数学建模介绍PPT课件

合集下载

数学建模课堂PPT(部分例题分析)

数学建模课堂PPT(部分例题分析)
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
市场需求等。
概率论中的随机过程和数理统计 中的回归分析在金融、保险等领
域有广泛应用。
概率论与数理统计
概率论与数理统计是研究随机现 象的数学分支,用于对不确定性
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
例题三:股票价格预测模型
要点一
总结词
要点二
详细描述
描述如何预测股票价格的走势
股票价格预测模型旨在通过分析历史数据和市场信息,来 预测股票价格的走势。该模型通常采用时间序列分析、回 归分析、机器学习等方法,来建立股票价格与相关因素之 间的数学关系。例如,可以使用ARIMA模型或神经网络模 型来预测股票价格的走势。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
详细描述
在选择数学模型时,需要考虑模型的适用范围。例如,逻 辑回归模型适用于二分类问题,而K均值聚类模型则适用 于无监督学习中的聚类问题。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
例题三:股票价格预测模型
总结词
分析模型的假设条件和局限性
详细描述
股票价格预测模型通常基于一些假设条件,如假设股票 价格是随机的或遵循一定的规律。然而,在实际情况下 ,股票价格受到多种因素的影响,如公司业绩、宏观经 济状况、市场情绪等。因此,这些模型可能存在局限性 ,不能完全准确地预测股票价格的走势。

数学建模培训精品课件ppt

数学建模培训精品课件ppt
提高解决问题的能力
学员们认为,通过案例分析和实践操作,他们能够更好地解决实 际问题,提高了工作效率。
结识优秀的同行
学员们结识了很多优秀的同行,通过互相学习和交流,彼此的能 力都得到了提升。
未来发展趋势预测
数学建模与大数据结合
随着大数据时代的到来,数学建模将会与大数据更加紧密 结合,利用数据挖掘和分析技术,更好地解决实际问题。
数学建模培训精品课 件
汇报人:可编辑 2023-12-22
目 录
• 数学建模概述 • 数学建模基础知识 • 数学建模方法与技巧 • 数学建模应用领域 • 数学建模实践项目 • 数学建模培训总结与展望
01
数学建模概述
定义与特点
定义
数学建模是指用数学语言描述实 际现象、解释自然规律、解决实 际问题的过程。
Python
一款开源的编程语言,具有丰富的数 学库和工具包,适用于各种数学建模 任务。
03
数学建模方法与技巧
建模方法分类
初等模型
利用初等数学知识建立 模型,如代数方程、不
等式、几何图形等。
微分方程模型
利用微积分知识,通过 建立微分方程来描述实
际问题。
概率统计模型
利用概率论和统计学知 识,通过随机变量和随 机过程来描述实际问题
求解与分析
指导学生运用数学软件或编程语言对模型 进行求解和分析,得出结论。
建立模型
指导学生根据问题特点,选择合适的数学 方法和工具,建立数学模型。
项目成果展示与评价
成果展示
组织学生进行项目成果展示, 包括项目报告、论文、PPT演示
等。
评价标准
制定评价标准,包括问题的难 度、模型的合理性、求解的准 确性、论文的规范性等方面。

《数学建模培训》PPT课件

《数学建模培训》PPT课件

数学建模案例解析
04
经济学案例:供需平衡模型
供需平衡理论
通过数学语言描述市场需求与供给之间的平衡关 系,涉及价格、数量等关键变量。
建模过程
收集相关数据,建立需求函数和供给函数,通过 求解方程组找到均衡价格和均衡数量。
模型应用
预测市场趋势,分析政策对市场的影响,为企业 决策提供支持。
物理学案例:热传导模型
Lingo在数学建模中的应 用案例
展示Lingo在数学建模中的实 际应用,如线性规划、整数规 划、非线性规划等优化问题的 求解。
其他数学建模相关软件与工具简介
Mathematica软件
简要介绍Mathematica的特点和功能,以及其 在数学建模中的应用。
SAS软件
简要介绍SAS的特点和功能,以及其在数学建模 中的应用。
数据预处理
包括数据清洗、缺失值处 理、异常值检测等,保证 数据质量。
数据可视化
利用图表、图像等手段展 示数据,便于理解和分析 。
数据分析方法
如回归分析、时间序列分 析、聚类分析等,用于挖 掘数据中的信息和规律。
数学建模常用方法
03
回归分析
线性回归
通过最小二乘法拟合自变量和因 变量之间的线性关系,得到最佳
模型应用
预测舆论走向,分析社会热点问题,为政府和企业提供决策支持。
数学建模软件与工
05
具介绍
MATLAB软件介绍及使用技巧
MATLAB概述
简要介绍MATLAB的历史、功能和应用领域 。
MATLAB常用函数
列举并解释MATLAB中常用的数学函数、绘 图函数、数据处理函数等。
MATLAB基础操作
详细讲解MATLAB的安装、启动、界面介绍 、基本语法和数据类型等。

《数学建模》PPT课件

《数学建模》PPT课件

( x2
x1)
f
f (x2 ) (x2 ) f
2 1 ( x1) 22
1
f
( x1 )
f
(x2 )
3
f
( x1 ) x1
f (x2 ) x2
2 (12 f (x1)f (x2 ))1/2
如函数的导数容易求得,一般首先考虑使用三次插值
法,因为它具有较高效率。对于只需要计算函数值的方
法中,二次插值法是一个很好的方法,它的收敛速度较
优化模型
(2)多项式近似法 该法用于目标函数比较复杂的情 况。此时寻找一个与它近似的函数代替目标函数,并用 近似函数的极小点作为原函数极小点的近似。常用的近 似函数为二次和三次多项式。
二次内插涉及到形如下式的二次函数数据拟合问题:
mq() a2 b c
其中步长极值为:
b
2a
完整版课件ppt
求解单变量最优化问题的方法有很多种,根据目标函 数是否需要求导,可以分为两类,即直接法和间接法。 直接法不需要对目标函数进行求导,而间接法则需要用 到目标函数的导数。
完整版课件ppt
4
优化模型
1、直接法 常用的一维直接法主要有消去法和近似法两种: (1)消去法 该法利用单峰函数具有的消去性质进行
反复迭代,逐渐消去不包含极小点的区间,缩小搜索区 间,直到搜索区间缩小到给定允许精度为止。一种典型 的消去法为黄金分割法(Golden Section Search)。黄金 分割法的基本思想是在单峰区间内适当插入两点,将区 间分为三段,然后通过比较这两点函数值的大小来确定 是删去最左段还是最右段,或同时删去左右两段保留中 间段。重复该过程使区间无限缩小。插入点的位置放在 区间的黄金分割点及其对称点上,所以该法称为黄金分 割法。该法的优点是完整算版课法件p简pt 单,效率较高,稳定性好5 。

数学模型介绍_ppt课件

数学模型介绍_ppt课件

数学建模竞赛 ——数学建模竞赛的意义
大学生数学模型竞赛是全球范围内数学界最重要的竞赛之 一, 1994年以来全国大学生数学建模竞赛已为少数几项大学 生课外活动和竞赛活动之一。 大学生数学建模竞赛培养学生什么样的能力?经过10多年 来广大参赛同学,和指导教师的总结,至少有以下几方面是值 得提出的: 一、应用数学进行分析、推理、计算能力,特别是双向翻译 的能力大大提高。 二、应用计算机、数学软件以及因特网的能力大大提高。 三、获得应变能力的培养。 四、培养和发展同学们的创造力、想象力、联想力和洞察力。 五、培养学生组织、管理、协调合作以及仪式妥协的能力。 六、培养了交流、表达和写作能力。
2007年省三等奖获得者:
彭振庭:信息工程学部05级计科 余鲁鑫:城建学部08级土木
2008年省三等奖获得者:
王 锐:信息工程学部06级信计 邱 丰:经管学部06级国贸 邓星星:城建学部06级土木
2008年省二等奖获得者:
汪燕霞:信息工程学部06级信计 陶小娟:经管学部08级工管
2009年省二等奖获得者:
1.2 数学建模的重要意义
1.3 数学建模示例 1.4 数学建模的方法和步骤 1.5 数学模型的特点和分类 1.6 怎样学习数学建模
1.1 从现实对象到数学模型
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型 地图、电路图、分子结构图… … ~ 符号模型
数学建模竞赛 ——数学建模竞赛的形式
数学建模竞赛以通讯形式进行,三名大学生组成一队, 可以自由地收集资料、调查研究,使用计算机和任何软件, 甚至上网查询,但不得与队外任何人讨论。在三天时间内,完成一篇包括模型的假设、建立和求解,计算方法的设计 和计算机实现,结果的分析和检验,模型的改进等方面的 论文。竞赛评奖以假设的合理性、建模的创造性、结果的 正确性和文字表述的清晰程度为主要标准。 可以看出,这项竞赛与学生毕业以后工作时的条件非 常相近,是对学生业务、能力和素质的全面培养,特别是 开放性思维和创新意识。

第1讲 数学建模简介 PPT课件

第1讲 数学建模简介 PPT课件

什么是数学建模 数学建模步骤及分类 建模竞赛及其意义 建模实例讲解
什么是数学建模
什么是数学模型 一般意义上的“模型”
为了一定目的,对客观事物的一部分进行简缩、抽象、提 炼出来的原型的替代物。
水箱中的舰艇; 风洞中的飞机等;
实物模型
符号模型
物理模型
什么是数学建模
数学模型(mathematical model)
引例
第二块钢板的故事,来自一位将军。 诺曼底登陆时,美军101空降师副师长唐·普拉特准将
乘坐的是滑翔机。起飞前,有人自作聪明,在副师长的座 位下,装上厚厚的钢板,用来防弹。由于滑翔机自身没有 动力,与牵引的运输机脱钩后,必须保持平衡滑翔降落, 沉重的钢板却让滑翔机头重脚轻,一头扎向地面,普拉特 准将成为美军在当天阵亡的唯一将领。
什么是数学建模
数学建模(mathematical modeling)
“新”名词 你是什么时候开始知道有这个名词的?
历史悠久 •《九章算术》— 最早的数学建模专著、 收集了246个应用题 • 以问题集形式出现: 一“问” —提出问题 二“答” —给出问题的数值答案 三“术” —讨论同类问题的普遍方法或算法 四“注” —说明“术”的理由,实质指证明或佐证
飞行员们一看就明白了,如果座舱中弹,飞行 员就完了;尾翼中弹,飞机失去平衡,就会坠落— ——这两处中弹,轰炸机多半回不来,难怪统计数 据是一片空白。
因此,结论很简单:只给这两个部位焊上钢板。
引例
• 第一块钢板是机智的飞行员用它挽救了自己 的生命。 • 第二块钢板则是教训,它是用宝贵的生命换 来的。 • 第三块钢板是升华,用科学的方法,从实战 经验中提炼出规律,这块讲科学的钢板,挽救 了众多飞行员的生命。

数学建模PPT课件

数学建模PPT课件
“树上有十只鸟,开枪打死一只,还剩几只?”
二、相关的数学基础
• 线性规划 • 概率统计 • 图论 • 常微分方程 • 最优化理论
三、如何组队及合作
• 根据数学建模竞赛章程,三人组成一队,这 三人中必须一人数学基础较好,一人应用数学 软件(如Matlab,lindo,maple等)和编程(如 c,Matlab,vc++等)的能力较强,一人科技论文 写作的水平较好。科技论文的写作要求整篇论 文的结构严谨,语言要有逻辑性,用词要准确。
2
• 它要用到各方面的综合的知识,但还不限于 此.参赛选手不只是要有各方面的知识,还要 驾驭这些知识,应用这些知识处理实际问题的 能力。知识是无止境的,还必须有善于获得新 的知识的能力。总之,数学建模竟赛,既要比 赛各方面的综合知识,也要比赛各方面的综合 能力。它的特点就是综合,它的优点也是综合。 在这个意义上看,它与任何一个学科领域内的 纯知识竞赛都不相同的特点就是不纯,它的优 点也就是不纯,综合就是不纯。
• 三人之间要能够配合得起来。若三人之间配 合不好,会降低效率,导致整个建模的失败。
• 如果可能的话,最好是数学好的懂得编程的 一些知识,编程好的了解建模,搞论文写作也
5
• 要了解建模,这样会合作得更好。因为 数学好的在建立模型方案时会考虑到编 程的便利性,以利于编程;编程好的能 够很好地理解模型,论文写作的能够更 好、更完全地阐述模型。否则会出现建 立的模型不利于编程,程序不能完全概 括模型,论文写作时会漏掉一些不经意 的东西。
• 于处理的是静态的独立数据,故称为数理统计 方法。
• 4. 时序分析法--处理的是动态的相关数据,又 称为过程统计方法。
• 三、仿真和其他方法
• 1. 计算机仿真(模拟)--实质上是统计估计方 法,等效于抽样试验。

数学建模培训精品课件ppt

数学建模培训精品课件ppt

MATLAB在数学建模中的应用
MATLAB概述
01
MATLAB是一种用于算法开发、数据可视化、数据分析和数值
计算的编程语言和开发环境。
MATLAB在数学建模中的优势
02
MATLAB提供了丰富的数学函数库和工具箱,支持矩阵运算、
符号计算和数值分析,适用于各种数学建模场景。
MATLAB在数学建模中的应用案例
数学建模在金融领域的应用
金融行业对数学建模的需求日益增长,涉及风险管理、投资组合优化、市场预测等领域 。
数学建模在物理科学和工程中的应用
物理科学和工程领域中的复杂问题需要借助数学建模进行深入研究,如流体动力学、材 料科学等。
提高数学建模能力的建议
01
掌握数学基础知识
数学建模需要扎实的数学基础, 如概率论、统计学、线性代数和 微积分等。
深度学习中的数学建模
探讨深度学习领域中常用的数学方法和模型,如卷积神经网络、循 环神经网络等。
数据科学中的数学建模
数据清洗与预处理
数据可视化的数学基础
介绍数据科学中数据预处理的基本方 法和数学原理。
介绍数据可视化中涉及的数学原理和 可视化技术。
统计分析方法
阐述统计分析中常用的方法和模型, 如回归分析、聚类分析等。
02
实践经验积累
03
学习优秀案例
通过参与数学建模竞赛、科研项 目等方式,积累实践经验,提高 解决实际问题的能力。
学习经典数学建模案例,了解不 同领域中数学建模的应用方法和 技巧。
对未来数学建模的展望
跨学科交叉融合
未来数学建模将更加注重与其他学科的交叉融合,如生物 学、环境科学、社会科学等。
人工智能与数学建模结合

数学建模常用方法介绍ppt课件

数学建模常用方法介绍ppt课件

遗传算法一般步骤
1. 完成了预先给定的进 化代数 2. 种群中的最优个体在 连续若干代后没有改进 3. 平均适应度在连续若 干代后基本没有改进
竞赛中的群体思维方法
✓平等地位、相互尊重、充分交流 ✓杜绝武断评价 ✓不要回避责任 ✓不要对交流失去信心
竞赛中的发散性思维方法
➢ 借助于一系列问题来展开思路
与模糊数学相关的问题(二)
模糊聚类分析—根据研究对象本身的属性构造 模糊矩阵,在此基础上根据一定的隶属度来 确定其分类关系
模糊层次分析法—两两比较指标的确定
模糊综合评判—综合评判就是对受到多个因素 制约的事物或对象作出一个总的评价,如产 品质量评定、科技成果鉴定、某种作物种植 适应性的评价等,都属于综合评判问题。由 于从多方面对事物进行评价难免带有模糊性 和主观性,采用模糊数学的方法进行综合评 判将使结果尽量客观从而取得更好的实际效 果
3. 合并距离最近的两类为一个新类 4. 计算新类与当前各类的距离(新类与当
前类的距离等于当前类与组合类中包含 的类的距离最小值),若类的个数等于 1,转5,否则转3 5. 画聚类图 6. 决定类的个数和类。
统计方法(判别分析)
➢ 判别分析—在已知研究对象分成若干类型,并已取 得各种类型的一批已知样品的观测数据,在此基础 上根据某些准则建立判别式,然后对未知类型的样 品进行判别分类。
这个问题与什么问题相似? 如果将问题分解成两个或几个部分会怎样? 极限情形(或理想状态)如何? 综合问题的条件可得到什么结果? 要实现问题的目标需要什么条件?
➢ 借助于下意识的联想(灵感)来展开思路
抓住问题的个别条件或关键词展开联想或猜想 综合所得到的联想和猜想,得到一些结论 进一步思考找出新思路和方法

数学建模的介绍ppt课件

数学建模的介绍ppt课件

2. 赛题的开放性增大,新方法不断涌现 (1)赛题的开放性增大解法的多样性,一道 赛题可用多种解法; (2)开放性还表现在对模型假设和对数据处 理上。
东北三省大学生数学建模联赛
由黑龙江、吉林、辽宁三省有关高校联 合主办,旨在便于各校培养和选拔参加全国 竞赛的代表队。
近年来,题目都采用“深圳杯”数学建 模夏令营 的竞赛题,比赛一般四月中旬开始, 周期较长一个月左右,所以这也是学生学习 和提高建模水平的绝佳的锻炼机会。
2013年以来我校学生获得的建模成绩
美赛:
(2013年)一等奖 1 项、二等奖 1 项
(2014年)二等奖 5 项
2013年国赛:
国家二等奖 2 项;
赛区一等奖 2 项、二等奖 5 项、三等奖 2 项
2013年东北三省赛:
一等奖 21 项、二等奖 31 项
数学建模竟赛的解题方法总结
数学建模使用的数学方法涉及到初等数 学和高等数学的多个领域,包括运筹学、 统计学、图论、概率论、数值分析、微 积分和微分方程等。
全国大学生数学建模竞赛
简称“国赛”,是由 教育部高等教育司 和 中国工业与应用数学学会 共同主办,面向全国 高等院校所有专业、所有学生的一项大规模竞 赛活动。 国赛始于 1992 年,每年九月的第 3 个周末 举行(三天三夜)。目前已经成为全国高等院 校中规模最大的课外科技活动。
国赛是全国统一出题,在“全国大学生数学建 模竞赛”官网公布: / 采取通讯方式,由各赛区负责组织实施。
数学模型——为了定量地解决一个实际问题 , 从中抽象、归结出来的数学结构。 具体可以描述为 ,对于现实世界的一个研究对 象,为了一个特定目的 ,根据对象的内在规律 ,做出 必要的简化假设,运用适当的数学工具,得到的一个 数学结构.

数学建模简介课件

数学建模简介课件

数据质量的可靠性
在数据驱动的数学建模中,如何保证 数据的质量和可靠性是一个重要的问 题,需要采取一系列的数据清洗和预 处理技术。
多学科交叉的数学建模
数学与其他学科的结合
数学建模已经不再局限于传统的数学领域,而是与其他学 科如物理、化学、生物、工程等相结合,形成多学科交叉 的数学建模。
跨学科知识的整合
它涉及到对问题的深入理解、相关数 据的收集和分析、选择合适的数学方 法和工具、建立数学模型、求解模型 并解释结果等步骤。
数学建模的应用领域
01
02
03
04
自然科学
物理、化学、生物等学科中的 问题可以通过数学建模进行定
量分析和模拟。
工程和技术
在机械、电子、航空航天、计 算机等领域,数学建模被广泛 应用于设计、优化和预测。
详细描述
传染病传播是一个动态的过程,受到个体行 为、环境因素和疾病特性等多种因素的影响 。通过建立数学模型,我们可以模拟疾病的 传播过程,预测疫情的发展趋势,并提供有 效的防控措施。常见的模型包括SIR模型和
SEIR模型。
物流优化模型
要点一
总结词
描述了如何使用数学模型来优化物流网络,提高运输效率 并降低成本。
总结词
微分方程建模是利用微分方程来描述和解决实际问题的数学 建模方法。
详细描述
微分方程建模通过建立数学模型来描述现实世界中变量之间 的关系,特别是那些随时间变化的变量之间的关系。例如, 人口增长模型、传染病传播模型等都是通过微分方程来建立 的。
微分方程建模
总结词
微分方程建模是利用微分方程来描述和解决实际问题的数学 建模方法。
跨学科知识的整合
在多学科交叉的数学建模中,如何有效地整合不同学科的 知识是一个重要的问题,需要具备跨学科的知识和视野。

《数学建模经验交流》课件

《数学建模经验交流》课件

如何处理数据和参数的调整
数据清洗和预处理
01
在建模之前,需要对数据进行清洗和预处理,去除异常值、缺
失值和重复数据,确保数据的质量和准确性。
参数调整和优化
02
根据模型的参数要求,对数据进行适当的调整和优化,以满足
模型的输入要求。
数据可视化和分析
03
通过数据可视化和分析,了解数据的分布和特征,为参数调整
03
数学建模是解决复杂问题的 重要手段,广泛应用于科学 研究、工程设计、经济分析
等领域。
数学建模的应用领域
自然科学
物理、化学、生物等学科中的问题可以 通过数学建模进行深入研究。
工程领域
机械、电子、航空航天等工程问题需要 数学建模来优化设计。
社会科学
经济学、心理学、社会学等领域的研究 可以通过数学建模来揭示规律。
04
数学建模挑战与展望
数学建模面临的挑战
模型复杂度增加
随着实际问题的复杂化,数学建模的难度也在不断加 大,需要更高的数学理论和技术支持。
数据量与维度增加
大数据时代的来临使得数据量急剧增加,处理和分析 这些高维度数据需要更高级的数学建模方法。
模型验证与评估难度
由于现实世界的复杂性和不确定性,数学模型的验证 和评估变得更为困难。
心得2
数学建模不仅仅是建立模型,更重要的是对实际问题的深入理解 和分析。
经验3
要不断学习和掌握新的数学方法和工具,提高自己的建模能力和 水平。
THANKS
分组讨论
01
讨论1
针对环境污染问题,如何建立 数学模型来预测污染趋势和制
定治理方案?
02
讨论2
在金融领域,如何利用数学建 模来评估投资风险和预测市场

数学建模方法ppt课件

数学建模方法ppt课件


了很大作用。


应用实例:
程 模
单种群模型(Malthus Logistic )

两种群模型
传染病模型(SI SIS SIR)
作战模型
商品销售模型
回归分析是研究变量间统计规律的方法,属于”黑 箱“建模中常用的方法,根据自变量的数值和变化, 估计和预测因变量的相应数值和变化。有线性回归和 非线性回归。
点击添加文本
)点b2击添加文本
ax1m,1x点x21 ,击添a,m加x2nx文2本0 amnxn (, )bn
点击添加文本
建模步骤:
1.建立模型:找出目标函数及相应的限定条件
2.模型的求解:可利用Lin点go击软添件加进文行本求解模型。
3.结果分析
4.灵敏度分析:改变个别相关系数观察最优解是否会
min{D( p, k), D(q, k)}
点击添加文本
点击添加文本
步骤4:重复步骤2和步骤3,直至满足聚类为止。
对于不确定性问题,又可分为随机不确定性与模 糊不确定性两类。模糊数学就是研究属于不确定性, 而又具有模糊性量的变化规律的一种数学方法。

点击添加文本

数 学
原理关键词: 模糊集 隶属函数 模糊关系 模糊矩阵
yi 0 1xi1 2 xi2 p xip , i 1,2,, n
其中, i 是随机误差,相互独立且满足E(i ) 0, var(i ) 2
一般非线性模型的形式: 其中, f 是一般的非线性函数, 是 p维参数向量, 是一随机 误差变量,E( ) 0, var( ) 2
,把 Gp 和 Gq 合并
步骤3:计算新类与其他类的距离 点击添加文本
D(r, k) min{d (r, k) r Gr , k Gk , k r} min{d ( j, k) j Gp Gq , k Gk , k j}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•对任意的,有f()、 g()
•至少有一个为0,
16
本问题归为证明如下数学命题: 数学命题:(本问题的数学模型)
已知f()、 g()都是的非负连续函数,对任意的 ,有f() g()=0,且f(0) >0、 g(0)=0 ,则有存在0, 使f(0)= g(0)=0
模型求解 证明:将椅子旋转90°,对角线AC与BD互换,由 f(0)>0、 g(0)=0 变为f(/2) =0、 g(/2) >0
的解答


数学模型 的解答
12
实践
理论
实践
表述 求解 解释 验证
根据建模目的和信息将实际问题“翻译”成 数学问题 选择适当的数学方法求得数学模型的解答
将数学语言表述的解答“翻译”回实际对 象 用现实对象的信息检验得到的解答
13
4、建模实例:
例1、椅子能在不平的地面上放稳吗?
• 模型假设 • 1、椅子的四条腿一样长,椅子脚与地面
• 要学习数学建模,应该了解如下与数学建模 有关的概念:
3
• 原型(Prototype)
• 人们在现实世界里关心、研究、或从事生产、 管理的实际对象称为原形。原型有研究对象、 实际问题等。
• 模型(Model)
• 为某个目的将原型的某一部分信息进行简缩、 提炼而构成的原型替代物称为模型。模型有 直观模型、物理模型、思维模型、计算模型、 数学模型等。
• 一个原型可以有多个不同的模型。
4
数学模型:
由数字、字母、或其他数学符号组成、描 述实际对象数量规律的数学公式、图形或算 法称为数学模型
数学建模:
建立数学模型的全过程 (包括表述、求解、解释、检验等)
5
2、 数学建模的重要意义
• 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透; • 在一般工程技术领域数学建模仍然大有用
17
• 令h()=f() - g(), 则有h(0) >0和h(/2) <0
• 由h()的连续性及连续函数的中值定理,必存在一 个0(0, /2),使h(0)=0,即则有存在0,使 f(0)= g(0)=0。 • 例2、报童订报模型
• ⑴ 问题:报童每天清晨从报社购进报纸零售, 晚上 将没有卖掉的报纸退回. 每份报纸订购价格为a, 零 售价格为b, 退回价格为c ( b>a>c ). 请你为报童制 定一个最佳订购方案.
• 设某椅子脚与地面的垂直距离为y,显然它是的 函数,记为 y=f(),由于正方形的中心对称性, 可以用对应的两个脚与地面的距离之和来表示这
15
•两个脚与地面的距离关系为A、C的距离之和
•记 f()为A、C的距离之和
• g()为B、D的距离之和
•显然f()0、 g()0,都
•是的连续
•函数(假设2),由假设3,
武之地; • 在高新技术领域数学建模几乎是必不可少
的工具; • 数学进入一些新领域,为数学建模开辟了
许多处女地。
6
3、数学建模的一般方法和步骤
• 建立数学模型的方法和步骤并没有一定 的模式,但一个理想的模型应能反映系统的 全部重要特征,特别应注重模型的可靠性和 模型的使用性。
• 建模的一般方法 • (1)机理分析:根据对现实对象特性的认
数学建模
——xxxxxxxxx
整体概述
概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
概况二
点击此处输入相关文本内容 点击此处输入相关文本内容
概况三
点击此处输入相关文本内容 点击此处输入相关文本内容
2
1、什么是数学建模
• 数学建模简单的讲就是将实际问题变为 用数学语言描述的数学问题的过程。其中对 应的数学问题就是数学模型,人们通过对该 数学模型的求解可以获得相应实际问题的解 决方案或对相应实际问题有更深入的了解。 数学建模问题不只是一个纯数学的问题。
接触可以视为一个点,四脚连线是正方形 (对椅子的假设) • 2、地面高度是连续变化的,沿任何方向 都不出现间断。(对地面的假设)
14
模型构成:
• 用变量表示椅子的位置,引如平面图形及坐标系 如图
• 图中A、B、C、D为椅子的四只脚,坐标系原点选 椅子中心,坐标轴选为其对角线,由假设2,椅子 的移动位置可以由正方形沿坐标原点旋转的角度 来唯一表示。
18
• ⑵ 问题的分析
• 报童每天卖出报纸的数量x 是一个随机变 量,因此报童每天的收入也是一个随机变量, 所以作为优化模型的目标函数, 不能是报童 每天的收入, 而应该是他长期卖报的日平均 收入. 从概率论中大数定律的观点来看, 这相 当于报童每天收入的期望值. 另一方面, 如果 报纸订得太少, 供不应求, 报童就会失去一些 挣钱的机会, 将会减少收入;但如果订多了, 当天卖不完, 每份得赔钱, 报童也会减少收入.
10
建模的步骤:
1、根据问题的背景和建模的目的做出 假设(船、水速为常数) 2、用字母表示要求的未知量 3、根据已知的常识列出数学式子或图 形等 4、求出数学式子的解答 5、验证所得结果的正确性
11
数学建模的全过程

现 实 世
现实对象 的信息
述 (归纳)
数学模型

(演绎) 学



验证


现实对象
识,分析其因果关系,找出反映内部机理的或 现实意义。 • (2)测试分析方法:将研究对象视为一 个“黑箱”系统,内部机理无法直接寻求, 通过测量系统的输入输出数据,并以此为 基础运用统计分析方法,按照事先确定的 准则在某一类模型中选出一个数据拟合得 最好的模型。测试分析方法也叫做系统辩 识。
19
⑶ 问题的假设
设报社有足够的报纸可供定购; 当天卖 不出去的报纸只能退回; 报童除了订购报纸费 用外, 其它费用 (如交通费、摊位费等) 一概 不计; 报童每天订购n份报纸, 实际能卖出r份 报纸, 且P{ x = r } = p ( r ).
⑷ 模型建立
如果0≤r≤n, 则售出r份报纸增加收入(b a )r, 退回n-r份减少收入(a –c)(n-r);如果r> n, 则售出n份报纸增加收入(b - a ) n. 因此报 童每天收入的期望值:
8
•建模的一般步骤
模型准备 模型假设 模型构成
模型验证 模型分析 模型求解
模型应用
9
例、(航行问题)(说明建模的步骤) 甲乙两地相距750公里,船甲到乙顺水
航行要30 小时,从乙到甲逆水航行要50 小 时,问船速、水速是多少? 解:设x为船速,y为水速,有
(x+y)30=750 (x-y)50=750 解之 x=20 、y=5
相关文档
最新文档