数学建模与数学实验:第4讲 综合讲座1
《数学建模与数学实验》
建模实例分析
通过分析和学习一些优秀的数学建模实例或论文。使学生初步了解数学建模的一般流程,对使用数学知识解决实际问题有较直观的感受,在这个过程中激发学生想自己动手尝试的实践热情。
3
论文写作指导
指导学生正确的论文结构以及书写要求,使学生初步体验规范的学术研究过程。
●“科目实施”
1
教学组织形式
规模:一般15—20个人的规模开展教学活动
1.用数学语言描述实际现象的“翻译”能力。
2.综合应用已学过的数学知识,对问题进行分析处理的能力。
3.想象力和洞察力。进而提高学生的综合素质和创新能力。
4
活动总量
共有超过40个专题,可供高一高二的学生选择,以学期为单位,共4期。学生每学完1期,要求提交一片独立完整的数学建模小论文。
●“科目目标”
1
知识与技能
3.通过交流和讨论,培养学生互相尊重、团队协作的意识。
4.通过论文撰写和答辩,体会研究求实的学术精神。
4
教学目标
设计原则和要求
1.教学目标要注重结合基础教材内容。
2.教学目标要注重对规律的总结,授之以渔。
3.教学目标要注重多样性和开放性。
4.教学目标的设计要从学生的实际水平出发,对于高一高二的学生,所能够使用的数学模型多局限于初等数学模型,因此在制定面向大多数学生的实际情况教学目标时要注意这方面的考虑,选取适合学生的材料和内容。
4
实施要求和德育思考
1.通过多种建模方法的培训和大量实例的分析,提高学生学习数学的兴趣与热情。
2.体会应用数学的广泛应用,感悟学有所用的成就感。
3.通过交流和讨论,培养学生互相尊重、团队协作的意识。
4.通过论文撰写和答辩,体会研究求实的学术精神。
《数学建模与数学实验》电子课件-赵静、但琦 第12讲 数据的统计分析与描述
n
p( x1 , 1 , k ) p( x2 , 1 , , k ) p( xn , 1 , k )
p( xi ,1 , k )
i 1
使L(1,,k ) 达到最大,从而得到参i数 的估计ˆi 值 .此估计值叫极大似然估计值.函数
L(1,,k ) 称为似然函数.
求极大似然估计值的问题,就是求似然函数L(1,,k ) 的最大值的问题,则
统计的基本概念 参数估计 假设检验
3
一、统计量
1、表示位置的统计量—平均值和中位数
平均值(或均值,数学期望) :X1 n
ni1
Xi
中位数:将数据由小到大排序后位于中间位置的那个数值.
2、表示变异程度的统计量—标准差、方差和极差
标准差:s[n11i n1(Xi
1
X)2]2
它是各个数据与均值偏离程度的度量.
数学建模与数学实验
数据的统计描述和分析
2021/7/31
后勤工程学院数学教研室
1
实验目的
1、直观了解统计基本内容。 2、掌握用数学软件包求解统计问题。
实验内容
1、统计的基本理论。 2、用数学软件包求解统计问题。 3、Matlab数据统计 4、实验作业。
数 据 的 统 计 描 述 和 分 析
2021/7/31
若 X ~N ( 0, 1) , Y ~ 2( n) , 且 相 互
独 立 , 则 随 机 变 量
TX Y
n
服 从 自 由 度 为 n的 t分 布 , 记 为 T ~t( n) . t分 布 t( 20) 的 密 度 函 数 曲 线 和 N ( 0, 1) 的
曲 线 形 状 相 似 .理 论 上 n 时 , T ~t( n) N ( 0, 1) .
数学建模与实验-比例建模
比例建模比例是最基本也是最常用的数学建模方法之一. 在实际应用领域和理论推导过程中, 比例关系往往发挥着至关重要的作用. 例如牛顿第二定律ma F =, 微分公式dx x f x df )()('=等等.一、比例的定义变量y 与x 成比例(x y ∝):)0(>=k kx y . 显然, 比例关系具有反身性, 对称性, 传递性:x x ∝,y x x y ∝⇔∝, z x z y y x ∝⇒∝∝,.比例关系还可推广, 如x e y x y x y ∝∝∝,ln ,α.一般地,)(x f y ∝.实际应用举例:导数: 函数的增量与自变量的增量之比的极限x x f x f ∆∆/)()(=', 当导数大于零时, 在自变量很小时可近似地认为函数的增量与自变量的增量成比例.间谍照片经翻拍, 成为胶片上芝麻大的一点, 剪下后便于隐藏. 其中图形的大小关系显然要利用比例来计算. (华盛顿特区间谍博物馆)生产队的分配比例: 拿1万斤粮食分配给社员家庭, 其中30%按人口比例分配, 70%按工分比例分配, 每家应得的粮食斤数.二、比例的几何表示y 与x 成比例, 即0,>=k kx y , y 的图形为xy 坐标系中过原点的直线. 若)(x f y ∝, 在坐标系中横轴表示f (x ), 纵轴表示y , 这时y 的图形也为直线. 下图为25.0x y =的图形: 注: 比例的图形为直线, 但图形为直线的量未必成比例. 例如42+=x y , y 与x 并不成比例. 但是, 4-y 与x 成比例.著名公式中的比例关系Hooke's law: F = kS (虎克定律: 弹力与形变成正比) Newton's law: F = ma Ohm's law: V = iRBoyle's law: V = k /p (玻尔定律: 常温下一定量的气体体积与压强成反比, 即与压强的倒数成正比)Einstein's theory of relativity: E = c 2MKepler's third law: T = cR 3/2, 开普勒第三定律:T 为行星绕太阳运行的周期, R 为行星到太阳的平均距离.例1 以著名的开普勒第三定律(Kepler's third law)为例进行讨论. 1601年, 德国天文学家Johannes Kepler 成为Prague 天文台的主任. Kepler 曾帮助Tycho Brahe 收集了13年的火星相对运动的资料. 到了1609年, Kepler 建立了他的前两个定律:1. 每个行星沿一个椭圆运动, 太阳位于此椭圆的一个焦点上.2. 对于每个行星, 太阳到此行星的直线在相同的时间里扫过相同的面积.Kepler 花费了许多年推导了这两个定律, 并进而得到了上述的第三定律, 此定律把行星的轨道运行周期和到太阳的平均距离联系了起来. 以下是1993年世界年鉴(World Almanac)给出的资料:表1 行星的轨道周期和到太阳的平均距离行星周期T (天) 平均距离R (百万哩) Mercury 水星 88.0 36 V enus 金星 224.7 67.25 Earth 地球 365.3 93 Mars 火星 687.0 141.75 Jupiter 木星 4331.8 483.80 Saturn 土星 10760.0 887.97 Uranus 天王星 30684.0 1764.50 Neptune 海王星 60188.3 2791.05 Pluto 冥王星90466.83653.90以2/3R 为横坐标, T 为纵坐标, 用Matlab 画出其图形(编制程序为period1.m)如下:可见各点基本上是在过原点的直线2/3cR T =上, 由于各点相对距离相差较大, 前四个点重叠在一起. 把上述方程两边同取对数, 改写为等价的形式R c T ln 23ln ln +=,其图形相当于上述图形中坐标刻度向原点压缩, 在画出上述图形的程序中把画图命令plot(R.^(3/2), T)改为loglog(R.^(3/2), T)即可. 图形如下. 各点仍基本在一条直线上, 体现了ln T 和ln R 间的线性关系, 但直线不过原点, 因为直线在ln P 轴上有截距ln c . c 可用最小二乘法求出为0.4095.若假设αcR T =, 对表1中给出的T 和R 的数据, 用最小二乘法可求出c = 0.4043, α = 1.5016. 这也验证了Kepler 第三定律的正确性.对给定的两组数据{x i }和{y i }, 如何建立它们间的比例关系呢?进行数学实验, 在坐标系中画出点{x i , y i }, 如不是直线或不过原点, 可通过试验, 寻找y 0和函数f (x ), 使{y i - y 0, f (x i )}基本在过原点的直线上, 则有)(0x f y y ∝-. 可供选择的函数类型有)ln(,,ax e x ax a等等.三、比例的应用之一: 几何相似定义: 两个物体称为是几何相似的, 如果在这两个物体的各点之间有一个一一对应, 使得两个物体上所有对应点对距离之比恒为常数.这个常数称为这两个几何相似物体间的比例因子. 若两个物体相似, 其比例因子为k , 则这两个物体的表面积之比为k 2, 体积之比为k 3. 对相似的几何体, 可选取一个所谓特征量纲, 例如, 对圆柱体, 可用其高h , 或底半径r , 直径d , 或底面积S d , 侧面积S c , 表面积S , 或体积V 作为特征量纲. 两个相似几何体的比例因子k 确定后, 不但它们的表面积之比, 体积之比也可得到, 而且所有(不限于两个, 甚至可以是无穷多个)相似几何体的表面积或体积与特征量纲的某次幂的比也为常数. 例如, 若取某个长度l 为特征量纲, 则222'','l l k S S k l l ===, 故有22''l S l S =.由传递性, 对所有相似的几何体, 有常数≡2lS, 2l S ∝.同理有常数≡3lV, 3l V ∝.于是, 如果要考查一个依赖于物体长度, 表面积和体积的函数, 比如),,(V S l f y =,则可通过选择特征量纲, 例如l , 把此函数表为),,(32l l l g y =.例2 从静止的云上落下的雨滴. 假设雨滴从具有足够高度的静止的云上落下, 雨滴在下落过程中受到两个力的作用: 竖直向下的重力F g 和竪直向上的空气阻力F d . 由流体力学的原理知, 可设空气阻力F d 与雨滴的表面积S 和下落速度v 的平方的乘积成正比; 而重力F g 与雨滴的质量m 成正比(假设在涉及的高度内重力加速度为常数), 因此也与其体积V 成正比. 雨滴下落过程中, 随着下落速度v 的增加, 阻力F d 也在增加, 但重力F g 保持不变. 因此下落一段时间后, 阻力F d 与重力F g 达到平衡, 雨滴受到的合力为零, 保持匀速下落. 这时,d g F F =. 再假设所有的雨滴都是几何相似的, 有23,l S l V ∝∝, 从而3/23/2m V S ∝∝. 由于m F ∝g ,23/22v m Sv F ∝∝d , 且d g F F =, 得23/2v m m ∝,化简得6/1m v ∝, 或6/1km v =,即雨滴最终保持匀速下落的速度与其质量的六次方根成正比. 又一解法:0,023/2=-=-==t d g v v km mg F F dtdv, .)2(,0)1(23/2v kmmg k ≥>其中分离变量解得vk m g v k m g m kg t -+=6/16/16/5ln 21, 上式左端趋于无穷大, 并由条件(1), (2)有)(06/1∞→+→-t v k m g ,即在极限状态下,6/1m v ∝.。
1_数学建模是什么
数学建模专题材料1 数学建模是什么简而言之,数学建模就是用数学的方法解决实际问题。
当我们遇到一个实际问题时,首先对其进行分析,把其中的各种关系用数学的语言描述出来。
这种用数学的语言表达出来的问题形式就是数学模型。
一旦得到了数学模型,我们就将解决实际问题转化成了解决数学问题。
然后,就是选择合适的数学方法解决各个问题,最后将数学问题的结果作为实际问题的答案。
当然,这一结果与实际情况可能会有一些差距,所以我们就要根据实际情况对模型进行修改完善,重新求解,直至得到满意的结果。
实际上,数学建模对于同学们来讲并不是全新的事物,在中小学阶段做的数学应用题就是数学建模的简单形式。
现在,同学们学习了许多高等数学知识,所面临就是要用高等数学的知识和方法,并借助计算机来解决更接近实际的规模较大的问题。
所以参加数学建模活动是一个很有意义的科研实践机会,同时会让你认识到高等数学在实际生活中的巨大作用,提高学习数学的积极性。
2 数学建模的应用今天,在国民经济和社会活动的以下诸多方面,数学建模都有着非常具体的应用。
分析与设计例如描述药物浓度在人体内的变化规律以分析药物的疗效;建立跨音速空气流和激波的数学模型,用数值模拟设计新的飞机翼型。
预报与决策生产过程中产品质量指标的预报、气象预报、人口预报、经济增长预报等等,都要有预报模型。
使经济效益最大的价格策略、使费用最少的设备维修方案,是决策模型的例子。
控制与优化电力、化工生产过程的最优控制、零件设计中的参数优化,要以数学模型为前提。
建立大系统控制与优化的数学模型,是迫切需要和十分棘手的课题。
规划与管理生产计划、资源配置、运输网络规划、水库优化调度,以及排队策略、物资管理等,都可以用运筹学模型解决。
3 数学建模的意义数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关的。
作为用数学方法解决实际问题的第一步,数学建模自然有着与数学同样悠久的历史。
数学建模与数学实验课后习题答案
P594•学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432 人住在C 宿舍。
学生要组织一个10人的委员会,使用Q 值法分配各 宿舍的委员数。
解:设P 表示人数,N 表示要分配的总席位数。
i 表示各个宿舍(分别取 A,B,C ), p i 表 示i 宿舍现有住宿人数, n i 表示i 宿舍分配到的委员席位。
首先,我们先按比例分配委员席位。
23710 A 宿舍为:n A ==2.365 1002 333"0 B 宿舍为:n B =3.323 1002 432X0 C 宿舍为:n C =4.3111002现已分完9人,剩1人用Q 值法分配。
经比较可得,最后一席位应分给 A 宿舍。
所以,总的席位分配应为: A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。
QA23722 3= 9361.5 Q B33323 4 = 9240.7 Q C4322 4 5=9331.2商人们怎样安全过河傻麴删舫紬削< I 11山名畝臥蹄峨颂禮训鋤嫌邂 韻靖甘讹岸讎鞍輯毗匍趾曲展 縣確牡GH 錚俩軸飙奸比臥鋪謎 smm 彌鯉械即第紘麵觎岸締熾 x^M 曲颁M 删牘HX …佛讪卜过樹蘇 卜允棘髒合 岡仇卅毘冋如;冋冋1卯;砰=口 於广歎煙船上觸人敦% V O J U;xMmm朗“…他1曲策D 咿川| thPl,2卜允隸策集合 刼為和啊母紳轉 多步贱 就匚叫=1入“山使曲并按 腿翻律由汩3』和騒側),模型求解 -穷举法〜编程上机 ■图解法S={(x ?jOI x=o, j-0,1,2,3;X =3? J =0,1,2,3; X =»*=1,2}J规格化方法,易于推广考虑4名商人各带一随从的情况状态$=(xy¥)~ 16个格点 允许状态〜U )个。
点 , 允许决策〜移动1或2格; k 奇)左下移;&偶,右上移. 右,…,必I 给出安全渡河方案评注和思考[廿rfn片,rfl12 3xmm賤縣臓由上题可求:4个商人,4个随从安全过河的方案。
全国大学生数学建模竞赛介绍(全校讲座)
•测试分析
•二者结合
机理分析没有统一的方法,主要通过实例研究 (Case Studies)来学习。以下建模主要指机理分析。
数学建模的一般步骤
模型准备 模型检验 模型应用 模型假设 模型分析 模型构成 模型求解
模 型 准 备
了解实际背景
搜集有关信息
明确建模目的
掌握对象特征
形成一个 比较清晰 的‘问题’
实践
理论
实践
数学建模比赛的由来
1985年美国出现了一种叫做MCM的一年一度大大 学生数学模型竞赛 我国自1989年起陆续有高校参加美国大学生数学建 模竞赛
1992年起我国开始举办自己的大学生数学建模竞赛
数学建模比赛的由来
国家教育部组织的全国大学生学科竞赛之一
2011 年,全国33个省/市/自治区(包括香港和澳门
双层玻璃的功效
足球比赛的场次安排 原子弹爆炸的能量估计
正规战与游击战
单层玻璃窗与双层玻璃窗
问题背景:
1945年7月
16日上午5时24
分,美国科学 家在新墨西哥
州阿拉莫戈夫
的“三一”试 验场内的一个 30米高的铁塔 上进行试验, 试爆了全球第 一颗原子弹。
模型准备
Taylor知道,爆炸是能量的释放过程,在一点上
?二者结合用机理分析建立模型结构用测试分析确定模型参数数学建模的一般步骤模型准备模型假设模型构成模型求解模型分析模型检验模型应用了解实际背景明确建模目的搜集有关信息掌握对象特征形成一个比较清晰的问题针对问题特点和建模目的作出合理的简化的假设在合理与简化之间作出折中用数学的语言符号描述问题发挥想像力使用类比法尽量采用简单的数学工具数学建模的一般步骤模型求解各种数学方法软件和计算机技术如结果的误差分析统计分析模型对数据的稳定性分析模型分析模型检验与实际现象数据比较检验模型的合理性适用性模型应用数学建模的一般步骤数学建模的全过程现实对象的信息数学模型现实对象的解答数学模型的解答表述求解解释验证归纳演绎表述求解解释验证根据建模目的和信息将实际问题翻译成数学问选择适当的数学方法求得数学模型的解答将数学语言表述的解答翻译回实际对象用现实对象的信息检验得到的解答实践理论实践1985年美国出现了一种叫做mcm的一年一度大大学生数学模型竞赛我国自1989年起陆续有高校参加美国大学生数学建模竞赛1992年起我国开始举办自己的大学生数学建模竞赛国家教育部组织的全国大学生学科竞赛之一2011年全国33个省市自治区包括香港和澳门特区及新加坡和澳大利亚的1251所院校19490个队5万8千多名大学生参加了本项竞赛分析问题的能力建模能力强调学习能力资料搜索能力论文写作能力数学知识
第1讲 数学建模简介
2. 椅子能在不平的地面上放稳吗?
把四只脚的椅子往不平的地面上一放,通常只 有三只脚着地,放不稳,然而有人认为只要稍挪动几
次,就可以四脚着地,放稳了,对吗?
3. 双层玻璃的功效
北方城镇的有些建筑物的窗户是双层的,即窗户上装两
层厚度为d的玻璃夹着一层厚度为l的空气,如左图所示,据 说这样做是为了保暖,即减少室内向室外的热量流失. 我们要建立一个模型来描述热量通过窗户的热传导(即 流失)过程,并将双层玻璃窗与用同样多材料做成的单层玻 璃窗(如右图,玻璃厚度为2d)的热量传导进行对比,对双 层玻璃窗能够减少多少热量损失给出定量分析结果. 返回
人口模型
1. 指数增长模型(马尔萨斯人口模型): 英国人口学家马尔萨斯( Malthus1766—1834 )于 1798年提出. 2. 阻滞增长模型(logistic模型) 3. 更复杂的人口模型 随机性模型、考虑人口年龄分布的模型等 可见数学模型总是在不断的修改、完善,使之能符 合实际情况的变化.
四、近几年全国大学生数学建模竞赛题
1994 1995 1996 A B A B A B 逢山开路 锁具装箱 一个飞行管理问题 天车与冶炼炉的作业调度 节水洗衣机问题 最优捕鱼问题
1997 1998 1999 2000
A B A B A B A B
零件的参数设计 最优截断切割问题 投资的收益和风险 灾情巡视路线 自动化车床管理 钻井布局 DNA 序列分类 钢管订购和运输
返回
数学建模实例
1. 如何预报人口? 要预报未来若干年的人口数,最重要的影 响因素是今年的人口数和今后这些年的增长 率(即人口出生率减死亡率),根据这两个 数据进行人口预报是很容易的. 记今年人口为 x0,k 年后人口为 xk ,年增长 率为r,则预报公式为:
数学建模讲义1
数学模型 ( Mathematical Model ) 和 数学建模( 数学建模(Mathematical Modeling) 数学模型
对于一个现实对象 为了一个特定目的 根据其内在 现实对象, 特定目的, 对于一个现实对象,为了一个特定目的,根据其内在 规律,作出必要的简化假设,运用适当的数学工具, 规律,作出必要的简化假设,运用适当的数学工具, 简化假设 数学工具 得到的一个数学结构。 得到的一个数学结构。 数学结构
用机理分析建立模型结构,用测试分析确定模型 用机理分析建立模型结构 用测试分析确定模型 二者结合 参数. 参数
机理分析没有统一的方法,主要通过实例研究来学 机理分析没有统一的方法,主要通过实例研究来学 以下建模主要指机理分析。 习。以下建模主要指机理分析。
数学建模的一般步骤
模型准备 模型检验 模型应用 模 了解实际背景 型 准 搜集有关信息 备 明确建模目的 形成一个 比较清晰 掌握对象特征 的‘问题’ 问题’ 模型假设 模型分析 模型构成 模型求解
数学建模的一般步骤
模 型 假 设 针对问题特点和建模目的 作出合理的、 作出合理的、简化的假设 在合理与简化之间作出折中 用数学的语言、 用数学的语言、符号描述问题 发挥想像力 使用类比法 尽量采用简单的数学工具
模 型 构 成
数学建模的一般步骤
模型 求解 模型 分析 模型 检验 各种数学方法、 各种数学方法、软件和计算机技术 如结果的误差分析、统计分析、 如结果的误差分析、统计分析、 模型对数据的稳定性分析 与实际现象、数据比较, 与实际现象、数据比较, 检验模型的合理性、 检验模型的合理性、适用性
1.5 怎样学习数学建模
数学建模与其说是一门技术, 数学建模与其说是一门技术,不如说是一门艺术 技术大致有章可循 想像力 艺术无法归纳成普遍适用的准则 洞察力 判断力
数学建模第4讲线性规划
解 编写M文件xxgh1.m如下:
c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6];
A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08];
b=[850;700;100;900]; Aeq=[]; beq=[];
8 4 x1 8 3 x2 32 x1 24 x2
因检验员错检而造成的损失为:
(8 25 2% x1 8 15 5% x2 ) 2 8x1 12 x2
2024/8/3
数学建模
故目标函数为:
min z (32 x1 24 x2) (8x1 12 x2 ) 40 x1 36 x2
0 0 0 0.5 1.2 1.3];
b = [800; 900];
Aeq=[1 0 0 1 0 0
010010
0 0 1 0 0 1]; beq=[400 600 500];
To MATLAB (xxgh3)
vlb = zeros(6,1);
vub=[];
[x,fval] = linprog(f,A,b,Aeq,beq,vlb,vub)
解: 编写M文件xxgh2.m如下:
x1
min z (6
3
4)
x2
x3
s.t.
1
0
1 1
1 0
x1 x2 x3
120
50
30 0 20
x1 x2 x3
c=[6 3 4];
A=[0 1 0];
b=[50];
Aeq=[1 1 1];
beq=[120]; vlb=[30,0,20];
0、1变量在数学建模和数学实验中的应用ppt课件
赛题中涉及到的数学方法
• 空间与解析理论、线性代数、微积分 • 概率与统计--方差、回归、时间序列、相关分析、聚
类或判别分析
• 运筹学或数学规划---线性、整数、0-1、非线性、多 目标规划
• 图论与网络优化 • 多因素综合评价 • 数值计算方法---数值微分,数值积分,插值与拟合等 • 差分与微分方程等机理分析建模方法 • 排队论、对策论、决策论 • 其他:模糊数学、 随机规划与决策、随机模拟、灰色
命题特点
• 建模方法高度综合
• 现实性和导向性:问题和数据大多来源于工程、 科技、生活、管理等科研、工程实际问题,问题 的解决有一定现实意义和科研导向。
• 规模性:大规模变量或海量数据---必须借助数学 软件
• 数据结构的复杂性: 数据属性结构的复杂性
缺失或异常数据问题----数据的真实性 不是所有数据都有用,如何筛选本身就是数学 建模
❖ 现实与理想之间的平衡,简单与复杂之间 的博弈:模型的解应符合现实要求,即具有可 行性,最理想的解不一定具有可操作性;模型 并不一定越复杂越好,但过于简化有可能失真, 复杂程度的高低应视问题的需要。
❖ 数学结构 ——在不断论证中,建模思路逐 步展开和完善
建模方向把握——渐次清晰程
注重节奏与效率: 1 确立分时段的进展目标,合理分工 2 提倡讨论,但要提高讨论的有效率,避免 无意义争论;
page23
(非)线性规划问题的数学模型
• 规划问题
生产和经营管理中经常提出如何合理安排,使人力、 物力等各种资源得到充分利用,获得最大的效益, 这就是规划问题。
线性规划通常解决下列两类问题: (1)当任务或目标确定后,如何统筹兼顾,合理安排,用 最少的资源 (如资金、设备、原标材料、人工、时间等) 去完成确定的任务或目标 (2)在一定的资源条件限制下,如何组织安排生产获得最 好的经济效益(如产品量最多 、利润最大.)
数学建模(数学分支)
建模背景
数学技术
建模应用
近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来 越重要的作用,而且以空前的广度和深度向经济、管理、金融、生物、医学、环境、地质、人口、交通等新的领 域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。
数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质 属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展 提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现 实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提 炼出数学模型的过程就称为数学建模(Mathematical Modeling)。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立数学模 型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和 研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的 理论和方法去分析和解决问题。这就需要深厚扎实的数学基础、敏锐的洞察力和想象力、对实际问题的浓厚兴趣 和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学科学技术 转化的主要途径。数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代 科技工作者必备的重要能力之一。
为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内 外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等 院校的教学改革和培养高层次的科技人才的一个重要方面,许多院校正在将数学建模与教学改革相结合,努力探 索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具 有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、 不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学 建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。
数学实验与数学建模课程介绍
数学实验旨在培养学生的动手能 力、创新思维和解决问题的能力 ,加深对数学理论的理解和应用 。
数学实验的方法与步骤
方法
数学实验通常采用观察、猜想、验证 和归纳等方法,通过实验数据的分析 和处理,得出结论和规律。
步骤
数学实验的步骤包括问题分析、建立 数学模型、选择实验方法、进行实验 操作、记录实验数据、分析和解释实 验结果等。
数学实验的应用与案例
应用
数学实验在各个领域都有广泛的应用,如物理、化学、生物 、经济、工程等,可用于解决实际问题、探索未知领域和验 证科学假设。
案例
例如,在物理学中,通过数学实验模拟物体运动轨迹和力学 规律;在经济学中,通过数学实验模拟市场交易和价格形成 机制;在工程学中,通过数学实验优化设计方案和预测结构 稳定性等。
THANKS FOR WATCHING
感谢您的观看
讨论和项目实践等环节。
考核方式
采用平时成绩和期末考试相结合 的方式进行考核,平时成绩包括 实验报告、小组讨论和课堂表现 等方面,期末考试以闭卷形式进
行。
02 数学实验
数学实验的定义与目的
定义
数学实验是一种基于计算机技术 和数学软件,通过实际操作和观 察来探索和验证数学理论、解决 数学问题的方法。
03 数学建模
数学建模的定义与目的
定义
数学建模是指通过数学语言和工具,对实际问题进行抽象、简化,并建立数学 模型的过程。
目的
数学建模旨在利用数学方法解决实际问题,为决策提供科学依据,预测现象, 优化资源配置等。
数学建模的方法与步骤
方法
常用的数学建模方法包括解析法、几何法、图论法、概率统计法等。
对学生的期望与建议
01
第4讲 线性规划
当目标函数该边后,等值线的方向会发生改变, 如果等值线与某个约束对应的函数直线平行, 则该函数值线上的所有可行解都是最优解
最优解(1,4)
2 x 1 x 2 2
x1 2 x 2 2
x1 x 2 5
注 释
可能出现的情况: • 可行域是空集
• 可行域无界无最优解 • 最优解存在且唯一,则一定在顶点上达到 • 最优解存在且不唯一,一定存在顶点是最优 解
m 定义 2.2.2: B 是秩为 设
基本可行解,这时对应的基阵 为可行基。 B 1 b 0 如果 则称该基可行解为非退化的,如果一个线 性规划的所有基可行解都是非退化的则称该规划为非退化 的。
B
例 考虑问题:
min z x 1 x 2 2 x 1 x 2 x 3 2 x1 2 x 2 x 4 2 s .t . x1 x 2 x 5 5 x j 0; j 1,2,3,4,5
或
a i 1 x 1 a i 2 x 2 a in x n bi a i 1 x 1 a i 2 x 2 a in x n bi
例2.1.3 把问题转化为标准
形式
max z x1 x 2 2 x 1 x 2 2 x1 2 x 2 2 s .t . x1 x 2 5 x1 0
基本可行解与基本 定理
• 定义 • 基本定理 • 问题
基本可行解定 义
令 A ( B , N ) , x =( x B , x N )。
Ax b
分块 左乘B
xN
1
Bx B Nx N b
x B B 1 Nx N B 1 b
第一章 数学建模概论 数学模型与实验 国家级精品课程课件 20页
2、国际数学建模竞赛(MCM)
创办于1985年,由美国运筹与管理学会,美国工业与应 用数学学会和美国数学会联合举办,开始主要是美国的大学 参赛,90年代以来有来自中国、加拿大、欧洲、亚洲等许多 国家的大学参加,逐渐成为一项全球性的学科竞赛。上一年 11月份报名,每个大学限报4队,每个系限报2队,2月上旬 比赛,4月份评奖。9篇优秀论文刊登在 “The Journal of Undergraduate Mathematics and Its Applications(UMAP)” 专刊上。详见 /
用实际问题的实测数据等 来检验该数学模型
不符合实际 符合实际
交付使用,从而可产生 经济、社会效益
建模过程示意图
七、怎样撰写数学建模的论文? 1、摘要:问题、模型、方法、结果 2、问题重述 3、模型假设 4、分析与建立模型 5、模型求解 6、模型检验 7、模型改进、评价、推广等 8、参考文献 9、附录
数学模型与实验
十一、 资料查询
校内:校图书馆提供电子资源,搜索软件查询 校外:, ,
数学模型与实验
十二 数学建模示例
椅子能在不平的地面上放稳吗 问题分析 通常 ~ 三只脚着地 模 型 假 设
放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚 连线呈正方形; • 地面高度连续变化,可视为数学上的连续 曲面; • 地面相对平坦,使椅子在任意位置至少三 只脚同时着地。
1、中国大学生数学建模竞赛(CUMCM)
创办于1990年,由教育部高教司和中国工业与应用数学 学会共同举办,全国几乎所有大专院校都有参加,每年6月份 报名,9月下旬比赛,11月份评奖。优秀论文刊登在《数学 的实践与认识》或?工程数学?每年第一期上。详见
数学建模与数学实验ppt课件
02
通过数学实验,可以发现和解决数学理论中的问题,推动数学
理论的发展和完善。
数学实验在科学、工程、经济等领域有广泛应用,为解决实际
03
问题提供有效的工具和方法。
数学实验的常用工具
MATLAB
一种常用的数学计算软件,具有强大的数值 计算、矩阵运算和图形绘制等功能。
Python
一种通用编程语言,广泛用于科学计算、数 据分析和机器学习等领域。
02
03
相互促进
两者都是为了解决实际问题或探 究数学问题而进行的方法和工具。
数学建模为数学实验提供理论指 导,而数学实验可以验证数学建 模的正确性和有效性。
区别
目的
数学建模的主要目的是建立数学模型,描述实际问题中变 量之间的关系;而数学实验则是通过实验手段来探究数学 规律或验证数学结论。
应用领域
数学建模广泛应用于各个领域,如物理、工程、经济等; 而数学实验则更多应用于数学教育和研究领域。
简化模型
在保证模型精度的基础上,对模型进行必要 的简化。
求解模型
求解方法选择
根据模型的特点选择合适的数值计算方法或解 析解法。
编程实现
利用编程语言实现模型的求解过程。
误差分析和收敛性判断
对求解过程进行误差分析,判断求解方法的收敛性和稳定性。
模型验证与优化
数据拟合与检验
将模型结果与实际数据进行对比,检验模型的准确性和适用性。
问题分析
明确问题定义
对问题进行深入理解,明确问题的目标、约束条件和 相关参数。
收集数据和信息
收集与问题相关的数据和背景信息,为建立模型提供 依据。
确定主要影响因素
分析问题中起决定性作用的关键因素,忽略次要因素。
数学建模讲座
讲座内容
数学建模 讲座内容
1、数学建模的含义与意义 2、数学建模能力的培养与提升 3、数学建模竞赛的相关介绍
4、 数学建模论文的设计与排版艺术
10/16/2020
2
数学建模的含义和意义
1 什么是数学建模
问题:树上有十只鸟,开枪打死一只, 还剩几只?
9只? 还是 0只?
分析:这是一道数学应用题(应该是小学生 的)。但他一样是数学建模问题,不过答案 就不重要了,重要的是过程。
2 数学建模的意义
1)体现了数学的应用价值 2)有利于学生理论联系实际能力的培养 3)有利于培养学生的科研素养 4)有利于增加同学参加课外学术活动的 经验并在评优时更有竞争力。
3 江西师大的数学建模
肯定:从我校学生参加数学建模竞赛的成绩来看,是相当值得 肯定的,每年的高教杯和国际赛都会有很多优秀的参赛队获得 很好的奖项。
杨玉花 夏成 周志刚 吴姗 付晓 高海龙 管莉莉 张丽 魏莎 袁海霞 吕琦 蒋漓 张一帆
袁定欢 宗志英 廖智霖 康悦 刘庆龙 刘涛 杜晨 阳春燕 李鹏飞 鄢婷芳 黄过伟 汪茵芸 王晴
指导 教师
教练组
获奖 等级
国2
教练组 1
教练组 2
教练组 2
教练组 2
教练组 3
教练组 3
教练组 国 1
教练组 国 2
10
2. 如何培养和提升建模能力
1)培养对数学建模的兴趣 2)学会自学学会研究 3)增强数学理论知识 4)平时多领悟建模过程 5)多参加比赛,在实践中体会平时学到的理论 知识从而得到领悟和进步 6)研读优秀论文
数学建模竞赛的相关介绍
1. Mcm/Icm国际数学建模竞赛
政府
《数学建模与数学探究》试卷及答案_高中数学选择性必修第二册_苏教版_2024-2025学年
《数学建模与数学探究》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、数学建模的一般步骤是以下哪一个顺序?A、模型假设、模型准备、模型求解、模型应用B、模型准备、模型假设、模型求解、模型应用C、模型准备、模型求解、模型假设、模型应用D、模型求解、模型假设、模型准备、模型应用2、下列函数中属于偶函数的是:A.(f(x)=x2+1)B.(f(x)=x3+2))C.(f(x)=1xD.(f(x)=√x2)3、在解决实际问题时,以下哪个选项不属于数学建模的基本步骤?A、建立数学模型B、求解数学模型C、分析结果并验证模型的有效性D、收集数据,进行实验研究4、在建立数学模型时,如果模型的结果与实际情况存在较大的偏差,首先应该()A、直接放弃该模型B、检查数据的准确性和完整性C、重新设定模型参数D、改变模型的数学方法5、已知某地区某种疾病的发病率是0.001,该疾病检测的准确率为99%,即若一个人患病,则检测呈阳性的概率为99%;若未患病,检测结果呈阴性的概率也是99%。
现有一人检测结果为阳性,求此人确实患有该病的概率是多少?A. 99%B. 50%C. 9.9%D. 0.99%6、某学校为了加强学生的环保意识,计划在每个教室种植5株不同种类的植物。
如果学校共有32个教室,且学校已经有200株植物备用,那么还需要从市场上采购多少株植物才能满足需求?A. 30株B. 40株C. 50株D. 60株7、假设一个电子工厂生产一种新型手机,已知每生产一部手机的直接成本为300元,固定成本(包括管理费用、折旧等)为每月5000元。
如果每月生产制品500部,那么每部手机的利润是多少元?A. 200元B. 250元C. 300元D. 350元8、已知某商品的成本函数为(C(x)=0.05x2+3x+200),其中(x)代表生产数量(单位:件)。
如果每件商品的售价为(P=100−0.1x)元,那么为了获得最大利润,应该生产多少件商品?A. 100B. 150C. 200D. 250二、多选题(本大题有3小题,每小题6分,共18分)1、以下哪些是数学建模的基本步骤?A、提出问题B、建立模型C、分析模型D、求解模型E、检验与改进2、在数学建模过程中,选择合适的参数至关重要。
最新数学建模实验教案讲课教案
常用函数:
exp( x), log( x), sin( x),cos( x), tan( x), cot( x), sec(x), csc( x), a sin( x), a cos(x), a tan( x), acot( x)
“分号”:不显示运算结果,也是数组行与行的分隔符。 “冒号”:缺省标志,表示全部。 “%”: 由它起始的行为注释行。 “‘’”: 字符串标记。 “[ ] ”: 输入数组标记。 例如 a=4*2+2^5;
名师精编
优秀教案
b=[1 2;3,5.1]
c=’sin(2*pi*x)+ceil(-1.28) ’ % d=a+b+c
4. 建立一个 m 文件用于计算 1 1 1 1
1
2! 3! 4! 5!
n!
第二讲 利用 MATLAB加深对微积分中的基本概念的理解
1. 极限与间断点
极限
limit(f,x,a) :求函数 f(x) 在 x 趋于 a 时的极限
limit(f,x,a, ’left’): 求函数 f(x) 在 x 趋于 a 时的左极限
1 0 x 1 求 f ( 0.5) , f (0.5) , f (1.2)
x2 1 x 1
y=0; if x<0 y ex ;
elseif x 1 y 1;
else y x 2 1;
end
y
作业: 1. 将任意一个自然数反序
数学建模第四讲(上):插值模型
对于某个实验,得到了6次实验结果,由于不小心遗失了某些数据。现在已 知5次实验相关的数据之后,估算出遗失的数据。
实验数据 实验1 实验2 自变量 200 220
应变量 4
4.5
实验3 240 ?
实验4 250 4.7
实验5 270 4.8
实验6 280 5.2
如何根据已知5次实验的数据资料较准确估计第3次实验的数据呢?
5.2 拉格朗日插值公式
5.2.1 线性拉格朗日插值
Y
给定f(x)的2点函数表,求一个f(x) 的近似函数经过这两个已知点。
x
x0
x1
y
y0
y1
y0
在最简单的情况下,过这两个已知
点可以作一个什么图形近似f(x)?
0
x0
y=L1(x) y=f(x)
y1
x1
X
5.2 拉格朗日插值公式
直线y=L1(x)的两点式方程为:
i
0
1
2
3
xi
-2
-1
1
2
f(xi) 5
3 17 21
解:差商表如下
xi ƒ(xi) 一阶差商 二阶差商 三阶差商
-2
5
-1
3
已知f (x) x3 2x 3,求f [0,1], f [0,1, 2].
f [0,1]
f
(1) 1
f 0
(0)
0
(3) 1
3
f [1, 2]
f
(2) 2
f 1
(1)
9
1
0
9
f [0,1, 2]
f
[1,
2] 2
f 0
[0,1]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
令:
F(, ) a cos cos bsin sin R c cos sin 3 (a cos c R cos )2 (bsin R sin )2
给出了测控站位置与测控临界位置点关系; 给出了两者中的一个就可以求出第二个。
利用迭代法计算测控站个数n
流程如下:
(0.1994,0.6473,1.1091,1.5879,2.0832,2.5907,3.1030) (,2.5986,2.0737,1.5784,1.1168,0.6835,0.2734,0)
共需14个测控站!
关于第二问(假设卫星在球面上)
1.星下线方程及其轨迹
坐标变换公式为:
x cos1t
y
sin
1t
z 0
sin 1t cos 1t
0
0 X
0 Y
1 Z
设卫星轨道参数方程为
Y
X (R H ) cos2t (R H ) cos sin 2t
Z (R H ) sin 2t sin
c R cos R sin
(0
2
)
a R (H h) / 2,b a2 c2
向量:
PiQij (a cosij c R cosi,basinij Rsini ), OP (Rcos, Rsin)
由夹角余弦公式得
a cos cos bsin sin R c cos sin 3 (a cos c R cos )2 (bsin Rsin )2
OP1 (Rcosi cos i, Rcosi sin i, Rsin i), OP12 (Rcos(i / 2)cos i2, Rcos(i / 2)sin i2, Rsin i2) OP11 (Rcos(i / 2)cos i1, Rcos(i / 2)sin i1, Rsin i1)
相关信息
关于第一问
假设 地球是球体,球半径R。 卫星或飞船轨道是圆心为地球球心的圆。 卫星或飞船在地面上高度为H 的圆上运行。 n表示测控站个数。
H
*
R
R
RH
sin(180 93 *) sin 93
*87 arcsin( R sin 93 )
RH
n
360
2 *
一般结果:
或者给出不同n的H的范围。
360 / n
* 87 arcsin( R sin 93 )
RH
n 360 / 2 *
离散优化问题。
如Hale Waihona Puke m=3,n=18 因为测控范围是对称区间,可以考虑测控站
对称分布,即第一层的测控站分布在赤道上。
12 12.0378 ,
2 27.6419 ,
22 41.0123
不能全范围测控,全程测控需要的 测控站数超过54个!
则在地球坐标系下的方程为
x
cos1t sin1t 0 cos2t
y
(
R
H
)
sin
1t
cos1t
0
cos
sin
2t
z
0
0 1 sin2t sin
在地球上的投影(星下线参数方程)
x cos1t
y
R
sin
1t
z 0
sin 1t cos 1t
0
0 cos2t
0
cos
sin
2t
1. 在所有测控站都与卫星或飞船的运行轨道 共面的情况下至少应该建立多少个测控站才 能对其进行全程跟踪测控?
2.如果一个卫星或飞船的运行轨道与地球赤 道平面有固定的夹角,且在离地面高度为H 的球面S上运行。考虑到地球自转时该卫星 或飞船在运行过程中相继两圈的经度有一 些差异,问至少应该建立多少个测控站才 能对该卫星或飞船可能飞行的区域全部覆 盖以达到全程跟踪测控的目的?
2.m=4,n=13 1,2 8 , 3,4 31.3604
测控范围 [-46.644,46.644]
m 5, n 12
综上,52个测控站即能实现全程测控。
cos i cos cos( / 2) sin i sin cos *
则其数学模型为:
nin n m
s.t. f (i2,i, i ) 0,i 1, 2, , m i i1,2 *,i 2, , m i2 i ,i 1, 2, , m m2 2 *,11 1*,1* 1 1 **, m (2 * 1*) / *
1 sin2t sin
否则
先考虑相邻两层的测控范围,记
P1(R,i , i ), P2 (R,i , i ), P3(R,i / 2, i1)
20
15
10
5
0
-5
-10
-10
-5
P3
P12
P1
P2
P11
0
5
10
15
20
P11(R, / 2, i1), P12 (R, / 2, i2 ), (i2 i1)
模型二
假设: 地球是半径为R球体 ,卫星在椭球面上运行。 近地点高度为h,远地点高度为H。 球心位于椭球的焦点上。 卫星轨道是椭圆,测控站与卫星轨道共面。 卫星轨道长半轴为a,短半轴为b,焦距为c。
卫星轨道椭圆方程:
x
y
a cos b sin
(0
2
)
地球球面圆方程:
x
y
OP1, OP1 j夹角为
cos* cos i cosi cos ij cos(i / 2) cos i sini cos ij sin(i / 2) sin i sin ij
j 1, 2
i1 i2 *
记
f (,i, i ) cos i cosi cos cos(i / 2) cos i sini cos sin(i / 2) sin i sin cos *
第4讲 综合讲座1
讲座内容
C题 卫星和飞船的跟踪测控
题目背景
测控设备只能观测到所在点切平面以上的空 域;
实际上每个测控站的测控范围只考虑与地平 面夹角3度以上的空域 ;
一个卫星或飞船的发射与运行过程中,往往 有多个测控站联合完成测控任务。
利用模型分析卫星或飞船的测控情况, 具体问题如下: