数学建模讲座PPT课件
合集下载
《数学建模讲座》课件
讲者:李教授,XX大学数学系副教授。
感谢您的聆听!
数学建模的基本步骤
1
研究问题
了解和分析实际问题,明确目标和需求。
2
建立模型
根据实际问题,选择适当的数学模型,并进行建模。
3
求解模型
利用数学工具和方法求解建立的数学模型。
4
模型分析
对求解的结果进行分析和评价,寻找优劣及改进方案。
数学建模中的数学工具及其应用
优化方法
优化方法可以帮助 我们寻找问题的最 优解或最佳决策。
统计学方法
统计学方法可以帮 助我们分析和理解 数据,揭示其中的 规律和趋势。
线性代数
线性代数在数学建 模中有广泛的应用, 如矩阵运算、线性 方程组的求解等。
概率论与数 理统计
概率论与数理统计 可以帮助我们分析 和预测随机现象, 并进行决策和风险 评估。
结论
数学建模的重要性
数学建模是将数学与实践相结合的要途径,对推动科学和社会的发展具有重要意义。
《数学建模讲座》PPT课件
# 数学建模讲座PPT课件 ## 概述 本讲座将介绍以下内容: 1. 什么是数学建模 2. 数学建模的意义 3. 数学建模的基本步骤 4. 数学建模中的数学工具及其应用
什么是数学建模
1 定义
数学建模是指利用数学语言和工具对真实世界中的问题进行化简、抽象和数学描述的过 程。
将知识转化为实践的能力
通过数学建模,我们可以将抽象的数学理论应用于实际问题的求解与分析。
建立对世界的更深理解
数学建模可以帮助我们深入分析问题,寻找最佳解决方案,从而提高对世界的理解。
Q&A
1 时间
讲座时间:2021年6月15日,上午10点至11点。
数学建模宣导ppt课件
数学建模的软件工具
❖ 3.lingo的概况
LINGO则用于求解非线性规划(NLP—NON—LINEAR PROGRAMMING)和二次规 则(QP—QUARATIC PROGRAMING)其中LINGO 6.0学生版最多可版最多达300个变 量和150个约束的规则问题,其标准版的求解能力亦再10^4量级以上。虽然LINDO和 LINGO不能直接求解目标规划问题,但用序贯式算法可分解成一个个LINDO和LINGO能解 决的规划问题。
❖ Lingo的特色:模型建立语言和求解引擎的整合 A. Lingo是建立和求解线性、非线性和整数最佳化模型更快更简单更有效率的综合工具。 提供强大的语言和快速的求解引擎来阐述和求解最佳化模型。 B. Lingo可以将线性、非线性和整数问题迅速得予以公式表示,并且容易阅读、了解和修 改。 C. LINGO建立的模型可以直接从数据库或工作表获取资料。同样地, LINGO可以将求 解结果直接输出到数据库或工作表。 D. LINGO内建的求解引擎有线性、非线性(convex and nonconvex)、二次、二次限制和 整数最佳化。 E.LINGO提供完全互动的环境供您建立、求解和分析模型。LINGO也提供DLL和OLE界 面可供使用者由撰写的程序中呼叫。 F.LINGO提供的所有工具和文件可使你迅速入门和上手。LINGO使用者手册有详细的功 能定义。
Mathematica 在线性代数方面的数值运算,例如特征向量、 反矩阵等,皆比
Matlab R13做得更快更好,提供业界最精确的数值运算结果。Mathematica不但
可以做数值计算,还提供最优秀的可设计的符号运算。
数学建模的软件工具
❖ B.丰富的数学函数库,可以快速的解答微积分、线性代数、微分方程、复变函 数、数值分析、机率统计等等问题。 C.Mathematica可以绘制各专业领域专业函数图形,提供丰富的图形表示方法, 结果呈现可视化。 4.Mathematica可编排专业的科学论文期刊,让运算与排版在同一环境下完成, 提供高品质可编辑的排版公式与表格,屏幕与打印的 自动最佳化排版,组织由 初始概念到最后报告的计划,并且对 txt、html、pdf 等格式的输出提供了最好 的兼容性。 D.可与 C、C++ 、Fortran、Perl、Visual Basic、以及 Java 结合,提供强大高 级语言接口功能,使得程序开发更方便。 Mathematica本身就是一个方便学习的程序语言。 Mathematica提供互动且丰 富的帮助功能,让使用者现学现卖。强大的功能,简单的操作,非常容易学习 特点,可以最有效的缩短研发时间。
《数学建模培训》PPT课件
数学建模案例解析
04
经济学案例:供需平衡模型
供需平衡理论
通过数学语言描述市场需求与供给之间的平衡关 系,涉及价格、数量等关键变量。
建模过程
收集相关数据,建立需求函数和供给函数,通过 求解方程组找到均衡价格和均衡数量。
模型应用
预测市场趋势,分析政策对市场的影响,为企业 决策提供支持。
物理学案例:热传导模型
Lingo在数学建模中的应 用案例
展示Lingo在数学建模中的实 际应用,如线性规划、整数规 划、非线性规划等优化问题的 求解。
其他数学建模相关软件与工具简介
Mathematica软件
简要介绍Mathematica的特点和功能,以及其 在数学建模中的应用。
SAS软件
简要介绍SAS的特点和功能,以及其在数学建模 中的应用。
数据预处理
包括数据清洗、缺失值处 理、异常值检测等,保证 数据质量。
数据可视化
利用图表、图像等手段展 示数据,便于理解和分析 。
数据分析方法
如回归分析、时间序列分 析、聚类分析等,用于挖 掘数据中的信息和规律。
数学建模常用方法
03
回归分析
线性回归
通过最小二乘法拟合自变量和因 变量之间的线性关系,得到最佳
模型应用
预测舆论走向,分析社会热点问题,为政府和企业提供决策支持。
数学建模软件与工
05
具介绍
MATLAB软件介绍及使用技巧
MATLAB概述
简要介绍MATLAB的历史、功能和应用领域 。
MATLAB常用函数
列举并解释MATLAB中常用的数学函数、绘 图函数、数据处理函数等。
MATLAB基础操作
详细讲解MATLAB的安装、启动、界面介绍 、基本语法和数据类型等。
数学建模讲座PPT_ppt课件
数学建模讲座 PPT
讲座内容
关于数学建模
80年代以来在发达国家兴起并引起巨大凡响的 数学建模竞赛是适应世界性高科技发展及人才需求 而出现的新生事物。 在国家教育部高教司的领导和支持下,提出在 全国普通高校开展数学建模竞赛,旨在“培养学生 解决时间问题的能力和创造精神,全面提高学生的 综合素质”。
不是开玩笑,这就是数学建模。从不同度思考一个 问题,想尽所有的可能,正所谓智者千虑,绝无一 失,这才是数学建模的高手。
数学建模的意义
1 体现了数学的应用价值 2 有利于学生理论联系实际能力的培养 3 有利于培养学生的科研素养 4 有利于增加同学参加课外学术活动的 经验并在评优时更有竞争力。
数学建模的乐趣
论 文
数学建模论文的一般结构
• • • • • • • • • 摘要 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模 问题的重述 基本假设与符号说明 问题的分析与模型的准备
论文的模块设计
模型的建立 模型的求解 模型的检验 模型的灵敏度与稳定性分析 模型的科学性及现实意义 模型的使用说明 模型的进一步讨论与改进 模型评价与推广
1.可以认识一群人; 2.可以消磨一下无聊的时光; 3.可以学会喝咖啡,提高生活品味;
获奖后: 1.加个奖励分拿个奖学金; 2.加个分,保个研; 3.各种其他好处。
数学建模需要能力????
1)分析题意的能力
2)超找资料的能力 3)建立数学模型的能力 4)问题的转化能力 5)现学现用的能力 6)编程能力 7)论文写作能力
论文的模块设计
参考文献 附录
数学建模竞赛网上资源
• 中国数学建模网: • 数学中国网: • 中国大学生数学建模竞赛网:
讲座内容
关于数学建模
80年代以来在发达国家兴起并引起巨大凡响的 数学建模竞赛是适应世界性高科技发展及人才需求 而出现的新生事物。 在国家教育部高教司的领导和支持下,提出在 全国普通高校开展数学建模竞赛,旨在“培养学生 解决时间问题的能力和创造精神,全面提高学生的 综合素质”。
不是开玩笑,这就是数学建模。从不同度思考一个 问题,想尽所有的可能,正所谓智者千虑,绝无一 失,这才是数学建模的高手。
数学建模的意义
1 体现了数学的应用价值 2 有利于学生理论联系实际能力的培养 3 有利于培养学生的科研素养 4 有利于增加同学参加课外学术活动的 经验并在评优时更有竞争力。
数学建模的乐趣
论 文
数学建模论文的一般结构
• • • • • • • • • 摘要 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模 问题的重述 基本假设与符号说明 问题的分析与模型的准备
论文的模块设计
模型的建立 模型的求解 模型的检验 模型的灵敏度与稳定性分析 模型的科学性及现实意义 模型的使用说明 模型的进一步讨论与改进 模型评价与推广
1.可以认识一群人; 2.可以消磨一下无聊的时光; 3.可以学会喝咖啡,提高生活品味;
获奖后: 1.加个奖励分拿个奖学金; 2.加个分,保个研; 3.各种其他好处。
数学建模需要能力????
1)分析题意的能力
2)超找资料的能力 3)建立数学模型的能力 4)问题的转化能力 5)现学现用的能力 6)编程能力 7)论文写作能力
论文的模块设计
参考文献 附录
数学建模竞赛网上资源
• 中国数学建模网: • 数学中国网: • 中国大学生数学建模竞赛网:
《数学建模讲义》PPT课件
f=100*(x(2)-x(1)^2)^2+(1-x(1))^2;
return
2. 可以直接使用函数fun.m
例如:计算 f(1,2), 只需在Matlab命令窗口键入命令:
x=[1 2];fun(x)
15
4.4 函数调用和参数传递
在MATLAB中,调用函数的常用形式是: [输出参数1,输出参数2,…] = 函数名(输入参数1,输入参数2, …)
14
M文件建立方法:
1. 在Matlab中点:File->New->M-file 2. 在编辑窗口中输入程序内容 3. 点:File->Save存盘,文件名必须函数名一致。
例:定义函数 f(x1,x2)=100(x2-x12)2+(1-x1)2 1.建立M文件:fun.m
function f=fun(x)
(5)使用方便,具有很好的扩张功能。 使用MATLAB语言编写的程序可以直接运行,无需编译。 可以M文件转变为独立于平台的EXE可执行文件。
MATLAB的应用接口程序API是MATLAB提供的十分重要 的组件 ,由 一系列接口指令组成 。用户就可在FORTRAN 或C中 , 把MATLAB当作计算引擎使用 。 (6)具有很好的帮助功能 提供十分详细的帮助文件(PDF 、HTML 、demo文件)。 联机查询指令:help指令(例:help elfun,help exp,help simulink),lookfor关键词(例: lookfor fourier )。 5
6
一、变量与函数
1、变量 MATLAB中变量的命名规则
(1)变量名必须是不含空格的单个词; (2)变量名区分大小写; (3) 变量名必须以字母打头,之后可以是任意字 母、数字或下划线,变量名中不允许使用标点符
第1讲 数学建模简介 PPT课件
什么是数学建模 数学建模步骤及分类 建模竞赛及其意义 建模实例讲解
什么是数学建模
什么是数学模型 一般意义上的“模型”
为了一定目的,对客观事物的一部分进行简缩、抽象、提 炼出来的原型的替代物。
水箱中的舰艇; 风洞中的飞机等;
实物模型
符号模型
物理模型
什么是数学建模
数学模型(mathematical model)
引例
第二块钢板的故事,来自一位将军。 诺曼底登陆时,美军101空降师副师长唐·普拉特准将
乘坐的是滑翔机。起飞前,有人自作聪明,在副师长的座 位下,装上厚厚的钢板,用来防弹。由于滑翔机自身没有 动力,与牵引的运输机脱钩后,必须保持平衡滑翔降落, 沉重的钢板却让滑翔机头重脚轻,一头扎向地面,普拉特 准将成为美军在当天阵亡的唯一将领。
什么是数学建模
数学建模(mathematical modeling)
“新”名词 你是什么时候开始知道有这个名词的?
历史悠久 •《九章算术》— 最早的数学建模专著、 收集了246个应用题 • 以问题集形式出现: 一“问” —提出问题 二“答” —给出问题的数值答案 三“术” —讨论同类问题的普遍方法或算法 四“注” —说明“术”的理由,实质指证明或佐证
飞行员们一看就明白了,如果座舱中弹,飞行 员就完了;尾翼中弹,飞机失去平衡,就会坠落— ——这两处中弹,轰炸机多半回不来,难怪统计数 据是一片空白。
因此,结论很简单:只给这两个部位焊上钢板。
引例
• 第一块钢板是机智的飞行员用它挽救了自己 的生命。 • 第二块钢板则是教训,它是用宝贵的生命换 来的。 • 第三块钢板是升华,用科学的方法,从实战 经验中提炼出规律,这块讲科学的钢板,挽救 了众多飞行员的生命。
数学建模培训精品课件
深度学习与神经网络
介绍深度学习和神经网络的基本原理 ,以及在数学建模中的应用和挑战。
探讨机器学习算法如何与数学建模相 结合,实现数据分析和预测。
大数据时代的数学建模挑战与机遇
大数据的数学建模方法
介绍处理大规模数据集的数学建模方法和技巧,如分布式计算、 云计算等。
数据清洗与预处理
阐述数据预处理在数学建模中的重要性,以及如何进行数据清洗和 特征提取。
THANKS.
04
模型评估与改进技巧
误差分析
分析模型预测误差来源,提高模型预测精度 。
多目标优化
在满足多个约束条件下,优化模型目标函数 。
敏感性分析
评估模型参数对结果的影响程度,优化模型 参数。
模型集成
将多个模型组合起来,提高整体预测性能。
数学建模软件介绍
04
MATLAB的使用介绍
MATLAB概述
01
MATLAB是一种用于算法开发、数据可视化、数据分析以及数
数学建模应用实例
02
微积分建模实例
总结词:微积分建模是数学建模中的基 础,通过实例可以更好地理解微积分的 实际应用。
经济学中的边际分析:通过微积分分析 经济活动中成本、收益和利润的变化, 为决策提供依据。
人口增长模型:利用微积分的知识,建 立人口增长模型,预测未来人口数量和 增长趋势。
详细描述
瞬时速度与加速度:通过分析物体运动 的速度和加速度,建立微积分模型,用 于预测物体的运动轨迹和时间。
模型验证:使用实际数据对模型进行 验证,评估模型的准确性和可靠性。
应用与优化:将模型应用于未来气候 预测中,根据反馈进行模型优化和调 整。
数学建模前沿动态
06
人工智能与数学建模的结合
数学建模讲座ppt课件
1. 多项式的创建法 poly([b0 , b1, , bn1, bn ]) 创建 (x b0 )(x b1) (x bn ) 生 成的多项式的系数向量 poly(A) 创建矩阵 A 的特征多项式。
2.多项式的常用函数
roots(p) %返回多项式的根向量 注1:多项式p是一个行向量,而poly(p)是一个
例1 求x,使 Ax b 其中:
1 0 1 1
A
2
1
0
b
2
3 2 5 1
解1 用逆阵法 >> A=[1,0,1 2,1,0 -3,2,-5]; >> b=[1,2,-1]'; >> x=inv(A)*b
解2 用左/2
1/3
1/3
1/4
c=
335/113
>> format compact
>> A,c
A=
1
1/2
1/2
1/3
1/3
1/4
c=
335/113
%要空行
1/3 1/4 1/5
%不要空行
1/3 1/4 1/5
二、矩阵运算与数组运算
1、矩阵运算
>> A(:,1:3) ans = 123 678 11 12 13 >> A([1,2],[1,3,5]) ans = 135 6 8 10
例2 将向量中满足不超过0.5的元素提取出来 先编写一个M-文件 rand('seed',0); x=rand(1,10); L=x<=0.5; x x=x(L) 用tiquyuansu.m为名存盘,然后回到MATLAB环
2.多项式的常用函数
roots(p) %返回多项式的根向量 注1:多项式p是一个行向量,而poly(p)是一个
例1 求x,使 Ax b 其中:
1 0 1 1
A
2
1
0
b
2
3 2 5 1
解1 用逆阵法 >> A=[1,0,1 2,1,0 -3,2,-5]; >> b=[1,2,-1]'; >> x=inv(A)*b
解2 用左/2
1/3
1/3
1/4
c=
335/113
>> format compact
>> A,c
A=
1
1/2
1/2
1/3
1/3
1/4
c=
335/113
%要空行
1/3 1/4 1/5
%不要空行
1/3 1/4 1/5
二、矩阵运算与数组运算
1、矩阵运算
>> A(:,1:3) ans = 123 678 11 12 13 >> A([1,2],[1,3,5]) ans = 135 6 8 10
例2 将向量中满足不超过0.5的元素提取出来 先编写一个M-文件 rand('seed',0); x=rand(1,10); L=x<=0.5; x x=x(L) 用tiquyuansu.m为名存盘,然后回到MATLAB环
数学建模培训精品课件ppt
Python在数学建模中的应用
开源、跨平台
VS
Python是一种开源的、跨平台的编 程语言,被广泛应用于数学建模领域 。Python具有简洁的语法和丰富的 库,可以方便地进行数值计算和数据 可视化。
Python在数学建模中的应用
科学计算、数据分析
Python拥有许多科学计算和数据分析的库,如 NumPy、Pandas和SciPy等,可以方便地进行矩阵运 算、统计分析等。
MATLAB在数学建模中的应用
功能强大、广泛使用
MATLAB是一款由MathWorks公司开发的商业数学软件,主要用于算法开发、 数据可视化、数据分析以及数值计算。在数学建模领域,MATLAB因其强大的矩 阵运算和绘图功能被广泛使用。
MATLAB在数学建模中的应用
数值计算、算法开发
MATLAB提供了大量的内置函数,可以方便地进行数值计算,包括线性代数、微积分、常微分方程求解等。同时,它也支持 用户自定义函数,可以方便地进行算法开发。
2023 WORK SUMMARY
数学建模培训精品课 件
汇报人:可编辑
2023-12-26
REPORTING
目录
• 数学建模基础 • 数学建模应用实例 • 数学建模软件介绍 • 数学建模竞赛经验分享 • 数学建模前沿动态 • 数学建模课程建议与展望
PART 01
数学建模基础
数学建模的定义与重要性
方案优化等。
未来数学建模的发展趋势
跨学科融合
大数据与机器学习
随着各学科的交叉融合,数学建模将与其 他领域更加紧密地结合,形成新的研究领 域和应用方向。
随着大数据和机器学习技术的发展,数学 建模将更多地应用于数据分析和预测等领 域。
《数学建模培训》课件
数中一些 重要的等式,如欧拉恒等 式、柯西恒等式等。
几何基础知识
平面几何
解析几何
平面几何是研究平面图形及其性质的 数学分支,包括点、线、面、角等基 本概念。
解析几何是用代数方法研究几何问题 的一门学科,包括坐标系、向量、向 量的运算等基本概念。
立体几何
立体几何是研究空间图形及其性质的 数学分支,包括长方体、球体、圆柱 体等基本几何体。
现状
目前,数学建模已经成为 一个独立的学科领域,拥 有广泛的学术和应用价值 。
数学建模的应用领域
自然科学
数学建模在物理学、化学、生 物学等领域有着广泛的应用, 如牛顿万有引力定律、薛定谔
方程等。
工程学
数学建模在土木工程、机械工 程、电子工程等领域发挥着重 要作用,如结构分析、流体动 力学等。
社会科学
概率与统计基础知识
概率论
概率论是研究随机现象的数学分 支,包括随机事件、概率、期望
、方差等基本概念。
统计学
统计学是研究数据收集、整理、分 析和解释的学科,包括描述性统计 、推论性统计等基本内容。
回归分析
回归分析是研究自变量和因变量之 间关系的学科,包括线性回归、多 元回归等基本内容。
数学建模方法与技
3
分式方程
通过实际问题建立分式方程,如工程问题、时间 分配等,掌握方程的解法及实际应用。
几何图形建模案例分析
平面几何
01
通过实际问题建立平面几何模型,如面积、周长、角度等,掌
握图形的性质及实际应用。
立体几何
02
通过实际问题建立立体几何模型,如体积、表面积、距离等,
掌握图形的性质及实际应用。
解析几何
总结词
竞赛经验、团队合作
几何基础知识
平面几何
解析几何
平面几何是研究平面图形及其性质的 数学分支,包括点、线、面、角等基 本概念。
解析几何是用代数方法研究几何问题 的一门学科,包括坐标系、向量、向 量的运算等基本概念。
立体几何
立体几何是研究空间图形及其性质的 数学分支,包括长方体、球体、圆柱 体等基本几何体。
现状
目前,数学建模已经成为 一个独立的学科领域,拥 有广泛的学术和应用价值 。
数学建模的应用领域
自然科学
数学建模在物理学、化学、生 物学等领域有着广泛的应用, 如牛顿万有引力定律、薛定谔
方程等。
工程学
数学建模在土木工程、机械工 程、电子工程等领域发挥着重 要作用,如结构分析、流体动 力学等。
社会科学
概率与统计基础知识
概率论
概率论是研究随机现象的数学分 支,包括随机事件、概率、期望
、方差等基本概念。
统计学
统计学是研究数据收集、整理、分 析和解释的学科,包括描述性统计 、推论性统计等基本内容。
回归分析
回归分析是研究自变量和因变量之 间关系的学科,包括线性回归、多 元回归等基本内容。
数学建模方法与技
3
分式方程
通过实际问题建立分式方程,如工程问题、时间 分配等,掌握方程的解法及实际应用。
几何图形建模案例分析
平面几何
01
通过实际问题建立平面几何模型,如面积、周长、角度等,掌
握图形的性质及实际应用。
立体几何
02
通过实际问题建立立体几何模型,如体积、表面积、距离等,
掌握图形的性质及实际应用。
解析几何
总结词
竞赛经验、团队合作
数学建模培训之一ppt
数学建模的基本步骤
01
02
03
04
问题分析
对实际问题进行分析,明确问 题的目标、条件和限制。
建立模型
根据问题分析的结果,选择适 当的数学方法和工具,建立数 学模型。
求解模型
使用适当的数学方法和工具, 求解建立的数学模型,得到结 果。
结果分析
对求解结果进行分析,解释结 果的意义,并回答实际问题。
02
04
数学建模案例分析
人口增长模型
总结词
描述人口随时间变化的规律
详细描述
人口增长模型通常采用微分方程来描述人口随时间变化的规律,考虑出生率、 死亡率以及迁移率等因素对人口数量的影响。通过求解微分方程,可以预测未 来人口数量和年龄结构的变化趋势。
传染病传播模型
总结词
预测和控制传染病传播
详细描述
传染病传播模型基于传染病学原理,通过建立数学模型来描述疾病的传播过程。 模型通常包括易感人群、感染人群和康复人群等,通过求解模型可以得到疾病传 播的规律和趋势,为防控措施提供科学依据。
数学基础知识
代数基础
02
ቤተ መጻሕፍቲ ባይዱ
01
03
代数方程与不等式
掌握代数方程的解法,理解不等式的性质和求解方法 。
函数与图像
理解函数的定义和性质,掌握函数的图像表示和变化 规律。
集合与逻辑
理解集合的基本概念和运算,掌握逻辑推理的基本方 法。
微积分基础
80%
导数与微分
理解导数的概念和性质,掌握微 分法则和应用。
100%
数学建模培训之一
汇报人:可编辑
2023-12-23
目
CONTENCT
录
数学建模培训PPT课件
第15页/共62页
数学建模作为用数学方法解决实际问题的 第一步,越来越受到人们的重视。
第16页/共62页
数学建模的一般步骤
实体 信息
假设
建模
求
解
应用 验证 分析
第17页/共62页
数学模型的分类
分类标准
具体类别
对某个实际问题 了解的深入程度
白箱模型、灰箱模型、黑箱模型
模型中变量的特 连续模型、离散模型;确定性模型、随
第28页/共62页
建模:
x k • :第 次渡河前此岸的商人数 k
yk:第 k次渡河前此岸的随从数
xk , yk 0,1, 2,3; k 1, 2, sk (xk , yk ) :过程的状态
S :允许状态的集合
S {(x, y) | x 0, y 0,1,2,3; x 3, y 0,1,2,3; x y 1,2}
x=(x1, …, xn)T: 决策变量 f (x): 目标函数, hi(x), gp(x): 约束函数
第38页/共62页
数学规划的一般模型
• min f (x) s.t. hi(x)=0, i=1, …, m gp(x)≥0, p=1, …, t
(MP)
若f(x), hi(x)( i=1, …, m), gp(x)( p=1, …, t) 均为线性函数,则问题(MP)就被称为线
相遇时他已步行了多少分钟?
请思考:本题解答中隐含了哪些假设条 件?
5:30
5分钟 5:35
会合点
相遇点
家
第35页/共62页
预备技能
• 数学知识
分析、代数、几何、概率、统计、优化、 方程…
软件使用
Matlab, Mathematica, Maple, Lindo, Lingo…
数学建模作为用数学方法解决实际问题的 第一步,越来越受到人们的重视。
第16页/共62页
数学建模的一般步骤
实体 信息
假设
建模
求
解
应用 验证 分析
第17页/共62页
数学模型的分类
分类标准
具体类别
对某个实际问题 了解的深入程度
白箱模型、灰箱模型、黑箱模型
模型中变量的特 连续模型、离散模型;确定性模型、随
第28页/共62页
建模:
x k • :第 次渡河前此岸的商人数 k
yk:第 k次渡河前此岸的随从数
xk , yk 0,1, 2,3; k 1, 2, sk (xk , yk ) :过程的状态
S :允许状态的集合
S {(x, y) | x 0, y 0,1,2,3; x 3, y 0,1,2,3; x y 1,2}
x=(x1, …, xn)T: 决策变量 f (x): 目标函数, hi(x), gp(x): 约束函数
第38页/共62页
数学规划的一般模型
• min f (x) s.t. hi(x)=0, i=1, …, m gp(x)≥0, p=1, …, t
(MP)
若f(x), hi(x)( i=1, …, m), gp(x)( p=1, …, t) 均为线性函数,则问题(MP)就被称为线
相遇时他已步行了多少分钟?
请思考:本题解答中隐含了哪些假设条 件?
5:30
5分钟 5:35
会合点
相遇点
家
第35页/共62页
预备技能
• 数学知识
分析、代数、几何、概率、统计、优化、 方程…
软件使用
Matlab, Mathematica, Maple, Lindo, Lingo…
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
决策~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员 要求~在安全的前提下(两岸的随从数不比商人多),经有 限步使全体人员过河
模型构成
xk~第k次渡河前此岸的商人数 xk, yk=0,1,2,3; yk~第k次渡河前此岸的随从数 k=1,2, sk=(xk , yk)~过程的状态 S ~ 允许状态集合
航行问题建立数学模型的基本步骤
• 作出简化假设(船速、水速为常数); • 用符号表示有关量(x, y表示船速和水速); • 用物理定律(匀速运动的距离等于速度乘以
时间)列出数学式子(二元一次方程); • 求解得到数学解答(x=20, y=5);
• 回答原问题(船速每小时20公里)。
数学模型 (Mathematical Model) 和 数学建模(Mathematical Modeling)
3
法 允许状态S ~ 10个 点
允许决策D ~ 移动1或2格; 2
k奇,左下移; k偶,右上移.
d1, d11给出安全渡河方案
1 d11
s1
d1
评注和思考
0sn+1 1
2
3x
规格化方法, 易于推广 考虑4名商人各带一随从的情况
习题
• 模仿这一案例,作下面一题: 人带着猫、鸡、米过河,船除需要
人划之外,至多能载猫、鸡、米三者之 一,而当人不在场时猫要吃鸡、鸡要吃 米。试设计一安全过河方案,并使渡河 次数尽量地少。
越来越受到人们的重视。
数学建模
如虎添翼
计算机技术
知识经济
建模示例 椅子能在不平的地面上放稳吗?
问题 椅子能在不平的地面上放稳吗?
模 1.椅子四条腿一样长,椅脚与地面接触处可视为一人点,四
型 假
脚的连线呈正方形;
设 2.地面高度是连续变化的,沿任何方向都不会出现间断(没
有像台阶那样的情况),即地面可视为数学上的连续曲面;
S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}
uk~第k次渡船上的商人数 uk, vk=0,1,2;
vk~第k次渡船上的随从数 k=1,2, dk=(uk , vk)~决策 D={(u , v) u+v=1, 2} ~允许决策集合 sk+1=sk+(-1)kdk ~状态转移律
研究人口变化规律
控制人口过快增长
指数增长模型
常用的计算公式 今年人口 x0, 年增长率 r
k年后人口
x x(1r)k
k
0
马尔萨斯(1788--1834)提出的指数增长模型(1798)
x(t) ~时刻t人口
r ~ 人口(相对)增长率(常数)
x(t t) x(t) r(tx ) t x(t)xert 0
建模示例 如何预报人口的增长
背景
世界人口增长概况
年 1625 1830 1930 1960 1974 1987 1999 人口(亿) 5 10 20 30 40 50 60
中国人口增长概况
年 1908 1933 1953 1964 1982 1990 1995 人口(亿) 3 4.7 6 7 10.1 11.3 12
数学建模讲座
第一章 建立数学模型
什么是数学模型
我们常见 的模型
玩具、照片… 风洞中的飞机~ 符号模型
模型是为了一定目的,对客观事物的一部分进行 简缩、抽象、提炼出来的原型的替代物。
模型集中反映了原型中人们需要的那一部分特征。
你碰到过的数学模型——“航行问题”
多步决 策问题
求dkD(k=1,2, n), 使skS按转移律 由s1=(3,3)到达sn+1=(0,0).
S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}
D={(u , v) u+v=1, 2}
模型求解 穷举法 ~ 编程上机
y
图 解
状态s=(x,y) ~ 16个格点
数学模型:对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设,运用适当 的数学工具,得到的一个数学结构。
数学建模:建立数学模型的全过程 (包括建立、求解、分析、检验)。
数学建模的重要意义
• 电子计算机的出现及飞速发展 • 数学以空前的广度和深度向一切领域渗透 数学建模作为用数学方法解决实际问题的第一步,
模型构成 由假设1,f和g都是连续函数
由假设3,椅子在任何位置至少有三只脚
B‘
同时着地:对任意t ,f(t)和g(t)中至少有一
个为0。当t=0时,不妨设g(t)=0,f(t)>0,原题
C
归结为证明如下的数学命题:
已知f(t)和g(t)是t的连续函数,对任意t, f(t) •g(t)=0, C‘ 且g(0)=0,f(0)>0。则存在t0,使f(t0)= g(t0)=0
最后,因为f(t) •g(t)=0,所以f(t0)= g(t0)=0。
建模示例 商人们怎样安全过河
问题(智力游戏)
随从们密约, 在河的任一岸, 河 一旦随从的人数比商人多,
就杀人越货.
小船(至多2人)
但是乘船渡河的方案由商人决定. 3名商人
商人们怎样才能安全过河?
3名随从
问题分析 多步决策过程
甲 乙 两 地 相 距 7 5 0公 里 , 船 从 甲 到 乙 顺 水 航 行 需 3 0小 时 , 从 乙 到 甲 逆 水 航 行 需 5 0小 时 , 问 船 的 速 度 是 多 少 。
用x表示船速,y表示水速,列出方程: (x y)30750 (x y)5 07 5 0
求解得到 x=20, y=5, 答:船速每小时20公里
3.对于椅脚的间距和椅腿的长度而言,地面是相对平坦的, 使椅子的任何位置至少有三只脚同时着地。
模 椅脚连线为正方形ABCD(如右图)。 型
B‘
构 t ~椅子绕中心点O旋转角度 成 f(t)~A,C两脚与地面距离之和
C
f(t), g(t)0
g(t)~A,C两脚与地面距离之和
C‘
B A‘
t O
D
Ax D‘
B A‘
t O
D
Ax D‘
模型 将椅子旋转90º,对角线AC与BD互换。 由g(0)=0,f(0)>0可
求解 知g( )>0,f( )=0
2
2
令 续 即h函f((tt0数))== 。fg((tt)0根-)。g据(t),连则续h(函0)>数0和的h基(2本) 性<0质,,由必f存和在g的t0 (连0续<t性0<知2 ),h使也h是(t0连)=0,