数学建模过程.ppt

合集下载

数学建模—概率模型 ppt课件

数学建模—概率模型 ppt课件

数学建模—概率模型
v3统计图(examp05-03) v箱线图(判断对称性) v频率直方图(最常用) v经验分布函数图 v正态概率图(+越集中在参考线附近,越近似正态分布)
v4分布检验 vChi2gof,jbtest,kstest,kstest2,lillietest等 vChi2gof卡方拟合优度检验,检验样本是否符合指定分布。它把观测数据分 组,每组包含5个以上的观测值,根据分组结果计算卡方统计量,当样本够 多时,该统计量近似服从卡方分布。 vjbtest,利用峰度和偏度检验。
3 单因素一元方差分析步骤
( example07_01.m 判断不同院系成绩均值是否相等)
数据预处理
正态性检验 lillietest (p>0.05接受)
方差齐性检验 vartestn (p>0.05接受)
方差分析
anoval (p=0 有显著差别)
多重比较:两两比较,找出存在显著差异的学院,multcompare
构造观测值矩阵,每一列对应因素A的一个水平,每一行对应因素B的一个
水平
方差分析
anova2 得到方差分析表
方差分析表把数据差异分为三部分(或四部分): 列均值之间的差异引起的变差 列均值之间的差异引起的变差 行列交互作用引起的变差 (随机误差) 后续可以进行多重比较,multcompare,找出哪种组合是最优的
Computer Science | Software Engineering & Information System
数学建模—概率模型
目的:用一个函数近似表示变量之间的不确定关系。 1 一元线性回归分析 做出散点图,估计趋势;计算相关系数矩阵; regress函数,可以得到回归系数和置信区间,做残差分析,剔除异常点,重 新做回归分析 Regstats 多重线性或广义回归分析,它带有交互式图形用户界面,可以处 理带有常数项、线性项、交叉项、平方项等模型 robustfit函数:稳健回归(加权最小二乘法)

数学建模——线性回归分析82页PPT

数学建模——线性回归分析82页PPT

2019/11/15
zhaoswallow
2
表1 各机组出力方案 (单位:兆瓦,记作MW)
方案\机组 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1
2
3
4
5
6
7
8
120
73
180
80
125
125
81.1
90
133.02 73
180
80
125
125
81.1
90
3 -144.25 -145.14 -144.92 -146.91 -145.92 -143.84 -144.07 -143.16 -143.49 -152.26 -147.08 -149.33 -145.82 -144.18 -144.03 -144.32
4 119.09 118.63 118.7 117.72 118.13 118.43 118.82 117.24 117.96 129.58 122.85 125.75 121.16 119.12 119.31 118.84
5 135.44 135.37 135.33 135.41 135.41 136.72 136.02 139.66 137.98 132.04 134.21 133.28 134.75 135.57 135.97 135.06
6 157.69 160.76 159.98 166.81 163.64 157.22 157.5 156.59 156.96 153.6 156.23 155.09 156.77 157.2 156.31 158.26
ˆ0

ˆ1 xi )2

min
0 ,1

高中数学北师大版 必修一 数学建模的主要步骤 课件

高中数学北师大版 必修一   数学建模的主要步骤 课件
即 t^2-25t+150≤0,解得10≤t≤15.
即税率应控制在10%-15%为宜.
环节三
学习与反思
检测
1.某新产品投放市场后第一个月销售
100台,第二个月销售200台,第三个
月销售400台,第四个月销售790台,
则下列函数模型中能较好地反映销量
y与投放市场的月数x之间关系的是
(
)
A.y=100x B.y=50x2-50x+
一般不容易求得精确值,这就
要根据需要求近似解.
(4)检验结果
用实际现象或数据检验求得
的解是否符合实际.如果不符
合实际情况,就要重新建模.
环节二
案例分析
案例分析
例1.某工厂今年1月、2月、3月生产
某种产品分别为1万件、1.2万件、1.3
万件.为了估计以后每个月的产量,
以这三个月的产品数量为依据,用一
设围成的矩形场地的长为x m,


则宽为
m,则S=
= (-



x2+200x).
当x=100时,Smax=2 500(m2).
检测
3.已知投资x万元经销甲商品所获得

的利润为P= ;投资x万元经销乙商


品所获得的利润为Q=

(a>0).
若投资20万元同时经销这两种商品或
个函数来模拟该产品的月产量y与月
份x的关系.模拟函数可以选择二次函
数或函数y=a•bx+c(其中a,b,c为常
数),已知4月该产品的产量为1. 37万
件,试问用以上哪个函数作为模拟函
数较好?并说明理由
解:由题意,设 1 =
= 2 +qx+r(p≠0),

《数学建模》PPT课件

《数学建模》PPT课件

( x2
x1)
f
f (x2 ) (x2 ) f
2 1 ( x1) 22
1
f
( x1 )
f
(x2 )
3
f
( x1 ) x1
f (x2 ) x2
2 (12 f (x1)f (x2 ))1/2
如函数的导数容易求得,一般首先考虑使用三次插值
法,因为它具有较高效率。对于只需要计算函数值的方
法中,二次插值法是一个很好的方法,它的收敛速度较
优化模型
(2)多项式近似法 该法用于目标函数比较复杂的情 况。此时寻找一个与它近似的函数代替目标函数,并用 近似函数的极小点作为原函数极小点的近似。常用的近 似函数为二次和三次多项式。
二次内插涉及到形如下式的二次函数数据拟合问题:
mq() a2 b c
其中步长极值为:
b
2a
完整版课件ppt
求解单变量最优化问题的方法有很多种,根据目标函 数是否需要求导,可以分为两类,即直接法和间接法。 直接法不需要对目标函数进行求导,而间接法则需要用 到目标函数的导数。
完整版课件ppt
4
优化模型
1、直接法 常用的一维直接法主要有消去法和近似法两种: (1)消去法 该法利用单峰函数具有的消去性质进行
反复迭代,逐渐消去不包含极小点的区间,缩小搜索区 间,直到搜索区间缩小到给定允许精度为止。一种典型 的消去法为黄金分割法(Golden Section Search)。黄金 分割法的基本思想是在单峰区间内适当插入两点,将区 间分为三段,然后通过比较这两点函数值的大小来确定 是删去最左段还是最右段,或同时删去左右两段保留中 间段。重复该过程使区间无限缩小。插入点的位置放在 区间的黄金分割点及其对称点上,所以该法称为黄金分 割法。该法的优点是完整算版课法件p简pt 单,效率较高,稳定性好5 。

数学建模——线性回归分析-82页PPT精选文档

数学建模——线性回归分析-82页PPT精选文档

2019/11/16
zhaoswallow
5
16
166.88
141.4
-144.34
118.67
134.67
159.28
17
164.07
143.03
-140.97
118.75
133.75
158.83
18
164.27
142.29
-142.15
118.85
134.27
158.37
19
164.57
141.44
9
根据表1和表2围绕方案0的1--32组实验数 据,可以列出关于未知数的32个方程的方程 组,利用SAS或Matlab编程求解方程组,得
2019/11/16
zhaoswallow
10
为了确定li和x1,L , x8之间是否有线性关系, 还需要根据样本值运用假设检验来判断, 以确定求得的回归方程是否有价值。
129.63 73
180
80
125
125
81.1
90
158.77 73
180
80
125
125
81.1
90
145.32 73
180
80
125
125
81.1
90
120
78.596 180
80
125
125
81.1
90
120
75.45
180
80
125
125
81.1
90
120
90.487 180
80
125
125
141.58 125
81.1
90

数学建模介绍PPT课件

数学建模介绍PPT课件

•对任意的,有f()、 g()
•至少有一个为0,
16
本问题归为证明如下数学命题: 数学命题:(本问题的数学模型)
已知f()、 g()都是的非负连续函数,对任意的 ,有f() g()=0,且f(0) >0、 g(0)=0 ,则有存在0, 使f(0)= g(0)=0
模型求解 证明:将椅子旋转90°,对角线AC与BD互换,由 f(0)>0、 g(0)=0 变为f(/2) =0、 g(/2) >0
的解答


数学模型 的解答
12
实践
理论
实践
表述 求解 解释 验证
根据建模目的和信息将实际问题“翻译”成 数学问题 选择适当的数学方法求得数学模型的解答
将数学语言表述的解答“翻译”回实际对 象 用现实对象的信息检验得到的解答
13
4、建模实例:
例1、椅子能在不平的地面上放稳吗?
• 模型假设 • 1、椅子的四条腿一样长,椅子脚与地面
• 要学习数学建模,应该了解如下与数学建模 有关的概念:
3
• 原型(Prototype)
• 人们在现实世界里关心、研究、或从事生产、 管理的实际对象称为原形。原型有研究对象、 实际问题等。
• 模型(Model)
• 为某个目的将原型的某一部分信息进行简缩、 提炼而构成的原型替代物称为模型。模型有 直观模型、物理模型、思维模型、计算模型、 数学模型等。
• 一个原型可以有多个不同的模型。
4
数学模型:
由数字、字母、或其他数学符号组成、描 述实际对象数量规律的数学公式、图形或算 法称为数学模型
数学建模:
建立数学模型的全过程 (包括表述、求解、解释、检验等)
5

2019如何建立一个数学模型.ppt

2019如何建立一个数学模型.ppt

例2.4:AMCM-89A题要求对蠓虫加以分类。 在采用概率判别方法建模之前,作了如下假设:
1、两类蠓虫的触角与翅膀长度的总体均值、标准差
和相关系数与学习样本所能反映的值是相符的, 2、触角长度x和y服从二维正态分布
这两条假设为从概率论的角度对蠓虫进行分类提供了根据,
由于统计方法的应用必须建立在对大量样本进行分 析的基础上,而我们面临的问题是,题中所给的数 据(15个学习样本)太少,因此优秀论文作者清醒 指出,这些假设未必一定可靠,这显示了他们对实 际问题及所用方法的深刻见解,
根据赛题的实际情况,对建立的模型作出合 理的简化是解决问题的关键。
例4.1 CMCM-98B
根据题意,得到购买Si的金额为xi的交易费为
0, xi 0 ci ( xi ) pi ui ,0 xi ui p x ,x u i i i i
但因M相当大,Si若被选中,其投资额xi一般都超过ui, 交易费可简化为
如何建立一个完整的数学模型
仇秋生
数理信息工程学院
一个完整的数学建模过程主要由三部分组成: 1、用适当的数学方法对实际问题进行描述 2、采取各种数学和计算机手段求解模型 3、从实际的角度分析模型的结果,考察其是否合理、 是否具有实际意义?
一、模型准备
了解实际背景 明确建模目的 搜集有关信息 掌握对象特征
(3)统计分析模型
如AMCM-89A可以用统计学中的Fisher判别法对蠓虫 加以分类。 (4)插值与拟合模型 这是离散数据连续化处理时常用的方法。如 AMCM-86A题海底地形的描绘,AMCM-91A水塔水流 量的估计等。
(5)其它。如计算机模拟,神经网络等。
方法总结:
用的最多的方法是:微分方程、优 化化方法和概率统计的方法. 插值与拟合,随机模拟在数据处理时 很有必要。 灰色系统理论、神经网络、模糊数学 经常被乱用。 层次分析只能做半定量分析

北师大版高中数学课件必修第1册第八章 数学建模活动(一)

北师大版高中数学课件必修第1册第八章 数学建模活动(一)
(1)成立项目小组,确定工作目标,准备测量工具;
(2)小组成员查阅有关资料,进行讨论交流,寻求测量效率高的方法,设计测
量方案(最好设计两套测量方案);
(3)分工合作,明确责任.例如,测量、记录数据、计算求解、撰写报告的分
工等;
(4)撰写报告,讨论交流.可以用照片、模型、PPT等形式展现获得的成果.
想的结果.
对上面的测量报告,教师和同学给出评价.例如,对测量方法,教师和种可行的测量方法;对测量
结果,教师评价为“良”,同学评价为“中”,因为两种方法得到的结果相差较大.
对测量结果的评价,教师和同学产生差异的原因是教师对测量过程的部分
项目实施加分,包括对自制测量仰角的工具等因素作了误差分析;同学则进
其中α,β,a,h如图所示.
两次测角法示意图
2.镜面反射法
(1)将镜子(平面镜)置于平地上,人后退至从镜中能够看到房顶的位置,测量
人与镜子的距离;
(2)将镜子后移a m,重复(1)中的操作;
(3)楼高

x 的计算公式为 x=
.
2 -1
其中a1,a2是人与镜子的距离,a是两次观测时镜面之间的距离,h是人的“眼
根据上述要求,每个小组要完成以下工作:
(1)选题
(2)开题
可以在课堂上组织开题交流,让每一个项目小组陈述初步测量方案,教师和
其他同学可以提出质疑.例如:
如果有学生提出要通过测量仰角计算高度,教师可以追问:怎么测量?用什
么工具测量?目的是提醒学生,事先设计出有效的测量方法和选用实用的
测量仪器.
如果有学生提出要通过测量太阳的影长计算高度,教师可以追问:几时测量
与未来计算的关联.
在讨论的基础上,项目小组最终形成各自的测量方案.讨论的目的是让学生

数学建模PPT课件

数学建模PPT课件
“树上有十只鸟,开枪打死一只,还剩几只?”
二、相关的数学基础
• 线性规划 • 概率统计 • 图论 • 常微分方程 • 最优化理论
三、如何组队及合作
• 根据数学建模竞赛章程,三人组成一队,这 三人中必须一人数学基础较好,一人应用数学 软件(如Matlab,lindo,maple等)和编程(如 c,Matlab,vc++等)的能力较强,一人科技论文 写作的水平较好。科技论文的写作要求整篇论 文的结构严谨,语言要有逻辑性,用词要准确。
2
• 它要用到各方面的综合的知识,但还不限于 此.参赛选手不只是要有各方面的知识,还要 驾驭这些知识,应用这些知识处理实际问题的 能力。知识是无止境的,还必须有善于获得新 的知识的能力。总之,数学建模竟赛,既要比 赛各方面的综合知识,也要比赛各方面的综合 能力。它的特点就是综合,它的优点也是综合。 在这个意义上看,它与任何一个学科领域内的 纯知识竞赛都不相同的特点就是不纯,它的优 点也就是不纯,综合就是不纯。
• 三人之间要能够配合得起来。若三人之间配 合不好,会降低效率,导致整个建模的失败。
• 如果可能的话,最好是数学好的懂得编程的 一些知识,编程好的了解建模,搞论文写作也
5
• 要了解建模,这样会合作得更好。因为 数学好的在建立模型方案时会考虑到编 程的便利性,以利于编程;编程好的能 够很好地理解模型,论文写作的能够更 好、更完全地阐述模型。否则会出现建 立的模型不利于编程,程序不能完全概 括模型,论文写作时会漏掉一些不经意 的东西。
• 于处理的是静态的独立数据,故称为数理统计 方法。
• 4. 时序分析法--处理的是动态的相关数据,又 称为过程统计方法。
• 三、仿真和其他方法
• 1. 计算机仿真(模拟)--实质上是统计估计方 法,等效于抽样试验。

数学建模ppt第一章.ppt

数学建模ppt第一章.ppt

问题分析
多步决策过程
3名商人 3名随从
决策~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员
要求~在安全的前提下(两岸的随从数不比商人多),经有 限步使全体人员过河.
模型构成
xk~第k次渡河前此岸的商人数 yk~第k次渡河前此岸的随从数 sk=(xk , yk)~过程的状态
《数精学品课建程模》
描述、优化、预报、决策 … …
了解程度 白箱
灰箱
黑箱
《数精学品课建程模》
1.6 怎样学习数学建模
数学建模与其说是一门技术,不如说是一门艺术
技术大致有章可循 艺术无法归纳成普遍适用的准则
想像力
洞察力
判断力
• 学习、分析、评价、改进别人作过的模型
• 亲自动手,认真作几个实际题目
《数精学品课建程模》
第1章 作业
研究人口变化规律 控制人口过快增长
《数精学品课建程模》
常用的计算公式 今年人口 x0, 年增长率 r
k年后人口
x x (1 r)k
k
0
指数增长模型——马尔萨斯提出 (1798)
基本假设 : 人口(相对)增长率 r 是常数
x(t) ~时刻t的人口
dx dt rx, x(0) x0
x(t t) x(t) rt x(t)
一、教材 P 22-23 ex 3(5); 9(3)
二、补充题:巧分蛋糕问题
专家估计
r=0.2557, xm=392.1
《数精学品课建程模》
阻滞增长模型(Logistic模型) 模型检验
用模型计算2000年美国人口,与实际数据比较
x(2000 ) x(1990 ) x x(1990 ) rx(1990 )[1 x(1990 ) / xm ]

数学建模——回归分析模型 ppt课件

数学建模——回归分析模型  ppt课件

有最小值:
n n i 1 i 1
i
2 2 ( y a bx ) i i i
ppt课件
ˆx ˆi a ˆ b y i
6
数学建模——回归分析模型
一元线性回归模型—— a, b, 2估计
n ( xi x )( yi y ) ˆ i 1 b n ( xi x )2 i 1 ˆ ˆ y bx a
数学建模——回归分析模型
Keep focused Follow me —Jiang
ppt课件
1
数学建模——回归分析模型
• • • • • 回归分析概述 几类回归分析模型比较 一元线性回归模型 多元线性回归模型 注意点
ppt课件
2
数学建模——回归分析模型
回归分析 名词解释:回归分析是确定两种或两种以上变数 间相互赖的定量关系的一种统计分析方法。 解决问题:用于趋势预测、因果分析、优化问题 等。 几类常用的回归模型:
可决系数(判定系数) R 2 为:
可决系数越靠近1,模型对数据的拟合程度越好。 ppt课件 通常可决 系数大于0.80即判定通过检验。 模型检验还有很多方法,以后会逐步接触
15
2 e ESS RSS i R2 1 1 TSS TSS (Yi Y )2
数学建模——回归分析模型
2 i i 1
残差平 方和
13
数学建模——回归分析模型
多元线性回归模型—— 估计 j 令上式 Q 对 j 的偏导数为零,得到正规方程组,
用线性代数的方法求解,求得值为:
ˆ ( X T X )1 X TY
ˆ 为矩阵形式,具体如下: 其中 X , Y ,

数学建模算法(共10张PPT)

数学建模算法(共10张PPT)

• function [D,path]=floyd(a)

n=size(a,1);
• D=a;
• path=zeros(n,n);
• for i=1:n

for j=1:n

if D(i,j)~=inf

path(i,j)=j;

end

end

end

for k=1:n

for i=1:n

for j=1:n
数学建模算法
第1页,共10页。
• Dijkstra算法 • 1.定义概览 • Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算
法,用于计算一个节点到其他所有节点的最短路径 。主要特点是以起始点为中心向外层层扩展,直到 扩展到终点为止。Dijkstra算法是很有代表性的最 短路径算法,在很多专业课程中都作为根本内容有 详细的介绍,如数据结构,图论,运筹学等等。注 意该算法要求图中不存在负权边。 • 问题描述:在图 G=(V,E) 中,假设每条边 E[i] 的 长度为 w[i],找到由顶点 V0 到其余各点的最短路 径。〔单源最短路径〕

if D(i,k)+D(k,j)<D(i,j)

D(i,j)=D(i,k)+D(k,j);

path(i,j)=path(i,k);

end

end

end

end
第7页,共10页。
Floyd算法是一个经典的动态规划算法。 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。 Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。 主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。 所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明 从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的 最短路径的距离。 主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。 从任意一条单边路径开始。 D(i,j)=D(i,k)+D(k,j); end path(i,j)=j; Floyd-Warshall算法〔Floyd-Warshall algorithm〕是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同 时也被用于计算有向图的传递闭包。 end 所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明 从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的 最短路径的距离。 所有两点之间的距离是边的权,如果两点之间没有边相连,那么权为无穷大。 Floyd-Warshall算法〔Floyd-Warshall algorithm〕是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同 时也被用于计算有向图的传递闭包。 从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过假设干个节点k到j。

数学建模实例ppt课件

数学建模实例ppt课件

B
的化学物质Z已泻入湖中,初步估计Z的量在5~20m3之间。 建立一个模型,通过它来估计湖水污染程度随时间的变化
并估计:
(1)湖水何时到达污染高峰;
(2)何时污染程度可降至安全水平(<0.05%)
28
湖泊污染问题分析
设湖水在t时的污染程度为C(t), X
即每立方米受污染的水中含有Cm3 A
的化学物质和(1-C)m3的清洁水。用
23
几何关系
dy tg y at
dx
x
即 x dy y at dx
24
如何消去时间t?
1、求导:
2、速度与路程的关系: x 得:
(这里有负号是因为s随x的减小而增大) 4、将第2、3步代入第1步,可得模型
25
追线模型:
x
d2y dx2
k
1 dy 2 dx
由已知,T (0) 37 , T (t) 29 , T (t 1) 27 可得微分方程的特解:
T (t) 16 4 t 21 3
由T (t) 29,代入解得 t 2.4094
因此死者大约是在前一天的夜晚10:35被害的。
图1 尸体的温度
下降曲线
4
建立微分方程的常用方法
1、按变化规律直接列方程,如: 利用人们熟悉的力学、数学、物理、化学等学科中的规律,
19
(1)问题分析与模型的建立
1、放射性衰变的这种性质还可描述为“放射性物 质在任意时刻的衰变速度都与该物质现存的数量 成比例”。而C14的比例数为每年八千分之一。
2、碳14年代测定可计算出生物体的死亡时间;所
以,我们问题实际上就是:“这人死去多久了?”
若设t为死后年数,y(t)为比例数,则y(t)=C14/C12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统分析法:对复杂性问题或主观性问题的研究方法。把
定性的思维和结论用定量的手段表示出来。 如:层次分析法。
2 建模步骤
模型准备
模型假设
模型检验 模型应用
模型分析
模型建立 模型求解
1)模型准备: 了解问题的实际背景,明确建模目 的,掌握对象的各种信息如统计数据等,弄清实际 对象的特征。
有时需查资料或到有关单位了解情况等。
乙 63 63/200=31.5% 31.5%•20=6.3
丙 34 34/200=17.0% 17.0%•20=3.4
席位数 10 6 4
席位数 10 6 4
现象1 丙系虽少了6人,但席位仍为4个。(不公平!)
为了在表决提案时避免可能出现10:10的平局,再设一个席 位。
21个席位的分配结果
系别 人数 所占比例
2)模型假设:根据实际对象的特征和建模目的,对问 题进行必要地合理地简化。不同的假设会得到不同的模 型。如果假设过于简单可能会导致模型的失败或部分失 败,于是应该修改或补充假设,如“四足动物的体重问 题”;如果假设过于详细,试图把复杂的实际现象的各 个因素都考虑进去,可能会陷入困境,无法进行下一步 工作。分清问题的主要方面和次要方面,抓主要因素, 尽量将问题均匀化、线性化。
120 10
12
12-10=2
B
100 10
10
C
1020 10
3)模型建立:
•分清变量类型,恰当使用数学工具;
•抓住问题的本质,简化变量之间的关系;
•要有严密的数学推理,模型本身要正确;
•要有足够的精确度。
4)模型求解:可以包括解方程、画图形、证明定理 以及逻辑运算等。会用到传统的和近代的数学方 法,计算机技 术(编程或软件包)。特别地近似计 算方法(泰勒级数,三角级数,二项式展开、代数 近似、有效数字等)。
4)按建立模型的数学方法(或所属数学分支)分 初等模型、几何模型、线性代数模型、微分方程模型、 图论模型、马氏链模型、运筹学模型等。
5)按建模目的分
描述性模型、分析模型、预报模型、优化模型、
决策模型、控制模型等。
6)按对模型结构的了解程度分
白箱模型:其内在机理相当清楚的学科问题,包括 力学、热学、电学等。
存在不公平现象,能否给出更公平的分配席位的方案?
2 建模分析 目标:建立公平的分配方案。
反映公平分配的数量指标可用每席位代表的人数来衡量。
系别 甲 乙 丙
人数 100 60 40
席位数 10 6 4
每席位代表的人数 100/10=10 60/6=10 40/4=10
系别 人数 席位数 每席位代表的人数 公平程度
数学建模过程
现实对象的信
表述 数学模型

验 证
(归纳) (
求演 解绎

现实对象的 解释 数学模型的
解答
解答
现实对象与数学模型的关系
建立数学模型的方法和步骤
1 方法 机理分析法:以经典数学为工具,分析其内部的机理规律。
F ma
统计分析法:以随机数学为基础,经过对统计数据进行分
析,得到其内在的规律。 如:多元统计分析。
分配方案
甲 103 103/200=51.5% 51.5 %•21 =10.815
乙 63 63/200=31.5% 31.5%•21=6.615
丙 34 34/200=17.0% 17.0%•21=3.570
席位数
11 7 3
现象2 总席位增加一席,丙系反而减少一席。(不公平!) 惯例分配方法:按比例分配完取整数的名额后,剩下的名额 按惯例分给小数部分较大者。
模型的分类
1)按变量的性质分: 离散模型 确定性模型 线性模型 单变量模型 连续模型 随机性模型 非线性模型 多变量模型
2)按时间变化对模型的影响分
静态模型 动态模型
参数定常模型 参数时变模型
3)按模型的应用领域(或所属学科)分 人口模型、交通模型、生态模型、城镇规划模型、 水资源模型、再生资源利用模型、污染模型、 生物数学模型、医学数学模型、地质数学模型、 数量经济学模型、数学社会学模型等。
三 产品的抽样检验
一 席位分配问题
某校有200名学生,甲系100名,乙系60名,
丙系40名,若学生代表会议设20个席位,问三系各
有多少个席位?
1 问题的提出
按惯例分配席位方案,即按人数比例分配原则
mq p N
m 表示某单位的席位数 p 表示某单位的人数
N 表示总人数 q 表示总席位数
20个席位的分配结果
5)模型分析:结果分析、数据分析。 变量之间的依赖关系或稳定性态;数学预测;最优 决策控制。
6)模型检验: 把模型分析的结果“翻译”回到实 际对象中,用实际现象、数据等检验模型的合理性 和适应性检验结果有三种情况:符合好,不好,阶 段性和部分性符合好。 7)模型应用:应用中可能发现新问题,需继续完善。
甲 103 10 103/10=10.3

乙 63 6
63/6=10.5

丙 34 4
34/4=8.5

系别 人数 席位数 每席位代表的人数
甲 103 11 103/11=9.36
乙 63 7
63/7=9
丙 34 3
34/3=11.33
公平程度 中 好 差
一般地,
单位 人数
A
p1
B
p2
席位数
n1 n2
灰箱模型:其内在机理尚不十分清楚的现象和问题, 包括生态、气象、经济、交通等。
黑箱模型:其内在机理(数量关系)很不清楚的现 象,如生命科学、社会科学等。
初等模型
初等模型是指可以用初等数学的方法来构 造和求解的模型。我们来建立以下四个问题 的数学模型。
我们来解决以下几个问题:
一 席位分配问题
二 核军备竞赛
每席位代表的人数
p1 n1
p2 n2

p1 p2 n1 n2
席位分配公平
但通常不一定相等,席位分配的不公平程度用以下标准来 判断。
1) p1 p2 称为“绝对不公平”标准。 n1 n2
此值越小分配越趋于公平,但这并不是一个好的衡量标准。
单位 A
人数p 席位数n 每席位代 绝对不公 表的人数 平标准
系别 甲 乙 丙
人数 100 60 40
所占比例 100/200 60/200 40/200
分配方案 (50/100)•20=10 (30/100)•20=6 (20/100)•20=4
现丙系有6名学生分别转到甲、乙系各3名。
系别 人数 所占比例
分配方案
甲 103 103/200=51.5% 51.5 %•20 =10.3
相关文档
最新文档