊂平面CED , ∴AB ∥平面CED .又∵AB ⊂平面ABE ,平面ABE ∩平面CED =EF , ∴AB ∥EF .②取AB 中点O ,EF 的中点O ′,(图略)在Rt△OO ′F 中,OF =1,O ′F =12,∴OO ′=32.由(1)已证得BC ⊥平面ABE ,又已知AD ∥BC , ∴AD ⊥平面ABE .故V E ­ADF =V D ­AEF =13·S △AEF ·AD =13·12·EF ·OO ′·AD =312.11.如图1,在△ABC 中,C =90°,AC =2BC =4,E ,F 分别是AC 与AB 的中点,将△AEF 沿EF 折起,连接AC 与AB 得到四棱锥A ­BCEF (如图2),G 为线段AB 的中点.(1)求证:FG ∥平面ACE ;(2)当四棱锥A ­BCEF 体积最大时,求F 与平面ABC 的距离. 解析:(1)证明:取AC 的中点H ,连接EH ,GH ,由于G 是AB 的中点, ∴GH ∥BC ,且GH =12BC ,又E ,F 分别为图1中AC 与AB 的中点, ∴FE ∥BC ,且FE =12BC ,∴FE ∥GH ,FE =GH ,∴四边形EFGH 为平行四边形, ∴FG ∥EH ,又FG ⊄平面ACE ,EH ⊂平面ACE , ∴FG ∥平面ACE .(2)当四棱锥A ­BCF 体积最大时,AE ⊥平面BCEF , 又EF ⊥EC ,AE ∩EF =E , ∴FE ⊥平面AEC ,又FE ∥BC , ∴BC ⊥平面ACE ∴BC ⊥EH ,又AE =EC =2,H 是AC 的中点,EH ⊥AC ,AC ∩BC =C ,∴EH ⊥平面ABC ,而EF ∥平面ABC ,∴F 到平面ABC 的距离即为E 到平面ABC 的距离,EH =EC ×sin 45°= 2.增分强化练考点一 利用空间向量证明平行与垂直如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证:PB ∥平面EFG .证明:∵平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD ,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A ­xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2,∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 考点二 利用空间向量求空间角1.(2019·滨州模拟)如图,在三棱柱ABC ­A 1B 1C 1中,BC =BB 1,∠B 1BC =60°,B 1C 1⊥AB 1.(1)证明:AB =AC ;(2)若AB ⊥AC ,且AB 1=BB 1,求二面角A 1­CB 1­C 1的余弦值. 解析:(1)证明:取BC 的中点O ,连结AO ,OB 1. 因为BC =BB 1,∠B 1BC =60°, 所以△BCB 1是等边三角形, 所以B 1O ⊥BC ,又BC ∥B 1C 1,B 1C 1⊥AB 1, 所以BC ⊥AB 1, 所以BC ⊥平面AOB 1,所以BC ⊥AO ,由三线合一可知△ABC 为等腰三角形 所以AB =AC .(2)设AB 1=BB 1=2,则BC =B 1C =2. 因为AB ⊥AC ,所以AO =1.又因为OB 1=3,所以OB 21+AO 2=AB 21, 所以AO ⊥OB 1.以O 为坐标原点,向量OB →的方向为x 轴的正方向,建立如图所示的空间直角坐标系O ­xyz ,则O (0,0,0),C (-1,0,0),A 1(-1,3,1),B 1(0,3,0),CA →1=(0,3,1),CB →1=(1,3,0).设平面A 1B 1C 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧CA →1 ·n =0CB →1·n =0,即⎩⎨⎧3y +z =0x +3y =0,可取n =(3,-1,3),由(1)可知,平面CB 1C 1的法向量可取OA →=(0,0,1),所以cos 〈OA →,n 〉=OA →·n |OA →||n | =217,由图示可知,二面角A 1­CB 1­C 1为锐二面角, 所以二面角A 1­CB 1­C 1的余弦值为217. 2.已知四棱锥P ­ABCD 的底面ABCD 是直角梯形,AD ∥BC ,AB ⊥BC ,AB =3,BC =2AD =2,E 为CD 的中点,PB ⊥AE . (1)证明:平面PBD ⊥平面ABCD ;(2)若PB =PD ,PC 与平面ABCD 所成的角为π4,求二面角B ­PD ­C 的余弦值.解析:(1)证明:由ABCD 是直角梯形,AB =3,BC =2AD =2,可得DC =2,∠BCD =π3,BD =2,从而△BCD 是等边三角形, ∠BDC =π3,BD 平分∠ADC ,∵E 为CD 的中点,DE =AD =1,∴BD ⊥AE , 又∵PB ⊥AE ,PB ∩BD =B ,∴AE ⊥平面PBD , ∵AE ⊂平面ABCD ,∴平面PBD ⊥平面ABCD . (2)如图,作PO ⊥BD 于O ,连接OC ,∵平面PBD ⊥平面ABCD ,平面PBD ∩平面ABCD =BD ,∴PO ⊥平面ABCD , ∴∠PCO 为PC 与平面ABCD 所成的角,∠PCO =π4,又∵PB =PD ,∴O 为BD 中点,OC ⊥BD ,OP =OC =3, 以OB ,OC ,OP 为x ,y ,z 轴建立空间直角坐标系,B (1,0,0),C (0,3,0),D (-1,0,0),P (0,0,3).PC →=(0,3,-3),PD →=(-1,0,-3),设平面PCD 的一个法向量n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0得⎩⎨⎧3y -3z =0,x +3z =0,令z =1得n =(-3,1,1),又平面PBD 的一个法向量为m =(0,1,0), 设二面角B ­PD ­C 为θ,则|cos θ|=|n ·m ||n |·|m |=15×1=55.所求二面角B ­PD ­C 的余弦值是55. 考点三 立体几何中的探索性问题1.(2019·桂林、崇左模拟)已知四棱锥S ­ABCD 的底面ABCD 是菱形,∠ABC =π3,SA ⊥底面ABCD ,E 是SC 上的任意一点.(1)求证:平面EBD⊥平面SAC;(2)设SA=AB=2,是否存在点E使平面BED与平面SAD所成的锐二面角的大小为30°?如果存在,求出点E的位置,如果不存在,请说明理由.解析:(1)证明:∵SA⊥平面ABCD,BD⊂平面ABCD,∴SA⊥BD.∵四边形ABCD是菱形,∴AC⊥BD.∵AC∩AS=A,∴BD⊥平面SAC.∵BD⊂平面EBD,∴平面EBD⊥平面SAC.(2)当点E为SC的中点时,平面BED与平面SAD所成的锐二面角的大小为30°,理由如下:设AC与BD的交点为O,以OC、OD所在直线分别为x、y轴,以过O垂直平面ABCD的直线为z轴建立空间直角坐标系(如图),则A (-1,0,0),C (1,0,0),S (-1,0,2),B (0,-3,0),D (0,3,0). 设E (x,0,z ),则SE →=(x +1,0,z -2),EC →=(1-x,0,-z ), 设SE →=λEC →,∴⎩⎪⎨⎪⎧x =λ-1λ+1z =2λ+1,∴E ⎝⎛⎭⎪⎫λ-1λ+1,0,2λ+1,∴DE →=⎝ ⎛⎭⎪⎫λ-1λ+1,-3,2λ+1,BD →=(0,23,0),设平面BDE 的法向量n =(x 1,y 1,z 1), ∵⎩⎪⎨⎪⎧n ⊥DE→n ⊥BD→ ,∴⎩⎪⎨⎪⎧n ·DE →=0n ·BD →=0.求得n =(2,0,1-λ)为平面BDE 的一个法向量. 同理可得平面SAD 的一个法向量为m =(3,-1,0), ∵平面BED 与平面SAD 所成的锐二面角的大小为30°,∴cos 30°=|m ·n ||m ||n |=|(3,-1,0)·(2,0,1-λ)|24+(1-λ)2=32,解得λ=1. ∴E 为SC 的中点.2.如图,在三棱柱ABC ­A 1B 1C 1中,CA =CB =CC 1=2,∠ACC 1=∠CC 1B 1,直线AC 与直线BB 1所成的角为60°.(1)求证:AB 1⊥CC 1;(2)若AB 1=6,M 是AB 1上的点,当平面MCC 1与平面AB 1C 夹角的余弦值为15时,求AMMB 1的值.解析:(1)证明:在三棱柱ABC ­A 1B 1C 1中,各侧面均为平行四边形, 所以BB 1∥CC 1,则∠ACC 1即为AC 与BB 1所成的角, 所以∠ACC 1=∠CC 1B 1=60°, 如图,连接AC 1和B 1C , 因为CA =CB =CC 1=2,所以△ACC 1和△B 1CC 1均为等边三角形, 取CC 1的中点O ,连AO 和B 1O , 则AO ⊥CC 1,B 1O ⊥CC 1, 又AO ∩B 1O =O , 所以CC 1⊥平面AOB 1,AB 1⊂平面AOB 1,所以AB 1⊥CC 1.(2)由(1)知AO =B 1O =3,因为AB 1=6, 则AO 2+B 1O 2=AB 21,所以AO ⊥B 1O , 又AO ⊥CC 1,所以AO ⊥平面BCC 1B 1,以OB 1所在直线为x 轴,OC 1所在直线为y 轴,OA 所在直线为z 轴,建立如图空间直角坐标系,则A (0,0,3),C (0,-1,0),C 1(0,1,0),B 1(3,0,0),AC →=(0,-1,-3),AB 1→=(3,0,-3),CC 1→=(0,2,0),设AM →=tMB 1→,M (x ,y ,z ),则(x ,y ,z -3)=t (3-x ,-y ,-z ). 所以x =3t t +1,y =0,z =3t +1,M (3t t +1,0,3t +1), 所以CM →=(3t t +1,1,3t +1),设平面ACB 1的法向量为n 1=(x 1,y 1,z 1), 平面MCC 1的法向量为n 2=(x 2,y 2,z 2), 所以⎩⎪⎨⎪⎧n 1·AC →=0,n 1·AB 1→=0⇒⎩⎨⎧-y 1-3z 1=0,3x 1-3z 1=0,解得n 1=(1,-3,1), ⎩⎪⎨⎪⎧n 2·CC 1→=0,n 2·CM →=0⇒⎩⎪⎨⎪⎧2y 2=0,3t t +1x 2+y 2+3t +1z 2=0.解得n 2=(1,0,-t ).所以|cos θ|=|n 1·n 2||n 1|·|n 2|=|1-t |5·1+t 2=15, 解得t =12或t =2,即AM MB 1=12或AMMB 1=2.增分强化练一、选择题1.在一个密闭透明的圆柱筒内装一定体积的水,将该圆柱筒分别竖直、水平、倾斜放置时,指出圆柱桶内的水平面可以呈现出的几何形状不可能是( )A.圆面B.矩形面C.梯形面D.椭圆面或部分椭圆面解析:将圆柱桶竖放,水面为圆面;将圆柱桶斜放,水面为椭圆面或部分椭圆面;将圆柱桶水平放置,水面为矩形面,所以圆柱桶内的水平面可以呈现出的几何形状不可能是梯形面,故选C.答案:C2.(2019·三明质检)如图,网格纸上小正方形的边长为1,粗线画的是某几何体的三视图,则该几何体的体积为( )A.23πB.2πC.83π D.8π解析:由几何体三视图可知:该几何体为圆柱,且圆柱的底面圆半径为1,高为2,所以圆柱的体积为V=π×12×2=2π.故选B.答案:B3.(2019·新乡模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .28B .30C .36D .42解析:该几何体是由12个棱长为1的正方体组合而成的,所以S (前后)=12+12=24,S (左右)=3+3=6,S (上下)=6+6=12,从而S (表面)=24+6+12=42.故选D. 答案:D4.某几何体的三视图如图所示,则该几何体的体积为( )A .16π-323B .16π-163C .8π-323D .8π-163解析:由三视图可知,该几何体是一个半圆柱挖去一个倒立的四棱锥,∴V =12×π×22×4-13×42×2=8π-323.故选C.答案:C5.如图,网格纸的小正方形的边长是1,在其上用粗实线和粗虚线画出了某几何体的三视图,图中的曲线为半圆弧或圆,则该几何体的体积是( )A.2π3+83B .2π+83C .2π+8D .8π+8解析:由题意可知几何体是组合体,由14的圆柱与一个四棱锥组成,如图:V =14×22×π×2+13×2×2×2=2π+83.故选B.答案:B6.用一个平面去截正方体,则截面不可能是( ) A .直角三角形 B .等边三角形 C .正方形D .正六边形解析:用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形;④截面为六边形时,可以是正六边形.故选A. 答案:A7.某几何体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积不可能是( )A .πB .2C .4D .6解析:几何体可能是圆锥,底面半径为1,高为3,几何体的体积为13×12×π×3=π,排除A ;几何体如果是正四棱锥,底面是正方形边长为2,高为3,几何体的体积为13×22×3=4,排除C ;几何体如果是三棱锥,底面是等腰三角形,底边长为2,三角形的高为2,三棱锥的高为3,几何体的体积为13×12×2×2×3=2,排除B ,故选D.答案:D8.某四棱锥的三视图如图所示,某侧视图是等腰直角三角形,俯视图轮廓是直角梯形,则该四棱锥的各侧面中,面积的最大值为( )A .8B .4 5C .8 2D .12 2解析: 因为三视图复原的几何体是四棱锥,顶点在底面的射影是直角梯形的一个顶点,后面是等腰直角三角形,直角边为4,所以后面的三角形的面积为12×4×4=8, 右面三角形是直角三角形,直角边长为42,4,三角形的面积为12×42×4=8 2.前面三角形BC 边长为6,高为42,其面积为12×42×6=122,左面也是直角三角形,直角边长为4,25,三角形的面积为12×4×25=45,四棱锥的四个侧面中面积最大的是前面三角形的面积12 2.故选D. 答案:D9.(2019·宁德质检)直三棱柱ABC ­A ′B ′C ′的所有棱长均为23,则此三棱柱的外接球的表面积为( ) A .12π B .16π C .28πD .36π解析:由直三棱柱的底面边长为23,得底面所在平面截其外接球所成的圆O 的半径r =2,又由直三棱柱的侧棱长为23,则球心到圆O 的球心距d =3, 根据球心距,截面圆半径,球半径构成直角三角形, 满足勾股定理,我们易得球半径R 满足:R 2=r 2+d 2=7, ∴外接球的表面积S =4πR 2=28π. 故选C. 答案:C10.(2019·蚌埠模拟)榫卯是我国古代工匠极为精巧的发明,广泛用于建筑.榫卯是在两个构件上采用凹凸部位相结合的一种连接方式.榫卯结构中凸出的部分叫榫(或叫榫头).已知某“榫头”的三视图如图所示,则该“榫头”的体积是( )A .48B .50C .54D .63解析:由三视图可知,该几何体是由两个直棱柱组合而成,其直观图如图所示,故体积为3+62×3×3+3+62×3×1=54.故选C.答案:C11.如图,在矩形ABCD中,EF∥DA,GH∥BC,BC=2,AF=FG=BG=1,现分别沿EF,GH将矩形折叠使得AD与BC重合,则折叠后的几何体的外接球的表面积为( )A.8π3B.16π3C.6π D.24π解析:由题意得,折叠后的几何体为正三棱柱,且该三棱柱的底面边长为1,高为 2.如图所示的正三棱柱ABC­A1B1C1.设上下底面的中心分别为O 1,O 2,则球心O 为O 1,O 2的中点,连OC ,O 2C , 则O 2C =23×⎝ ⎛⎭⎪⎫32×1=33,OO 2=1,∴OC =O 2C 2+O 2O 2= ⎝ ⎛⎭⎪⎫33 2+1=233, 即球半径R =233,∴该几何体的外接球的表面积为S =4πR 2=4π×43=16π3.故选B. 答案:B12.若长方体ABCD ­A 1B 1C 1D 1的顶点都在体积为288π的球O 的球面上,则长方体ABCD ­A 1B 1C 1D 1的表面积的最大值等于( ) A .576 B .288 C .144 D .72答案:B 二、填空题13.若圆锥底面半径为1,侧面积为5π,则该圆锥的体积是________. 解析:设圆锥的母线长为l ,圆锥底面半径为1,侧面积为5π, ∴5π=πl ,即l =5, ∴圆锥的高h =5-1=2,∴该圆锥的体积是V =13πr 2h =13π×2=23π.314.(2019·长春质检)一个倒置圆锥形容器,底面直径与母线长相等,容器内存有部分水,向容器内放入一个半径为1的铁球,铁球恰好完全没入水中(水面与铁球相切)则容器内水的体积为________.解析:如图所示,作出轴截面,由题意,圆锥的底面直径与母线长相等,可得AP =AB ,则AP =2AC ,所以∠APC =30°,记铁球的半径为r ,即OC =OD =r =1,在△ODP 中,sin ∠OPD =OD OP =12,则OP =2r =2,所以PC =3r =3,因此AC =3r =3,PA =23r =23,所以铁球所在圆锥的体积为V 圆锥=V 水+V 铁球,即V 水=V 圆锥-V 铁球=13S 圆C ·PC -43πr 3=13π(3)2·3-43π=53π.315.已知所有棱长都相等的三棱锥的各个顶点同在一个半径为3的球面上,则该三棱锥的表面积为________.解析:构造一个各棱长为a 的正方体,连接各面的对角线可作出一个正四面体, 而此四面体的外接球即为正方体的外接球. 此球的直径为正方体的体对角线,即23,由勾股定理得到3a 2=12⇒a =2,三棱锥的边长即为正方体的面对角线长为:22, 所以该锥体表面积S =4×12×(22)2×32=8 3.答案:8 316.(2019·洛阳、许昌质检)在直三棱柱ABC ­A 1B 1C 1中,∠ACB =90°,AC =2,BC =CC 1=2,P 是BC 1上一动点,则A 1P +PC 的最小值为________.解析:连接A 1B ,沿BC 1将△CBC 1展开与△A 1BC 1在同一个平面内(图略), 在BC 1上取一点与A 1C 构成三角形, ∵三角形两边和大于第三边,∴A 1P +PC 的最小值是A 1C 的连线.作展开图,如图,由∠ACB =90°,AC =2,BC =CC 1=2, 得AB =AC 2+BC 2=6, 又AA 1=CC 1=2,∴A 1B =AA 21+AB 2=2+6=22,BC 1=2+2=2,A 1C 1=AC =2, ∴∠A 1BC 1=45°,∠CBC 1=45°,∴∠A 1BC =90°, ∴A 1C =A 1B 2+BC 2=8+2=10.答案:10增分强化练考点一 空间线、面位置关系的判断1.在长方体ABCD ­A 1B 1C 1D 1中,AB =AD =2,AA 1=2,则异面直线AB 1与BC 1所成角的余弦值为( )A.23 B.56 C.33D.66解析:画出图形,如图所示.连接AD 1,B 1D 1,则AD 1∥BC 1,所以∠B 1AD 1即为AB 1与BC 1所成的角或其补角. 在B 1AD 1中,AB 1=AD 1=6,B 1D 1=2, 所以由余弦定理得cos ∠B 1AD 1=6+6-42×6=23,所以异面直线AB 1与BC 1所成角的余弦值为23.故选A. 答案:A2.(2019·宝鸡模拟)异面直线a ,b 所成的角为π3,直线a ⊥c ,则异面直线b 与c 所成角的范围为( ) A.⎣⎢⎡⎦⎥⎤π3,π2B.⎣⎢⎡⎦⎥⎤π6,π2C.⎣⎢⎡⎦⎥⎤π3,2π3D.⎣⎢⎡⎦⎥⎤π6,5π6解析:作b 的平行线b ′,交a 于O 点(图略),所有与a 垂直的直线平移到O 点组成一个与直线a 垂直的平面α,O 点是直线a 与平面α的交点,在直线b ′上取一点P ,作垂线PP ′⊥平面α,交平面α于P ′,∠POP ′是b ′与面α的夹角为π6,在平面α中,所有与OP ′平行的直线与b ′的夹角都是π6,在平面α所有与OP ′垂直的线,由于PP ′垂直于平面α,所以该线垂直于PP ′,则该线垂直于平面OPP ′,所以该线垂直于b ′,故在平面α所有与OP ′垂直的线与b ′的夹角为π2,与OP ′夹角大于0,小于π2的线,与b ′的夹角为锐角且大于π6,故选B.答案:B3.在直三棱柱ABC ­A 1B 1C 1中,CA =CB =4,AB =27,CC 1=25,E ,F 分别为AC ,CC 1的中点,则直线EF 与平面AA 1B 1B 所成的角是( ) A .30° B .45° C .60°D .90°解析:连接AC 1,则EF ∥AC 1,直线EF 与平面AA 1B 1B 所成的角,就是AC 1与平面AA 1B 1B 所成的角;作C 1D ⊥A 1B 1于D ,连接AD ,因为直三棱柱ABC ­A 1B 1C 1中,CA =CB =4,所以底面是等腰三角形,则C 1D ⊥平面AA 1B 1B ,可知∠C 1AD 就是直线EF 与平面AA 1B 1B 所成的角,CA =CB =4,AB =27,CC 1=25,可得C 1D =42-(7)2=3,AD =(7)2+(25)2=33, 所以tan ∠C 1AD =C 1D AD =33, 所以∠C 1AD =30°. 故选A.答案:A考点二空间线面平行、垂直关系的证明1.(2019·晋城模拟)若a,b是不同的直线,α,β是不同的平面,则下列命题中正确的是( ) A.若a∥α,b∥β,a⊥b,则α⊥βB.若a∥α,b∥β,a∥b,则α∥βC.若a⊥α,b⊥β,a∥b,则α∥βD.若a∥α,b⊥β,a⊥b,则α∥β解析:A中若a∥α,b∥β,a⊥b,平面α,β可能垂直也可能平行或斜交;B中若a∥α,b∥β,a∥b,平面α,β可能平行也可能相交;C中若a⊥α,a∥b,b⊥α,又b⊥β,故α∥β,所以a∥b必有α∥β;D中若a∥α,b⊥β,a⊥b,平面α,β可能平行也可能相交.故选C.答案:C2.(2019·蚌埠模拟)如图,在以P为顶点,母线长为2的圆锥中,底面圆O的直径长为2,点C在圆O所在平面内,且AC是圆O的切线,BC交圆O于点D,连接PD,OD.(1)求证:PB ⊥平面PAC ;(2)若AC =233,求点O 到平面PBD 的距离.解析:(1)证明:因为AB 是圆O 的直径,AC 与圆O 切于点A ,所以AC ⊥AB . 又在圆锥中,PO 垂直底面圆O ,所以PO ⊥AC ,而PO ∩AB =O , 所以AC ⊥平面PAB ,从而AC ⊥PB .在△PAB 中,PA 2+PB 2=AB 2,所以PA ⊥PB ,又PA ∩AC =A 所以PB ⊥平面PAC . (2)因为AB =2,AC =233,AC ⊥AB ,所以在直角△ABC 中,∠ABC =π6.又OD =OB =1=PO ,则△OBD 是等腰三角形,所以BD =3,S △OBD =12×1×1×sin 2π3=34.又PB =PD =2,所以S △PBD =12×3×52=154,设点O 到平面PBD 的距离为d ,由V P ­OBD =V O ­PBD , 即13S △OBD ·PO =13S △PBD ·d ,所以d =55. 考点三 空间中的翻折问题1.(2019·淮南模拟)正三角形ABC 的边长为a ,将它沿平行于BC 的线段PQ 折起(其中P 在边AB 上,Q 在AC 边上),使平面APQ ⊥平面BPQC .D ,E 分别是PQ ,BC 的中点.(1)证明:PQ ⊥平面ADE ;(2)若折叠后,A ,B 两点间的距离为d ,求d 最小时,四棱锥A ­PBCQ 的体积. 解析:(1)证明:在△APQ 中,AP =AQ ,D 是PQ 的中点,所以AD ⊥PQ .又因为DE 是等腰梯形BPQC 的对称轴,所以DE ⊥PQ . 而AD ∩DE =D ,所以PQ ⊥平面ADE .(2)因为平面APQ ⊥平面BPQC ,AD ⊥PQ ,所以AD ⊥平面PBCQ ,连结BD ,则d 2=AD 2+BD 2. 设AD =x ,DE =32a -x (E 为BC 的中点), 于是BD 2=DE 2+BE 2= ⎝⎛⎭⎪⎫32a -x 2+14a 2. 因此d 2=x 2+BD 2=x 2+DE 2+BE 2=x 2+⎝⎛⎭⎪⎫32a -x 2+14a 2=2⎝⎛⎭⎪⎫x -34a 2+58a 2,当x=34a时,d min=104a.此时四棱锥A­PBCQ的体积为13×S梯形PBCQ×AD=13×12⎝⎛⎭⎪⎫a2+a×34a×34a=364a3.2.如图1,在菱形ABCD中,AB=2,∠DAB=60°,M是AD的中点,以BM为折痕,将△ABM 折起,使点A到达点A1的位置,且平面A1BM⊥平面BCDM,如图2.(1)求证:A1M⊥BD;(2)若K为A1C的中点,求四面体M­A1BK的体积.解析:(1)证明:在图1中,∵四边形ABCD是菱形,∠DAB=60°,M是AD的中点,∴AD⊥BM,故在图2中,BM⊥A1M,∵平面A1BM⊥平面BCDM,平面A1BM∩平面BCDM=BM,∴A1M⊥平面BCDM,又BD⊂平面BCDM,∴A1M⊥BD.图1 图2(2)在图1中,∵ABCD 是菱形,AD ⊥BM ,AD ∥BC ,∴BM ⊥BC ,且BM =3, 在图2中,连接CM ,则VA 1-BCM =13S △BCM ·A 1M =13×12×2×3×1=33,∵K 是A 1C 的中点,∴VM ­A 1BK =VK ­MA 1B =12VC ­MA 1B =12VA 1­BCM =36.增分强化练考点一 空间几何体的三视图1.日晷是中国古代利用日影测得时刻的一种计时工具,又称“日规”.通常由铜制的指针和石制的圆盘组成,铜制的指针叫做“晷针”,垂直地穿过圆盘中心,石制的脚盘叫做“晷面”,它放在石台上,其原理就是利用太阳的投影方向来测定并划分时刻.利用日晷计时的方法是人类在天文计时领域的重大发明,这项发明被人类沿用达几千年之久,下图是一位游客在故宫中拍到的一个日晷照片,假设相机镜头正对的方向为正方向,则根据图片判断此日晷的侧(左)视图可能为( )解析:因为相机镜头正对的方向为正方向,所以侧视图中圆盘为椭圆,又晷针斜向下穿盘而过,故其投影为下虚上实,故选D.答案:D2.“牟合方盖”是我国古代数学家刘徽在探求球体体积时构造的一个封闭几何体,它由完全相同的四个曲面构成,其直观图如图(其中四边形是为体现直观性而作的辅助线).当“牟合方盖”的正视图和侧视图完全相同时,其俯视图为( )解析:∵相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).∴其正视图和侧视图是一个圆,俯视图是从上向下看,相对的两个曲面在同一个圆柱的侧面上,∴俯视图是有2条对角线且为实线的正方形,故选B.答案:B3.(2019·青岛模拟)某四棱锥的三视图如图所示,则该四棱锥的侧面为等腰直角三角形的个数为( )A.1 B.2C.3 D.4解析:由三视图可得直观图如图所示:由三视图可知:PD ⊥平面ABCD , ∴PD ⊥AD ,PD ⊥DC ,PD ⊥AB , 又PD =AD =2,PD =DC =2,∴△PAD 和△PDC 为等腰直角三角形. 又PD ⊥AB ,AD ⊥AB , ∴AB ⊥平面PAD , ∴AB ⊥PA ,又AB =1,PA =4+4=22, ∴ΔPAB 不是等腰直角三角形.∵PB =12+22+22=3,BC =12+22=5,PC =22+22=22, ∴△PBC 不是等腰直角三角形,综上所述,侧面为等腰直角三角形的共有2个. 故选B. 答案:B考点二 空间几何体的表面积与体积1.用半径为3 cm ,圆心角为2π3的扇形纸片卷成一个圆锥筒,则这个圆锥筒的高为( )A .1 cmB .2 2 cm C. 2 cmD .2 cm解析:设圆锥的底面半径为r cm ,由题意底面圆的周长即扇形的弧长,可得2πr =2π3×3,即底面圆的半径为1,所以圆锥的高h =32-1=22,故选B. 答案:B2.(2019·中卫模拟)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A.16π3B.8π3C .4 3D .23π解析:由已知几何体的正视图是一个正三角形,侧视图和俯视图均为三角形,可得该几何体是有一个侧面PAC 垂直于底面,高为3,底面是一个等腰直角三角形的三棱锥,如图.则这个几何体的外接球的球心O 在高线PD 上,且是正三角形PAC 的中心,这个几何体的外接球的半径R =23PD =233.则这个几何体的外接球的表面积为S =4πR 2=4π×⎝ ⎛⎭⎪⎫2332=16π3.故选A. 答案:A3.某几何体的三视图如图所示,则该几何体的体积为( )A .6+3π2B .6+3πC .2+3π2D .2+3π解析:由题意,根据给定的三视图可知,该几何体左边表示一个底面为腰长为2的等腰直角三角形,高为3的直三棱柱,右边表示一个底面为半径为1的半圆,母线长为3的半圆柱,所以该几何体的体积为V =12×2×2×3+12π×12×3=6+3π2,故选A.答案:A4.(2019·泰安模拟)如图,已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,点P 为棱AA 1上任意一点,则四棱锥P ­BDD 1B 1的体积为________.解析:连结AC 交BD 于O (图略),则有AO ⊥平面BDD 1B 1,。

2020江苏高考理科数学二轮练习:高考热点追踪立体几何专题强化 精练提能 含解析

2020江苏高考理科数学二轮练习:高考热点追踪立体几何专题强化 精练提能 含解析

1.(20xx·徐州、淮安、宿迁、连云港四市模拟)已知圆锥的轴截面是边长为2的正三角形,则该圆锥的体积为________.[解析] 由题意得圆锥的底面半径、高分别为r =1,h =3,故该圆锥的体积为V =13π×12×3=3π3. [答案]33π 2.(20xx·江苏省高考命题研究专家原创卷(五))《九章算术》第五章《商功》记载:今有圆堡瑽,周四丈八尺,高一丈一尺,问积几何?此处圆堡瑽即圆柱体,其意思是:有一个圆柱体的底面周长是4丈8尺,高1丈1尺,问它的体积是多少?若π的值取3,估算该圆堡瑽的体积为________立方尺.(注:一丈等于十尺)[解析] 设该圆柱体底面圆的半径为r 尺,则由题意得2πr =48,所以r ≈8,又圆柱体的高为11尺,故该圆堡瑽的体积V =πr 2h ≈2 112立方尺.[答案] 2 1123.(20xx·苏北四市高三模拟)已知矩形ABCD 的边AB =4,BC =3,若沿对角线AC 折叠,使平面DAC ⊥平面BAC ,则三棱锥D -ABC 的体积为________.[解析] 在平面DAC 内过点D 作DE ⊥AC ,因为平面DAC ⊥平面BAC ,由面面垂直的性质定理可得DE ⊥平面BAC .又DE =125,所以三棱锥D -ABC 的体积为13×12×4×3×125=245.[答案] 2454.(20xx·南京模拟)设平面α与平面β相交于直线m ,直线b 在平面α内,直线c 在平面β内,且c ⊥m ,则“c ⊥b ”是“α⊥β”的________条件.[解析] 若α⊥β,又α∩β=m ,c ⊂β,c ⊥m 可得c ⊥α,因为b ⊂α,所以c ⊥b .反过来c ⊥b 不能得到α⊥β(如b ∥m 时,由c ⊥m 可得c ⊥b ,但不能判断α,β的位置关系).[答案] 必要不充分5.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上,若EF ∥平面AB 1C ,则线段EF 的长度等于________.[解析] 因为EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,所以EF ∥AC ,又因为E 是AD 的中点,所以F 是CD 的中点,即EF 是△ACD 的中位线, 所以EF =12AC =12×22=2.[答案] 26.(20xx·扬州模拟)设l ,m 是两条不同的直线,α是一个平面,有下列三个命题: ①若l ⊥α,m ⊂α,则l ⊥m ; ②若l ∥α,m ⊂α,则l ∥m ; ③若l ∥α,m ∥α,则l ∥m . 则其中正确命题的序号是________.[解析] 根据线面垂直的性质定理可知①正确. [答案] ①7.(20xx·南通高三模拟)已知正三棱柱的各条棱长均为a ,圆柱的底面直径和高均为b .若它们的体积相等,则a 3∶b 3的值为________.[解析] 由题意可得12×a 2×32×a =π(b 2)2×b ,即34a 3=14πb 3,则a3b3=π3=3π3.[答案]3π38.(20xx·江苏省高考命题研究专家原创卷(三))如图,若三棱锥A 1­BCB 1的体积为3,则三棱柱ABC -A 1B 1C 1的体积为________.[解析] 设三棱柱的底面面积为S ,高为h ,则VA 1­ABC =13S △ABC ·h =13Sh =13VABC ­A 1B 1C 1,同理VC ­A 1B 1C 1=13VABC ­A 1B 1C 1,所以VA 1­BCB 1=13VABC ­A 1B 1C 1.又VA 1­BCB 1=3,所以三棱柱ABC -A 1B 1C 1的体积为9.[答案] 99.(20xx·南通模拟)如图是一几何体的平面展开图,其中ABCD 为正方形,E ,F 分别为PA ,PD 的中点.在此几何体中,给出下面四个结论:①直线BE 与CF 异面;②直线BE 与AF 异面;③直线EF ∥平面PBC ;④平面BCE ⊥平面PAD .其中一定正确的有________个.[解析] 如图,易得EF ∥AD ,AD ∥BC ,所以EF ∥BC ,即B ,E ,F ,C 四点共面,则①错误,②正确,③正确,④不一定正确. [答案] 210.(20xx·江苏高考专家原创卷)已知正三棱锥P -ABC 的体积为223,底面边长为2,D 为侧棱PA 的中点,则四面体D -ABC 的表面积为________.[解析] 设底面正三角形ABC 的中心为O ,连结OA ,OP ,又底面边长为2,可得OA =233,由V P ­ABC =13S △ABC ·PO ,即223=13PO ×34×22,得PO =263,所以PA =PO2+AO2=2.S △ABC =3,S △DAB =S △DAC =32,S △DBC =2,所以四面体D -ABC 的表面积为23+2.[答案] 23+ 211.(20xx·江苏省高考命题研究专家原创卷(二))已知三棱锥P -ABC 中,PA =3,PC =2,AC =1,平面PAB ⊥平面ABC ,D 是PA 的中点,E 是PC 的中点.(1)求证:DE ∥平面ABC ; (2)求证:平面BDE ⊥平面PAB .[证明] (1)因为D 是PA 的中点,E 是PC 的中点, 所以DE ∥AC .又DE ⊄平面ABC ,AC ⊂平面ABC , 所以DE ∥平面ABC .(2)因为PA =3,PC =2,AC =1,所以PA 2+AC 2=PC 2, 所以三角形PAC 是直角三角形,AC ⊥PA . 又DE ∥AC ,所以DE ⊥PA . 过P 作PH ⊥AB 于H .因为平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,PH ⊂平面PAB , 所以PH ⊥AC .又DE ∥AC ,所以DE ⊥PH .又PA ∩PH =P ,PA ,PH ⊂平面PAB , 所以DE ⊥平面PAB .又DE ⊂平面BDE ,所以平面BDE ⊥平面PAB .12.(20xx·南京检测)如图,在正三棱柱ABC -A 1B 1C 1中,E ,F 分别为BB 1,AC 的中点.(1)求证:BF ∥平面A 1EC ;(2)求证:平面A 1EC ⊥平面ACC 1A 1.[证明] (1)连结AC 1交A 1C 于点O ,连结OE ,OF ,在正三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1为平行四边形,所以OA =OC 1. 又因为F 为AC 中点,所以OF ∥CC 1且OF =12CC 1.因为E 为BB 1中点,所以BE ∥CC 1且BE =12CC 1.所以BE ∥OF 且BE =OF ,所以四边形BEOF 是平行四边形,所以BF ∥OE . 又BF ⊄平面A 1EC ,OE ⊂平面A 1EC , 所以BF ∥平面A 1EC .(2)由(1)知BF ∥OE ,因为AB =CB ,F 为AC 中点, 所以BF ⊥AC ,所以OE ⊥AC .又因为AA 1⊥底面ABC ,而BF ⊂底面ABC , 所以AA 1⊥BF .由BF ∥OE ,得OE ⊥AA 1,而AA 1,AC ⊂平面ACC 1A 1,且AA 1∩AC =A , 所以OE ⊥平面ACC 1A 1.因为OE ⊂平面A 1EC , 所以平面A 1EC ⊥平面ACC 1A 1.13.(20xx·江苏高考原创卷)如图,已知AB ⊥平面ACD ,DE ∥AB ,△ACD 是正三角形,AD =4,DE =2AB =3,且F 是CD 的中点.(1)求证:AF ∥平面BCE ;(2)在线段CE 上是否存在点H ,使DH ⊥平面BCE ?若存在,求出CHHE 的值;若不存在,请说明理由.[解] (1)证明:取CE 的中点P ,连结FP ,BP , 因为F 为CD 的中点, 所以FP ∥DE ,且FP =12DE .又AB ∥DE ,且AB =12DE ,所以AB ∥FP ,且AB =FP , 所以四边形ABPF 为平行四边形, 所以AF ∥BP .因为AF ⊄平面BCE ,BP ⊂平面BCE , 所以AF ∥平面BCE .(2)在线段CE 上存在点H ,使DH ⊥平面BCE .理由如下:在△CDE 中,过点D 作DH ⊥CE ,交CE 于点H , 因为△ACD 为正三角形,所以AF ⊥CD .因为AB ⊥平面ACD ,DE ∥AB ,所以DE ⊥平面ACD ,又CD 、AF ⊂平面ACD ,所以DE ⊥AF ,DE ⊥CD .又CD ∩DE =D ,所以AF ⊥平面DCE .又BP ∥AF , 所以BP ⊥平面DCE .因为DH ⊂平面CDE ,所以DH ⊥BP . 又BP ∩CE =P , 所以DH ⊥平面BCE .在Rt △CDE 中,CD =4,DE =3,DH ⊥CE , 所以CH =165,HE =95,CH HE =169.14.如图所示,在直三棱柱ABC -A 1B 1C 1中,AB =BB 1,AC 1⊥平面A 1BD ,D 为AC 的中点.(1)求证:B 1C 1⊥平面ABB 1A 1;(2)在CC 1上是否存在一点E ,使得∠BA 1E =45°,若存在,试确定E 的位置,并判断平面A 1BD 与平面BDE 是否垂直?若不存在,请说明理由.[解] (1)证明:因为AB =B 1B ,所以四边形ABB 1A 1为正方形,所以A 1B ⊥AB 1, 又因为AC 1⊥平面A 1BD ,所以AC 1⊥A 1B , 所以A 1B ⊥平面AB 1C 1,所以A 1B ⊥B 1C 1. 又在直棱柱ABC -A 1B 1C 1中,BB 1⊥B 1C 1, 所以B 1C 1⊥平面ABB 1A 1.(2)存在.证明如下:设AB =BB 1=a ,CE =x ,因为D 为AC 的中点,且AC 1⊥A 1D ,所以A 1B =A 1C 1=2a ,又因为B 1C 1⊥平面ABB 1A 1,B 1C 1⊥A 1B 1,所以B 1C 1=a ,BE =a2+x2, A 1E =2a2+(a -x )2=3a2+x2-2ax ,在△A 1BE 中,由余弦定理得BE 2=A 1B 2+A 1E 2-2A 1B ·A 1E ·cos 45 °,即a 2+x 2=2a 2+3a 2+x 2-2ax -23a2+x2-2ax·2a ·22,所以3a2+x2-2ax =2a -x ,解得x =12a ,即E 是C 1C 的中点,因为D ,E 分别为AC ,C 1C 的中点,所以DE ∥AC 1, 因为AC 1⊥平面A 1BD ,所以DE ⊥平面A 1BD , 又因为DE ⊂平面BDE ,所以平面A 1BD ⊥平面BDE .。

解析几何-2020年高考数学(理)二轮专项复习

解析几何-2020年高考数学(理)二轮专项复习

专题08 解析几何平面解析几何主要介绍用代数知识研究平面几何的方法.为此,我们要关注:将几何问题代数化,用代数语言描述几何要素及其关系,将几何问题转化为代数问题,处理代数问题,分析代数结果的几何含义,最终解决几何问题.在此之中,要不断地体会数形结合、函数与方程及分类讨论等数学思想与方法.要善于应用初中平面几何、高中三角函数和平面向量等知识来解决直线、圆和圆锥曲线的综合问题.§8-1 直角坐标系【知识要点】1.数轴上的基本公式设数轴的原点为O ,A ,B 为数轴上任意两点,OB =x 2,OA =x 1,称x 2-x 1叫做向量AB 的坐标或数量,即数量AB =x 2-x 1;数轴上两点A ,B 的距离公式是d (A ,B )=|AB |=|x 2-x 1|.2.平面直角坐标系中的基本公式设A ,B 为直角坐标平面上任意两点,A (x 1,y 1),B (x 2,y 2),则A ,B 两点之间的距离公式是.)()(||),.(212212y y x x AB B A d -+-==A ,B 两点的中点M (x ,y )的坐标公式是⋅+=+=2,22121y y y x x x 3.空间直角坐标系 在空间直角坐标系O -xyz 中,若A (x 1,y 1,z 1),B (x 2,y 2,z 2),A ,B 两点之间的距离公式是.)()()(||),(212212212z z y y x x AB B A d -+-+-==【复习要求】1.掌握两点间的距离公式,中点坐标公式;会建立平面直角坐标系,用坐标法(也称为解析法)解决简单的几何问题.2.了解空间直角坐标系,会用空间直角坐标系刻画点的位置,并掌握两点间的距离公式.【例题分析】例1 解下列方程或不等式:(1)|x-3|=1;(2)|x-3|≤4;(3)1<|x-3|≤4.略解:(1)设直线坐标系上点A,B的坐标分别为x,3,则|x-3|=1表示点A到点B的距离等于1,如图8-1-1所示,图8-1-1所以,原方程的解为x=4或x=2.(2)与(1)类似,如图8-1-2,图8-1-2则|x-3|≤4表示直线坐标系上点A到点B的距离小于或等于4,所以,原不等式的解集为{x|-1≤x≤7}.(3)与(2)类似,解不等式1<|x-3|,得解集{x|x>4,或x<2},将此与不等式|x-3|≤4的解集{x|-1≤x≤7}取交集,得不等式1<|x-3|≤4的解集为{x|-1≤x<2,或4<x≤7}.【评析】解绝对值方程或不等式时,如果未知数x的次数和系数都为1,那么可以利用绝对值的几何意义来解绝对值方程或不等式.|x-a|的几何意义:表示数轴(直线坐标系)上点A(x)到点B(a)的距离.例2 已知矩形ABCD及同一平面上一点P,求证:P A2+PC2=PB2+PD2.解:如图8-1-3,以点A为原点,以AB为x轴,向右为正方向,以AD为y轴,向上为正方向,建立平面直角坐标系.图8-1-3设AB =a ,AD =b ,则 A (0,0),B (a ,0),C (a ,b ),D (0,b ),设P (x ,y ), 则22222222))()(()(b y a x y x PC PA -+-++=+=x 2+y 2+(x -a )2+(y -b )2,22222222))(())((b y x y a x PD PB -+++-=+=x 2+y 2+(x -a )2+(y -b )2,所以P A 2+PC 2=PB 2+PD 2.【评析】坐标法是解析几何的一个基本方法,非常重要.坐标法中要注意坐标系的建立,理论上,可以任意建立坐标系,但是坐标系的位置会影响问题解决的复杂程度,适当的坐标系可以使解题过程较为简便.例3 已知空间直角坐标系中有两点A (1,2,-1),B (2,0,2).(1)求A ,B 两点的距离;(2)在x 轴上求一点P ,使|P A |=|PB |;(3)设M 为xOy 平面内的一点,若|MA |=|MB |,求M 点的轨迹方程.解:(1)由两点间的距离公式,得.14)21()02()21(||222=--+-+-=AB(2)设P (a ,0,0)为x 轴上任一点,由题意得222)10()20()1(++-+-a,即a 2-2a +6=a 2-4a +8,解得a =1,所以P (1,0,0).40)2(2++-=a(3)设M (x ,y ,0),则有整理可得x -2y -1=0.所以,M 点的轨迹方程为x -2y -1=0. 【评析】由两点间的距离公式建立等量关系,体现了方程思想的应用.练习8-1一、选择题1.数轴上三点A ,B ,C 的坐标分别为3,-1,-5,则AC +CB 等于( )A .-4B .4C .-12D .122.若数轴上有两点A (x ),B (x 2)(其中x ∈R ),则向量的数量的最小值为( )A .B .0C .D . 3.在空间直角坐标系中,点(1,-2,3)关于yOz 平面的对称点是( )A .(1,-2,-3)B .(1,2,3)C .(-1,-2,3)D .(-1,2,3)4.已知平面直角坐标内有三点A (-2,5),B (1,-4),P (x ,y ),且|AP |=|BP |,则实数x ,y 满足的方程为( )A .x +3y -2=0B .x -3y +2=0C .x +3y +2=0D .x -3y -2=0二、填空题5.方程|x +2|=3的解是______;不等式|x +3|≥2的解为______.6.点A (2,3)关于点B (-4,1)的对称点为______.7.方程|x +2|-|x -3|=4的解为______.8.如图8-1-4,在长方体ABCD -A 1B 1C 1D 1中,|DA |=3,|DC |=4,|DD 1|=2,A 1C 的中点为M ,则点B 1的坐标是______,点M 的坐标是______,M 关于点B 1的对称点为______. ,4)0()2()10()2()1(22222+-+-=++-+-y x y x AB 214141-图8-1-4三、解答题9.求证:平行四边形ABCD满足AB2+BC2+CD2+DA2=AC2+BD2.10.求证:以A(4,3,1),B(7,1,2),C(5,2,3)三点为顶点的三角形是一个等腰三角形.11.在平面直角坐标系中,设A(1,3),B(4,5),点P在x轴上,求|P A|+|PB|的最小值.§8-2 直线的方程【知识要点】1.直线方程的概念如果以一个方程的解为坐标的点都在某条直线上,且这条直线上点的坐标都是这个方程的解,那么这个方程叫做这条直线的方程...........,这条直线叫做这个方程的直线2.直线的倾斜角和斜率x轴正向与直线向上的方向所成的角叫做这条直线的倾斜角....并规定,与x轴平行或重合的直线的倾斜角为零度角.因此,倾斜角α 的取值范围是0°≤α <180°.我们把直线y =kx +b 中的系数k 叫做这条直线的斜率...设A (x 1,y 1),B (x 2,y 2)为直线y =kx +b 上任意两点,其中x 1≠x 2,则斜率 倾斜角为90°的直线的斜率不存在,倾斜角为α 的直线的斜率k =tan α (α ≠90°).3.直线方程的几种形式点斜式:y -y 1=k (x -x 1);斜截式:y =kx +b ;两点式:一般式:Ax +By +C =0(A 2+B 2≠0).4.两条直线相交、平行与重合的条件设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则(1)l 1与l 2相交A 1B 2-A 2B 1≠0或 (2)l 1与l 2平行(3)l 1与l 2重合 当直线l 1与l 2的斜率存在时,设斜率分别为k 1,k 2,截距分别为b 1,b 2,则l 1与l 2相交k 1≠k 2;l 1∥l 2k 1=k 2,b 1≠b 2;l 1与l 2重合k 1=k 2,b 1=b 2.5.两条直线垂直的条件设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1⊥l 2A 1A 2+B 1 B 2=0. 当直线l 1与l 2的斜率存在时,设斜率分别为k 1,k 2,则l 1⊥l 2k 1k 2=-1.⋅--=1212x x yy k );,(2121121121y y x x x x x x y y y y =/=/--=--⇔)0(222121=/=/B A B B A A ⇔⎪⎪⎩⎪⎪⎨⎧=/=/=≠-≠-=-).0(;00,0222212121211221211221C B A C C B B A A C A C A B C C B B A B A 或或而⇔⎪⎩⎪⎨⎧=/==≠===).0();0(,,222212*********C B A C C B B A A C C B B A A 或λλλλ⇔⇔⇔⇔⇔6.点到直线的距离点P (x 1,y 1)到直线l :Ax +By +C =0的距离d 的计算公式【复习要求】1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式:点斜式、两点式及一般式,体会斜截式与一次函数的关系.2.掌握两条直线平行与垂直的条件,点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系,能用解方程组的方法求两直线的交点坐标.【例题分析】例1(1)直线的斜率是______,倾斜角为______;(2)设A (2,3),B (-3,2),C (-1,-1),过点C 且斜率为k 的直线l 与线段AB 相交,则斜率k 的取值范围为______.略解:(1)直线可以化简为 所以此直线的斜率为,倾斜角 (2)如图8-2-1,设直线AC 的倾斜角为α ,图8-2-1因为此直线的斜率为,所以 设直线BC 的倾斜角为β ,因为此直线的斜率为 ⋅+++=2211||B A C By Ax d 082=-+y x 082=-+y x ,22822+-=x y 22-;22tan arc π-=α341213=++=AC k ;34tan =α,231312-=+-+=BC k所以 因为直线l 与线段AB 相交,所以直线l 的倾斜角θ 满足α ≤θ ≤β ,由正切函数图象,得tan θ ≥tan α 或tan θ≤tan β,故l 斜率k 的取值范围为.【评析】(1)求直线的斜率常用方法有三种:①已知直线的倾斜角α,当α≠90°时,k =tan α; ②已知直线上两点的坐标(x 1,y 1),(x 2,y 2),当x 1≠x 2时,k =; ③已知直线的方程Ax +By +C =0,当B ≠0时,k =. (2)已知直线的斜率k 求倾斜角α 时,要注意当k >0时,α =arctan k ;当k <0时,α =π-arctan |k |.例2 根据下列条件求直线方程:(1)过点A (2,3),且在两坐标轴上截距相等;(2)过点P (-2,1),且点Q (-1,-2)到直线的距离为1.解:(1)设所求直线方程为y -3=k (x -2),或x =2(舍),令y =0,得x =2-(k ≠0);令x =0,得y =3-2k , 由题意,得2-=3-2k ,解得k =或k =-1, 所以,所求直线方程为3x -2y =0或x +y -5=0;(2)设所求直线方程为y -1=k (x +2)或x =-2,当直线为y -1=k (x +2),即kx —y +(2k +1)=0时,由点Q (-1,-2)到直线的距离为1,得=1,解得, ⋅-=23tan β]23,[],34[-∞+∞∈ k 1212x x y y --BA -k3k 3231|122|2++++-k k k 34-=k所以,直线,即4x +3y +5=0符合题意; 当直线为x =-2时,检验知其符合题意.所以,所求直线方程为4x +3y +5=0或x =-2.【评析】求直线方程,应从条件出发,合理选择直线方程的形式,并注意每种形式的适应条件.特别地,在解题过程中要注意“无斜率”,“零截距”的情况.例3 已知直线l 1:(m -2)x +(m +2)y +1=0,l 2:(m 2-4)x —my -3=0,(1)若l 1∥l 2,求实数m 的值;(2)若l 1⊥l 2,求实数m 的值.解法一:(1)因为l 1∥l 2,所以(m -2)(-m )=(m +2)(m 2-4),解得m =2或m =-1或m =-4,验证知两直线不重合,所以m =2或m =-1或m =-4时,l 1∥l 2;(2)因为l 1⊥l 2,所以(m -2)(m 2-4)+(-m )(m +2)=0,解得m =-2或m =1或m =4.解法二:当l 1斜率不存在,即m =-2时,代入直线方程,知l 1⊥l 2;当l 2斜率不存在,即m =0时,代入直线方程,知l 1与l 2既不平行又不垂直; 当l 1,l 2斜率存在,即m ≠0,m ≠-2时,可求l 1,l 2,如的斜率分别为k 1=-,k 2=,截距b 1=-,b 2=, 若l 1∥l 2,由k 1=k 2,b 1≠b 2,解得m =2或m =-1或m =-4,若l 1⊥l 2,由k 1k 2=-1,解得m =1或m =4综上,(1)当m =2或m =-1或m =-4时,l 1∥l 2;(2)当m =-2或m =1或m =4时,l 1⊥l 2.【评析】两条直线平行与垂直的充要条件有几个,但各有利弊.简洁的(如解法一)相互之间易混淆,好记的要注意使用条件(如解法二,易丢“无斜率”的情况),解题过程中要注03534=---y x 22-+m m m m 42-21+m m3-意正确使用.例4 已知直线l 过两直线l 1:3x -y -1=0与l 2:x +y -3=0的交点,且点A (3,3)和B (5,2)到l 的距离相等,求直线l 的方程.【分析】所求直线l 有两种情况:一是l 与AB 平行;二是点A ,B 在l 的两侧,此时l 过线段AB 的中点.解:解方程组得交点(1,2),由题意,当①l 与AB 平行;或②l 过A ,B 的中点时.可以使得点A ,B 到l 的距离相等. ①当l ∥AB 时,因为,此时,即x +2y -5=0; ②当l 过AB 的中点时,因为AB 的中点坐标为所以 即l :x -6y +11=0.综上,所求的直线l 的方程为x +2y -5=0或l :x -6y +11=0.例5 已知直线l 1:y =kx +2k 与l 2:x +y =5的交点在第一象限,求实数k 的取值范围. 解法一:解方程组,得交点 由题意,得,解得 解法二:如图8-2-2,由l 1:y =k (x +2),知l 1过定点P (-2,0),⎩⎨⎧=-+=--03013y x y x 215323-=--=AB k )1(212:--=-x y l ),25,4(M ,1412252:--=--x y l ⎩⎨⎧=++=52y x k kx y ),1255,125(+--+-k k k k ⎪⎪⎩⎪⎪⎨⎧>+-->+-012550125k k k k ⋅<<250k图8-2-2由l 2:x +y =5,知l 2坐标轴相交于点A (0,5),B (5,0),因为 由题意,得 【评析】在例4,例5中,要充分利用平面几何知识解决问题,体会数形结合的思想与方法;要会联立两个曲线(直线)的方程,解方程得到曲线的交点,体会方程思想.例6 如图8-2-3,过点P (4,4)的直线l 与直线l 1:y =4x 相交于点A (在第一象限),与x 轴正半轴相交于点B ,求△ABO 面积的最小值.图8-2-3解:设B (a ,0),则 将y =4x 代入直线l 的方程,得点A 的坐标为 则△ABO 的面积 所以当a =6时,△ABO 的面积S 取到最小值24.练习8-2一、选择题1.若直线l 的倾斜角的正弦为,则l 的斜率k 是( ) ,0,252005==+-=BP AP k k ⋅<<250k ),4(4044:---=-x a y l ),3)(34,3(>--a a a a a ,121)611(3234212+--=-⨯⨯=a a a a S 53A .B .C .或D .或 2.点P (a +b ,ab )在第二象限内,则bx +ay -ab =0直线不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3.“”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 4.若直线与直线2x +3y -6=0的交点位于第一象限,则l 的倾角的取值范围( )A .B .C .D . 二、填空题5.已知两条直线l 1:ax +3y -3=0,l 2:4x +6y -1=0,若l 1∥l 2,则a =_______.6.已知点A (3,0),B (0,4),则过点B 且与A 的距离为3的直线方程为_______.7.若点P (3,4),Q (a ,b )关于直线x -y -1=0对称,则a +2b =_______.8.若三点A (2,2),B (a ,0),C (0,b ),(ab ≠0)共线,则的值等于_______. 三、解答题9.已知点P 在直线2x +3y -2=0上,点A (1,3),B (-1,-5).(1)求|P A |的最小值;(2)若|P A |=|PB |,求点P 坐标.10.若直线l 夹在两条直线l 1:x -3y +10=0与l 2:2x +y -8=0之间的线段恰好被点P (0,1)平分,求直线l 的方程. 43-4343-433434-21=m 3:-=kx y l )3π,6π[)2π,3π()2π,6π(]2π,6π[ba 11+211.已知点P到两个定点M(-1,0)、N(1,0)距离的比为,点N到直线PM的距离为1.求直线PN的方程.§8-3 简单的线性规划问题【知识要点】1.二元一次不等式(组)所表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面区域中表示直线Ax+By+C=0某一侧的所有点组成的平面区域(开半平面),且不含边界线.不等式Ax+By+C≥0所表示的平面区域包括边界线(闭半平面).(2)由几个不等式组成的不等式组所表示的平面区域,是指各个不等式组所表示的平面区域的公共部分.(3)可在直线Ax+By+C=0的某一侧任取一点,一般地取特殊点(x0,y0),从Ax0+By0+C的正(或负)来判断Ax+By+C>0(或Ax+By+C<0)所表示的区域.当C≠0时,常把原点(0,0)作为特殊点.(4)也可以利用如下结论判断区域在直线哪一侧:①y>kx+b表示直线上方的半平面区域;y<kx+b表示直线下方的半平面区域.②当B>0时,Ax+By+C>0表示直线上方区域,Ax+By+C<0表示直线下方区域.2.简单线性规划(1)基本概念目标函数:关于x,y的要求最大值或最小值的函数,如z=x+y,z=x2+y2等.约束条件:目标函数中的变量所满足的不等式组.线性目标函数:目标函数是关于变量的一次函数.线性约束条件:约束条件是关于变量的一次不等式(或等式).线性规划问题:在线性约束条件下,求线性目标函数的最大值或最小值问题.最优解:使目标函数达到最大值或最小值的点的坐标,称为问题的最优解.可行解:满足线性约束条件的解(x ,y )叫可行解.可行域:由所有可行解组成的集合叫可行域.(2)用图解法解决线性规划问题的一般步骤:①分析并将已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数,求出最优解;⑥实际问题需要整数解时,应适当调整确定最优解.【复习要求】1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.2.能从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.【例题分析】例1 (1)若点(3,1)在直线3x -2y +a =0的上方,则实数a 的取值范围是______;(2)若点(3,1)和(-4,6)在直线3x -2y +a =0的两侧,则实数a 的取值范围是______. 解:(1)将直线化为 由题意,得,解得a <-7. (2)由题意,将两点代入直线方程的左侧所得符号相反,则(3×3-2+a )[3×(-4)-12+a ]<0,即(a +7)(a -24)<0,所以,实数a 的取值范围是(-7,24).例2 (1)如图8-3-1,写出能表示图中阴影部分的不等式组;,223a x y +=23231a +⨯>图8-3-1(2)如果函数y =ax 2+bx +a 的图象与x 轴有两个交点,试在aOb 坐标平面内画出点(a ,b )表示的平面区域.略解:(1) (2)由题意,得b 2-4a 2>0,即(2a +b )(2a -b )<0,所以或,点(a ,b )表示的平面区域如图8-3-2.图8-3-2【评析】除了掌握二元一次不等式表示平面区域外,还应关注给定平面区域如何用不等式表示这个逆问题.例3 已知x ,y 满足求:(1)z 1=x +y 的最大值;(2)z 2=x -y 的最大值;(3)z 3=x 2+y 2的最小值;,02210⎪⎩⎪⎨⎧≥+-->≤y x y x ⎩⎨⎧<->+0202b a b a ⎩⎨⎧>-<+0202b a ba ⎪⎩⎪⎨⎧≤--≥+-≥-+.033,042,022y x y x y x(4)的取值范围(x ≠1). 略解:如图8-3-3,作出已知不等式组表示的平面区域.图8-3-3易求得M (2,3),A (1,0),B (0,2).(1)作直线x +y =0,通过平移,知在M 点,z 1有最大值5;(2)作直线x -y =0,通过平移,知在A 点,z 2有最大值1;(3)作圆x 2+y 2=r 2,显然当圆与直线2x +y -2=0相切时,r 2有最小值,即z 3有最小值 (4)可看作(1,0)与(x ,y )两点连线的斜率,所以z 4的取值范围是(-∞,-2]∪[3,+∞).【评析】对于非线性目标函数在线性约束条件下的最值问题,要充分挖掘其目标函数z 的几何意义.z 的几何意义常见的有:直线的截距、斜率、圆的半径等.例4 某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件则z =10x +10y 的最大值是( )(A)80 (B)85 (C)90 (D)95略解:由题意,根据已知不等式组及可得到点(x ,y )的可行域.14-=x yz 2)52(;541-x y ⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x ⎩⎨⎧≥≥00y x如图8-3-4.图8-3-4作直线x +y =0,通过平移,知在M 点,z =10x +10y 有最大值,易得 又由题意,知x ,y ∈N ,作适当调整,知可行域内点(5,4)可使z 取最大值,所以,z max =10×5+10×4=90,选C .【评析】实际问题中,要关注是否需要整数解.例5 某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本1500元,运费400元,可得产品100千克.今预算每日原料总成本不得超过6000元,运费不得超过2000元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?解:设此工厂每日需甲种原料x 吨,乙种原料y 吨,则可得产品z =90x +100y (千克).由题意,得上述不等式组表示的平面区域如图8-3-5所示,阴影部分(含边界)即为可行域.图8-3-5作直线l :90x +100y =0,并作平行于直线l的一组直线与可行域相交,其中有一条直),29,211(M ⎪⎩⎪⎨⎧≥≥≤+≤+⇒⎪⎩⎪⎨⎧≥≥≤+≤+.0,0,2045,1232.0,0,2000400500,600015001000y x y x y x y x y x yx线经过可行域上的M 点,且与直线l 的距离最大,此时目标函数达到最大值.这里M 点是直线2x +3y =12和5x +4y =20的交点,容易解得M ,此时z 取到最大值 答:当每天提供甲原料吨,乙原料吨时,每日最多可生产440千克产品. 例6 设函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.(1)在平面直角坐标系aOb 中,画出点(a ,b )所表示的区域;(2)试利用(1)所得的区域,求f (-2)的取值范围.解:(1)∵f (-1)=a -b ,f (1)=a +b ,∴即如图8-3-6,在平面直角坐标系aOb 中,作出满足上述不等式组的区域,阴影部分(含边界)即为可行域.图8-3-6(2)目标函数f (-2)=4a -2b .在平面直角坐标系aOb 中,作直线l :4a -2b =0,并作平行于直线l 的一组直线与可行域相交,其中有一条直线经过可行域上的B 点,且与直线l 的距离最大,此时目标函数达到最大值.这里B 点是直线a -b =2和a +b =4的交点,容易解得B (3,1),此时f (-2)取到最大值4×3-2×1=10.)720,712(71290⨯.440720100=⨯+712720⎩⎨⎧≤+≤≤-≤.42,21b a b a ⎪⎪⎩⎪⎪⎨⎧<+≥+≤-≥-.4,2,2,1b a b a b a ba同理,其中有一条直线经过可行域上的C 点,此时目标函数达到最小值.这里C 点是直线a -b =1和a +b =2的交点,容易解得 此时f (-2)取到最小值 所以5≤f (-2)≤10. 【评析】线性规划知识是解决“与二元一次不等式组有关的最值(或范围)问题”的常见方法之一.练习8-3一、选择题1.原点(0,0)和点(1,1)在直线x +y -a =0的两侧,则a 的取值范围是 ( )A .a <0或a >2B .a =0或a =2C .0<a <2D .0≤a ≤22.若x ≥0,y ≥0,且x +y ≤1,则z =x -y 的最大值是( )A .-1B .1C .2D .-23.已知x 和y 是正整数,且满足约束条件则z =2x +3y 的最小值是( )A .24B .14C .13D .11.54.根据程序设定,机器人在平面上能完成下列动作:先从原点O 沿正东偏北α 方向行走-段时间后,再向正北方向行走一段时间,但α 的大小以及何时改变方向不定.如图8-3-7.假定机器人行走速度为10米/分钟,设机器人行走2分钟时的可能落点区域为S ,则S 可以用不等式组表示为( )图8-3-7),21,23(C .5212234=⨯-⨯⎪⎩⎪⎨⎧≥≤-≤+.72,2,10x y x y x )2π0(≤≤αA .B .C .D .二、填空题 5.在平面直角坐标系中,不等式组表示的平面区域的面积是______.6.若实数x 、y 满足,则的取值范围是______. 7.点P (x ,y )在直线4x +3y =0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是______.8.若当实数x ,y 满足时,z =x +3y 的最小值为-6,则实数a 等于______.三、解答题9.如果点P 在平面区域内,点Q (2,2),求|PQ |的最小值.10.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%(),可能的最大亏损率分别为30%和10%( ⎩⎨⎧≤≤≤≤200200y x ⎩⎨⎧≥+≤+2040022y x y x ⎪⎩⎪⎨⎧≥≥≤+0040022y x y x ⎪⎩⎪⎨⎧≤≤≥+202020y x y x ⎪⎩⎪⎨⎧≤≥+-≥-+20202x y x y x ⎪⎩⎪⎨⎧≤>≤+-2001x x y x x y ⎪⎩⎪⎨⎧≤≥+≥+-a x y x y x 005⎪⎩⎪⎨⎧≥-+≤-+≥+-0102022y x y x y x %100⨯=投资额盈利额盈利率投资额亏损额亏损率=),投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投多少万元,才能使可能的盈利最大?11.设a ,b ∈R ,且b (a +b +1)<0,b (a +b -1)<0.(1)在平面直角坐标系aOb 中,画出点(a ,b )所表示的区域; (2)试利用(1)所得的区域,指出a 的取值范围.§8-4 圆的方程【知识要点】1.圆的方程(1)标准方程:(x -a )2+(y -b )2=r 2(r >0),其中点(a ,b )为圆心,r 为半径. (2)一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),其中圆心为,半径为2.点和圆的位置关系设圆的半径为r ,点到圆的圆心距离为d ,则 d >r 点在圆外; d =r 点在圆上; d <r 点在圆内. 3.直线与圆的位置关系(1)代数法:联立直线与圆的方程,解方程组,消去字母y ,得关于x 的一元二次方程,则%100⨯)2,2(ED --21.422F E D -+⇔⇔⇔>0方程组有两解直线和圆相交; =0方程组有一解直线和圆相切;<0方程组无解直线和圆相离.(2)几何法(重点):计算圆心到直线的距离d ,设圆的半径为r ,则 d <r 直线和圆相交; d =r 直线和圆相切; d >r 直线和圆相离. 4.圆与圆的位置关系设两圆的半径分别为R ,r (R ≥r ),两圆的圆心距为d (d >0),则 d >R +r 两圆相离; d =R +r 两圆外切; R -r <d <R +r 两圆相交; d =R -r 两圆内切; d <R -r 两圆内含. 【复习要求】1.掌握圆的标准方程与一般方程,能根据条件,求出圆的方程.2.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系,解决一些简单问题. 【例题分析】例1根据下列条件,求圆的方程: (1)一条直径的端点是A (3,2),B (-4,1);(2)经过两点A (1,-1)和B (-1,1),且圆心在直线x +y -2=0上; (3)经过两点A (4,2)和B (-1,3),且在两坐标轴上的四个截距之和为2.【分析】求圆的方程,可以用待定系数法.若已知条件与圆心、半径有关,则设圆的标准方程,如第(2)问.若已知条件与圆心、半径关系不大,则设圆的一般方程,如第(3)问.∆⇔⇔∆⇔⇔∆⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔解:(1)由题意圆心为AB 的中点M ,即, 因为所以圆的半径所以,所求圆的方程为 (2)方法一:设圆的方程为(x -a )2+(y -b )2=r 2(r >0),则,解得所以,所求圆的方程为(x -1)2+(y -1)2=4.方法二:由圆的几何性质可知,圆心一定在弦AB 的垂直平分线上.易得AB 的垂直平分线为y =x .由题意,解方程组,得圆心C 为(1,1),于是,半径r =|AC |=2,所以,所求圆的方程为(x -1)2+(y -1)2=4. (3)设所求圆的方程为x 2+y 2+Dx +Ey +F =0, 因为圆过点A ,B ,所以 4D +2E +F +20=0,① -D +3E +F +10=0,②在圆的方程中,令y =0,得x 2+Dx +F =0, 设圆在x 轴上的截距为x 1,x 2,则x 1+x 2=-D . 在圆的方程中,令x =0,得y 2+Ey +F =0, 设圆在y 轴上的截距为y 1,y 2,则y 1+y 2=-E .)212,243(+-)23,21(-M ,50)12()43(||22=-++=AB ⋅==250||21AB r ⋅=-++225)23()21(22y x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+--=--+-=-+222222)1()1()1()1(02r b a r b a b a ⎪⎩⎪⎨⎧===2,11r b a ⎩⎨⎧=-+=02y x xy由题意,得-D +(-E )=2,③解①②③,得D =-2,E =0,F =-12, 所以,所求圆的方程为x 2+y 2-2x -12=0.【评析】①以A (x 1,y 1),B (x 2,y 2)为一直径端点的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.②求圆的方程时,要注意挖掘题中圆的几何意义(如第(2)问);③待定系数法求圆的方程时,要恰当选择的圆的方程(如第(3)问),这样有时能大大减少运算量.例2 (1)点P (a ,b )在圆C :x 2+y 2=r 2(r >0)上,求过点P 的圆的切线方程;(2)若点P (a ,b )在圆C :x 2+y 2=r 2(r >0)内,判断直线ax +by =r 2与圆C 的位置关系. 解:(1)方法一:因为切线l 与半径OP 垂直,又可求出直线OP 的斜率,所以可得切线l 的斜率,再由点斜式得到切线方程.但要注意斜率是否存在(详细过程略).方法二:设Q (x ,y )为所求切线上任一点,则,即(x -a ,y -b )·(a ,b )=0. 整理得ax +by =a 2+b 2,又因为P 在圆上,所以a 2+b 2=r 2, 故所求的切线方程为ax +by =r 2. (2)由已知,得a 2+b 2<r 2,则圆心O (0,0)到直线ax +by =r 2的距离所以此直线与圆C 相离.【评析】随着点P (a ,b )与圆C :x 2+y 2=r 2的位置关系的变化,直线l :ax +by =r 2与圆C 的位置关系也在变化.①当点P 在圆C 上时,直线l 与圆C 相切;②当点P 在圆C 内时,直线l 与圆C 相离;③当点P 在圆外时,直线l 与圆C 相交.例3 已知点A (a ,3),圆C :(x -1)2+(y -2)2=4. (1)设a =3,求过点A 且与圆C 相切的直线方程;(2)设a =4,直线l 过点A 且被圆C 截得的弦长为2,求直线l 的方程;(3)设a =2,直线l 1过点A ,求l 1被圆C 截得的线段的最短长度,并求此时l 1的方程. 解:(1)如图8-4-1,此时A (3,3),0=⋅.||22222r rr ba r d =>+=3图8-4-1设切线为y -3=k (x -3)或x =3, 验证知x =3符合题意;当切线为y -3=k (x -3),即kx -y -3k +3=0时,圆心(1,2)到切线的距离解得所以,切线方程为3x +4y -21=0或x =3. (2)如图8-4-2,此时A (4,3),图8-4-2设直线l 为y -3=k (x -4)或x =4(舍), 设弦PQ 的中点为M ,则|CP |=r =2,所以,即圆心到直线l 的距离为1,,21|332|2=++--=k k k d ,43-=k ,3||=PM ,1||||||22=-=PM CP CM于是,解得k =0或, 所以,直线l 的方程为或y =3. (3)如图8-4-3,此时A (2,3),设所截得的线段为DE ,圆心到直线l 1的距离为d ,图8-4-3则,即 因为直线l 1过点A ,所以圆心到直线l 1的距离为d ≤|CA|=故当d =时,, 此时AC ⊥l 1,因为 所以=-1,故直线l 1方程为y -3=-(x -2),即x +y -5=0.【评析】(1)用点斜式设直线方程时,要注意斜率是否存在;(2)涉及直线与圆的位置关系问题时,用与圆有关的几何意义解题较为方便,常见的有:①比较圆心到直线的距离与半径的大小;②如图8-4-2,在由弦心距、半径及弦组成的Rt △CMP 中,有|CM |2+|MP |2=|CP |2,CM ⊥MP 等;③如图8-4-1,由切线段、半径组成的Rt △AB C .例4 已知圆C :(x -1)2+(y -2)2=25,直线l :mx +y +m =0.求证:不论m 取何值,直线l 与圆C 恒交于两点.11|342|2=++--=k k k d 43x y 43=222|)|21(r d DE =+,42||2d DE -=,2222||min =DE ,11223=--=AC k 1l k【分析】要证明直线l 与圆C 恒交于两点,可以用圆心到直线的距离小于半径,也可以联立直线和圆的方程,消去y 后用判别式大于零去证明,但此题这两种方法计算量都很大.如果能说明直线l 恒过圆内一定点,那么直线l 与圆C 显然有两个交点.解:因为直线l :mx +y +m =0可化为y =-m (x +1), 所以直线l 恒过点A (-1,0),又圆C :(x -1)2+(y -2)2=25的圆心为(1,2),半径为5, 且点A 到圆C 的圆心的距离等于 所以点A 为圆C 内一点,则直线l 恒过圆内一点A , 所以直线l 与圆C 恒交于两点.例5 四边形ABCD 的顶点A (4,3),B (0,5),C (-3,-4),D O 为坐标原点. (1)此四边形是否有外接圆,若有,求出外接圆的方程,若没有,请说明理由; (2)记△ABC 的外接圆为W ,过W 上的点E (x 0,y 0)(x 0>0,y 0>0)作圆W 的切线l ,设l 与x 轴、y 轴的正半轴分别交于点P 、Q ,求△OPQ 面积的最小值.【分析】判断四点是否共圆,初中的方法是证明一组对角之和为180°,此题此法不易做.如何用所学知识解决问题是此题的关键,如果想到三点共圆,那么可以求出过三点的圆的方程,然后再判断第四点是否在圆上,问题就迎刃而解.解:(1)设△ABC 的外接圆为W ,圆心M (a ,b ),半径为r (r >0). 则W 为:(x -a )2+(y -b )2=r 2.由题意,得,解得,所以W :x 2+y 2=25. 将点D 的坐标代入W 的方程,适合. 所以点D 在△ABC 的外接圆W 上,故四边形ABCD 有外接圆,且外接圆的方程为x 2+y 2=25. (2)设切线l 的斜率为k ,直线ME (即OE )的斜率为k 1,,522)2()11(22<=-+--).1,62(⎪⎪⎪⎩⎪⎪⎪⎨⎧=--+--=-+-=-+-222222222)4()3()5()0()3()4(r b a r b a r b a ⎪⎩⎪⎨⎧===500r b a∵圆的切线l 垂直于过切点的半径,∴∴切线,整理得而,∵点E (x 0,y 0)在圆W 上,即,∴切线l :x 0x +y 0y =25.在l 的方程中,令x =0,得,同理 ∴△OPQ 的面积 ∵,(其中x 0>0,y 0>0)∴当且仅当时,等号成立. 即当时,△OPQ 的面积有最小值25. 练习8-4一、选择题1.以点(2,-1)为圆心且与直线3x -4y +5=0相切的圆的方程为( ) A .(x -2)2+(y +1)2=3 B .(x +2)2+(y -1)2=3 C .(x -2)2+(y +1)2=9D .(x +2)2+(y -1)2=92.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得的弦长等于( ) A .B .C .1D .53.若直线与圆x 2+y 2=1有公共点,则( ) ,11k k -= ,,00001y xk x y k -=∴=)(:0000x x y xy y l --=-202000y x y y x x +=+252020=+y x )25,0(,2500y Q y y ∴=).0,25(0x P ,26252525210000y x y x S OPQ ==⋅⋅∆002020225y x y x ≥=+.2525625262500=≥=∆y x S OPQ 22500==y x )225225(,E 62251=+bya xA .a 2+b 2≤1B .a 2+b 2≥1C .D .4.圆(x +2)2+y 2=5关于点(1,2)对称的圆的方程为( ) A .(x +4)2+(y -2)2=5 B .(x -4)2+(y -4)2=5 C .(x +4)2+(y +4)2=5 D .(x +4)2+(y +2)2=5二、填空题5.由点P (-1,4)向圆x 2+y 2-4x -6y +12=0所引的切线长是______. 6.若半径为1的圆分别与y 轴的正半轴和射线相切,则这个圆的方程为______.7.圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为的点共有______个. 8.若不等式x 2+2x +a ≥-y 2-2y 对任意的实数x 、y 都成立,则实数a 的取值范围是______. 三、解答题9.已知直线l :x -y +2=0与圆C :(x -a )2+(y -2)2=4相交于A 、B 两点. (1)当a =-2时,求弦AB 的垂直平分线方程; (2)当l 被圆C 截得弦长为时,求a 的值.10.已知圆满足以下三个条件:①截y 轴所得的弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为.求该圆的方程.11.已知圆C :(x -1)2+(y -2)2=25,直线l :mx +y +m =0.求直线l 被圆C 截得的线段的最短长度,以及此时l 的方程.11122≤+b a 11122≥+b a )0(33≥=x x y 23255§8-5 曲线与方程【知识要点】1.轨迹方程一般地,一条曲线可以看成动点运动的轨迹,曲线的方程又常称为满足某种条件的点的轨迹方程.2.曲线与方程在平面直角坐标系中,如果曲线C 与方程F (x ,y )=0之间有如下关系: (1)曲线C 上点的坐标都是方程F (x ,y )=0的解; (2)以方程F (x ,y )=0的解为坐标的点都在曲线C 上.那么,曲线C 叫做方程F (x ,y )=0的曲线,方程F (x ,y )=0叫做曲线C 的方程. 3.曲线的交点已知两条曲线C 1和C 2的方程分别是F (x ,y )=0,G (x ,y )=0,那么求两条曲线C 1和C 2的交点坐标,只要求方程组的实数解就可以得到.【复习要求】1.了解曲线与方程的对应关系,体会数形结合的思想、方程思想. 2.会求简单的轨迹方程;能根据方程研究曲线的简单性质. 【例题分析】例1 已知点A (-1,0),B (2,0),动点P 到点A 的距离与它到点B 的距离之比为2,求动点P 的轨迹方程.解:设P (x ,y ),则,即 化简得x 2+y 2-6x +5=0,所以动点P 的轨迹方程为x 2+y 2-6x +5=0.⎩⎨⎧==0),(0),(y x G y x F 2||||=PB PA ,2)2()1(2222=+-++yx y x。

2020版高考数学大二轮复习专题 解析几何增分强化练 理

2020版高考数学大二轮复习专题 解析几何增分强化练  理

增分强化练一、选择题1.直线(1-2a )x -2y +3=0与直线3x +y +2a =0垂直,则实数a 的值为( ) A .-52B.72C.56D.16解析:∵直线(1-2a )x -2y +3=0与直线3x +y +2a =0垂直,∴3(1-2a )-2=0,∴a =16,故选D. 答案:D2.过点(1,-1)且与直线x -2y +1=0平行的直线方程为( ) A .x -2y -1=0 B .x -2y +1=0 C .x -2y -3=0D .2x +y -1=0解析:由题意得所求直线的斜率为12,又直线过点(1,-1),故所求直线的方程为y +1=12(x-1),即x -2y -3=0.故选C. 答案:C3.已知直线l 1:(3+m )x +4y =5-3m ,l 2:2x +(5+m )y =8平行,则实数m 的值为( ) A .-7 B .-1 C .-1或-7D.133解析:当m =-3时,两条直线分别化为:2y =7,x +y =4,此时两条直线不平行;当m =-5时,两条直线分别化为:x -2y =10,x =4,此时两条直线不平行;当m ≠-3,-5时,两条直线分别化为:y =-3+m 4x +5-3m 4,y =-25+m x +85+m ,∵两条直线平行,∴-3+m 4=-25+m ,5-3m 4≠85+m ,解得m =-7.综上可得:m =-7.故选A. 答案:A4.在直线3x -4y -27=0上到点P (2,1)距离最近的点的坐标是( ) A .(5,-3) B .(9,0) C .(-3,5)D .(-5,3)解析:根据题意可知:所求点即为过P 点垂直于已知直线的直线与已知直线的交点,因为已知直线3x -4y -27=0的斜率为34,所以过P 点垂直于已知直线的斜率为-43,又P (2,1),则该直线的方程为:y -1=-43(x -2)即4x +3y -11=0,与已知直线联立得⎩⎪⎨⎪⎧4x +3y -11=0 ①3x -4y -27=0 ②①×4+②×3得25x =125,解得x =5, 把x =5代入①解得y =-3,所以⎩⎪⎨⎪⎧x =5y =-3,所以直线3x -4y -27=0上到点P (2,1)距离最近的点的坐标是(5,-3). 故选A. 答案:A5.圆x 2+y 2=8与圆x 2+y 2+4x -16=0的公共弦长为( ) A .8 B .4 C .2D .1解析:两圆方程作差得x =2,当x =2时,由x 2+y 2=8得y 2=8-4=4,即y =±2, 即两圆的交点坐标为A (2,2),B (2,-2), 则|AB |=2-(-2)=4, 故选B. 答案:B6.过点(2,1)的直线中被圆(x -1)2+(y +2)2=5截得的弦长最大的直线方程是( )A .3x -y -5=0B .3x +y -7=0C .x +3y -5=0D .x -3y +5=0解析:∵过点(2,1)的直线中被圆(x -1)2+(y +2)2=5截得的弦长最大的直线方程经过圆心, ∴其直线方程为过点(2,1)和圆心(1,-2)的直线, ∴其方程为:y +2x -1=1+22-1, 整理,得3x -y -5=0. 故选A. 答案:A7.圆C :x 2+y 2-2x =0被直线y =3x 截得的线段长为( ) A .2 B. 3 C .1D. 2解析:圆C :x 2+y 2-2x =0的圆心为(1,0),半径为1,圆心到直线y =3x 的距离为d =|3|(3)2+1=32,弦长为2·1-⎝⎛⎭⎪⎫322=1,故选C. 答案:C8.已知直线l :y =kx +1与圆O :x 2+y 2=2相交于A ,B 两点,则 “k =1”是“∠AOB =120°”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由题意得圆心(0,0)到直线l :y =kx +1的距离为d =11+k2,若∠AOB =120°,则有11+k2=2·12,该方程等价于k 2=1即k =±1,若k =1时,则∠AOB =120°,但∠AOB =120°时,k =-1或k =1,故选A. 答案:A9.(2019·青岛模拟)已知圆C :x 2+y 2=1和直线l :y =k (x +2),在(-3,3)上随机选取一个数k ,则事件“直线l 与圆C 相交”发生的概率为( ) A.15 B.14 C.13D.12解析:直线l 方程为kx -y +2k =0, 当直线l 与圆C 相切时可得|2k |k 2+1=1,解得k =±33,∴直线l 与圆C 相交时,k ∈⎝⎛⎭⎪⎫-33,33, ∴所求的概率P =23323=13.故选C. 答案:C10.(2019·威海模拟)已知圆(x -2)2+y 2=1上的点到直线y =3x +b 的最短距离为3,则b 的值为( )A .-2或2B .2或43+2C .-2或43+2D .-43-2或2解析:由圆(x -2)2+y 2=1,可得圆心坐标为(2,0),半径r =1,设圆心(2,0)到直线y =3x +b 的距离为d ,则d =|23+b |3+1,因为圆(x -2)2+y 2=1上的点到直线y =3x +b 的最短距离为3,所以d -r =3,即|23+b |3+1-1=3,解得b =2或b =-43-2,故选D.答案:D11.圆C 1:(x -1)2+(y -3)2=9和C 2:x 2+(y -2)2=1,M ,N 分别是圆C 1,C 2上的点,P 是直线y =-1上的点,则|PM |+|PN |的最小值是( ) A .52-4 B.17-1 C .6-2 2D.17解析:圆C 1关于y =-1的对称圆的圆心坐标A (1,-5),半径为3,圆C 2的圆心坐标(0,2),半径为1,由图象(图略)可知当P ,C 2,A ,三点共线时,|PM |+|PN |取得最小值,|PM |+|PN |的最小值为圆A 与圆C 2的圆心距减去两个圆的半径和,即|AC 2|-3-1=1+49-4=52-4.故选A. 答案:A12.设过点P (-2,0)的直线l 与圆C :x 2+y 2-4x -2y +1=0的两个交点为A ,B ,若8PA →=5AB →,则|AB |=( ) A.855 B.463 C.665D.453解析:由题意,设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my -2,由⎩⎪⎨⎪⎧x 2+y 2-4x -2y +1=0x =my -2,得(m 2+1)y 2-(8m +2)y +13=0,则y 1+y 2=8m +2m 2+1,y 1y 2=13m 2+1,又8PA →=5AB →,所以8(x 1+2,y 1)=5(x 2-x 1,y 2-y 1),故8y 1=5(y 2-y 1),即y 2=135y 1,代入y 1y 2=13m 2+1得:y 21=5m 2+1,故y 22=16925×5m 2+1,又(y 1+y 2)2=⎝ ⎛⎭⎪⎫8m +2m 2+12,即y 21+y 22+2y 1y 2=19425×5m 2+1+26m 2+1=⎝ ⎛⎭⎪⎫8m +2m 2+12,整理得:m 2-40m +76=0,解得m =2或m =38,又|AB |=1+m 2·(y 1+y 2)2-4y 1y 2=23m 2+8m -12m 2+1,当m =2时,|AB |=855;当m =38时,|AB |=855.综上,|AB |=855.故选A. 答案:A 二、填空题13.若直线(a +2)x +(1-a )y -3=0与(a -1)x +(2a +3)y +2=0互相垂直,则a 为________. 解析:∵直线(a +2)x +(1-a )y -3=0与(a -1)x +(2a +3)y +2=0互相垂直, ∴(a +2)(a -1)+(1-a )(2a +3)=0, ∴(a -1)(a +2-2a -3)=0, ∴(a -1)(a +1)=0, ∴a =1或a =-1. 答案:±114.已知圆C 与y 轴相切,圆心在x 轴的正半轴上,并且截直线x -y +1=0所得的弦长为2,则圆C 的标准方程是________.解析:设圆心为(t,0),且t >0, ∴半径为r =|t |=t ,∵圆C 截直线x -y +1=0所得的弦长为2,∴圆心到直线x -y +1=0的距离d =|t -0+1|2=t 2-1,∴t 2-2t -3=0, ∴t =3或t =-1(舍), 故t =3, ∴(x -3)2+y 2=9. 答案:(x -3)2+y 2=915.已知圆x 2+y 2=9被直线mx +y -2m -1=0所截得弦长为32,则实数m 的值为________. 解析:因为圆x 2+y 2=9的圆心是(0,0),半径为3, 根据弦长为32,所以圆心到直线的距离为d =9-⎝⎛⎭⎪⎫3222=322, 所以d =|-2m -1|m 2+1=322,解得m =1或m =7.答案:1或716.已知点P (-1,2)及圆(x -3)2+(y -4)2=4,一光线从点P 出发,经x 轴上一点Q 反射后与圆相切于点T ,则|PQ |+|QT |的值为________. 解析:点P 关于x 轴的对称点为P ′(-1,-2),由反射的对称性可知,P ′Q 与圆相切于点T ,|PQ |+|QT |=|P ′T |, ∵圆(x -3)2+(y -4)2=4的圆心坐标为A (3,4),半径r =2, ∴|AP ′|2=(-1-3)2+(-2-4)2=52, |AT |=r =2,∴|PQ |+|QT |=|P ′T |=|AP ′|2-|AT |2=4 3. 答案:4 3增分强化练考点一 圆锥曲线的定义及标准方程1.(2019·榆林模拟)已知抛物线y 2=2px (p >0)上的点M 到其焦点F 的距离比点M 到y 轴的距离大12,则抛物线的标准方程为( )A .y 2=x B .y 2=2x C .y 2=4xD .y 2=8x解析:由抛物线y 2=2px (p >0)上的点M 到其焦点F 的距离比点M 到y 轴的距离大12,根据抛物线的定义可得p 2=12,∴p =1,所以抛物线的标准方程为y 2=2x .故选B.答案:B2.(2019·株洲模拟)已知双曲线C :x 2a 2-y 2b 2=1的一条渐近线l 的倾斜角为π3,且C 的一个焦点到l 的距离为3,则双曲线C 的方程为( ) A.x 212-y 24=1 B.x 24-y 212=1 C.x 23-y 2=1 D .x 2-y 23=1解析:由x 2a 2-y 2b 2=0可得y =±b a x ,即渐近线的方程为y =±bax ,又一条渐近线l 的倾斜角为π3, 所以b a =tan π3= 3.因为双曲线C 的一个焦点(c,0)到l 的距离为3, 所以|bc |a 2+b 2=b =3,所以a =1,所以双曲线的方程为x 2-y 23=1.故选D. 答案:D3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且椭圆C 的长轴长与焦距之和为6,则椭圆C的标准方程为( ) A.4x 225+y26=1 B.x 24+y 22=1 C.x 22+y 2=1 D.x 24+y 23=1 解析:依题意椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12得c a =12,椭圆C 的长轴长与焦距之和为6,2a +2c =6, 解得a =2,c =1,则b =3,所以椭圆C 的标准方程为:x 24+y 23=1,故选D.答案:D4.设F 1,F 2是椭圆E :x 225+y 216=1的左右焦点,P 是椭圆E 上的点,则|PF 1|·|PF 2|的最小值是________.解析:由椭圆方程可知a =5,c =3,根据椭圆的定义,有|PF 2|=2a -|PF 1|=10-|PF 1|,故|PF 1|·|PF 2|=|PF 1|·(10-|PF 1|),由于|PF 1|∈[a -c ,a +c ]=[2,8]注意到二次函数y =x (10-x )的对称轴为x =5,故当x =2,x =8时,都是函数的最小值,即最小值为2×8=16. 答案:16考点二 圆锥曲线的性质1.已知椭圆C :16x 2+4y 2=1,则下列结论正确的是( ) A .长轴长为12B .焦距为34 C .短轴长为14D .离心率为32解析:由椭圆方程16x 2+4y 2=1化为标准方程可得x 2116+y 214=1 ,所以a =12,b =14,c =34,长轴为2a =1 ,焦距2c =32,短轴2b =12,离心率e =c a =32.故选D. 答案:D2.(2019·九江模拟)已知双曲线C :x 2a 2-y 2b2=1(a ,b >0)的右顶点A 和右焦点F 到一条渐近线的距离之比为1∶2,则C 的渐近线方程为( ) A .y =±x B .y =±2x C .y =±2xD .y =±3x解析:由双曲线方程可得渐近线为:y =±bax ,A (a,0),F (c,0), 则点A 到渐近线距离d 1=|ab |a 2+b2=ab c, 点F 到渐近线距离d 2=|bc |a 2+b2=bcc=b , ∴d 1∶d 2=ab c∶b =a ∶c =1∶2,即c =2a ,则b a =c 2-a 2a =a a=1, ∴双曲线渐近线方程为y =±x . 故选A. 答案:A3.已知双曲线C :x 2-y 2=1,则点(4,0)到C 的渐近线的距离为________.解析:双曲线C :x 2-y 2=1(a >b >0)的渐近线方程y =±x ,点(4,0)到C 的渐近线的距离为|±4|2=2 2. 答案:2 24.(2019·株洲模拟)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点,B 是短轴的一个端点,线段BF 2的延长线交椭圆C 于点D ,若△F 1BD 为等腰三角形,则椭圆C 的离心率为________. 解析:如图,不妨设点B 是椭圆短轴的上端点,则点D 在第四象限内,设点D (x ,y ). 由题意得△F 1BD 为等腰三角形,且|DF 1|=|DB |.由椭圆的定义得|DF 1|+|DF 2|=2a ,|BF 1|=|BF 2|=a , 又|DF 1|=|DB |=|DF 2|+|BF 2|=|DF 2|+a , ∴(|DF 2|+a )+|DF 2|=2a ,解得|DF 2|=a2.作DE ⊥x 轴于E ,则有|DE |=|DF 2|sin ∠DF 2E =|DF 2|sin ∠BF 2O =a 2×b a =b2,|F 2E |=|DF 2|cos ∠DF 2E =|DF 2|cos ∠BF 2O =a 2×c a =c 2,∴|OE |=|OF 2|+|F 2E |=c +c 2=3c2,∴点D 的坐标为⎝⎛⎭⎪⎫3c 2,-b 2.又点D 在椭圆上,∴⎝ ⎛⎭⎪⎫3c 22a2+⎝ ⎛⎭⎪⎫-b 22b2=1,整理得3c 2=a 2,所以e =c a =33. 答案:33考点三 直线与圆锥曲线的相关问题1.(2019·内江模拟)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1、F 2,上下顶点分别为A 、B ,直线AF 2与该椭圆交于A 、M 两点.若∠F 1AF 2=120°,则直线BM 的斜率为( )A.14B.34C.32D. 3解析:由题意,椭圆x 2a 2+y 2b2=1(a >b >0),且满足∠F 1AF 2=120°,如图所示,则在△AF 2O 中,|OA |=b ,|AF 2|=a ,且∠OAF 2=60°,所以a =2b , 不妨设b =1,则a =2,所以c =a 2-c 2=3,则椭圆的方程为x 24+y 2=1,又由A (0,1),F 2(3,0),所以kAF 2 =-33,所以直线AF 2的方程为y =-33x +1,联立方程组⎩⎪⎨⎪⎧y =-33x +1x 24+y 2=1,整理得7x 2-83x =0,解得x =0或x =837,把x =837代入直线y =-33x +1,解得y =-17,即M ⎝ ⎛⎭⎪⎫837,-17 , 又由点B (0,-1),所以BM 的斜率为k BM =-17-(-1)837-0=34,故选B.答案:B2.已知直线l :y =2x +b 被抛物线C :y 2=2px (p >0)截得的弦长为5,直线l 经过C 的焦点,M 为C 上的一个动点,设点N 的坐标为(3,0),则MN 的最小值为________.解析:(1)∵⎩⎪⎨⎪⎧y =2x +by 2=2px ⇒4x 2+(4b -2p )x +b 2=0,则52=(1+22)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2b -p 22-4×b 42, 又直线l 经过C 的焦点,则-b 2=p 2,∴b =-p ,由此解得p =2, 抛物线方程为y 2=4x ,M (x 0,y 0),∴y 20=4x 0,则|MN |2=(x 0-3)2+y 20=(x 0-3)2+4x 0=(x 0-1)2+8, 故当x 0=1时,|MN |min =2 2. 答案:2 23.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的动点到其左焦点距离的最大值是最小值的3倍,且点P ⎝⎛⎭⎪⎫1,32在椭圆上.(1)求椭圆E 的标准方程;(2)过点G (0,1)作直线l 与曲线交于A ,B 两点,求△ABO 面积的最大值.解析:(1)由题意得,⎩⎪⎨⎪⎧a +c =3(a -c )a 2=b 2+c21a 2+94b2=1,解得a =2,b =3,∴椭圆的标准方程为x 24+y 23=1. (2)易知直线l 的斜率存在.设直线l 的方程为y =kx +1,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +1x 24+y23=1,消去y 得(3+4k 2)x 2+8kx -8=0,则x 1+x 2=-8k 3+4k 2,x 1x 2=-83+4k2,∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=46·1+2k23+4k2d =1k 2+1,∴S △ABO =12×d ×1+k 2|x 1-x 2|=26·1+2k 23+4k 2, 令 1+2k 2=t ,∵k 2≥0,∴t ≥1, ∴S △ABO =26t 2t 2+1=262t +1t,易证y =2t +1t 在[1,+∞)上单调递增,∴2t +1t≥3,∴S △ABO ≤263,∴△ABO 面积的最大值为263.增分强化练考点一 直线的方程1.直线mx +y -m +2=0恒经过定点( ) A .(1,-1) B .(1,2) C .(1,-2)D .(1,1)解析:直线mx +y -m +2=0,化为:m (x -1)+y +2=0,可知直线经过定点(1,-2).故选C. 答案:C2.(2019·南昌模拟)唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为x 2+y 2≤1,若将军从点A (2,0)处出发,河岸线所在直线方程为x +y =3,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( ) A.10-1 B .22-1 C .2 2D.10解析:设点A 关于直线x +y =3的对称点A ′(a ,b ),AA ′的中点为⎝⎛⎭⎪⎫a +22,b 2,k AA ′=b a -2,故⎩⎪⎨⎪⎧ba -2·(-1)=-1a +22+b 2=3,解得⎩⎪⎨⎪⎧a =3b =1,所以A ′(3,1).要使从点A 到军营总路程最短,即为点A ′到军营最短的距离,“将军饮马”的最短总路程为32+12-1=10-1,故选A. 答案:A3.过点(-2,4)且在两坐标轴上的截距互为相反数的直线的一般方程为________. 解析:①当在坐标轴上截距为0时,所求直线方程为:y =-2x ,即2x +y =0; ②当在坐标轴上截距不为0时,∵在坐标轴上截距互为相反数, ∴x -y =a ,将A (-2,4)代入得,a =-6, ∴此时所求的直线方程为x -y +6=0. 答案:2x +y =0或 x -y +6=04.平行线5x +12y -10=0和mx +6y +2=0的距离是________解析:由题意,两直线5x +12y -10=0和mx +6y +2=0平行,可得5m =126,解得m =52,即5x +12y +4=0,由两平行直线之间的距离公式,可得d =|-10-4|52+122=1413. 答案:1413考点二 圆的方程1.方程x 2+y 2+x +y -m =0表示一个圆,则m 的取值范围是( ) A .m >-12B .m <-12C .m ≤-12D .m ≥-12解析:因为方程x 2+y 2+x +y -m =0要表示一个圆,所以2+4m >0 解得:m >-12,故选A.答案:A2.点M ,N 是圆x 2+y 2+kx +2y -4=0上的不同两点,且点M ,N 关于直线x -y +1=0对称,则该圆的半径等于( ) A .2 2 B. 2 C .1D .3解析:圆x 2+y 2+kx +2y -4=0的圆心坐标为⎝ ⎛⎭⎪⎫-k2,-1,因为点M ,N 在圆x 2+y 2+kx +2y -4=0上,且点M ,N 关于直线l :x -y +1=0对称,所以直线l :x -y +1=0经过圆心,所以-k2+1+1=0,k =4. 所以圆的方程为:x 2+y 2+4x +2y -4=0,圆的半径为:12 42+22-4×(-4)=3. 故选D.答案:D3.已知圆C :(x -6)2+(y +8)2=4,O 为坐标原点,则以OC 为直径的圆的方程为( ) A .(x -3)2+(y +4)2=100 B .(x +3)2+(y -4)2=100 C .(x -3)2+(y +4)2=25 D .(x +3) 2+(y -4)2=25解析:由题意可知:O (0,0),C (6,-8),则圆心坐标为(3,-4),圆的直径为62+(-8)2=10,据此可得圆的方程为(x -3)2+(y +4)2=⎝ ⎛⎭⎪⎫1022,即(x -3)2+(y +4)2=25.故选C.答案:C4.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程是( )A .(x +1)2+y 2=2 B .(x +1)2+y 2=8 C .(x -1)2+y 2=2 D .(x -1)2+y 2=8解析:直线x -y +1=0与x 轴的交点坐标为(-1,0),因为圆C 与直线x +y +3=0相切,所以半径为圆心到切线的距离,即r =d =|-1+0+3|12+12=2,则圆C 的方程为(x +1)2+y 2=2,故选A. 答案:A考点三 直线与圆的位置关系1.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的公切线条数是( ) A .4条 B .3条 C .2条D .1条解析:圆O 1:x 2+y 2-2x =0的圆心(1,0)半径为1;圆O 2:x 2+y 2-4y =0的圆心(0,2)半径为2,O 1O 2=12+22=5,∵1<5<3,∴两个圆相交,所以圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的公切线条数2.故选C.答案:C2.(2019·南宁模拟)已知直线l :3x -4y -15=0与圆C :x 2+y 2-2x -4y +5-r 2=0(r >0)相交于A ,B 两点,若|AB |=6,则圆C 的标准方程为( ) A .(x -1)2+(y -2)2=25 B .(x -1)2+(y -2)2=36 C .(x -1)2+(y -2)2=16 D .(x -1)2+(y -2)2=49解析:圆C :x 2+y 2-2x -4y +5-r 2=0可化为(x -1)2+(y -2)2=r 2,设圆心(1,2)到直线l 的距离为d ,则d =|3-8-15|5=4,又|AB |=6,根据r 2=32+42=25,所以圆C 的标准方程为(x -1)2+(y -2)2=25.故选A. 答案:A3.(2019·汕头模拟)已知直线l 与圆x 2+y 2-4y =0相交于A ,B 两点,且线段AB 的中点P 的坐标为(-1,1),则直线l 的方程为________.解析:因为圆x 2+y 2-4y =0的圆心坐标为C (0,2),又点P 坐标为(-1,1), 所以直线CP 的斜率为k CP =2-10+1=1; 又因为AB 是圆的一条弦,P 为AB 的中点, 所以AB ⊥CP ,故k AB =-1,即直线l 的斜率为-1, 因此,直线l 的方程为y -1=-(x +1),即x +y =0. 答案:x +y =04.直线2x +y -3=0与圆x 2+y 2-2x -2y =0相交于A ,B 两点,O 为坐标原点,则|OA →+OB →|=________.解析:设A (x 1,y 1),B (x 2,y 2),AB 的中点为M ,联立直线方程与圆的方程⎩⎪⎨⎪⎧x 2+y 2-2x -2y =0y =-2x +3,整理可得5x 2-10x +3=0,故x 1+x 2=2,y 1+y 2=(-2x 1+3)+(-2x 2+3)=-2(x 1+x 2)+6=2, 据此可得M (1,1),|OM →|=1+1=2,结合平面向量的运算法则有|OA →+OB →| =|2OM →| =2 2. 答案:2 2增分强化练1.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F 为抛物线y 2=4x 的焦点,P ,Q 是椭圆C 上的两个动点,且线段PQ 长度的最大值为4. (1)求椭圆C 的标准方程;(2)若OP ⊥OQ ,求△OPQ 面积的最小值. 解析:(1)∵y 2=4x 的焦点为(1,0), ∴椭圆C 的右焦点F 为(1,0),即c =1, 又|PQ |的最大值为4,因此|PQ |=2a =4, ∴a 2=4,b 2=a 2-c 2=4-1=3, 所以椭圆C 的标准方程为x 24+y 23=1.(2)①当P ,Q 为椭圆顶点时,易得△OPQ 的面积为12×2×3=3,②当P ,Q 不是椭圆顶点时,设直线OP 的方程为y =kx (k ≠0),由⎩⎪⎨⎪⎧y =kx x 24+y23=1,得x 2=123+4k 2,所以|OP |=k 2+1 123+4k2, 由OP ⊥OQ ,得直线OQ 的方程为:y =-1kx ,所以|OQ |=1k2+1123+41k 2= 1+k 2123k 2+4, 所以S △OPQ =12|OP |·|OQ |=6(k 2+1)2(3+4k 2)(3k 2+4)=6(k 2+1)212k 4+25k 2+12=6 112+k 2(k 2+1)2,(k 2+1)2k2=k 2+1k2+2≥4,当且仅当k 2=1时等号成立,所以0<k 2(k 2+1)2≤14,所以127≤S △OPQ <3,综上,△OPQ 面积的最小值为127.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2分别为椭圆C 的左、右焦点,点P (263,33)满足PF →1·PF →2=0. (1)求椭圆C 的方程;(2)直线l 经过椭圆C 的右焦点与椭圆相交于M ,N 两点,设O 为坐标原点,直线OM ,直线l ,直线ON 的斜率分别为k 1,k ,k 2,且k 1,k ,k 2成等比数列,求k 1·k 2的值. 解析:(1)依题意F 1(-c,0), ∴PF →1·PF →2=-c 2+3=0,即c =3, ∵e =c a =32, ∴a =2, ∴b 2=a 2-c 2=1,∴椭圆C 的方程为x 24+y 2=1.(2)设直线l 的方程为y =k (x -3),M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 2=1y =k (x -3),得(1+4k 2)x 2-83k 2x +4(3k 2-1)=0,则x 1+x 2=83k 21+4k 2,x 1x 2=12k 2-41+4k 2,∵k 1,k ,k 2成等比数列,∴k 1·k 2=k 2=y 1y 2x 1x 2=k 2(x 1-3)(x 2-3)x 1x 2,则3(x 1+x 2)=3, 即83k21+4k 2=3, 解得k 2=14,故k 1k 2=14.3.已知抛物线C :y 2=2px (0<p <1)上的点P (m,1)到其焦点F 的距离为54.(1)求C 的方程;(2)已知直线l 不过点P 且与C 相交于A ,B 两点,且直线PA 与直线PB 的斜率之积为1,证明:l 过定点.解析:(1)由题意,得2pm =1,即m =12p.由抛物线的定义,得|PF |=m -(-p 2)=12p +p2.由题意,知12p +p 2=54,解得p =12或p =2(舍去).所以C 的方程为y 2=x . (2)证明:由(1)得P (1,1).设l :x =ny +t ,由于直线l 不过点P (1,1), 所以n +t ≠1.由⎩⎪⎨⎪⎧y 2=x ,x =ny +t消去x 并整理得y 2-ny -t =0.由题意,判别式Δ=n 2+4t >0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=n ,①y 1y 2=-t ,②则k PA k PB =y 1-1x 1-1·y 2-1x 2-1=y 1-1y 21-1·y 2-1y 22-1=1y 1y 2+(y 1+y 2)+1. 由题意,得y 1y 2+(y 1+y 2)+1=1, 即y 1y 2+(y 1+y 2)=0,③将①②代入③得-t +n =0,即t =n .所以l :x =n (y +1).显然l 过定点(0,-1).4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,焦距为2,长轴的长为4.(1)求椭圆C 的标准方程;(2)设过点F 1的直线l 与椭圆C 交于E ,D 两点,试问:在x 轴上是否存在定点M ,使得直线ME ,MD 的斜率之积为定值?若存在,求出该定值及定点M 的坐标;若不存在,请说明理由.解析:(1)因为椭圆C 的焦距为2,长轴的长为4, 所以2c =2,2a =4,解得c =1,a =2, 所以b 2=a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)设E (x 1,y 1),D (x 2,y 2),M (m,0).易知F 1(-1,0),当直线l 的斜率存在时,设直线l 的方程为y =k (x +1).联立方程,得⎩⎪⎨⎪⎧y =k (x +1),x 24+y23=1,得(4k 2+3)x 2+8k 2x +4k 2-12=0, 则x 1+x 2=-8k 24k 2+3,x 1x 2=4k 2-124k 2+3.又y 1y 2=k 2(x 1+1)(x 2+1)=k 2(x 1x 2+x 1+x 2+1)=k 2(4k 2-124k 2+3-8k 24k 2+3+1)=-9k24k 2+3,直线ME ,MD 的斜率k ME =y 1x 1-m,k MD =y 2x 2-m,则k ME ·k MD =y 1x 1-m ·y 2x 2-m =y 1y 2(x 1-m )(x 2-m )=y 1y 2x 1x 2-m (x 1+x 2)+m 2=-9k 24k 2+34k 2-124k 2+3-m (-8k 24k 2+3)+m 2=-9k24k 2+34k 2-12+8mk 2+4m 2k 2+3m24k 2+3 =-9k2(4m 2+8m +4)k 2+3m 2-12. 要使直线ME ,MD 的斜率之积为定值,需3m 2-12=0, 解得m =±2.当m =2时,k ME ·k MD =-9k 2(4m 2+8m +4)k 2=-9k 236k 2=-14;当m =-2时,k ME ·k MD =-9k 2(4m 2+8m +4)k 2=-9k 24k 2=-94.当直线l 的斜率不存在时, 不妨设E (-1,32),D (-1,-32),此时,当m =2时,M (2,0),k ME ·k MD =-14;当m =-2时,M (-2,0),k ME ·k MD =-94.综上,在x 轴上存在两个定点M ,使得直线ME ,MD 的斜率之积为定值. 当定点M 的坐标为(2,0)时,直线ME ,MD 的斜率之积为定值-14;当定点M 的坐标为(-2,0)时,直线ME ,MD 的斜率之积为定值-94.增分强化练一、选择题1.双曲线x 23-y 29=1的渐近线方程是( )A .y =±3xB .y =±13xC .y =±3xD .y =±33x 解析:因为x 23-y 29=1,所以a =3,b =3,渐近线方程为y =±b ax , 即为y =±3x ,故选C. 答案:C2.已知双曲线my 2-x 2=1(m ∈R)与抛物线x 2=8y 有相同的焦点,则该双曲线的渐近线方程为( ) A .y =±3x B .y =±3x C .y =±13xD .y =±33x 解析:∵抛物线x 2=8y 的焦点为(0,2),∴双曲线的一个焦点为(0,2),∴1m +1=4,∴m =13,∴双曲线的渐近线方程为y =±3x , 故选A. 答案:A3.已知双曲线C :x 2m 2-y 23=1的离心率为2,则C 的焦点坐标为( )A .(±2,0)B .(±2,0)C .(0,±2)D .(0,±2)解析:由双曲线C :x 2m 2-y 23=1,离心率为2,可得m 2+3m=2,∴m 2=1, 则c =m 2+3=2,故双曲线C 的焦点坐标是(±2,0).故选A. 答案:A4.(2019·呼和浩特模拟)已知双曲线C 1:x 24-y 2k =1与双曲线C 2:x 2k -y 29=1有相同的离心率,则双曲线C 1的渐近线方程为( ) A .y =±32x B .y =±62x C .y =±34x D .y =±64x 解析:由双曲线方程可知k >0,双曲线C 1:x 24-y 2k =1的离心率为4+k2,双曲线C 2:x 2k -y 29=1的离心率为k +9k,由题意得4+k 2=k +9k ,解得k =6, 双曲线C 1为x 24-y26=1,则渐近线方程为y =±62x , 故选B. 答案:B5.已知双曲线C 的一个焦点坐标为(3,0),渐近线方程为y =±22x ,则C 的方程是( ) A .x 2-y 22=1 B.x 22-y 2=1 C.y 22-x 2=1 D .y 2-x 22=1解析:因为双曲线C 的一个焦点坐标为(3,0),所以c =3,又因为双曲线C 的渐近线方程为y =±22x ,所以有b a =22⇒a =2b ,c =3,而c =a 2+b 2,所以解得a =2,b =1,因此双曲线方程为x 22-y 2=1,故选B.答案:B6.(2019·岳阳模拟)过抛物线x 2=4y 的焦点F 作直线,交抛物线于P 1(x 1,y 1),P 2(x 2,y 2)两点,若y 1+y 2=6,则|P 1P 2|=( ) A .5 B .6 C .8D .10解析:x 2=4y 的焦点为(0,1),准线为y =-1,因为P 1(x 1,y 1),P 2(x 2,y 2)两点是过抛物线焦点的直线与抛物线的交点,所以P 1(x 1,y 1),P 2(x 2,y 2)两点到准线的距离分别是y 1+1,y 2+1,所以由抛物线的定义知|P 1P 2|=|P 1F |+|P 2F |=y 1+1+y 2+1=y 1+y 2+2=6+2=8,故选C. 答案:C7.(2019·洛阳、许昌质检)若双曲线x 2-y 2b2=1 (b >0)的一条渐近线与圆x 2+(y -2)2=1至多有一个交点,则双曲线离心率的取值范围是( ) A .(1,2] B .[2,+∞) C .(1,3]D .[3,+∞)解析:双曲线x 2-y 2b2=1(b >0)的一条渐近线方程是bx -y =0,由题意圆x 2+(y -2)2=1的圆心(0,2)到bx -y =0的距离不小于1,即2b 2+1≥1,则b 2≤3,那么离心率e ∈(1,2],故选A. 答案:A8.(2019·咸阳模拟)已知椭圆、双曲线均是以直角三角形ABC 的斜边AC 的两端点为焦点的曲线,且都过B 点,它们的离心率分别为e 1,e 2,则1e 21+1e 22=( )A.32 B .2 C.52D .4解析:以AC 边所在的直线为x 轴,AC 中垂线所在的直线为y 轴建立直角坐标系(图略),设椭圆方程为x 2a 21+y 2b 21=1,设双曲线方程为x 2a 22-y 2b 22=1,焦距都为2c不妨设|AB |>|BC |,椭圆和双曲线都过点B , 则|AB |+|BC |=2a 1,|AB |-|BC |=2a 2, 所以|AB |=a 1+a 2,|BC |=a 1-a 2, 又因为△ABC 为直角三角形,|AC |=2c ,所以(a 1+a 2)2+(a 1-a 2)2=(2c )2,即a 21+a 22=2c 2,所以a 21c 2+a 22c 2=2,即1e 21+1e 22=2.故选B. 答案:B9.(2019·乌鲁木齐质检)已知抛物线C :y 2=8x 的焦点为F ,直线l 过焦点F 与抛物线C 分别交于A ,B 两点,且直线l 不与x 轴垂直,线段AB 的垂直平分线与x 轴交于点P (10,0),则△AOB 的面积为( ) A .4 3 B .4 6 C .8 2D .8 6解析:设直线l :x =ty +2,A (x 1,y 1),B (x 2,y 2),则由⎩⎪⎨⎪⎧y 2=8x x =ty +2可以得到y 2-8ty -16=0,所以AB 的中点M (4t 2+2,4t ),线段AB 的垂直平分线与x 轴交于点P (10,0),故t ≠0. 所以AB 的中垂线的方程为y =-1t (x -4t 2-2)+4t =-1t ·x +8t +2t,令y =0可得x =8t 2+2,解方程10=8t 2+2得t =±1. 此时AB = 1+t 2|y 1-y 2|=81+t 2t 2+1=16,O 到AB 的距离为d =21+t2=2,所以S ΔOAB =12×16×2=8 2.故选C. 答案:C10.(2019·滨州模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为P ,直线l :4x -3y =0与椭圆C 相交于A ,B 两点.若|AF |+|BF |=6,点P 到直线l 的距离不小于65,则椭圆离心率的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,59 B.⎝ ⎛⎦⎥⎤0,32 C.⎝ ⎛⎦⎥⎤0,53 D.⎝ ⎛⎦⎥⎤13,32 解析:如图所示,设F ′为椭圆的左焦点, 连接AF ′,BF ′,则四边形AFBF ′是平行四边形,∴6=|AF |+|BF |=|AF ′|+|AF |=2a ,∴a =3.取P (0,b ),∵点P 到直线l ∶4x +3y =0的距离不小于65,∴|3b |16+9≥65,解得b ≥2. ∴c ≤9-4=5,∴0<c a ≤53. ∴椭圆E 的离心率范围是⎝⎛⎦⎥⎤0,53. 故选C. 答案:C11.(2019·济宁模拟)已知直线l 过抛物线C :y 2=3x 的焦点F ,交C 于A ,B 两点,交C 的准线于点P ,若AF →=FP →,则|AB |=( ) A .3 B .4 C .6D .8解析:如图所示:不妨设A 在第一象限,由抛物线C :y 2=3x 可得F ⎝ ⎛⎭⎪⎫34,0,准线DP :x =-34.因为AF →=FP →,所以F 是AP 的中点,则AD =2CF =3.所以可得A ⎝ ⎛⎭⎪⎫94,332,则k AF =3,所以直线AP 的方程为:y =3⎝ ⎛⎭⎪⎫x -34, 联立方程⎩⎪⎨⎪⎧y =3⎝ ⎛⎭⎪⎫x -34y 2=3x,整理得:x 2-52x +916=0所以x 1+x 2=52,则|AB |=x 1+x 2+p =52+32=4.故选B.答案:B12.(2019·晋城模拟)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若AF →=3FB →,则该双曲线的离心率为( ) A.52 B.62C.233D. 3解析:由题意得直线l 的方程为x =b ay +c ,不妨取a =1,则x =by +c ,且b 2=c 2-1.将x =by +c 代入x 2-y 2b2=1,(b >0),得(b 4-1)y 2+2b 3cy +b 4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-2b 3c b 4-1,y 1y 2=b4b 4-1.由AF →=3FB →,得y 1=-3y 2,所以⎩⎪⎨⎪⎧-2y 2=-2b 3cb 4-1-3y 22=b 4b 4-1,得3b 2c 2=1-b 4,解得b 2=14,所以c=b 2+1=54=52,故该双曲线的离心率为e =c a =52,故选A. 答案:A 二、填空题13.(2019·合肥质检)抛物线x 2=8y 的焦点坐标为________.解析:由抛物线方程x 2=8y 知,抛物线焦点在y 轴上,由2p =8,得p2=2,所以焦点坐标为(0,2). 答案:(0,2)14.已知过P (1,1)的直线l 与双曲线C :x 2-y 2=1只有一个公共点,则直线l 的条数为________. 解析:双曲线C :x 2-y 2=1的渐近线方程y =±x , 其中一条渐近线y =x 过点P (1,1),所以过点P (1,1)的直线x =1与双曲线右支相切,只有一个公共点,过P (1,1)与y =-x 平行的直线y =-x +2和双曲线右支相交,只有一个公共点, 综上共有2条直线符合要求. 答案:215.(2019·泰安模拟)抛物线C :y 2=4x 的焦点为F ,动点P 在抛物线C 上,点A (-1,0),当|PF ||PA |取得最小值时,直线AP 的方程为________. 解析:设P 点的坐标为(4t 2,4t ), ∵F (1,0),A (-1,0),∴|PF |2=(4t 2-1)2+16t 2=16t 4+8t 2+1, |PA |2=(4t 2+1)2+16t 2=16t 4+24t 2+1, ∴⎝ ⎛⎭⎪⎫|PF ||PA |2=16t 4+8t 2+116t 4+24t 2+1=1-16t 216t 4+24t 2+1=1-1616t 2+1t2+24≥1-16216t 2·1t2+24=1-1632=12,当且仅当16t 2=1t 2,即t =±12时取等号,此时点P 坐标为(1,2)或(1,-2),此时直线AP 的方程为y =±(x +1),即x +y +1=0或x -y +1=0. 答案:x +y +1=0或x -y +1=016.抛物线C :y 2=2px (p >0)的焦点为A ,其准线与x 轴的交点为B ,如果在直线3x +4y +25=0上存在点M ,使得∠AMB =90°,则实数p 的取值范围是________.解析:由题得A ⎝ ⎛⎭⎪⎫p 2,0,B ⎝ ⎛⎭⎪⎫-p2,0, ∵M 在直线3x +4y +25=0上,设点M ⎝ ⎛⎭⎪⎫x ,-3x -254,∴AM →=⎝ ⎛⎭⎪⎫x -p 2,-3x -254, BM →=⎝⎛⎭⎪⎫x +p 2,-3x -254, 又∠AMB =90°,∴AM →·BM →=⎝ ⎛⎭⎪⎫x -p 2⎝ ⎛⎭⎪⎫x +p 2+⎝ ⎛⎭⎪⎫-3x -2542=0,即25x 2+150x +625-4p 2=0, ∴Δ≥0,即1502-4×25×(625-4p 2)≥0, 解得p ≥10或p ≤-10,又p >0,∴p 的取值范围是[10,+∞). 答案:[10,+∞) 三、解答题17.已知椭圆的焦点F 1(-4,0),F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,并且|F 1B |+|F 2B |=10,椭圆上不同的两点A (x 1,y 1),C (x 2,y 2)满足条件:|F 2A |,|F 2B |,|F 2C |成等差数列. (1)求椭圆的方程; (2)求弦AC 中点的横坐标.解析:(1)由题意可知2a =|F 1B |+|F 2B |=10. 所以a =5,又c =4,所以b =a 2-c 2=3, 所以椭圆方程为:x 225+y 29=1.(2)由点B (4,y B )在椭圆上,得|F 2B |=|y B |=95.由|F 2A |,|F 2B |,|F 2C |成等差数列, 得 (x 1-4)2+y 21+ (x 2-4)2+y 22=2×95,①点A (x 1,y 1)在椭圆x 2125+y 219=1上,得y 21=925(25-x 21),所以 (x 1-4)2+y 21 =x 21-8x 1+16+925(25-x 21)= ⎝ ⎛⎭⎪⎫5-45x 12=15(25-4x 1),② 同理可得 (x 2-4)2+y 22=15(25-4x 2),③将②③代入①式,得15(25-4x 1)+15(25-4x 2)=185,所以x 1+x 2=8,设AC 中点坐标为(x 0,y 0),则横坐标x 0=x 1+x 22=4.18.(2019·合肥质检)已知F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,点P ⎝⎛⎭⎪⎫1,22在椭圆C 上,且△PF 1F 2的面积为22. (1)求椭圆C 的方程;(2)设过点F 1的直线l 交椭圆于A ,B 两点,求F 2A →·F 2B →的取值范围. 解析:(1)由椭圆C 经过点P ⎝ ⎛⎭⎪⎫1,22,且△PF 1F 2的面积为22, 得1a 2+12b 2=1,且12×2c ×22=22,即c =1. 又a 2-b 2=c 2=1,解得a 2=2,b 2=1. 所以椭圆C 的方程为x 22+y 2=1.(2)由(1)知F 1(-1,0),F 2(1,0).设A (x 1,y 1),B (x 2,y 2). 若直线l 的斜率不存在,可得点A ,B 的坐标为⎝ ⎛⎭⎪⎫-1,22,⎝ ⎛⎭⎪⎫-1,-22, 则F 2A →·F 2B →=72.当直线l 的斜率存在时,设l :y =k (x +1),代入椭圆方程得(1+2k 2)x 2+4k 2x +2(k 2-1)=0. 则Δ=16k 4-8(1+2k 2)(k 2-1)=8k 2+8>0恒成立. 所以x 1+x 2=-4k 21+2k 2,x 1x 2=2(k 2-1)1+2k 2.所以F 2A →·F 2B →=(x 1-1)(x 2-1)+y 1y 2 =(1+k 2)x 1x 2+(k 2-1)(x 1+x 2)+k 2+1=7k 2-11+2k 2=72-92(1+2k 2). 又k 2≥0,则F 2A →·F 2B →=72-92(2k 2+1)∈⎣⎢⎡⎭⎪⎫-1,72. 综上可知,F 2A →·F 2B →的取值范围为⎣⎢⎡⎦⎥⎤-1,72.增分强化练(三十一)考点一 范围、最值问题(2019·大连模拟)已知抛物线C :x 2=2py (p >0),其焦点到准线的距离为2,直线l 与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线C 的切线l 1,l 2,l 1与l 2交于点M . (1)求p 的值;(2)若l 1⊥l 2,求△MAB 面积的最小值.解析:(1)由题意知,抛物线焦点为:⎝ ⎛⎭⎪⎫0,p 2,准线方程为:y =-p2,焦点到准线的距离为2,即p =2. (2)抛物线的方程为x 2=4y ,即y =14x 2,所以y ′=12x ,设A (x 1,y 1),B (x 2,y 2),l 1:y -x 214=x 12(x -x 1),l 2:y -x 224=x 22(x -x 2),由于l 1⊥l 2,所以x 12·x 22=-1,即x 1x 2=-4.设直线l 方程为y =kx +m ,与抛物线方程联立,得⎩⎪⎨⎪⎧y =kx +m x 2=4y ,所以x 2-4kx -4m =0,Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m =-4,所以m =1.即l :y =kx +1,联立方程⎩⎪⎨⎪⎧y =x 12x -x 214y =x 22x -x224,得⎩⎪⎨⎪⎧x =2k y =-1,即M (2k ,-1),M 点到直线l 的距离d =|k ·2k +1+1|1+k 2=2|k 2+1|1+k 2, |AB |=(1+k 2)[](x 1+x 2)2-4x 1x 2=4(1+k 2),所以S =12×4(1+k 2)×2|k 2+1|1+k 2=4(1+k 2)32≥4, 当k =0时,△MAB 面积取得最小值4. 考点二 定点、定值问题(2019·南昌模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0),点M 在C 的长轴上运动,过点M 且斜率大于0的直线l 与C 交于P ,Q 两点,与y 轴交于N 点.当M 为C 的右焦点且l 的倾斜角为π6时,N ,P 重合,|PM |=2. (1)求椭圆C 的方程;(2)当N ,P ,Q ,M 均不重合时,记NP →=λNQ →,MP →=μMQ →,若λμ=1,求证:直线l 的斜率为定值.解析:(1)因为当M 为C 的右焦点且l 的倾斜角为π6时,N ,P 重合,|PM |=2,所以a =|PM |=2,故b c =tan π6=33, 因为a 2=b 2+c 2, 因此c =3,b =1,所以椭圆C 的方程为x 24+y 2=1.(2)证明:设l :x =ty +m (m ≠0),所以M (m,0),N ⎝ ⎛⎭⎪⎫0,-m t ,所以k l =1t .因为斜率大于0,所以t >0,设P (x 1,y 1),Q (x 2,y 2),则NP →=⎝ ⎛⎭⎪⎫x 1,y 1+m t ,NQ →=⎝ ⎛⎭⎪⎫x 2,y 2+m t ,由NP →=λNQ →得,x 1=λx 2,①同理可得y 1=μy 2,②①②两式相乘得,x 1y 1=λμx 2y 2,又λμ=1,所以x 1y 1=x 2y 2,所以(ty 1+m )y 1=(ty 2+m )y 2,即t (y 21-y 22)=m (y 2-y 1),即(y 2-y 1)[]m +t (y 1+y 2)=0,由题意k l >0,知y 1-y 2≠0,所以m +t (y 1+y 2)=0.联立方程组⎩⎪⎨⎪⎧ x =ty +m x 24+y 2=1,得(t 2+4)y 2+2tmy +m 2-4=0,依题意,y 1+y 2=-2tmt 2+4,所以m -2t 2mt 2+4=0,又m ≠0,所以t 2=4,因为t >0,故得t =2,所以k l =1t =12,即直线l 的斜率为12.考点三 存在性问题已知抛物线y 2=4x ,过点P (8,-4)的动直线l 交抛物线于A ,B 两点.(1)当P 恰为AB 的中点时,求直线l 的方程;(2)抛物线上是否存在一个定点Q ,使得以弦AB 为直径的圆恒过点Q ?若存在,求出点Q 的坐标;若不存在,请说明理由.解析:(1)设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2),当P 恰为AB 的中点时,显然x 1≠x 2,故k AB =y 1-y 2x 1-x 2=4y 1+y 2,又y 1+y 2=-8,故k AB =-12, 则直线l 的方程为y =-12x . (2)假设存在定点Q ,设Q ⎝ ⎛⎭⎪⎫y 204,y 0,当直线l 斜率存在时,设l :y =k (x -8)-4(k ≠0),A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧ y 2=4x y =k (x -8)-4,整理得ky 2-4y -32k -16=0,Δ>0,y 1+y 2=4k ,y 1y 2=-32-16k, 由以弦AB 为直径的圆恒过点Q 知QA →·QB →=0,即⎝ ⎛⎭⎪⎫x 1-y 204⎝ ⎛⎭⎪⎫x 2-y 204+(y 1-y 0)(y 2-y 0)=0, 即⎝ ⎛⎭⎪⎫y 214-y 204⎝ ⎛⎭⎪⎫y 224-y 204+(y 1-y 0)(y 2-y 0)=⎣⎢⎡⎦⎥⎤(y 1+y 0)(y 2+y 0)16+1(y 1-y 0)(y 2-y 0)=0, 故(y 1+y 0)(y 2+y 0)=-16,即y 1y 2+y 0(y 1+y 2)+y 20+16=0,整理得(y 20-16)k +4(y 0-4)=0,即当y 0=4时,恒有QA →·QB →=0,故存在定点Q (4,4)满足题意;当直线l 斜率不存在时,l :x =8,不妨令A (8,42),B (8,-42),Q (4,4),也满足QA →·QB→=0,综上所述,存在定点Q (4,4),使得以弦AB 为直径的圆恒过点Q .。

2020年全国高考数学第二轮复习 专题升级训练29 解答题专项训练(立体几何) 理

2020年全国高考数学第二轮复习 专题升级训练29 解答题专项训练(立体几何) 理

专题升级训练29 解答题专项训练(立体几何) 1.有一根长为3π cm,底面半径为2 cm的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为多少?2.已知正四面体ABCD(图1),沿AB,AC,AD剪开,展成的平面图形正好是(图2)所示的直角梯形A1A2A3D(梯形的顶点A1,A2,A3重合于四面体的顶点A).(1)证明:AB⊥CD;(2)当A1D=10,A1A2=8时,求四面体ABCD的体积.3.一个多面体的直观图和三视图如图所示,其中M,G分别是AB,DF的中点.(1)求证:CM⊥平面FDM;(2)在线段AD上(含A,D端点)确定一点P,使得GP∥平面FMC,并给出证明.4.如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OA=1,OD =2,△OAB,△OAC,△ODE,△ODF都是正三角形.(1)证明直线BC∥EF;(2)求棱锥F-OBED的体积.5.如图所示,已知正三棱柱ABC-A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD 与平面B1DC所成的角的正弦值为多少?6.如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.(1)求证:BM∥平面ADEF;(2)求证:平面BDE⊥平面BEC;(3)求平面BEC与平面ADEF所成锐二面角的余弦值.7.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)设PD=AD,求二面角A-PB-C的余弦值.8.如图,已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E,F分别是线段AB,BC的中点.(1)证明:PF⊥FD;(2)判断并说明PA上是否存在点G,使得EG∥平面PFD;(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.参考答案1.解:把圆柱侧面及缠绕其上的铁丝展开,在平面上得到矩形ABCD (如图),由题意知BC =3π cm,AB =4π cm,点A 与点C 分别是铁丝的起、止位置,故线段AC 的长度即为铁丝的最短长度.AC =AB 2+BC 2=5π(cm),故铁丝的最短长度为5π cm. 2.(1)证明:在四面体ABCD 中,∵⎭⎪⎬⎪⎫AB ⊥ACAB ⊥AD AC ∩AD =A ⇒AB ⊥平面ACD ⇒AB ⊥CD . (2)解:在题图2中作DE ⊥A 2A 3于E.∵A 1A 2=8,∴DE =8.又∵A 1D =A 3D =10,∴EA 3=6,A 2A 3=10+6=16. 又A 2C =A 3C ,∴A 2C =8.即题图1中AC =8,AD =10,由A 1A 2=8,A 1B =A 2B 得图1中AB =4.∴S △ACD =S △A 3CD =12DE ·A 3C =12×8×8=32.又∵AB ⊥面ACD ,∴V B -ACD =13×32×4=1283.3.解:由三视图可得直观图为直三棱柱且底面ADF 中AD ⊥DF ,DF =AD =a.(1)证明:∵FD ⊥平面ABCD ,CM ⊂平面ABCD , ∴FD ⊥CM .在矩形ABCD 中,CD =2a ,AD =a ,M 为AB 中点,DM =CM =2a ,∴CM ⊥DM . ∵FD ⊂平面FDM ,DM ⊂平面FDM ,FD ∩DM =D ,∴CM ⊥平面FDM . (2)点P 在A 点处.证明:取DC 中点S ,连接AS ,GS ,GA , ∵G 是DF 的中点,∴GS ∥FC . 又AS ∥CM ,AS ∩AG =A ,∴平面GSA ∥平面FMC .而GA ⊂平面GSA , ∴GP ∥平面FMC .4.(1)证明:设G 是线段DA 与EB 延长线的交点.由于△OAB 与△ODE 都是正三角形.所以OB12DE ,OG =OD =2.同理,设G ′是线段DA 与FC 延长线的交点,有OG ′=OD =2.又由于G 和G ′都在线段DA 的延长线上,所以G 与G ′重合.在△GED 和△GFD 中,由OB 12DE 和OC 12DF ,可知B 和C 分别是GE 和GF 的中点,所以BC 是△GEF 的中位线,故BC ∥EF .(2)解:由OB =1,OE =2,∠EOB =60°,知S △EOB =32,而△OED 是边长为2的正三角形,故S △OED = 3.所以S 四边形OBED =S △EOB +S △OED =332.过点F 作FQ ⊥DG ,交DG 于点Q ,由平面ABED ⊥平面ACFD知,FQ 就是四棱锥F -OBED 的高,且FQ =3,所以V F -OBED =13FQ ·S 四边形OBED =32.5.解:不妨设正三棱柱ABC -A 1B 1C 1的棱长为2,建立如图所示空间直角坐标系,则C (0,0,0),A 3,-1,0),B 13,D (32,12-,2), 则CD uuu r =(32,12-,2),1CB u u u r=3.设平面B 1DC 的法向量为n =(x ,y ,1),由10.0,CD CD ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u u rn n 解得n =(3.又∵122DA ⎛⎫=2 ⎪ ⎪⎝⎭u u u r -,-, ∴sin θ=|cos 〈DA u u u r ,n 〉|=DA DA ⋅u u u ru u u rn n=45. 6.(1)证明:取DE 中点N ,连接MN ,AN .在△EDC 中,M ,N 分别为EC ,ED 的中点,所以MN ∥CD ,且MN =12CD .由已知AB ∥CD ,AB =12CD ,所以MN ∥AB ,且MN =AB ,所以四边形ABMN 为平行四边形. 所以BM ∥AN .又因为AN ⊂平面ADEF ,且BM ⊄平面ADEF , 所以BM ∥平面ADEF .(2)证明:在正方形ADEF 中,ED ⊥AD .又因为平面ADEF ⊥平面ABCD ,且平面ADEF ∩平面ABCD =AD , 所以ED ⊥平面ABCD .所以ED ⊥BC .在直角梯形ABCD 中,AB =AD =2,CD =4,可得BC =2 2. 在△BCD 中,BD =BC =22,CD =4. 所以BC ⊥BD .所以BC ⊥平面BDE . 又因为BC ⊂平面BCE , 所以平面BDE ⊥平面BEC .(3)解:由(2)知ED ⊥平面ABCD ,且AD ⊥CD .以D 为原点,DA ,DC ,DE 所在直线为x ,y ,z 轴,建立空间直角坐标系. B (2,2,0),C (0,4,0),E (0,0,2),平面ADEF 的一个法向量为m =(0,1,0). 设n =(x ,y ,z )为平面BEC 的一个法向量,因为BC uuu r =(-2,2,0),CE u u u r =(0,-4,2),所以⎩⎪⎨⎪⎧-2x +2y =0,-4y +2z =0.令x =1,得y =1,z =2.所以n =(1,1,2)为平面BEC 的一个法向量.设平面BEC 与平面ADEF 所成锐二面角为θ,则cos θ=|m·n||m||n|=11·1+1+4=66.所以平面BEC 与平面ADEF 所成锐二面角的余弦值为66. 7.(1)证明:因为∠DAB =60°,AB =2AD , 由余弦定理得BD =3AD .从而BD 2+AD 2=AB 2,故BD ⊥AD .又PD ⊥底面ABCD ,可得BD ⊥PD .因为PD ∩AD =D ,所以BD ⊥平面PAD ,故PA ⊥BD .(2)解:如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D -xyz .则A (1,0,0),B (0,3,0),C (-1,3,0),P (0,0,1).AB u u u r =(-1,3,0),PB u u u r=(0,3,-1),BC uuu r =(-1,0,0).设平面PAB 的法向量为n =(x ,y ,z ),则00AB PB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n 即⎩⎨⎧-x +3y =0,3y -z =0.因此可取n=(3,1,3).设平面PBC 的法向量为m ,则0,0.PB BC ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u rm m 可取m =(0,-1,-3),cos 〈m ,n 〉=-427=-277.故二面角A -PB -C 的余弦值为-277.8.(1)证明:∵PA ⊥平面ABCD ,∠BAD =90°,AB =1,AD =2,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (1,0,0),F (1,1,0),D (0,2,0).不妨令P (0,0,t ),∵PF u u u r =(1,1,-t ),DF u u u r=(1,-1,0), ∴PF u u u r ·DF u u u r=1×1+1×(-1)+(-t )×0=0,即PF ⊥FD.(2)解:设平面PFD 的法向量为n =(x ,y ,z ),由0,0,PF DF ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r n n 得0,0,x y tz x y +-=⎧⎨-=⎩ 令z =1,解得:x =y =2t.∴,,122t t ⎛⎫= ⎪⎝⎭n .设G 点坐标为(0,0,m),E 1,0,02⎛⎫ ⎪⎝⎭,则1,0,2EG m ⎛⎫=- ⎪⎝⎭u u u r ,要使EG ∥平面PFD ,只需EG u u u r ·n =0,即10102224tt t m m ⎛⎫-⨯+⨯+⨯=-= ⎪⎝⎭,得14m t =,从而满足AG =14AP 的点G 即为所求. (3)解:∵AB ⊥平面PAD ,∴AB u u u r 是平面PAD 的法向量,易得AB u u u r=(1,0,0),又∵PA ⊥平面ABCD ,∴∠PBA 是PB 与平面ABCD 所成的角,得∠PBA =45°,PA =1,平面PFD 的法向量为n =11,,122⎛⎫⎪⎝⎭. ∴cos 〈AB u u u r ,n 〉=AB AB ⋅u u u ru u u rn n16=. 故所求二面角A -PD -F的余弦值为6。

2020高三高考数学二轮复习专题训练+18+Word版含答案

2020高三高考数学二轮复习专题训练+18+Word版含答案
2020高三高考数学二轮复习专题训练+18+Word版含答案
编 辑:__________________
时 间:__________________
20xx最新高三高考数学二轮复习专题训练+18+Word版含答案
二、累加累乘
1、递推公式满足:型或()型
思路:利用累加法,将,=,......,
=,各式相加,正负抵消,得,即;
解:,
即,,上式对于也成立,所以,,。
补充练习:
1、已知数列满足,(),则数列的通项公式为 。
2、已知数列满足,(),则数列的通项公式为 。
3、已知数列满足,(),则数列的通项公式为 。
4、已知数列满足,则数列的通项公式为 。
答案:1、 2、 3、 4、
2、递推公式满足:型或()型
思路:利用累乘法,将
补充练习:
1、若数列满足,,,则数列通项公式为( D )
A、 B、 C、 D、2、已知数列满足,求数列 Nhomakorabea通项公式。
解:因为,所以,则,故
所以数列的通项公式为
3、已知数列满足,求数列的通项公式。
解:因为......①
所以......②
用②—①式得则,故;
所以......③
由,,则,又知,则,代入③得。
各式相乘得,,得,
即,;
用累乘符号表示为。
例4:在数列中,,,求数列的通项公式。
解:由条件等式得,,得。
评注:此题亦可构造特殊的数列,由得,,则数列是以为首项,以1为公比的等比数列,得。
例5:设数列是首项为1的正项数列,且,,则数列
的通项公式是 。
解:原递推式可化为:0
∵0,,则 ……,,

2020届高考数学(理)二轮强化专题卷:(8)立体几何 Word版含答案

2020届高考数学(理)二轮强化专题卷:(8)立体几何 Word版含答案

(8)立体几何1、若圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的母线与底面所成的角为( ) A.30° B. 45° C.60°D. 75° 2、若某几何体的三视图(单位: cm)如图所示,其中左视图是一个边长为2的正三角形,则这个几何体的体积是( )A. 32cmB. 3C. 3D. 33cm3、若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( )A.B.C. 2πD. 4π4、一正三棱柱的每条棱长都是3,且每个顶点都在球O 的表面上,则球O 的半径为( )A.B. C. D. 35、如图是正方体或四面体,,,,P Q R S 分别是所在棱的中点,这四个点不共面的一个图是( )A. B. C. D.6、如图,三棱锥A BCD -中,90DAB DAC BAC ∠=∠=∠=︒,1AB AD AC ===,,M N 分别为,CD BC 的中点,则异面直线AM 与DN 所成角余弦值为( )A.16B.6C.6D.567、如图,AB 是O 的直径,C 是圆周上不同于,A B 的任意一点,PA ⊥平面ABC ,则四面体P ABC -的四个面中,直角三角形的个数有( )A.4个 B .3个 C .2个 D .1个8、如图,正方体1111ABCD A B C D -的棱AB 和11A D 的中点分别为,E F ,则直线EF 与平面11AA D D 所成角的正弦值为( )A.B.C.D.9、如图,在正方体1111ABCD A B C D -中,直线1A B 和平面1A B 所成的角为( )A. 30︒B. 45︒C. 60︒D. 90︒10、如图,在直三棱柱111ABC A B C -中,1AB AC AA ===若11AC BC ⊥,则1BC =( )A.B. C. D.11、某几何体的三视图如图(其中侧视图中的圆弧是半圆)),则该几何体的表面积为____________.12、如图,圆锥 SO 中, ,AB CD 为底面圆的两条直径,AB 交CD 于O,且AB CD ⊥,,PD P 为SB 的中点,则异面直线SA 与PD 所成角的正切值为_______.13、如图,已知六棱锥P ABCDEF -的底面是正六边形,PA ⊥平面ABC ,2PA AB =,给出下列结论: ①PA AD ⊥; ②直线//BC 平面PAE ; ③平面PAE ⊥平面PAE ;④直线PD 与平面ABC 所成角为45︒;其中正确的有_______(把所有正确的序号都填上)14、如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,把ABD △和ACD △折成互相垂直的两个平面后,某学生得出下列四个结论:①BD AC ⊥;②BAC △是等边三角形; ③三棱锥D ABC -是正三棱锥; ④平面ADC ⊥平面ABC , 其中正确的是__________.15、如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形2AB AD =.BD =,且PD ⊥底面ABCD .(1)证明:平面PBD ⊥平面PBC(2)若Q 为PC 的中点,且1AP BQ ⋅=,求二面角Q BD C --的大小.答案以及解析1答案及解析: 答案:C 解析:2答案及解析: 答案:B解析:由图知几何体的体积为11(12)232V =⋅+⋅=3答案及解析:答案:A解析:设圆锥的底面半径为r ,高为h ,母线长为l ,由题可知,r h ==,则21)12⨯=, ∴1,r l ==侧面积为πrl = 故选:A4答案及解析: 答案:A解析:解:正三棱柱的两个底面的中心的连线的中点就是球的球心,球心与顶点的连线长就是半径,所以,r =.故选A.5答案及解析: 答案:D解析:选D 在A 图中:分别连接,PS QR ,则//PS QR ,∴,,,P Q R S 共面.在B 图中:过,,,P Q R S 可作一正六边形,如图,故,,,P Q R S 四点共面.在C 图中:分别连接,PQ RS ,则//PQ RS ,∴,,,P Q R S 共面.在D 图中:PS 与RQ 为异面直线,∴,,,P Q R S 四点不共面.故选D.6答案及解析: 答案:B 解析:7答案及解析: 答案:A解析:∵AB 是圆O 的直径,∴AC BC ⊥,∴ABC △是直角三角形; 又PA ⊥平面ABC ,∴PA AB ⊥,,PA AC PA BC ⊥⊥; ∴PAC PAB 、△△是直角三角形; 又ACPA A =,∴BC ⊥平面PAC ,∴BC PC ⊥,∴PBC △是直角三角形;∴四面体P ABC -的四个面中,直角三角形有4个。

(通用版)高考数学二轮复习 练酷专题 高考第18题(或19题)立体几何课件 文.pptx

(通用版)高考数学二轮复习 练酷专题 高考第18题(或19题)立体几何课件 文.pptx

空间线面位置关系、 几何体的截面、几何 体的体积
2
命题规律分析 立体几何既是高考的必考点,也是考查的难点,其在高考 中的命题形式较为稳定;以解答题的形式重点考查空间平 行关系和垂直关系的证明、面积和体积计算,多为解答题 第二题或第三题,难度中档.
3
1.(2017·全国卷Ⅲ)如图,四面体ABCD 中,△ABC是正三角形,AD=CD. (1)证明:AC⊥BD; (2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D 不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE 的体积比.
高考第 18 题(或 19 题) 立体几何
年份 卷别 2017 全国卷Ⅰ 2017 全国卷Ⅱ 2017 全国卷Ⅲ 2016 全国卷Ⅰ 2016 全国卷Ⅱ
考题位置 解答题第18题 解答题第18题 解答题第19题 解答题第18题 解答题第19题
考查内容
面面垂直的证明及空间 几何体的体积、侧面积
线面平行的证明及空间 几何体的体积
8
由题设可得PC⊥平面PAB,DE⊥平面PAB, 所以DE∥PC,因此PE=23PG,DE=13PC. 由已知,正三棱锥的侧面是直角三角形且PA=6, 可得DE=2,PE=2 2. 在等腰直角三角形EFP中,可得EF=PF=2, 所以四面体PDEF的体积V=13×12×2×2×2=43.
9
3.(2015·全国卷Ⅰ)如图,四边形ABCD为菱 形,G为AC与BD的交点,BE⊥平面ABCD. (1)证明:平面AEC⊥平面BED; (2)若∠ABC=120°,AE⊥EC,三棱锥 E-ACD的体积为 36,求该三棱锥的侧面积. 解:(1)证明:因为四边形ABCD为菱形,所以AC⊥BD. 因为BE⊥平面ABCD,所以AC⊥BE. 因为BD∩BE=B,故AC⊥平面BED. 又AC⊂平面AEC,所以平面AEC⊥平面BED.

20届高考数学(理)二轮复习 第2部分 专题3 第2讲 立体几何

20届高考数学(理)二轮复习 第2部分 专题3 第2讲  立体几何

第2讲 立体几何(大题)热点一 平行、垂直关系的证明用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.例1 如图,在直三棱柱ADE -BCF 中,平面ABFE 和平面ABCD 都是正方形且互相垂直,点M 为AB 的中点,点O 为DF 的中点.运用向量方法证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .证明 方法一 (1)由题意,得AB ,AD ,AE 两两垂直,以点A 为原点建立如图所示的空间直角坐标系A -xyz .设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝⎛⎭⎫12,0,0,O ⎝⎛⎭⎫12,12,12. OM →=⎝⎛⎭⎫0,-12,-12,BA →=(-1,0,0), ∴OM →·BA →=0,∴OM →⊥BA →. ∵棱柱ADE -BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,∴OM ∥平面BCF . (2)设平面MDF 与平面EFCD 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎝⎛⎭⎫12,-1,0,DC →=(1,0,0),CF →=(0,-1,1), 由⎩⎪⎨⎪⎧ n 1·DF →=0,n 1·DM →=0,得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,令x 1=1,则n 1=⎝⎛⎭⎫1,12,-12. 同理可得n 2=(0,1,1).∵n 1·n 2=0,∴平面MDF ⊥平面EFCD . 方法二 (1)OM →=OF →+FB →+BM →=12DF →-BF →+12BA →=12(DB →+BF →)-BF →+12BA → =-12BD →-12BF →+12BA →=-12(BC →+BA →)-12BF →+12BA →=-12BC →-12BF →.∴向量OM →与向量BF →,BC →共面, 又BF ,BC ⊂平面BCF ,OM ⊄平面BCF , ∴OM ∥平面BCF .(2)由题意及(1)知,BF ,BC ,BA 两两垂直, ∵CD →=BA →,FC →=BC →-BF →, ∴OM →·CD →=⎝⎛⎭⎫-12BC →-12BF →·BA →=0, OM →·FC →=⎝⎛⎭⎫-12BC →-12BF →·(BC →-BF →) =-12BC →2+12BF →2=0,∴OM →⊥CD →,OM →⊥FC →, 即OM ⊥CD ,OM ⊥FC ,又CD ∩FC =C ,CD ,FC ⊂平面EFCD , ∴OM ⊥平面EFCD .又OM ⊂平面MDF ,∴平面MDF ⊥平面EFCD .跟踪演练1 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AD ⊥CD ,BC =2,AD =CD =1,M 是PB 的中点.(1)求证:AM ∥平面PCD ; (2)求证:平面ACM ⊥平面P AB .证明 (1)如图,以C 为坐标原点建立空间直角坐标系C -xyz ,则A (1,1,0),B (0,2,0),C (0,0,0),D (1,0,0),P (1,1,a )(a >0),M ⎝⎛⎭⎫12,32,a 2,CP →=(1,1,a ),CD →=(1,0,0),AM →=⎝⎛⎭⎫-12,12,a 2, 设平面PCD 的法向量为n 1=(x 0,y 0,z 0),则⎩⎪⎨⎪⎧x 0+y 0+az 0=0,x 0=0,令y 0=a ,则n 1=(0,a ,-1), 所以AM →·n 1=a 2-a 2=0,又AM ⊄平面PCD , 所以AM ∥平面PCD .(2)由(1)得,CA →=(1,1,0),CM →=⎝⎛⎭⎫12,32,a 2, 设平面ACM 的法向量为n 2=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧x 1+y 1=0,12x 1+32y 1+a2z 1=0, 令x 1=1,则n 2=⎝⎛⎭⎫1,-1,2a , AP →=(0,0,a ),AB →=(-1,1,0),设平面P AB 的法向量为n 3=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧-x 2+y 2=0,az 2=0,令x 2=1,则n 3=(1,1,0), 所以n 2·n 3=1-1=0. 所以平面ACM ⊥平面P AB .热点二 利用空间向量求空间角设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角设l ,m 的夹角为θ⎝⎛⎭⎫0≤θ≤π2, 则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21 a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ⎝⎛⎭⎫0≤θ≤π2, 则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|. (3)二面角设α-a -β的平面角为θ(0≤θ≤π), 则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|. 例2 (2019·南昌模拟)如图,四棱台ABCD -A 1B 1C 1D 1中,底面ABCD 是菱形,CC 1⊥底面ABCD ,且∠BAD =60°,CD =CC 1=2C 1D 1=4,E 是棱BB 1的中点.(1)求证:AA 1⊥BD ;(2)求二面角E -A 1C 1-C 的余弦值.(1)证明 因为C 1C ⊥底面ABCD ,所以C 1C ⊥BD . 因为底面ABCD 是菱形,所以BD ⊥AC . 又AC ∩CC 1=C ,AC ,CC 1⊂平面ACC 1A 1, 所以BD ⊥平面ACC 1A 1. 又AA 1⊂平面ACC 1A 1, 所以BD ⊥AA 1.(2)解 如图,设AC 交BD 于点O ,依题意,A 1C 1∥OC 且A 1C 1=OC , 所以四边形A 1OCC 1为平行四边形, 所以A 1O ∥CC 1,且A 1O =CC 1. 所以A 1O ⊥底面ABCD .以O 为原点,OA ,OB ,OA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 则A (23,0,0),A 1(0,0,4),C 1(-23,0,4),B (0,2,0), AB →=(-23,2,0).由A 1B 1----→=12AB →,得B 1(-3,1,4).因为E 是棱BB 1的中点, 所以E ⎝⎛⎭⎫-32,32,2, 所以EA 1→=⎝⎛⎭⎫32,-32,2,A 1C 1----→=(-23,0,0).设n =(x ,y ,z )为平面EA 1C 1的法向量,则⎩⎨⎧n ·A 1C 1----→=-23x =0,n ·EA 1→=32x -32y +2z =0,取z =3,得n =(0,4,3),平面A 1C 1C 的法向量m =(0,1,0),又由图可知,二面角E -A 1C 1-C 为锐二面角, 设二面角E -A 1C 1-C 的平面角为θ, 则cos θ=|m ·n ||m ||n |=45,所以二面角E -A 1C 1-C 的余弦值为45.跟踪演练2 (2019·河南名校联盟联考)如图,在四棱锥P -ABCD 中,∠P AB =90°,AB ∥CD ,且PB =BC =BD =6,CD =2AB =22,∠P AD =120°.E 和F 分别是棱CD 和PC 的中点.(1)求证:CD ⊥BF ;(2)求直线PB 与平面PCD 所成的角的正弦值. (1)证明 ∵E 为CD 中点,CD =2AB , ∴AB =DE .又AB∥CD,∴四边形ABED为平行四边形.∵BC=BD,E为CD中点,∴BE⊥CD,∴四边形ABED为矩形,∴AB⊥AD.由∠P AB=90°,得P A⊥AB,又P A∩AD=A,P A,AD⊂平面P AD,∴AB⊥平面P AD.∵AB∥CD,∴CD⊥平面P AD.又PD⊂平面P AD,∴CD⊥PD.∵EF∥PD,∴CD⊥EF.又CD⊥BE,BE∩EF=E,BE,EF⊂平面BEF,∴CD⊥平面BEF.又∵BF⊂平面BEF,∴CD⊥BF.(2)解由(1)知AB⊥平面P AD.以A为原点,AB所在直线为x轴,AD所在直线为y轴,平面P AD内过点A且与AD垂直的线为z轴建立空间直角坐标系A-xyz,如图所示.∵∠P AD=120°,∴∠P Az=30°.又PB=6,AB=2,AB⊥P A,∴P A=2.∴点P到z轴的距离为1.∴P(0,-1,3),同时知A(0,0,0),B(2,0,0).又BC=BD=6,CD=22,∴BE=2.∴C (22,2,0),D (0,2,0).设平面PCD 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PD →=(x ,y ,z )·(0,3,-3)=0,n ·CD →=(x ,y ,z )·(-22,0,0)=0,得⎩⎨⎧3y -3z =0,-22x =0.令y =1,则n =(0,1,3). 又PB →=(2,1,-3),设直线PB 与平面PCD 所成的角为θ. 则sin θ=|cos 〈n ,PB →〉|=|n ·PB →||n |·|PB →|=22+1+3×1+3=66.即直线PB 与平面PCD 所成的角的正弦值为66. 热点三 利用空间向量解决探索性问题与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或二面角满足特定要求时的存在性问题.处理原则是:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断.例3 (2019·临沂模拟)如图,平面ABCD ⊥平面ABE ,四边形ABCD 是边长为2的正方形,AE =1,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥平面BCE ;(2)线段AD 上是否存在一点M ,使平面ABE 与平面MCE 所成二面角的余弦值为34?若存在,试确定点M 的位置;若不存在,请说明理由. (1)证明 ∵BF ⊥平面ACE ,AE ⊂平面ACE , ∴BF ⊥AE ,∵四边形ABCD 是正方形,∴BC ⊥AB ,又平面ABCD ⊥平面ABE ,平面ABCD ∩平面ABE =AB , ∴CB ⊥平面ABE , ∵AE ⊂平面ABE , ∴CB ⊥AE ,∵BF ∩BC =B ,BF ,BC ⊂平面BCE , ∴AE ⊥平面BCE .(2)解 线段AD 上存在一点M ,当AM =3时,使平面ABE 与平面MCE 所成二面角的余弦值为34. ∵AE ⊥平面BCE ,BE ⊂平面BCE , ∴AE ⊥BE ,在Rt △AEB 中,AB =2,AE =1, ∴∠ABE =30°,∠BAE =60°,以A 为原点,建立空间直角坐标系A -xyz , 设AM =h ,则0≤h ≤2, ∵AE =1,∠BAE =60°, ∴M (0,0,h ),E ⎝⎛⎭⎫32,12,0,B (0,2,0),C (0,2,2),所以ME →=⎝⎛⎭⎫32,12,-h ,CE →=⎝⎛⎭⎫32,-32,-2,设平面MCE 的一个法向量n =(x ,y ,z ), 则⎩⎨⎧n ·ME →=3x 2+12y -hz =0,n ·CE →=3x 2-32y -2z =0,令z =2,解得n =⎝⎛⎭⎫33(2+3h ),h -2,2,平面ABE 的一个法向量m =(0,0,1),由题意可知cos 〈m ,n 〉=m ·n|m ||n |=213(2+3h )2+(h -2)2+4=34, 解得h =3,所以当AM =3时,使平面ABE 与平面MCE 所成二面角的余弦值为34. 跟踪演练3 如图,在直三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,AC =BC =AA 1=2,点P 为棱B 1C 1的中点,点Q 为线段A 1B 上一动点.(1)求证:当点Q 为线段A 1B 的中点时,PQ ⊥平面A 1BC ;(2)设BQ →=λBA 1→,试问:是否存在实数λ,使得平面A 1PQ 与平面B 1PQ 所成锐二面角的余弦值为3010?若存在,求出这个实数λ;若不存在,请说明理由. (1)证明 连接AB 1,AC 1,∵点Q 为线段A 1B 的中点, ∴A ,Q ,B 1三点共线, 且Q 为AB 1的中点, ∵点P 为B 1C 1的中点, ∴PQ ∥AC 1.在直三棱柱ABC -A 1B 1C 1中, AC ⊥BC ,∴BC ⊥平面ACC 1A 1, 又AC 1⊂平面ACC 1A 1, ∴BC ⊥AC 1.∵AC =AA 1,∴四边形ACC 1A 1为正方形, ∴AC 1⊥A 1C ,又A 1C ,BC ⊂平面A 1BC ,A 1C ∩BC =C , ∴AC 1⊥平面A 1BC , 而PQ ∥AC 1, ∴PQ ⊥平面A 1BC .(2)解 由题意可知,CA ,CB ,CC 1两两垂直,以C 为原点,分别以CA ,CB ,CC 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系C -xyz , 连接B 1Q ,PB ,设Q (x ,y ,z ), B (0,2,0),A 1(2,0,2), P (0,1,2),B 1(0,2,2), ∵BQ →=λBA 1→,∴(x ,y -2,z )=λ(2,-2,2), ∴⎩⎪⎨⎪⎧x =2λ,y =2-2λ,z =2λ,∴Q (2λ,2-2λ,2λ). ∵点Q 在线段A 1B 上运动,∴平面A 1PQ 的法向量即为平面A 1PB 的法向量, 设平面A 1PB 的法向量为n 1=(x ,y ,z ), BP →=(0,-1,2),P A 1→=(2,-1,0), 由⎩⎪⎨⎪⎧n 1·BP →=0,n 1·P A 1→=0,得⎩⎪⎨⎪⎧-y +2z =0,2x -y =0,令y =2,得n 1=(1,2,1),设平面B 1PQ 的法向量为n 2=(x ,y ,z ), PB 1→=(0,1,0),B 1Q →=(2λ,-2λ,2λ-2).由⎩⎪⎨⎪⎧n 2·PB 1→=0,n 2·B 1Q →=0,得⎩⎪⎨⎪⎧y =0,2λx -2λy +(2λ-2)z =0,令z =1得n 2=⎝⎛⎭⎫1-λλ,0,1=1λ(1-λ,0,λ), 取n 2=(1-λ,0,λ),由题意得|cos 〈n 1,n 2〉|=|()1,2,1·()1-λ,0,λ|6·(1-λ)2+λ2=16×2λ2-2λ+1=3010,∴9λ2-9λ+2=0, 解得λ=13或λ=23,∴当λ=13或λ=23时,平面A 1PQ 与平面B 1PQ 所成锐二面角的余弦值为3010.真题体验(2019·全国Ⅰ,理,18)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A -MA 1-N 的正弦值.(1)证明 连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1∥DC 且A 1B 1=DC ,可得B 1C ∥A 1D 且B 1C =A 1D ,故ME ∥ND 且ME =ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面C 1DE ,ED ⊂平面C 1DE ,所以MN ∥平面C 1DE .(2)解 由已知可得DE ⊥DA ,以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的一个法向量,则 ⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0,所以⎩⎨⎧-x +3y -2z =0,-4z =0,可得m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的一个法向量,则 ⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0,所以⎩⎨⎧-3q =0,-p -2r =0,可取n =(2,0,-1).于是cos 〈m ,n 〉=m ·n |m ||n |=232×5=155,所以二面角A -MA 1-N 的正弦值为105.押题预测如图1,在梯形ABCD 中,AB ∥CD ,过A ,B 分别作AE ⊥CD ,BF ⊥CD ,垂足分别E ,F ,AB =AE =2,CD =5,已知DE =1,将梯形ABCD 沿AE ,BF 同侧折起,得空间几何体ADE -BCF ,如图2.(1)若AF ⊥BD ,证明:DE ⊥平面ABFE ;(2)若DE ∥CF ,CD =3,线段AB 上存在一点P ,满足CP 与平面ACD 所成角的正弦值为520,求AP 的长.(1)证明 由已知得四边形ABFE 是正方形,且边长为2,在图2中,AF ⊥BE , 由已知得AF ⊥BD ,BE ∩BD =B ,BE ,BD ⊂平面BDE , ∴AF ⊥平面BDE ,又DE ⊂平面BDE ,∴AF ⊥DE ,又AE ⊥DE ,AE ∩AF =A ,AE ,AF ⊂平面ABFE , ∴DE ⊥平面ABFE .(2)解 在图2中,AE ⊥DE ,AE ⊥EF ,DE ∩EF =E ,DE ,EF ⊂平面DEFC ,即AE ⊥平面DEFC ,在梯形DEFC 中,过点D 作DM ∥EF 交CF 于点M ,连接CE , 由题意得DM =2,CM =1, 由勾股定理可得DC ⊥CF , 则∠CDM =π6,CE =2,过E 作EG ⊥EF 交DC 于点G , 可知GE ,EA ,EF 两两垂直,以E 为坐标原点,以EA →,EF →,EG →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系, 则A (2,0,0),B (2,2,0),C (0,1,3),D ⎝⎛⎭⎫0,-12,32,AC →=(-2,1,3),AD →=⎝⎛⎭⎫-2,-12,32.设平面ACD 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AC →=0,n ·AD →=0,得⎩⎪⎨⎪⎧-2x +y +3z =0,-2x -12y +32z =0, 取x =1,得n =(1,-1,3), 设AP =m ,则P (2,m ,0),0≤m ≤2, 得CP →=(2,m -1,-3), 设CP 与平面ACD 所成的角为θ, sin θ=|cos 〈CP →,n 〉|=|m |5×7+(m -1)2=520⇒m =23(舍负). 所以AP =23.A 组 专题通关1.(2019·全国Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B -EC -C 1的正弦值.(1)证明 由已知得,B 1C 1⊥平面ABB 1A 1,因为BE ⊂平面ABB 1A 1,故B 1C 1⊥BE . 又BE ⊥EC 1,EC 1∩B 1C 1=C 1, 所以BE ⊥平面EB 1C 1. (2)解 由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以∠AEB =45°,故AE =AB ,AA 1=2AB .以D 为坐标原点,DA →的方向为x 轴正方向,|DA →|为单位长,建立如图所示的空间直角坐标系D -xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),CB →=(1,0,0),CE →=(1,-1,1),CC 1→=(0,0,2). 设平面EBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CB →·n =0,CE →·n =0,即⎩⎪⎨⎪⎧x =0,x -y +z =0,所以可取n =(0,-1,-1).设平面ECC 1的法向量为m =(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧CC 1→·m =0,CE →·m =0,即⎩⎪⎨⎪⎧2z 1=0,x 1-y 1+z 1=0,所以可取m =(1,1,0).于是cos 〈n ,m 〉=n ·m |n ||m |=-12,sin 〈n ,m 〉=1-⎝⎛⎭⎫-122=32, 所以二面角B -EC -C 1的正弦值为32. 2.(2019·全国Ⅲ)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B —CG —A 的大小.(1)证明 由已知得AD ∥BE ,CG ∥BE ,所以AD ∥CG , 故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,BE ∩BC =B , BE ,BC ⊂平面BCGE ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)解 作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,平面BCGE ∩平面ABC =BC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°, 可求得BH =1,EH = 3.以H 为坐标原点,HC →的方向为x 轴的正方向, 建立如图所示的空间直角坐标系H -xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0). 设平面ACGD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧CG →·n =0,AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0.所以可取n =(3,6,-3).又平面BCGE 的法向量可取为m =(0,1,0), 所以cos 〈n ,m 〉=n ·m |n ||m |=32.因此二面角B -CG -A 的大小为30°.3.(2019·马鞍山模拟)如图,在三棱柱ABC -A 1B 1C 1中,∠ACB =90°,A 1B ⊥AC 1,AC =AA 1=4,BC =2.(1)求证:平面A 1ACC 1⊥平面ABC ;(2)若∠A 1AC =60°,在线段AC 上是否存在一点P ,使二面角B -A 1P -C 的平面角的余弦值为34?若存在,确定点P 的位置;若不存在,请说明理由. (1)证明 如图,∵AC =AA 1, ∴四边形AA 1C 1C 为菱形,连接A 1C ,则A 1C ⊥AC 1,又A 1B ⊥AC 1,且A 1C ∩A 1B =A 1, A 1C ,A 1B ⊂平面A 1CB ,∴AC 1⊥平面A 1CB ,则AC 1⊥BC , 又∠ACB =90°,即BC ⊥AC ,又AC 1∩AC =A ,AC 1,AC ⊂平面A 1ACC 1, ∴BC ⊥平面A 1ACC 1,而BC ⊂平面ABC ,∴平面A 1ACC 1⊥平面ABC .(2)解 在平面ACC 1A 1中,过点C 作CE ⊥AC 交A 1C 1于E , 由(1)知,CE ⊥平面ABC ,以C 为坐标原点,分别以CA ,CB 所在直线为x 轴,y 轴建立如图所示的空间直角坐标系C -xyz ,∵AC =AA 1=4,BC =2,∠A 1AC =60°, ∴C (0,0,0),B (0,2,0),A (4,0,0),A 1(2,0,23).设在线段AC 上存在一点P ,满足AP →=λAC →(0≤λ<1),使得二面角B -A 1P -C 的平面角的余弦值为34. 则AP →=(-4λ,0,0).BP →=BA →+AP →=(4,-2,0)+(-4λ,0,0) =(4-4λ,-2,0),A 1P →=A 1A →+AP →=(2-4λ,0,-23), CA 1→=(2,0,23).设平面BA 1P 的一个法向量为m =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧m ·BP →=(4-4λ)x 1-2y 1=0,m ·A 1P →=(2-4λ)x 1-23z 1=0,取x 1=1,得m =⎝⎛⎭⎪⎫1,2-2λ,1-2λ3;平面A 1PC 的一个法向量为n =(0,1,0). 由|cos 〈m ,n 〉|=|m ·n ||m ||n |=|2-2λ|1+(2-2λ)2+(1-2λ)23×1=34, 解得λ=43或λ=34,因为0≤λ<1,所以λ=34.故在线段AC 上存在一点P ,满足AP →=34AC →,使二面角B -A 1P -C 的平面角的余弦值为34.B 组 能力提高4.如图所示,在四棱锥P -ABCD 中,P A =PD =AD =2CD =2BC =2,且∠ADC =∠BCD =90°.(1)当PB =2时,证明:平面P AD ⊥平面ABCD ;(2)当四棱锥P -ABCD 的体积为34,且二面角P -AD -B 为钝角时,求直线P A 与平面PCD所成角的正弦值.(1)证明 如图所示,取AD 的中点O ,连接PO ,OB .∵P A =PD ,∴PO ⊥AD . ∵∠ADC =∠BCD =90°, ∴BC ∥AD ,又BC =12AD =1,∴BC =OD ,∴四边形BCDO 为矩形, ∴OB =CD =1.在△POB 中,PO =3,OB =1,PB =2, ∴∠POB =90°,则PO ⊥OB .∵AD ∩OB =O ,∴PO ⊥平面ABCD , 又PO ⊂平面P AD , ∴平面P AD ⊥平面ABCD .(2)解 由(1)知AD ⊥PO ,AD ⊥BO , ∵PO ∩OB =O ,∴AD ⊥平面POB , 又AD ⊂平面ABCD , ∴平面POB ⊥平面ABCD . 过点P 作PE ⊥平面ABCD ,则垂足E 一定落在平面POB 与平面ABCD 的交线OB 上. ∵四棱锥P -ABCD 的体积为34,∴13×PE ×12×(AD +BC )×CD =13×PE ×12×(2+1)×1 =12PE =34, ∴PE =32.∵PO =3,∴OE =PO 2-PE 2=32. 以O 为坐标原点,OA ,OB 所在直线分别为x 轴,y 轴, 在平面POB 内过点O 作垂直于平面AOB 的直线为z 轴, 建立如图所示的空间直角坐标系O -xyz . 由题意可知A (1,0,0),P ⎝⎛⎭⎫0,-32,32,D (-1,0,0),C (-1,1,0), 则DP →=⎝⎛⎭⎫1,-32,32,DC →=(0,1,0),P A →=⎝⎛⎭⎫1,32,-32.设平面PCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·DP →=0,n ·DC →=0,即⎩⎪⎨⎪⎧x -32y +32z =0,y =0,令x =1,则y =0,z =-23,∴n =⎝⎛⎭⎫1,0,-23. 设直线P A 与平面PCD 所成的角为θ,则sin θ=|P A →·n ||P A →||n |=22×133=31313,故直线P A 与平面PCD 所成角的正弦值为31313.5.如图,已知圆锥OO 1和圆柱O 1O 2的组合体(它们的底面重合),圆锥的底面圆O 1的半径为r =5,OA 为圆锥的母线,AB 为圆柱O 1O 2的母线,D ,E 为下底面圆O 2上的两点,且DE =6,AB =6.4,AO =52,AO ⊥AD .(1)求证:平面ABD ⊥平面ODE; (2)求二面角B -AD -O 的正弦值.(1)证明 依题意知,圆锥的高为h =(52)2-52=5,又圆柱的高为AB =6.4,AO ⊥AD ,所以OD 2=OA 2+AD 2, 因为AB ⊥BD , 所以AD 2=AB 2+BD 2,连接OO 1,O 1O 2,DO 2,易知O ,O 1,O 2三点共线,OO 2⊥DO 2,所以OD 2=OO 22+O 2D 2, 所以BD 2=OO 22+O 2D 2-AO 2-AB 2=(6.4+5)2+52-(52)2-6.42=64,解得BD =8,又因为DE =6,圆O 2的直径为10,圆心O 2在∠BDE 内, 所以∠BDE =90°,所以DE ⊥BD .因为AB ⊥平面BDE ,DE ⊂平面BDE ,所以DE ⊥AB , 因为AB ∩BD =B ,AB ,BD ⊂平面ABD , 所以DE ⊥平面ABD . 又因为DE ⊂平面ODE , 所以平面ABD ⊥平面ODE .(2)解 如图,以D 为原点,DB ,DE 所在直线为x ,y 轴,建立空间直角坐标系.则D (0,0,0),A (8,0,6.4),B (8,0,0),O (4,3,11.4).所以DA →=(8,0,6.4),DB →=(8,0,0),DO →=(4,3,11.4), 设平面DAO 的法向量为u =(x ,y ,z ),所以DA →·u =8x +6.4z =0,DO →·u =4x +3y +11.4z =0,令x =12,则u =(12,41,-15).可取平面BDA 的一个法向量为v =(0,1,0),所以cos 〈u ,v 〉=u·v |u||v |=41582=8210, 所以二面角B -AD -O 的正弦值为3210.。

专题07立体几何-2020年高考数学(理)二轮专项复习

专题07立体几何-2020年高考数学(理)二轮专项复习

专题 07立体几何立体几何的知识是高中数学的骨干内容之一,它主要研究简单空间几何体的地点和数目关系.本专题内容分为三部分:一是点、直线、平面之间的地点关系,二是简单空间几何体的结构,三是空间向量与立体几何.在本专题中,我们将第一复习空间点、直线、平面之间的地点关系,特别是对特别地点关系(平行与垂直 )的研究;后来,我们复习空间几何体的结构,主假如柱体、锥体、台体和球等的性质与运算;最后,我们经过空间向量的工具证明有关线、面地点关系的一些命题,并解决线线、线面、面面的夹角问题.§ 7-1点、直线、平面之间的地点关系【知识重点】1.空间直线和平面的地点关系:(1)空间两条直线:①有公共点:订交,记作:a∩ b=A,此中特别地点关系:两直线垂直订交.②无公共点:平行或异面.平行,记作:a∥ b.异面中特别地点关系:异面垂直.(2)空间直线与平面:①有公共点:直线在平面内或直线与平面订交.直线在平面内,记作:a.直线与平面订交,记作:a∩=A,此中特别地点关系:直线与平面垂直订交.②无公共点:直线与平面平行,记作:a∥.(3)空间两个平面:①有公共点:订交,记作:∩=l,此中特别地点关系:两平面垂直订交.②无公共点:平行,记作:∥.2.空间作为推理依照的公义和定理:(1)四个公义与等角定理:公义 1:假如一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公义 2:过不在一条直线上的三点,有且只有一个平面.公义 3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公义 4:平行于同一条直线的两条直线相互平行.定理:空间中假如一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)空间中线面平行、垂直的性质与判断定理:①判断定理:假如平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.假如一个平面内的两条订交直线与另一个平面都平行,那么这两个平面平行.假如一条直线与一个平面内的两条订交直线都垂直,那么该直线与此平面垂直.假如一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直.②性质定理:假如一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线与该直线平行.假如两个平行平面同时和第三个平面订交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行.假如两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.(3)我们把上述判断定理与性质定理进行整理,获取下边的地点关系图:【复习要求】1.认识四个公义与等角定理;2.理解空间中线面平行、垂直的有关性质与判断定理;3.能运用公义、定理和已获取的结论证明一些空间地点关系的简单命题.【例题剖析】例 1 如图,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点.求证: (Ⅰ )E、 C、 D 1、 F 四点共面; (Ⅱ )CE、 DA 、 D1F 三线共点.【剖析】对于 (Ⅰ )中证明“ E、 C、 D1、F 四点共面”,可由这四点连结成两条直线,证明它们平行或订交即可;对于 (Ⅱ )中证明“ CE、DA 、D 1F 三线共点”,可证此中两条订交直线的交点位于第三条直线上.证明: (Ⅰ )连结 D1C、A1B、 EF.∵ E, F 分另是 AB, AA1的中点,∴ EF∥ A1B,12A1B, EF又 A1D1∥ BC, A1D1= BC,∴ A1D1CB 是平行四边形.∴ A1B∥ D 1C, EF∥ D 1C,∴ E、 C、 D1、 F 四点共面.(Ⅱ )由 (Ⅰ )得 EF∥ CD1,EF 1CD1, 2∴直线 CE 与直线 D1F 必订交,记 CE ∩ D 1F=P,∵ P∈ D1F平面A1ADD1,P∈CE平面 ABCD ,∴点 P 是平面 A1ADD 1和平面 ABCD 的一个公共点.∵平面 A1ADD 1∩平面 ABCD = AD ,∴P∈ AD,∴CE、 DA 、D 1F 三线共点.【评论】 1、证明多点共面、多点共线、多线共面的主要依照:(1)证明多点共面常用公义 2 及其推论;(2)证明多点共线常用公义3,即证明点在两个平面内,进而点在这两个平面的交线上;(3)证明多线共面,第一由此中两直线确立平面,再证其余直线在此平面内.2、证明 a, b,c 三线交于一点的主要依照:(1)证明 a 与 b 订交, c 与 b 订交,再证明两交点重合;(2)先证明 a 与 b 订交于点P,再证明P∈ c.例 2 在四棱锥P-ABCD中,底面ABCD是平行四边形,M,N分别是AB,PC的中点,求证: MN ∥平面 PAD .【剖析】要证明“线面平行” ,可经过“线线平行”或“面面平行”进行转变;题目中出现了中点的条件,所以可考虑结构(增添 )中位线协助证明.证明:方法一,取PD 中点 E,连结 AE, NE.∵底面 ABCD 是平行四边形,M, N 分别是 AB, PC 的中点,1∴MA∥CD,MA CD .2∵E 是 PD 的中点,1∴ NE∥ CD ,NE CD.2∴MA∥ NE,且 MA=NE ,∴AENM 是平行四边形,∴MN∥ AE.又 AE平面PAD,MN平面PAD,∴MN∥平面 PAD.方法二取 CD 中点 F ,连结 MF , NF .∵MF ∥ AD, NF ∥ PD,∴平面 MNF ∥平面 PAD ,∴ MN∥平面 PAD.【评论】对于直线和平面平行的问题,可概括以下方法:(1)证明线线平行:a∥ c, b∥ c,a∥ α, aβα∥βa⊥ α,b⊥ αα∩β= b∩α= a,∩β=ba∥ b a∥ b a∥b a∥b(2)证明线面平行:a∩α=a∥ bα∥ βb α, a αaβa∥ αa∥ αa∥ α(3)证明面面平行:α∩β=a∥ β,b∥ βa⊥ α, a⊥ βα∥ ,β∥a, bα, a∩b= Aα∥βα∥ βα∥ βα∥β例 3在直三棱柱ABC- A1B1C1中, AA1= AC, AB⊥ AC,求证: A1C⊥ BC1.【剖析】要证明“线线垂直” ,可经过“线面垂直”进行转变,所以想法证明A1C 垂直于经过 BC1的平面即可.证明:连结 AC1.∵ABC-A1B1C1是直三棱柱,∴ AA1⊥平面 ABC,∴AB⊥AA1.又AB⊥AC,∴AB⊥平面 A1ACC1,∴A1C⊥ AB.①又 AA1= AC,∴侧面 A1ACC 1是正方形,∴A1C⊥ AC1.②由①,②得A1C⊥平面 ABC1,∴A1C⊥ BC1.【评论】空间中直线和平面垂直关系的论证常常是以“线面垂直”为中心睁开的.如本题已知条件中出现的“直三棱柱”及“AB⊥ AC”都要将其向“线面垂直”进行转变.例 4 在三棱锥P-ABC中,平面PAB⊥平面ABC,AB⊥BC,AP⊥PB,求证:平面PAC⊥平面 PBC.【剖析】要证明“面面垂直” ,可经过“线面垂直” 进行转变,而“线面垂直” 又可以经过“线线垂直”进行转变.证明:∵平面 PAB⊥平面 ABC,平面 PAB∩平面 ABC= AB,且 AB⊥ BC,∴BC⊥平面 PAB,∴AP⊥ BC.又 AP⊥ PB,∴AP⊥平面PBC,又 AP 平面 PAC,∴平面 PAC⊥平面 PBC.【评论】对于直线和平面垂直的问题,可概括以下方法:(1)证明线线垂直:a⊥c,b∥c,a⊥αbαa⊥ b a⊥b(1)证明线面垂直:a⊥m, a⊥ n a∥b,b⊥αα∥β,a⊥βα⊥β,α∩β=l m, nα,m∩n=A aβ,a⊥l a⊥αa⊥αa⊥αa⊥α(1)证明面面垂直:a⊥β,aαα⊥β例 5 如图,在斜三棱柱ABC-A1B1C1中,侧面A1ABB1是菱形,且垂直于底面ABC,∠A1AB=60°, E, F 分别是 AB1, BC 的中点.(Ⅰ )求证:直线EF∥平面 A1ACC1;(Ⅱ )在线段 AB 上确立一点G,使平面EFG⊥平面 ABC,并给出证明.证明: (Ⅰ )连结 A1C, A1E.∵侧面 A1ABB 1是菱形, E 是 AB1的中点,∴ E 也是 A1B 的中点,又 F 是 BC 的中点,∴ EF∥ A1C.∵A1C 平面 A1ACC1,EF 平面 A1ACC1,∴直线 EF ∥平面 A1 ACC1.(2)解:当BG 1时,平面EFG⊥平面ABC,证明以下:GA 3连结 EG ,FG.∵侧面 A1ABB 1是菱形,且∠A1AB= 60°,∴△ A1AB 是等边三角形.∵ E 是 A1B 的中点,BG1,∴ EG⊥ AB.GA3∵平面 A1ABB 1⊥平面 ABC,且平面A1ABB1∩平面 ABC= AB,∴EG⊥平面 ABC.又 EG 平面 EFG ,∴平面 EFG⊥平面 ABC .练习 7-1一、选择题:1.已知 m, n 是两条不一样直线,,,是三个不一样平面,以下命题中正确的选项是()(A) 若 m∥, n∥,则 m∥ n(B) 若 m⊥, n⊥,则 m∥ n(C) 若⊥ ,⊥ ,则∥(D) 若 m∥, m∥,则∥2.已知直线 m,n 和平面,,且 m⊥ n, m⊥,⊥,则 ()(A) n⊥(B) n∥,或 n(C) n⊥(D) n∥,或 n3.设 a, b 是两条直线,、是两个平面,则a⊥ b 的一个充足条件是 ()(A) a⊥,b∥,⊥(B) a⊥, b⊥,∥(C) a, b⊥,∥(D) a, b∥,⊥4.设直线 m 与平面订交但不垂直,则以下说法中正确的选项是()(A)在平面内有且只有一条直线与直线m 垂直(B) 过直线 m 有且只有一个平面与平面垂直(C) 与直线 m 垂直的直线不行能与平面平行(D) 与直线 m 平行的平面不行能与平面垂直二、填空题:5.在三棱锥P- ABC 中,PA PB6,平面PAB⊥平面ABC, PA⊥ PB, AB⊥ BC,∠BAC= 30°,则 PC= ______.6.在直四棱柱ABCD - A1B1C1D 1中,当底面 ABCD 知足条件 ______时,有 A1C⊥B1D 1.(只要求写出一种条件即可)7.设,是两个不一样的平面,m, n 是平面,以外的两条不一样直线,给出四个论断:① m⊥ n②⊥③ n⊥④ m⊥以此中三个论断作为条件,余下的一个论断作为结论,写出正确的一个命题______.8.已知平面⊥平面,∩= l ,点 A∈,A l,直线 AB∥ l ,直线 AC⊥ l ,直线, m∥,给出以下四种地点:① AB∥ m;② AC⊥ m;③ AB∥;④ AC⊥,上述四种地点关系中,不必定成立的结论的序号是 ______.三、解答题:m∥9.如图,三棱锥P- ABC的三个侧面均为边长是 1 的等边三角形,M ,N分别为PA, BC 的中点.(Ⅰ )求 MN 的长;(Ⅱ )求证: PA⊥ BC.10.如图,在四周体ABCD 中, CB= CD ,AD ⊥BD ,且 E、 F 分别是 AB、 BD 的中点.求证:(Ⅰ )直线 EF∥平面 ACD ;(Ⅱ )平面 EFC⊥平面 BCD.11.如图,平面 ABEF ⊥平面 ABCD ,四边形 ABEF 与 ABCD 都是直角梯形,∠ BAD=∠ FAB = 90°,BC∥ AD,BC 1 AD , BE // AF , BE 1AF,G,H分别为FA,FD的中点.22(Ⅰ )证明:四边形BCHG 是平行四边形;(Ⅱ )C, D, F, E 四点能否共面 ?为何 ?(Ⅲ )设 AB= BE,证明:平面ADE⊥平面 CDE.§ 7-2 空间几何体的结构【知识重点】1.简单空间几何体的基本观点:(1)(2)特别的四棱柱:(3)其余空间几何体的基本观点:几何体基本观点正棱锥底面是正多面形,而且极点在底面的射影是底面的中心正棱台正棱锥被平行于底面的平面所截,截面与底面间的几何体是正棱台圆柱以矩形的一边所在的直线为轴,将矩形旋转一周形成的曲面围成的几何体圆锥以直角三角形的一边所在的直线为轴,将直角三角形旋转一周形成的曲面围成的几何体圆台以直角梯形中垂直于底边的腰所在的直线为轴,将直角梯形旋转一周形成的曲面围成的几何体球面半圆以它的直径为轴旋转,旋转而成的曲面球球面所围成的几何体2.简单空间几何体的基天性质:几何体性质增补说明(1)侧棱都相等,侧面是平行四边形(1)直棱柱的侧棱长与高相等,侧面(2) 两个底面与平行于底面的截面是全及对角面都是矩形棱柱等的多边形(2) 长方体一条对角线的平方等于(3)过不相邻的两条侧棱的截面(对角面 ) 一个极点上三条棱长的平方和是平行四边形(1)侧棱都相等,侧面是全等的等腰三角形正棱锥(2)棱锥的高、斜高和斜高在底面上的射影构成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也构成一个直角三角形(1) 球心和球的截面圆心的连线垂直于(1)过球心的截面叫球的大圆,可是截面球心的截面叫球的小圆球(2)球心到截面的距离d,球的半径R, (2) 在球面上,两点之间的最短距离,就是经过这两点的大圆在这两截面圆的半径 r 知足r R2d2(两点的球点间的一段劣弧的长度面距离 )3.简单几何体的三视图与直观图:(1)平行投影:①观点:如图,已知图形F ,直线 l 与平面 订交,过 F 上随意一点 M 作直线 MM 1 平行于 l ,交平面于点 M 1,则点 M 1 叫做点 M 在平面内对于直线 l 的平行投影.假如图形F 上的所有点在平面 内对于直线 l 的平行投影构成图形F 1,则 F 1 叫图形 F 在 内对于直线 l 的平行投影.平面叫投射面,直线 l 叫投射线.②平行投影的性质:性质 1.直线或线段的平行投影还是直线或线段; 性质 2.平行直线的平行投影是平行或重合的直线;性质 3.平行于投射面的线段,它的投影与这条线段平行且等长;性质 4.与投射面平行的平面图形,它的投影与这个图形全等;性质 5.在同向来线或平行直线上,两条线段平行投影的比等于这两条线段的比. (2)直观图:斜二侧画法画简单空间图形的直观图. (3)三视图:①正投影:在平行投影中,假如投射线与投射面垂直,这样的平行投影叫做正投影.②三视图:选用三个两两垂直的平面作为投射面. 若投射面水平搁置, 叫做水平投射面,投射到这个平面内的图形叫做俯视图; 若投射面搁置在正前面, 叫做直立投射面, 投射到这个平面内的图形叫做主视图; 和直立、 水平两个投射面都垂直的投射面叫做侧立投射面,投射到这个平面内的图形叫做左视图.将空间图形向这三个平面做正投影, 而后把三个投影按右图所示的布局放在一个水平面内,这样构成的图形叫空间图形的三视图.③画三视图的基来源则是“主左同样高,主俯同样长,俯左同样宽” .4.简单几何体的表面积与体积: (1)柱体、锥体、台体和球的表面积:① S 直棱柱侧面积 = ch ,此中 c 为底面多边形的周长, h 为直棱柱的高.② S1ch ,此中 c 为底面多边形的周长,h '为正棱锥的斜高.正棱锥形面积2③ S1(c c )h ,此中 c ', c 分别是棱台的上、下底面周长,h '为正棱台正棱台侧面积2的斜高.④ S 圆柱侧面积 = 2 Rh ,此中 R 是圆柱的底面半径, h 是圆柱的高.⑤ S 圆锥侧面积 = Rl ,此中 R 是圆锥的底面半径, l 是圆锥的母线长.⑥S 球=4 R 2,此中 R 是球的半径.(2)柱体、锥体、台体和球的体积:① V 柱体 = Sh ,此中 S 是柱体的底面积, h 是柱体的高.② V1 Sh ,此中 S 是锥体的底面积, h 是锥体的高.锥体 3③ V 台体1h( SSS S ) ,此中 S ',S 分别是台体的上、下底面的面积,h 为台体3的高.④ V 球4πR 3 ,此中 R 是球的半径.3【复习要求】1.认识柱、锥、台、球及其简单组合体的结构特色;2.会画出简单几何体的三视图,会用斜二侧法画简单空间图形的直观图; 3.理解球、棱柱、棱锥、台的表面积与体积的计算公式.【例题剖析】例 1如图,正三棱锥 P - ABC 的底面边长为 a ,侧棱长为 b .(Ⅰ )证明: PA ⊥ BC ;(Ⅱ )求三棱锥 P - ABC 的表面积; (Ⅲ )求三棱锥 P - ABC 的体积.【剖析】 对于 (Ⅰ )只需证明 BC(PA)垂直于经过 PA(BC)的平面即可; 对于 (Ⅱ )则要依据正三棱锥的基天性质进行求解.证明: (Ⅰ )取 BC 中点 D ,连结 AD ,PD . ∵ P - ABC 是正三棱锥,∴△ ABC 是正三角形,三个侧面 PAB ,PBC , PAC 是全等的等腰三角形.∵ D 是 BC 的中点,∴ BC ⊥ AD ,且 BC ⊥ PD ,∴ BC ⊥平面 PAD ,∴ PA ⊥BC .(Ⅱ )解:在 Rt △ PBD 中, PDPB 2 BD 21 4b2 a 2 ,1 a2∴S PBCPD4 2a 2 .BC4b2∵三个侧面 PAB ,PBC , PAC 是全等的等腰三角形,∴三棱锥 P -ABC 的侧面积是3a4b 2 a 2 .4∴△ ABC 是边长为 a 的正三角形,∴三棱锥P - ABC 的底面积是3a 2 ,4∴三棱锥 P -ABC 的表面积为3a 2 3a 4b 2 a 23a(a12b 2 3a 2 )4 44(Ⅲ )解:过点 P 作 PO ⊥平面 ABC 于点 O ,则点 O 是正△ ABC 的中心,∴ OD1AD1 3a 3a ,33 26在 Rt △POD 中,POPD2 OD 23 3 2a 2 ,3 b∴三棱锥 P-ABC 的体积为13a233b2a2a23b2a2 . 34312【评论】 1、解决此问题要求同学们熟习正棱锥中的几个直角三角形,如此题中的Rt △POD ,此中含有棱锥的高PO;如 Rt△ PBD,此中含有侧面三角形的高PD ,即正棱锥的斜高;假如连结 OC,则在 Rt△ POC 中含有侧棱.娴熟运用这几个直角三角形,对解决正棱锥的有关问题很有帮助.2、正 n( n= 3, 4, 6)边形中的有关数据:正三角形正方形正六边形边长a a a对角线长2a长: 2a;短:3a边心距3a a3a 262面积322332 4a a2a外接圆半径3a2aa 32例 2 如图,正三棱柱ABC-A1B1C1中, E 是 AC 的中点.(Ⅰ )求证:平面BEC1⊥平面 ACC1A1; (Ⅱ )求证: AB1∥平面 BEC1.【剖析】此题给出的三棱柱不是直立形式的直观图,这类状况下对空间想象能力提出了更高的要求,能够依据几何体自己的性质,适合增添协助线帮助思虑.证明: (Ⅰ )∵ ABC-A1B1C1是正三棱柱,∴ AA1⊥平面ABC ,∴BE⊥ AA1.∵△ ABC 是正三角形, E 是 AC 的中点,∴ BE⊥ AC,∴ BE ⊥平面 ACC1A1,又 BE平面 BEC1,∴平面 BEC1⊥平面 ACC1A1.(Ⅱ )证明:连结B1C,设 BC1∩ B1C=D .∵ BCC1B1是矩形, D 是 B1C 的中点,∴ DE∥ AB1.又 DE 平面 BEC 1, AB1平面 BEC1,∴ AB1∥平面 BEC1.例 3在四棱锥P- ABCD中,平面PAD ⊥平面ABCD , AB∥ DC,△ PAD是等边三角形,已知BD =2AD = 8,AB2DC4 5 .(Ⅰ )设 M 是 PC 上的一点,证明:平面 MBD ⊥平面 PAD ;(Ⅱ )求四棱锥 P - ABCD 的体积.【剖析】 此题中的数目关系许多,可考虑从“算”的角度下手剖析,如从的动点剖析知, MB ,MD 随点 M 的改动而运动,所以可考虑平面MBDM 是PC 上内“不动”的直线证明: (Ⅰ )在△ ABD 中,因为 AD =4, BD = 8, AB 4 5 ,所以 AD 2+ BD 2= AB 2.故 AD ⊥BD .又平面 PAD ⊥平面 ABCD ,平面 PAD ∩平面 ABCD = AD , BD 平面 ABCD ,所以BD ⊥平面 PAD ,又 BD 平面 MBD ,故平面 MBD ⊥平面 PAD . (Ⅱ)解:过 P 作 PO ⊥AD 交 AD 于 O ,因为平面 PAD ⊥平面 ABCD ,所以 PO ⊥平面 ABCD . 所以 PO 为四棱锥 P - ABCD 的高,又△ PAD 是边长为 4 的等边三角形.所以PO34 2 3.2在底面四边形 ABCD 中, AB ∥ DC , AB = 2DC ,所以四边形 ABCD 是梯形,在 Rt △ ADB 中,斜边 AB 边上的高为48 8 5,即为4 55梯形 ABCD 的高,所以四边形 ABCD 的面积为2 5 4 5 8 524. 故S251242316VP ABCD3.3例 4 以下的三个图中,上边的是一个长方体截去一个角所得多面体的直观图.它的主视图和左视图在下边画出 (单位: cm)(Ⅰ )画出该多面体的俯视图;(Ⅱ )依照给出的尺寸,求该多面体的体积;(Ⅲ )在所给直观图中连结 BC ',证明: BC '∥平面 EFG .【剖析】 画三视图的基来源则是“主左同样高,主俯同样长,俯左同样宽”,依据此原则及有关数据能够画出三视图.证明: (Ⅰ )该几何体三视图以以下图:(Ⅱ )所求多面体体积V V长方体 V正三棱锥 4 4 61(122)2284(cm 2 ).323(Ⅲ )证明:在长方体ABCD - A'B'C'D' 中,连结 AD' ,则 AD' ∥ BC' .因为 E, G 分别为 AA', A'D' 中点,所以 AD' ∥ EG,进而 EG ∥BC ' .又 BC' 平面 EFG ,所以 BC' ∥平面 EFG .例 5有两个同样的直三棱柱,底面三角形的三边长分别是3a, 4a, 5a,高为2,其a中 a> 0.用它们拼成一个三棱柱或四棱柱,在所有可能的情况中,表面积最小的一个是四棱柱,求 a 的取值范围.解:直三棱柱 ABC- A1B1C1的三个侧面的面积分别是 6,8,10,底面积是 6a2,所以每个三棱柱的表面积均是 2× 6a2+ 6+ 8+ 10=12a2+ 24.情况①:将两个直三棱柱的底面重合拼在一同,只好拼成三棱柱,其表面积为:222+ 48.2× (12a + 24)-2× 6a = 12a 情况②:将两个直三棱柱的侧面ABB 1A 1 重合拼在一同,结果可能拼成三棱柱,也可能 拼成四棱柱,但表面积必定是: 2× (12a 2+ 24)- 2× 8= 24a 2+32.情况③:将两个直三棱柱的侧面 ACC 1A 1 重合拼在一同,结果可能拼成三棱柱,也可能 拼成四棱柱,但表面积必定是:2× (12a 2+ 24)- 2× 6= 24a 2+36.情况④:将两个直三棱柱的侧面BCC 1B 1 重合拼在一同, 只好拼成四棱柱, 其表面积为:2× (12a 2+ 24)- 2× 10= 24a 2+ 28在以上四种情况中, ②、 ③的结果都比④大, 所以表面积最小的情况只好在①、④中产生.依题意“表面积最小的一个是四棱柱”,得 24a 2+ 28< 12a 2+48,解得 a 25,3所以 a 的取值范围是(0,153 )例 6 在棱长为 a 的正方体 ABCD - A 1B 1C 1D 1 中, E ,F 分别是 BB 1, CD 的中点,求三棱锥 F -A 1ED 1 的体积.【剖析】 计算三棱锥 F -A 1ED 1 的体积时,需要确立锥体的高,即点F 到平面 A 1ED 1 的距离,直接求解比较困难. 利用等积的方法, 调动极点与底面的方式, 如 V F A EDVA 1 EFD 1,11也不易计算,所以能够考虑使用等价转变的方法求解.解法 1:取 AB 中点 G ,连结 FG ,EG , A 1G . ∵ GF ∥ AD ∥A 1D 1,∴ GF ∥平面 A 1ED 1,∴ F 到平面 A 1ED 1 的距离等于点 G 到平面A 1ED 1 的距离.∴V F A 1ED 1V G A 1 ED 1VD 1A 1EG1 S A 1EG A 1D 1 1 3 a2 a1 a 3.33 88解法 2:取 CC 1 中点 H ,连结 FA 1, FD 1,FH , FC 1, D 1H ,并记 FC 1∩ D 1H = K .∵ A 1D 1∥ EH ,A 1D 1= EH ,∴ A 1, D 1 ,H ,E 四点共面.∵A1D1⊥平面 C1CDD 1,∴ FC⊥ A1D1.又由平面几何知识可得 FC 1⊥ D1H,∴ FC⊥平面 A1D 1HE .∴FK 的长度是点 F 到平面 A1D 1HE(A1ED1)的距离.简单求得FK 3 5a, V F A ED1S AED FK1 5 a2 3 5a1a3.101131134108练习 7-2一、选择题:1.将棱长为 2 的正方体木块削成一个体积最大的球,则这个球的表面积为()(A)2(B)4(C)8(D)162.如图是一个几何体的三视图,依据图中数据,可得该几何体的表面积是()(A)9(B)10(C)11(D)123.有一种圆柱体形状的笔筒,底面半径为 4 cm,高为 12 cm.现要为100 个这类同样规格的笔筒涂色 (笔筒内外均要涂色,笔筒厚度忽视不计 ).假如所用涂料每0.5 kg 能够涂 1 m2,那么为这批笔筒涂色约需涂料 ()(A)1.23 kg(B)1.76 kg(C)2.46 kg(D)3.52 kg4.某几何体的一条棱长为7 ,在该几何体的正视图中,这条棱的投影是长为 6 的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为 a 和 b 的线段,则 a+b 的最大值为()(A)2 2(B) 23(C)4(D) 25二、填空题:5.如图,正三棱柱 ABC-A1B1C1的每条棱长均为2,E、F 分别是 BC、A1C1的中点,则 EF 的长等于 ______.6.将边长为 1 的正方形ABCD 沿对角线AC 折起,使得BD= 1,则三棱锥D- ABC 的体积是 ______.7.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的极点都在同一个球面上,且该六棱柱的高为 3 ,底面周长为3,则这个球的体积为______.8.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,近似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①:_______________________________________________________________ ;充要条件②:_______________________________________________________________ .(写出你以为正确的两个充要条件)三、解答题:9.如图,在正四棱柱ABCD - A1B1C1D1中, E 是 DD 1的中点.(Ⅰ )求证: BD 1∥平面 ACE;(Ⅱ )求证:平面ACE⊥平面 B1BDD 1.10.已知某几何体的俯视图是以下图的矩形,正视图(或称主视图 )是一个底边长为8、高为 4 的等腰三角形,侧视图(或称左视图 ) 是一个底边长为6、高为 4 的等腰三角形.(Ⅰ )求该几何体的体积V;(Ⅱ )求该几何体的侧面积S.11.如图,已知ABCD - A1B1C1D1是棱长为 3 的正方体,点 E 在 AA1上,点 F 在 CC1上,且 AE= FC1= 1.(Ⅰ )求证: E, B,F, D1四点共面;2,点 M 在 BB1上, GM ⊥BF,求证: EM ⊥面 BCC 1B1.(Ⅱ)若点 G 在 BC 上,BG3§ 7- 3 空间向量与立体几何【知识重点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法例和平行四边形法例拓广到空间依旧成立.②空间向量的线性运算的运算律:加法互换律: a+ b= b+ a;加法联合律: (a+b+c)=a+ (b+c);分派律: (+ )a=a+a;(a+b)=a+ b.(2)空间向量的基本定理:①共线 (平行 )向量定理:对空间两个向量a, b(b≠0), a∥ b 的充要条件是存在实数,使得 a∥ b.②共面向量定理:假如两个向量a,b 不共线,则向量 c 与向量 a,b 共面的充要条件是存在唯一一对实数,,使得 c=a+ b.③空间向量分解定理:假如三个向量a, b, c 不共面,那么对空间任一直量p,存在惟一的有序实数组1, 2, 3,使得p= 1a+2b+ 3c.(3)空间向量的数目积运算:①空间向量的数目积的定义:a· b=|a||b| c os〈 a, b〉;②空间向量的数目积的性质:a· e=|a|c os<a, e>; a⊥ b a· b=0;|a|2=a·a; |a·b|≤ |a| |b|.③空间向量的数目积的运算律:( a)·b= (a·b);互换律: a· b=b· a;分派律: (a+b)·c=a·c+b·c.(4)空间向量运算的坐标表示:①空间向量的正交分解:成立空间直角坐标系Oxyz,分别沿x 轴, y 轴, z 轴的正方向引单位向量i ,j, k,则这三个相互垂直的单位向量构成空间向量的一个基底{ i,j,k},由空间向量分解定理,对于空间任一直量 a,存在唯一数组( a1,a2,a3),使 a=a1i+a2j+a3k,那么有序数组 (a1,a2, a3)就叫做空间向量a的坐标,即a= (a1, a2, a3).②空间向量线性运算及数目积的坐标表示:设 a=(a1,a2,a3), b=(b1,b2,b3),则a+ b=(a1+b1,a2+b2,a3+b3);a- b=(a1-b1,a2-b2,a3-b3);a=( a1,a2,a3); a· b=a1b1+a2b2+a3b3.③空间向量平行和垂直的条件:a∥ b(b≠0)a= b a1= b1, a2= b2,a3= b3(∈ R);a⊥ b a·b=0a1b1+ a2b2+ a3b3= 0.④向量的夹角与向量长度的坐标计算公式:设 a=(a1,a2,a3), b=(b1,b2,b3),则|a | a a a12a22a32 ,| b | b b b12b22b32 ;cos a,b a b a1b1a2b2a3b3;| a || b |a12a22a32 b12b22b32在空间直角坐标系中,点A(a1, a2, a3), B(b1, b2, b3),则 A, B 两点间的距离是| AB|(a1 b1 )2(a2 b2 )2(a3b3 )2 .2.空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量:①如图, l 为经过已知点 A 且平行于已知非零向量 a 的直线,对空间随意一点O,点 P 在直线 l 上的充要条件是存在实数t ,使得OP OA t a,此中向量a叫做直线的方向向量.由此可知,空间随意直线由空间一点及直线的方向向量唯一确立.②假如直线l⊥平面,取直线l 的方向向量a,则向量 a 叫做平面的法向量.由此可知,给定一点 A 及一个向量a,那么经过点A 以向量a为法向量的平面唯一确立.(2)用空间向量刻画空间中平行与垂直的地点关系:设直线 l ,m 的方向向量分别是a,b,平面,的法向量分别是u,v,则① l∥ m a∥ b a=k b,k∈ R;② l⊥ m a⊥ b a· b=0;③ l∥a⊥u a· u=0;④ l⊥a∥u a=k u,k∈ R;⑤∥u∥ v u=k v,k∈ R;⑥⊥u⊥ v u· v=0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设 a,b 是两条异面直线,过空间随意一点O 作直线 a′∥ a,b′∥b,则 a′与 b′所夹的锐角或直角叫做异面直线 a 与 b 所成的角.设异面直线 a 与 b 的方向向量分别是v1, v2, a 与 b 的夹角为,明显π(0,], 则2| cos v1 ,v2| v1v2 | || v1 ||v2 |②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线 a 的方向向量是u,平面的法向量是v,直线 a 与平面的夹角为,明显[ 0,π ],则|cos u, v|| u v | 2| u || v |③二面角及其胸怀:从一条直线出发的两个半平面所构成的图形叫做二面角.记作-l -在二面角的棱上任取一点O,在两个半平面内分别作射线叫做二面角- l-的平面角.利用向量求二面角的平面角有两种方法:方法一:如图,若 AB,CD 分别是二面角-l-的两个面内与棱OA⊥ l ,OB⊥ l,则∠ AOB l 垂直的异面直线,则二面角- l -的大小就是向量AB与CD的夹角的大小.方法二:如图, m1,m2分别是二面角的两个半平面,的法向量,则〈m1,m2〉与该二面角的大小相等或互补.(4)依据题目特色,同学们能够灵巧选择运用向量方法与综合方法,从不一样角度解决立体几何问题.【复习要求】1.认识空间向量的观点,认识空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数目积及其坐标表示;能运用向量的数目积判断向量的共线与垂直.4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系.6.能用向量方法解决线线、线面、面面的夹角的计算问题.【例题剖析】例 1 如图,在长方体OAEB-O1A1E1B1中,OA=3,OB=4,OO1=2,点P在棱AA1上,且 AP= 2PA1,点 S 在棱 BB1上,且 B1S= 2SB,点 Q, R 分别是 O1B1, AE 的中点,求证:PQ∥ RS.【剖析】 成立空间直角坐标系,想法证明存在实数k ,使得 PQk RS.解: 如图成立空间直角坐标系,则 O(0, 0, 0),A(3, 0, 0), B(0, 4, 0),O 1(0, 0,2), A 1(3, 0, 2), B 1(0, 4, 2), E(3, 4, 0).∵ AP = 2PA 1, ∴ AP2AA 12(0,0,2) (0,0, 4),4 )333∴P(3,0,32同理可得: Q(0, 2, 2), R(3, 2, 0), S(0,4, )PQ ( 3,2, 2)RS,3PQ // RS ,又 R PQ ,∴ PQ ∥ RS .【评论】 1、证明线线平行的步骤: (1)证明两向量共线;(2)证明此中一个向量所在直线上一点不在另一个向量所在的直线上即可. 2、本体还可采纳综合法证明,连结PR , QS ,证明 PQRS 是平行四边形即可,请达成这个证明.例 2已知正方体 ABCD - A 1B 1C 1D 1 中,M ,N ,E ,F 分别是棱 A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面 EFBD .【剖析】 要证明面面平行, 能够经过线线平行来证明, 也能够证明这两个平面的法向量平行.解法一 :设正方体的棱长为 4,如图成立空间直角坐标系,则 D (0,0,0),A(4,0,0),M(2, 0,4), N(4,2, 4), B(4, 4, 0), E(0, 2, 4), F(2, 4,4).取 MN 的中点 K , EF 的中点 G , BD 的中点 O ,则 O(2, 2,0), K (3, 1, 4), G(1, 3, 4).MN = (2, 2,0), EF = (2, 2, 0), AK = (- 1, 1,4), OG = (-1, 1, 4),。

(新课标)天津市新2020年高考数学二轮复习 专题能力训练18 直线与圆锥曲线 理【下载】

(新课标)天津市新2020年高考数学二轮复习 专题能力训练18 直线与圆锥曲线 理【下载】

专题能力训练18 直线与圆锥曲线一、能力突破训练1.已知O为坐标原点,F是椭圆C:=1(a>b>0)的左焦点,A,B分别为C的左、右顶点.P为C 上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BMw经过OE 的中点,则C的离心率为()A. B. C. D.2.已知双曲线=1(a>0,b>0)的离心率为,则抛物线x2=4y的焦点到双曲线的渐近线的距离是()A. B. C. D.3.如果与抛物线y2=8x相切倾斜角为135°的直线l与x轴和y轴的交点分别是A和B,那么过A,B两点的最小圆截抛物线y2=8x的准线所得的弦长为()A.4B.2C.2D.4.(2018全国Ⅰ,理11)已知双曲线C:-y2=1,O为坐标原点,F为C的右焦点,过F的直线与C 的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2D.45.平面直角坐标系xOy中,双曲线C1:=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B.若△OAB的垂心为C2的焦点,则C1的离心率为.6.(2018全国Ⅰ,理19)设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M 的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.7.如图,已知抛物线x2=y,点A,B,抛物线上的点P(x,y).过点B作直线AP 的垂线,垂足为Q.(1)求直线AP斜率的取值范围;(2)求|PA|·|PQ|的最大值.8.已知椭圆C:=1(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1.(1)求椭圆C的方程;(2)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:|AN|·|BM|为定值.9.(2018全国Ⅱ,理19)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程.(2)求过点A,B且与C的准线相切的圆的方程.二、思维提升训练10.(2018全国Ⅲ,理16)已知点M(-1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C 交于A,B两点,若∠AMB=90°,则k= .11.定长为3的线段AB的两个端点A,B分别在x轴、y轴上滑动,动点P满足=2.(1)求点P的轨迹曲线C的方程;(2)若过点(1,0)的直线与曲线C交于M,N两点,求的最大值.12.设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.13.(2018全国Ⅲ,理20)已知斜率为k的直线l与椭圆C:=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<-;(2)设F为C的右焦点,P为C上一点,且=0.证明:||,||,||成等差数列,并求该数列的公差.专题能力训练18直线与圆锥曲线一、能力突破训练1.A解析由题意,不妨设直线l的方程为y=k(x+a),k>0,分别令x=-c与x=0,得|FM|=k(a-c),|OE|=ka.设OE的中点为G,由△OBG∽△FBM,得,即,整理,得,故椭圆的离心率e=,故选A.2.B解析抛物线x2=4y的焦点为(0,1),双曲线=1(a>0,b>0)的离心率为,所以=2,双曲线的渐近线为y=±x=±2x,则抛物线x2=4y的焦点到双曲线的渐近线的距离是故选B.3.C解析设直线l的方程为y=-x+b,联立直线与抛物线方程,消元得y2+8y-8b=0.因为直线与抛物线相切,所以Δ=82-4×(-8b)=0,解得b=-2,故直线l的方程为x+y+2=0,从而A(-2,0),B(0,-2).因此过A,B两点的最小圆即为以AB为直径的圆,其方程为(x+1)2+(y+1)2=2,而抛物线y2=8x的准线方程为x=-2,此时圆心(-1,-1)到准线的距离为1,故所截弦长为2=2.4.B解析由条件知F(2,0),渐近线方程为y=±x,所以∠NOF=∠MOF=30°,∠MON=60°≠90°.不妨设∠OMN=90°,则|MN|=|OM|.又|OF|=2,在Rt△OMF中,|OM|=2cos 30°=,所以|MN|=3.5解析双曲线的渐近线为y=±x.由得A由得B∵F为△OAB的垂心,∴k AF·k OB=-1.即=-1,解得,,即可得e=6.解 (1)由已知得F(1,0),l的方程为x=1.由已知可得,点A的坐标为所以AM的方程为y=-x+或y=x-(2)当l与x轴重合时,∠OMA=∠OMB=0°,当l与x轴垂直时,OM为AB的垂直平分线,所以∠OMA=∠OMB.当l与x轴不重合也不垂直时,设l的方程为y=k(x-1)(k≠0),A(x1,y1),B(x2,y2), 则x1<,x2<,直线MA,MB的斜率之和为k MA+k MB=由y1=kx1-k,y2=kx2-k,得k MA+k MB=将y=k(x-1)代入+y2=1得(2k2+1)x2-4k2x+2k2-2=0,所以x1+x2=,x1x2=则2kx1x2-3k(x1+x2)+4k==0.从而k MA+k MB=0,故MA,MB的倾斜角互补,所以∠OMA=∠OMB.综上,∠OMA=∠OMB.7.解 (1)设直线AP的斜率为k,k==x-,因为-<x<,所以直线AP斜率的取值范围是(-1,1).(2)联立直线AP与BQ的方程解得点Q的横坐标是x Q=因为|PA|=(k+1),|PQ|=(x Q-x)=-,所以|PA|·|PQ|=-(k-1)(k+1)3.令f(k)=-(k-1)(k+1)3,因为f'(k)=-(4k-2)(k+1)2,所以f(k)在区间上单调递增,上单调递减, 因此当k=时,|PA|·|PQ|取得最大值8.(1)解由题意得解得a=2,b=1.所以椭圆C的方程为+y2=1.(2)证明由(1)知,A(2,0),B(0,1).设P(x0,y0),则+4=4.当x0≠0时,直线PA的方程为y=(x-2).令x=0,得y M=-,从而|BM|=|1-y M|=直线PB的方程为y=x+1.令y=0,得x N=-,从而|AN|=|2-x N|=所以|AN|·|BM|====4.当x0=0时,y0=-1,|BM|=2,|AN|=2,所以|AN|·|BM|=4.综上,|AN|·|BM|为定值.9.解 (1)由题意得F(1,0),l的方程为y=k(x-1)(k>0).设A(x1,y1),B(x2,y2).由得k2x2-(2k2+4)x+k2=0.Δ=16k2+16>0,故x1+x2=所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=由题设知=8,解得k=-1(舍去),k=1.因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则解得因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.二、思维提升训练10.2解析设直线AB:x=my+1,联立y2-4my-4=0,y1+y2=4m,y1y2=-4.而=(x1+1,y1-1)=(my1+2,y1-1),=(x2+1,y2-1)=(my2+2,y2-1).∵∠AMB=90°,=(my1+2)(my2+2)+(y1-1)(y2-1)=(m2+1)y1y2+(2m-1)(y1+y2)+5=-4(m2+1)+(2m-1)4m+5=4m2-4m+1=0.∴m=k==2.11.解 (1)设A(x0,0),B(0,y0),P(x,y),由=2得(x,y-y0)=2(x0-x,-y),即因为=9,所以+(3y)2=9,化简,得+y2=1, 所以点P的轨迹方程为+y2=1.(2)当过点(1,0)的直线为y=0时,=(2,0)·(-2,0)=-4,当过点(1,0)的直线不为y=0时,可设为x=ty+1,A(x1,y1),B(x2,y2).联立并化简,得(t2+4)y2+2ty-3=0,由根与系数的关系得y1+y2=-,y1y2=-,=x1x2+y1y2=(ty1+1)(ty2+1)+y1y2=(t2+1)y1y2+t(y1+y2)+1=(t2+1)+t +1==-4+又由Δ=4t2+12(t2+4)=16t2+48>0恒成立,所以t∈R,对于上式,当t=0时,()max=综上所述,的最大值为12.解 (1)因为|AD|=|AC|,EB∥AC,故∠EBD=∠ACD=∠ADC.所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|.又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4.由题设得A(-1,0),B(1,0),|AB|=2,由椭圆定义可得点E的轨迹方程为=1(y≠0).(2)当l与x轴不垂直时,设l的方程为y=k(x-1)(k≠0),M(x1,y1),N(x2,y2),由得(4k2+3)x2-8k2x+4k2-12=0,则x1+x2=,x1x2=,所以|MN|=|x1-x2|=过点B(1,0)且与l垂直的直线m:y=-(x-1),A到m的距离为,所以|PQ|=2=4故四边形MPNQ的面积S=|MN||PQ|=12可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为(12,8).当l与x轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,四边形MPNQ的面积为12.综上,四边形MPNQ面积的取值范围为[12,8).13.解 (1)设A(x1,y1),B(x2,y2),则=1,=1.两式相减,并由=k得k=0.由题设知=1,=m,于是k=-①由题设得0<m<,故k<-(2)由题意得F(1,0).设P(x3,y3),则(x3-1,y3)+(x1-1,y1)+(x2-1,y2)=(0,0).由(1)及题设得x3=3-(x1+x2)=1,y3=-(y1+y2)=-2m<0.又点P在C上,所以m=,从而P,||=于是||===2-同理||=2-所以||+||=4-(x1+x2)=3.故2||=||+||,则||,||,||成等差数列,设该数列的公差为d,则2|d|=|||-|||=|x1-x2|=②将m=代入①得k=-1.所以l的方程为y=-x+,代入C的方程,并整理得7x2-14x+=0.故x1+x2=2,x1x2=,代入②解得|d|=所以该数列的公差为或-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题强化训练(十八) 立体几何一、选择题1.[2019·石家庄一模]已知三棱锥P -ABC 中,PC ⊥AB ,△ABC 是边长为2的正三角形,PB =4,∠PBC =60°;(1)证明:平面PAC ⊥平面ABC ;(2)设F 为棱PA 的中点,求二面角P -BC -F 的余弦值.解:(1)在△PBC 中,∠PBC =60°,BC =2,PB =4,由余弦定理可得PC =23, ∴PC 2+BC 2=PB 2, ∴PC ⊥BC ,又PC ⊥AB ,AB ∩BC =B ,∴PC ⊥平面ABC ,∵PC ⊂平面PAC , ∴平面PAC ⊥平面ABC .(2)解法一:在平面ABC 中,过点C 作CM ⊥CA ,以CA ,CM ,CP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系C -xyz .则C (0,0,0),P (0,0,23),A (2,0,0),B (1,3,0),F (1,0,3). 设平面PBC 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧ CB →·m =x 1+3y 1=0,CP →·m =23z 1=0,取y 1=-1,则x 1=3,z 1=0,即m =(3,-1,0)为平面PBC 的一个法向量. 设平面BCF 的法向量为n =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧CB →·n =x 2+3y 2=0,CF →·n =x 2+3z 2=0,取x 2=3,则y 2=-1,z 2=-1,即n =(3,-1,-1)为平面BCF 的一个法向量, |cos 〈m ,n 〉|=|m·n ||m ||n |=|3+1+0|2×3+(-1)2+(-1)2=255,由题图可知二面角P -BC -F 为锐角, ∴二面角P -BC -F 的余弦值为255.解法二:由(1)可知PC ⊥平面ABC ,又PC ⊂平面PBC , ∴平面PBC ⊥平面ABC ,∴二面角P -BC -F 的余弦值就是二面角A -BC -F 的正弦值, 作FM ⊥AC 于点M ,则FM ⊥平面ABC , 作MN ⊥BC 于点N ,连接FN ,则FN ⊥BC , ∴∠FNM 为二面角A -BC -F 的平面角. ∵点F 为PA 的中点,∴点M 为AC 的中点, 在Rt △FMN 中,FM =12PC =3,MN =32,∴FN =152,∴sin ∠FNM =FM FN =255, ∴二面角P -BC -F 的余弦值为255.2.[2019·郑州质量预测二]如图,等腰直角三角形ABC 中,∠B =90°,平面ABEF ⊥平面ABC,2AF =AB =BE ,∠FAB =60°,AF ∥BE .(1)求证:BC ⊥BF ;(2)求二面角F -CE -B 的正弦值.解:(1)等腰直角三角形ABC 中,∠B =90°,即BC ⊥AB ,又平面ABC ⊥平面ABEF ,平面ABC ∩平面ABEF =AB ,BC ⊂平面ABC , ∴BC ⊥平面ABEF ,又BF ⊂平面ABEF , ∴BC ⊥BF .(2)由(1)知BC ⊥平面ABEF ,故建立如图所示的空间直角坐标系B -xyz ,设AF =1,则由已知可得B (0,0,0),C (0,2,0),F ⎝ ⎛⎭⎪⎫32,0,32,E (-1,0,3),EC →=(1,2,-3),EF →=⎝ ⎛⎭⎪⎫52,0,-32,BC →=(0,2,0), 设平面CEF 的法向量为n =(x ,y ,z ),则有 ⎩⎪⎨⎪⎧ n ·EC →=0,n ·EF →=0⇒⎩⎪⎨⎪⎧x +2y -3z =0,52x -32z =0,令x =3,则z =5,y =23,即n =(3,23,5)为平面CEF 的一个法向量.设平面BCE 的法向量为m =(x 1,y 1,z 1),则有 ⎩⎪⎨⎪⎧m ·EC →=0,m ·BC →=0⇒⎩⎨⎧x 1+2y 1-3z 1=0,2y 1=0,∴y 1=0,x 1=3z 1,令x 1=3,则m =(3,0,1)为平面BCE 的一个法向量.设二面角F -CE -B 的平面角为θ,则|cos θ|=|m·n |m ||n |=3+52×210=105,∴sin θ=155, ∴二面角F -CE -B 的正弦值为155. 3.[2019·太原一模]如图,在五面体ABCDEF 中,四边形ABCD 是直角梯形,AB ∥CD ,AD ⊥CD ,四边形CDEF 是菱形,∠DCF =60°,CD =2AD =2AB ,AE =5AD .(1)证明:CE ⊥AF ;(2)已知点P 在线段BC 上,且CP =λCB ,若二面角A -DF -P 的大小为60°,求实数λ的值.解:(1)∵四边形CDEF 是菱形, ∴DE =CD =2AD ,CE ⊥DF ,∵AE =5AD ,∴AE 2=5AD 2=AD 2+DE 2, ∴AD ⊥DE ,∵AD ⊥CD ,∴AD ⊥平面CDEF ,∴AD ⊥CE ,DF ∩AD =D .∴CE ⊥平面ADF ,AF ⊂平面ADF ,∴CE ⊥AF .(2)由(1)知以D 为坐标原点,DA →的方向为x 轴的正方向,|DA →|为单位长度,DC →的方向为y 轴的正方向,建立如图所示的空间直角坐标系D -xyz ,由题设可知D (0,0,0),A (1,0,0),B (1,1,0),C (0,2,0),E (0,-1,3),F (0,1,3), ∴DF →=(0,1,3),CP →=λCB →=(λ,-λ,0), ∴DP →=DC →+CP →=(λ,2-λ,0), 设m =(x ,y ,z )是平面DFP 的法向量,则 ⎩⎪⎨⎪⎧m ·DF →=0m ·DP →=0,∴⎩⎨⎧y +3z =0λx +(2-λ)y =0,令z =-1,则⎩⎪⎨⎪⎧y =3x =3⎝ ⎛⎭⎪⎫1-2λ,∴m =⎝ ⎛⎭⎪⎫3⎝ ⎛⎭⎪⎫1-2λ,3,-1为平面DFP 的一个法向量. 由(1)可知CE →=(0,-3,3)是平面ADF 的一个法向量, ∵二面角A -DF -P 的大小为60°, ∴cos60°=|m ·CE→|m |·|CE →|=|-43|23×3⎝ ⎛⎭⎪⎫1-2λ2+4=12,∴λ=23. 4.[2019·洛阳统考]如图1,平面多边形PABCD 中,PA =PD ,AD =2DC =2BC =4,AD ∥BC ,AP ⊥PD ,AD ⊥DC ,E 为PD 的中点,现将△APD 沿AD 折起,如图2,使PC =2 2.图1图2(1)证明:CE ∥平面ABP ;(2)求直线AE 与平面ABP 所成角的正弦值. 解:(1)取PA 的中点H ,连接HE ,BH ,如图.∵E 为PD 的中点,∴HE 为△APD 的中位线, ∴HE ∥AD ,且AE =12AD .又AD ∥BC ,BC =12AD ,∴HE ∥BC ,HE =BC ,∴四边形BCEH 为平行四边形,∴CE ∥BH . ∵BH ⊂平面ABP ,CE ⊄平面ABP , ∴CE ∥平面ABP .(2)由题意知△PAD 为等腰直角三角形,四边形ABCD 为直角梯形.取AD 的中点F ,连接BF ,PF ,∵AD =2BC =4,∴平面多边形PABCD 中,P ,F ,B 三点共线, 且PF =BF =2,∴翻折后,PF ⊥AD ,BF ⊥AD ,PF ∩BF =F , ∴DF ⊥平面PBF ,∴BC ⊥平面PBF , ∵PB ⊂平面PBF ,∴BC ⊥PB .在直角三角形PBC 中,PC =22,BC =2, ∴PB =2,∴△PBF 为等边三角形.取BF 的中点O ,DC 的中点M ,连接PO ,OM ,则PO ⊥BF , ∵DF ⊥平面PBF ,∴DF ⊥PO .又DF ∩BF =F ,∴PO ⊥平面ABCD .以O 为原点,OB →,OM →,OP →的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系, 则B (1,0,0),D (-1,2,0),P (0,0,3),A (-1,-2,0),∴E ⎝ ⎛⎭⎪⎫-12,1,32,∴AE →=⎝ ⎛⎭⎪⎫12,3,32,AB →=(2,2,0),BP →=(-1,0,3).设平面ABP 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AB →=0n ·BP →=0,∴⎩⎨⎧x +y =0-x +3z =0,故可取n =(3,-3,3)∴cos 〈n ,AE →〉=n ·AE →|n |·|AE →|=-21035,∴直线AE 与平面ABP 所成角的正弦值为21035. 5.[2019·辽宁高考模拟]如图,在多面体ABCDEF 中,平面ADEF ⊥平面ABCD .四边形ADEF 为正方形,四边形ABCD 为梯形,且AD ∥BC ,△ABD 是边长为1的等边三角形,M 为线段BD 中点,BC =3.(1)求证:AF ⊥BD;(2)求直线MF 与平面CDE 所成角的正弦值;(3)线段BD 上是否存在点N ,使得直线CE //平面AFN ?若存在,求BN BD的值;若不存在,请说明理由.解:(1)证明:因为ADEF 为正方形, 所以AF ⊥AD .又因为平面ADEF ⊥平面ABCD ,且平面ADEF ∩平面ABCD =AD , 所以AF ⊥平面ABCD ,BD ⊂平面ABCD ,所以AF ⊥BD . (2)取AD 中点O ,EF 中点K ,连接OB ,OK , 则在△ABD 中,OB ⊥OD ,在正方形ADEF 中,OK ⊥OD . 又平面ADEF ⊥平面ABCD ,则OB ⊥平面ADEF , 所以OB ⊥OK ,即OB, OD, OK 两两垂直.分别以OB ,OD ,OK 为x 轴,y 轴,z 轴建立空间直角坐标系(如图),则B ⎝⎛⎭⎪⎫32,0,0,D ⎝ ⎛⎭⎪⎫0,12,0,C ⎝ ⎛⎭⎪⎫32,3,0,E ⎝⎛⎭⎪⎫0,12,1,M ⎝ ⎛⎭⎪⎫34,14,0,F ⎝⎛⎭⎪⎫0,-12,1 所以MF →=⎝ ⎛⎭⎪⎫-34,-34,1,CD →=⎝ ⎛⎭⎪⎫-32,-52,0,DE →=(0,0,1).设平面CDE 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧CD →·n =0DE →·n =0,即⎩⎪⎨⎪⎧-32·x -52·y =0z =0.令x =-5,则y =3,则n =(-5,3,0). 设直线MF 与平面CDE 所成角为θ, sin θ=|cos 〈MF →,n 〉|=|MF →·n ||MF →||n |=314.(3) 要使直线CE ∥平面AFN ,只需AN ∥CD . 设BN →=λBD →,λ∈[0,1], 则⎝ ⎛⎭⎪⎫x n -32,y n ,z n =λ⎝ ⎛⎭⎪⎫-32,12,0, 所以x n =32-32λ,y n =12λ,z n =0,N ⎝ ⎛⎭⎪⎫32-32λ,12λ,0, 所以AN →=⎝ ⎛⎭⎪⎫32-32λ,12λ+12,0.又CD →=(-32,-52,0),由AN →∥CD →,得32-32λ-32=12λ+12-52,解得λ=23∈[0,1],所以线段BD上存在点N,使得直线CE∥平面AFN,且BNBD =23.6.[2019·福州质量抽测]如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,E为AD的中点,AC交BE于点F,G为△PCD的重心.(1)求证:FG∥平面PAD;(2)若PA=AD,点H在线段PD上,且PH=2HD,求二面角H-FG-C的余弦值.解:(1)因为AE∥BC,所以△AEF∽△CBF,因为E为AD的中点,所以2AE=AD=BC,所以CF=2AF.如图,延长CG,交PD于M,连接AM,因为G为△PCD的重心,所以M为PD的中点,且CG=2GM,所以FG∥AM,因为AM⊂平面PAD,FG⊄平面PAD,所以FG∥平面PAD.(2)以A为坐标原点,分别以AB,AD,AP所在的直线为x轴,y轴,z轴建立如图所示空间直角坐标系.设PA=AD=3,则C(3,3,0),D(0,3,0),P(0,0,3),F(1,1,0).因为PH=2HD,所以H(0,2,1).因为G 为△PCD 的重心,所以G (1,2,1).设平面FGC 的法向量为n 1=(x 1,y 1,z 1).FC →=(2,2,0),FG →=(0,1,1), 则⎩⎪⎨⎪⎧ n 1·FC →=0n 1·FG →=0,所以⎩⎪⎨⎪⎧2x 1+2y 1=0y 1+z 1=0,取x 1=1,则y 1=-1,z 1=1,所以n 1=(1,-1,1)为平面FGC 的一个法向量.设平面FGH 的法向量为n 2=(x 2,y 2,z 2).FH →=(-1,1,1), 则⎩⎪⎨⎪⎧n 2·FH →=0n 2·FG →=0,所以⎩⎪⎨⎪⎧-x 2+y 2+z 2=0y 2+z 2=0,则x 2=0,取y 2=1,则z 2=-1,所以n 2=(0,1,-1)为平面FGH 的一个法向量.所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-63.由图可知,该二面角为钝角, 所以二面角H -FG -C 的余弦值为-63. 7.[2019·浙江卷]如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.解:解法一:(1)如图,连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°, 故BC ⊥A 1F .又A 1E ∩A 1F =A 1, 所以BC ⊥平面A 1EF .又EF ⊂平面A 1EF 因此EF ⊥BC .(2)取BC 的中点G ,连接EG ,GF , 则四边形EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 连接A 1G 交EF 于O ,由(1)得BC ⊥平面EGFA 1, 则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上. 则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG = 3.由于O 为A 1G 的中点,故EO =OG =A 1G2=152, 所以cos ∠EOG =EO 2+OG 2-EG 22EO ·OG =35.因此,直线EF 与平面A 1BC 所成角的余弦值是35.解法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点, 所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E -xyz .不妨设AC =4,则A 1(0,0,23),B (3,1,0),F ⎝⎛⎭⎪⎫32,32,23,C (0,2,0). 因此,EF →=⎝ ⎛⎭⎪⎫32,32,23,BC →=(-3,1,0).由EF →·BC →=0得EF ⊥BC .(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC →=(-3,1,0),A 1C →=(0,2,-23).设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧ BC →·n =0,A 1C →·n =0,得⎩⎨⎧ -3x +y =0,y -3z =0.取n =(1,3,1),故sin θ=|cos 〈EF →,n 〉|=|EF →·n ||EF →|·|n |=45. 因此,直线EF 与平面A 1BC 所成角的余弦值为35. 8.[2019·北京卷]如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA=AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且PF PC =13.(1)求证:CD ⊥平面PAD ;(2)求二面角F -AE -P 的余弦值;(3)设点G 在PB 上,且PG PB =23.判断直线AG 是否在平面AEF 内,说明理由. 解:(1)因为PA ⊥平面ABCD ,所以PA ⊥CD .又因为AD ⊥CD ,PA ∩AD =A ,所以CD ⊥平面PAD .(2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A -xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2). 因为E 为PD 的中点,所以E (0,1,1).所以AE →=(0,1,1),PC →=(2,2,-2),AP →=(0,0,2).所以PF →=13PC →=⎝ ⎛⎭⎪⎫23,23,-23,AF →=AP →+PF →=⎝ ⎛⎭⎪⎫23,23,43. 设平面AEF 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·AE →=0,n ·AF →=0,即⎩⎪⎨⎪⎧ y +z =0,23x +23y +43z =0.令z =1,则y =-1,x =-1.于是n =(-1,-1,1).又因为平面PAD 的法向量为p =(1,0,0),所以cos 〈n ,p 〉=n ·p |n ||p |=-33. 由题知,二面角F -AE -P 为锐二面角,所以其余弦值为33. (3)直线AG 在平面AEF 内. 因为点G 在PB 上,且PG PB =23,PB →=(2,-1,-2), 所以PG →=23PB →=⎝ ⎛⎭⎪⎫43,-23,-43,AG →=AP →+PG →=⎝ ⎛⎭⎪⎫43,-23,23. 由(2)知,平面AEF 的法向量为n =(-1,-1,1).所以AG →·n =-43+23+23=0. 所以直线AG 在平面AEF 内.。

相关文档
最新文档