第8讲相关分析和回归分析 ppt课件
合集下载
(精品) 应用统计课件:相关与回归分析
)
D(Yˆ0
)
[1
1 n
(
X
0X S XX
)2
]
2
Y0
Y0
~
N 0,
[1
1 n
(
X
0X S XX
)2
]
2
24
由:
(Y0 Yˆ0 ) 0
~ N (0,1)
1
1
(X0
X
)2
n
S XX
可得:
Y0 Y 0
~ t(n 2)
Se
1 1 (X0 X )2
n
S XX
则Y0的1-α置信区间:
(X
X )2 D(Y )
S
2 XX
SXX 2
S
2 XX
2
S XX
13
。
② β1的置信区间
由b1的抽样分布可得:
z b1 1 ~ N (0,1) 2
S XX
但由于σ未知,可用样本数据计算标准差Se进行估计
S
2 e
(Y Y )2 n p 1
其中 n:样本数据个数; p:自变量个数。
14
由第四章知识可知,
X 2 12206 3442 372.4
n
10
t (n 2) t0.025 (8) 2.306 2
0.06493 0.016132 (0.048798 ,0.081062 )
即当工业总产值增加10亿元时,货运总量平均增加487.9万 吨至810.6万吨,概率保证为95%。
16
使用Excel中的数据分析功能,可以得到如下结果:
t b1 1 ~ t(n 2)
Se2 S XX
则β1 的置信度为(1-α)的置信区间:
第八章 相关分析与回归分析
第8章 回归分析
下一页
返回本节首页
19
③在数据区域中输入B2:C11,选择“系列产 生在—列”,如下图所示,单击“下一步” 按钮。
上一页
第8章 回归分析
下一页
返回本节首页
20
④打开“图例”页面,取消图例,省略标题,如 下图所示。
上一页
第8章 回归分析
下一页
返回本节首页
21
⑤单击“完成”按钮,便得到XY散点图如下图 所示。
n 8, x 36.4, x 207.54 , y 104214 y 880, . xy 4544 6
2 2
r
n xy x y n x2 x 2 n y2 y 2 8 4544 6 36.4 880 .
第8章 回归分析
40
(二)回归分析的种类: 1、按自变量 x 的多少,分为一元回归和多 元回归; 2、按 y 与 x 关系的形式,分为线性回归和 非线性回归。
第8章 回归分析
41
二、一元线性回归分析
x y 62 86 80 110 115 132 135 160
42
(一)一元线性回归方程:
2、非线性相关:当一个变量变动时, 另一个变量也相应发生变动,但这种变 动是不均等的。
第8章 回归分析
9
㈢根据相关关系的方向 1、正相关:两个变量间的变化方向一 致,都是增长趋势或下降趋势。 2、负相关:两个变量变化趋势相反。
上一页
第8章 回归分析
下一页
返回本节首页
10
(四)根据相关关系的程度 1、完全相关:两个变量之间呈函数关系 2、不相关:两个变量彼此互不影响,其 数量的变化各自独立
下一页
返回本节首页
19
③在数据区域中输入B2:C11,选择“系列产 生在—列”,如下图所示,单击“下一步” 按钮。
上一页
第8章 回归分析
下一页
返回本节首页
20
④打开“图例”页面,取消图例,省略标题,如 下图所示。
上一页
第8章 回归分析
下一页
返回本节首页
21
⑤单击“完成”按钮,便得到XY散点图如下图 所示。
n 8, x 36.4, x 207.54 , y 104214 y 880, . xy 4544 6
2 2
r
n xy x y n x2 x 2 n y2 y 2 8 4544 6 36.4 880 .
第8章 回归分析
40
(二)回归分析的种类: 1、按自变量 x 的多少,分为一元回归和多 元回归; 2、按 y 与 x 关系的形式,分为线性回归和 非线性回归。
第8章 回归分析
41
二、一元线性回归分析
x y 62 86 80 110 115 132 135 160
42
(一)一元线性回归方程:
2、非线性相关:当一个变量变动时, 另一个变量也相应发生变动,但这种变 动是不均等的。
第8章 回归分析
9
㈢根据相关关系的方向 1、正相关:两个变量间的变化方向一 致,都是增长趋势或下降趋势。 2、负相关:两个变量变化趋势相反。
上一页
第8章 回归分析
下一页
返回本节首页
10
(四)根据相关关系的程度 1、完全相关:两个变量之间呈函数关系 2、不相关:两个变量彼此互不影响,其 数量的变化各自独立
统计学课件--第八章相关与回归分析-精品文档
第一节
相关与回归分析的基本概念
第二节 相关分析 第三节 一元线性回归分析 第四节 多元线性回归分析 第五节 非线性回归分析
2019/2/21 课件 2
第八章 相关与回归分析
第一节 相关与回归分析的基本概念
一、相关关系与函数关系
(一)函数关系 函数关系是指现象之间存在着严格的依存关系, 亦即当其它条件不变时,对于某一自变量或几个自 变量的每一数值,都有因变量的一个的确定值与之 相对应,并且这种关系可以用一个确定的数学表达 式反映出来。
二、相关分析的种类
相 关 关 系 ⒉按照表现形式不同分为 的 种 类
⒊按照变化方向不同分为
课件 2019/2/21
单相关 复相关 偏相关 直线相关 曲线相关 正相关 负相关
6
⒈按涉及变量的多少分为
第八章 相关与回归分析
完全相关
相 4. 按相关的程度分为 不完全相关 关 不相关 关 系 的 单向因果相关 种 类 5.按变量之间因果 双向因果相关
2019/2/21 课件 4
相关关系与因果关系
一家研究机构有一项惊 人的发现:统计数据显 示,脚长的儿童拼写能 力比脚短的儿童强。
赶快回去量一 下儿子的脚长
案例分析
原来他们调查的是一 群年龄不同的儿童, 脚长的儿童比脚短的 儿童年龄大!
2019/2/21
我要把脚拉长 一点! 课件
5
第八章 相关与回归分析
关系的方向分为
2019/2/21 课件
虚假相关
7
第八章 相关与回归分析
第一节 相关与回归分析的基本概念
三、相关分析与回归分析 回归分析是关于研究一个叫做因变量的变量 对另一个或多个叫做解释变量的依赖关系。 相关分析是测度两个变量之间的线性关联 度的,并用一些指数(相关系数)表示相关程度。
[课件]第八章 相关与回归分析PPT
2
S y 1 r yx
——估计标准误与相关系 数的关系式
估计标准误案例
月份
1 2 3 4 5 6 合计
x
2 3 4 3 4 5 21
y
73 72 71 73 69 68 426
Yc=77.37 -1.82x
73.73 71.91 70.09 71.91 70.09 68.27
2 yy c yy c
18.5
3.0 8.1 16.3 12.3 6.2 6.6 16.8 110.8
64
1 16 49 36 9 9 49 294
342.25
9.00 65.61 265.69 151.29 38.44 43.56 282.24 1465.00
148.0
3.0 32.4 114.1 73.8 18.6 19.8 117.6 654.9
0 .975 元
2
y 73 72 71 73 69 68 30
2 2 2 2 2 2
公式8、1
r x y
2 xy
r
n x x n y y
2 2 2 2
n xy x y
n xy x y x y x r b b 2 a b 2 y n x x n n
第三节、回归分析
• 一、相关分析与回归分析的关系 • 二、回归直线方程的确定
• yc=a+bx
• 三、回归系数与相关系数的关系
• r=b×σx÷σy
• 四、估计标准误差
• 1、作用:判断回归方程代表性大小 • 2、计算
» (1)一般公式; » (2)简化公式
• 五、多元线性回归方程
S y 1 r yx
——估计标准误与相关系 数的关系式
估计标准误案例
月份
1 2 3 4 5 6 合计
x
2 3 4 3 4 5 21
y
73 72 71 73 69 68 426
Yc=77.37 -1.82x
73.73 71.91 70.09 71.91 70.09 68.27
2 yy c yy c
18.5
3.0 8.1 16.3 12.3 6.2 6.6 16.8 110.8
64
1 16 49 36 9 9 49 294
342.25
9.00 65.61 265.69 151.29 38.44 43.56 282.24 1465.00
148.0
3.0 32.4 114.1 73.8 18.6 19.8 117.6 654.9
0 .975 元
2
y 73 72 71 73 69 68 30
2 2 2 2 2 2
公式8、1
r x y
2 xy
r
n x x n y y
2 2 2 2
n xy x y
n xy x y x y x r b b 2 a b 2 y n x x n n
第三节、回归分析
• 一、相关分析与回归分析的关系 • 二、回归直线方程的确定
• yc=a+bx
• 三、回归系数与相关系数的关系
• r=b×σx÷σy
• 四、估计标准误差
• 1、作用:判断回归方程代表性大小 • 2、计算
» (1)一般公式; » (2)简化公式
• 五、多元线性回归方程
统计学-课件第八章 相关回归分析
第八章 相关与回归分析
第一节 相关分析 第二节 一元线性回归分析
1
学习目的和要求
了解相关与回归分析的概念、特点,相 关分析与回归分析的区别与联系;
掌握相关分析的定性和定量分析方法;
掌握回归模型的拟合方法、对回归方程 拟合精度的测定和评价的方法。
2
学习重点
相关分析系数计算方法 回归方程的建立
10.9692 7
第一节 相关分析
④由于
T ,t则/拒2 绝 ,表H明0变量间
线性相关在统计上是显著的。即产品产量与
生产费用之间的相关系数是显著的。
回归分析
1.回归分析的概念 回归分析就是对具有相关关系的变量之
间数量变化的一般关系进行测定,确定一 个相关的数学表达式,以便于进行估计或 预测的统计方法。
1.相关表 相关表是一种反映变量之间相关关系
的统计表。将某一变量按其取值的大 小排列,然后再将与其相关的另一变 量的对应值平行排列,便可得到简单 的相关表。
例1:某地区某企业近8年产品产量与 生产费用的相关情况如表6-1所示:
第一节 相关分析
表1 产品产量与生产费用相关表
从表可看 出,产品产量 与生产费用之 间存在一定的 正相关关系。
160
生 140 120
产 100
费 80
用
60 40
20
0
产品产量与生产费用相关图
9
8
7产
6
5品
4产
3 2
量
1
0
1997 1998 1999 2000 2001 2002 2003 2004
时间
生产费用(万元)
产品产量(千吨)
第一节 相关分析
第一节 相关分析 第二节 一元线性回归分析
1
学习目的和要求
了解相关与回归分析的概念、特点,相 关分析与回归分析的区别与联系;
掌握相关分析的定性和定量分析方法;
掌握回归模型的拟合方法、对回归方程 拟合精度的测定和评价的方法。
2
学习重点
相关分析系数计算方法 回归方程的建立
10.9692 7
第一节 相关分析
④由于
T ,t则/拒2 绝 ,表H明0变量间
线性相关在统计上是显著的。即产品产量与
生产费用之间的相关系数是显著的。
回归分析
1.回归分析的概念 回归分析就是对具有相关关系的变量之
间数量变化的一般关系进行测定,确定一 个相关的数学表达式,以便于进行估计或 预测的统计方法。
1.相关表 相关表是一种反映变量之间相关关系
的统计表。将某一变量按其取值的大 小排列,然后再将与其相关的另一变 量的对应值平行排列,便可得到简单 的相关表。
例1:某地区某企业近8年产品产量与 生产费用的相关情况如表6-1所示:
第一节 相关分析
表1 产品产量与生产费用相关表
从表可看 出,产品产量 与生产费用之 间存在一定的 正相关关系。
160
生 140 120
产 100
费 80
用
60 40
20
0
产品产量与生产费用相关图
9
8
7产
6
5品
4产
3 2
量
1
0
1997 1998 1999 2000 2001 2002 2003 2004
时间
生产费用(万元)
产品产量(千吨)
第一节 相关分析
相关性分析及回归分析PPT课件
较好
t统计量的P值小于显著水平(0.05),可 认为该自变量对因变量的影响是显著的。
17
• 已知一种新牌子化肥的不同施用量对庄稼产量的影响如下表。请你 确定当化肥施用量为5.5克时估计预期的产量。
化肥施 0. 0. 0. 0. 0. 0. 0. 0. 0. 01. 用产量量x(( 02 13 24 34 04. 55 65 75 85 95 04 公克斤) ) 1 5 1 6 5 2 3 3 3 1 9
y = -0.0066x2 + 0.0897x + 0.2419 R2 = 0.9742
2
4
6
8
10
12
化肥(克)
• 假设庄稼以每公斤4元的价格出售,化肥要以每克0.2元的价格购买。 请确定能产生最大利润的化肥施用量。(运用规划求解)
• 总收益=价格×产量=4元×(-0.0066X2+0.0897x+0.2419) • 总成本=化肥成本×化肥施用量=0.2X
7
• 根据表中的数据计算不良贷款、贷款余额、累计应收贷款、贷款项 目个数、固定资产投资额之间的相关系数
• 法1:数据/数据分析/相关系数/做如下图所示设置 • 可见,不良贷款与各项贷款余额的相关性最高
8
10
• 回归基本上可视为一种拟合
过程,即用最恰当的数学方
程去拟合一组由一个因变量
和一个或多个自变量所组成 y
• 工具-数据分析-回归。
• 回归方程检验;
• R2判断回归方程的拟合优度; • t 统计量及相伴概率值,自变量与因变量之间的关系; • F统计量及相伴概率值,判断方程的回归效果显著性趋势线
• 根据数据建立散点图
• 自变量放在X轴,因变量放在Y轴
[课件]第八章 直线回归与相关分析PPT
Q SS U 283 176 . 4 106 . 6 y
(2)F检验:
U 176 . 4 F ( n 2 ) ( 5 2 ) 4 . 96 Q 106 . 6
因为 F , 4 . 96 F 10 . 13 0 . 05 ( 1 , 3 ) .05 。说明小白鼠体重和日龄间 所以, p 0 的直线关系不显著。
相关分析(correlation analysis)3
研究“一因一果”,即一个自变量与一个依 变量的回归分析称为一元回归分析;
直线回归分析 曲线回归分析
研究“多因一果”,即多个自变量与一个依 变量的回归分析称为多元回归分析。
多元线性回归分析
多元非线性回归分析
第二节:直线回归
Linear Regression
回归和相关分析结果仅适用于自变量的试验取值 范围。
9
2. 进行直线回归分析时应符合的基本条件 (基本假定) (1)x是没有误差的固定变量;而y是随机 变量,具有随机误差。 (2)x的任一值都对应着一个y的总体,且 呈正态分布。
(3)随机误差是相互独立的,且呈正态分
布。
10
对两个变量间的线性关系的显著性进行检验时, 采用的方法是 F 检验或 t 检验。 直线回归中,只有一个自变量,所以回归平方和 的自由度为1,离回归平方和的自由度为n-2 。 1. 计算回归平方和U和离回归平方和Q:
序号 日龄 x 体重 y 1 6 12 2 9 17 3 12 22 4 15 25 5 18 29
13
(一)求回归方程: (1)由观测值计算6个一级数据
n 5
x 6 9 12 15 18 60 x 6 9 12 15 18 810
(2)F检验:
U 176 . 4 F ( n 2 ) ( 5 2 ) 4 . 96 Q 106 . 6
因为 F , 4 . 96 F 10 . 13 0 . 05 ( 1 , 3 ) .05 。说明小白鼠体重和日龄间 所以, p 0 的直线关系不显著。
相关分析(correlation analysis)3
研究“一因一果”,即一个自变量与一个依 变量的回归分析称为一元回归分析;
直线回归分析 曲线回归分析
研究“多因一果”,即多个自变量与一个依 变量的回归分析称为多元回归分析。
多元线性回归分析
多元非线性回归分析
第二节:直线回归
Linear Regression
回归和相关分析结果仅适用于自变量的试验取值 范围。
9
2. 进行直线回归分析时应符合的基本条件 (基本假定) (1)x是没有误差的固定变量;而y是随机 变量,具有随机误差。 (2)x的任一值都对应着一个y的总体,且 呈正态分布。
(3)随机误差是相互独立的,且呈正态分
布。
10
对两个变量间的线性关系的显著性进行检验时, 采用的方法是 F 检验或 t 检验。 直线回归中,只有一个自变量,所以回归平方和 的自由度为1,离回归平方和的自由度为n-2 。 1. 计算回归平方和U和离回归平方和Q:
序号 日龄 x 体重 y 1 6 12 2 9 17 3 12 22 4 15 25 5 18 29
13
(一)求回归方程: (1)由观测值计算6个一级数据
n 5
x 6 9 12 15 18 60 x 6 9 12 15 18 810
《相关和回归分析》ppt课件
2yyˆ2最小值
假设: 2yyc2最小值
将 yˆ abx 带入到上述方程,那么得:
e 2 y y ˆ2 y a b2 x 最小
前往本节首页
令:
Q e2 ya b2 x最小
求偏导数并令其等于0:
Q a
2y
abx10
Q b
2y
abxx0
前往本节首页
解上述方程可得到两个规范方程:
ynabx xyaxbx2
阐明:相关分析和回归分析的关系
回归分析是要对所研讨的变量建立描画它们关系的 模型。但假设要研讨的变量间有没有关系,就谈不 上建立模型,而发现变量间有无关系的最简单、直 观的方法就是进展相关分析。
第一节 相关分析的意义和种类
▪ 一、相关分析的概念 ▪ 二、相关分析的种类
前往本章首页
一、相关分析的概念
eyy ˆy(ab)x
残差
即: yy ˆeab xe
此式即为样本回归函数
前往本节首页
知道了样本回归函数的普通方式
yabxe
需求将a 、b的值估计出来,用以作为总体回归参数 的估计值。
对于a 、b的估计,实践中采用最小二乘法
前往本节首页
最小二乘法的思绪:
由于残差 eyy ˆy(ab)x
残差e 越小,估计值和实践值的离差就越小, 代表回归方程的代表性就越好。
需 拟合直线还是曲线需利用散点图判别
样本一元回归直线实际上可表示为:
yˆ abx
yˆ 为 样本实践观测值 y 的估计值 、代表值、平均值
a、b是两个未知参数。a为截距,b为斜率。
两者分别是对总体参数 和的估计值
前往本节首页
实践观测到的各个因变量 y 值 并不完全等于 yˆ
假设: 2yyc2最小值
将 yˆ abx 带入到上述方程,那么得:
e 2 y y ˆ2 y a b2 x 最小
前往本节首页
令:
Q e2 ya b2 x最小
求偏导数并令其等于0:
Q a
2y
abx10
Q b
2y
abxx0
前往本节首页
解上述方程可得到两个规范方程:
ynabx xyaxbx2
阐明:相关分析和回归分析的关系
回归分析是要对所研讨的变量建立描画它们关系的 模型。但假设要研讨的变量间有没有关系,就谈不 上建立模型,而发现变量间有无关系的最简单、直 观的方法就是进展相关分析。
第一节 相关分析的意义和种类
▪ 一、相关分析的概念 ▪ 二、相关分析的种类
前往本章首页
一、相关分析的概念
eyy ˆy(ab)x
残差
即: yy ˆeab xe
此式即为样本回归函数
前往本节首页
知道了样本回归函数的普通方式
yabxe
需求将a 、b的值估计出来,用以作为总体回归参数 的估计值。
对于a 、b的估计,实践中采用最小二乘法
前往本节首页
最小二乘法的思绪:
由于残差 eyy ˆy(ab)x
残差e 越小,估计值和实践值的离差就越小, 代表回归方程的代表性就越好。
需 拟合直线还是曲线需利用散点图判别
样本一元回归直线实际上可表示为:
yˆ abx
yˆ 为 样本实践观测值 y 的估计值 、代表值、平均值
a、b是两个未知参数。a为截距,b为斜率。
两者分别是对总体参数 和的估计值
前往本节首页
实践观测到的各个因变量 y 值 并不完全等于 yˆ
相关分析与回归分析PPT课件
有人测试出火灾现场的消防员人数和该场火灾造成的损 害之间有很强的正相关 ,可否认为派出的消防员越多造成 的损害越大 ?
确定因果关系的方法——定性分析。
22.10.2020
h
9
自变量与因变量
自变量:是引起某种结果变化的原因,它是可以控制、给 定的值,常用x表示;
因变量:是自变量变化的引起结果量,它是不确定的值, 常用y表示。
函数关系与相关关系的联系
函数关系往往通过相关关系表现出来。把影响因变量变 动的因素全部纳入方程,这时的相关关系就有可能转化 为函数关系。 相关关系经常可以用一定的函数形式去近似地描述。
22.10.2020
h
8
(二)相关关系与因果关系
因果关系∈相关关系; 现象之间是因果关系同时是相关关系,但是相关关系不 一定是因果关系。 统计只能说明现象间有无数量上的关系,不能说明谁因 谁果。 例:有数据显示世界各国平均每人拥有电视机数x及居民预 期寿命y之间有很强的正相关,可否认为电视机很多的国家 ,居民预期寿命比较长?
(减少)而增加(减少),即两者同向变化时, 称为正相关。
如家庭收入与家庭支出之间的关系。
负相关:当一个变量随着另一个变量的增加
(减少)而减少(增加),即两者反向变化时, 称为负相关。
如产品产量与单位成本之间的关系,单位成本 会随着产量的增加而减少。
22.10.2020
h
12
3、 按相关的形式 线性相关:当变量之间的依存关系大致呈现为
函数关系指变量之间具有的严格的确定性的 依存关系。当一个或几个变量取一定的值时, 另一个变量有确定值与之相对应。
函数关系的例子
▪ 某种商品的销售额(y)与销售量(x)之间的关系可表示为 y = p x (p 为单价)
确定因果关系的方法——定性分析。
22.10.2020
h
9
自变量与因变量
自变量:是引起某种结果变化的原因,它是可以控制、给 定的值,常用x表示;
因变量:是自变量变化的引起结果量,它是不确定的值, 常用y表示。
函数关系与相关关系的联系
函数关系往往通过相关关系表现出来。把影响因变量变 动的因素全部纳入方程,这时的相关关系就有可能转化 为函数关系。 相关关系经常可以用一定的函数形式去近似地描述。
22.10.2020
h
8
(二)相关关系与因果关系
因果关系∈相关关系; 现象之间是因果关系同时是相关关系,但是相关关系不 一定是因果关系。 统计只能说明现象间有无数量上的关系,不能说明谁因 谁果。 例:有数据显示世界各国平均每人拥有电视机数x及居民预 期寿命y之间有很强的正相关,可否认为电视机很多的国家 ,居民预期寿命比较长?
(减少)而增加(减少),即两者同向变化时, 称为正相关。
如家庭收入与家庭支出之间的关系。
负相关:当一个变量随着另一个变量的增加
(减少)而减少(增加),即两者反向变化时, 称为负相关。
如产品产量与单位成本之间的关系,单位成本 会随着产量的增加而减少。
22.10.2020
h
12
3、 按相关的形式 线性相关:当变量之间的依存关系大致呈现为
函数关系指变量之间具有的严格的确定性的 依存关系。当一个或几个变量取一定的值时, 另一个变量有确定值与之相对应。
函数关系的例子
▪ 某种商品的销售额(y)与销售量(x)之间的关系可表示为 y = p x (p 为单价)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
回归方程的各种模型
一元线性回归方程模型 yˆ ˆ0 ˆ1x
多元线性回归方程模型 y ˆ ˆ 0 ˆ 1 x 1 ˆ 2 x 2 ˆ k x k
可化为线性回归的方程模型
y01x2x2
y e01x
2020/11/13
11
回归方程的各种检验
1. 回归方程的拟合优度检验
决定系数R2越接近于1,说明回归方程对样本数据点 拟和得越好.
2020/11/13
15
医学统计学 (Medical Statistics)
第8讲 相关分析和回归分析
西南交通大学峨眉校区基础课部数学教研室
本讲结构
一、相关分析 二、回归分析
2020/11/13
2
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
究某种代乳粉的营养价值是用大白鼠做试验,得大白 鼠进食量(g)和体重增量(g)间关系的原始数据。 试对进食量和体重增量进行回归分析。
体重增量=-17.357+0.222×进食量
2020/11/13
13
多元线性回归方程中自变量的选择方法
如果将一些回归效果不显著的自变量引入方程,会降 低模型的精度,因此需要将其从方程中剔除,同时应尽可能 将回归效果显著的自变量放入方程中; 在需要时,还可以 添加交叉项(考虑交互效应)和平方项(二次函数)以进一步 提高模型的精度和实用性.
哪个模型的调整决定系数RC2大,哪个模型就优.
逐步回归法: method→stepwise,选用不同的组 合进行筛选.
2020/11/13
14
【例3】回归分析2.sav 牙膏的销售量
最佳结果: y=29.1133+11.1342x1-7.6.80x2+0.6712x22-1.4777x1x2
R2=0.9209
X、Y 此增彼减---负相关
(negative correlation) 。
散点在一条直线上,
X、Y 变化趋势相同----完
全正相关;
反向变化----完全负相关。5
X、Y 变化互不影响----零
相关(zero correlation)
相关系数示意图
2020/11/13
6
相关系数概念
相关系数(correlation coefficient),对于正态分布 资料,选择积差相关系数, 又称 Pearson 相关系数.
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
一、相关分析
两个变量Y与 X间的彼此关系 —— 相关分析
2020/11/13相关系数示意图
散点呈椭圆形分布,
X、Y 同时增减---正相关
(positive correlation);
2020/11/13
8
二、回归分析
回归分析(Regression)是一种应用极为广泛的数量 分析方法。它用于考察一个变量(因变量)与其余变量 (自变量)之间的数量关系,并通过回归方程的形式反 映这种关系, 进而为控制和预测提供科学依据。
一元线性回归(linear regression): 自变量只有一个.
对于非正态分布资料,选择等级相关系数 (Spearman或Kendall相关系数).
Pearson相关系数计算公式:
r XXYY lXY XX2 YY2 lXlX YY
2020/11/13
7
【例1】相关分析.sav 分析年龄和片段长度的相关性
相关 性
年 龄 (岁 )
限制性端粒片
年 龄 (岁 ) 断 长 度 (bp)
Pears on 相 关 性
1
-.732**
显著性(双侧)
.000
N
123
123
限 制 性 端 粒 片 断 长 度 Pea(brspo) n 相 关 性 -.732**
1
显 著 性 ( 双 侧 ) .000
N
123
123Βιβλιοθήκη **. 在 .01 水 平 ( 双 侧 ) 上 显 著 相 关 。
结论:两变量存在显著的负相关
多元线性回归(multiple linear regression): 自变量
有多个.
2020/11/13
9
一般线性回归的基本步骤
(1)确定回归方程中的自变量和因变量; (2)确定回归方程形式; (3)建立回归方程,估计参数; (4)对回归方程进行各种统计检验; (5)利用回归方程进行预测。
2020/11/13
2. 回归方程的显著性检验
检验统计量F值越大,则P值越小,说明回归方程越显著.
3. 回归系数的显著性检验
回归系数对应的检验统计量t的绝对值越大,则相应
的P值越小,说明回归系数越显著. 特别地,在显著时回归系
20数20/1的1/13置信区间不包含0.
12
【例2】回归分析1.sav 上海医科大学儿科医院研