高中数学表格总结双曲线全部知识点含例题
高中数学知识点总结(第九章 平面解析几何 第七节 双曲线)
第七节 双曲线一、基础知识1.双曲线的定义平面内到两个定点F 1,F 2的距离的差的绝对值等于常数2a (2a <|F 1F 2|)的点P 的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.当|PF 1|-|PF 2|=2a2a <|F 1F 2|时,点P 的轨迹为靠近F 2的双曲线的一支.当|PF 1|-|PF 2|=-2a 2a <|F 1F 2|时,点P 的轨迹为靠近F 1的双曲线的一支. 若2a =2c ,则轨迹是以F 1,F 2为端点的两条射线;若2a >2c ,则轨迹不存在;若2a =0,则轨迹是线段F 1F 2的垂直平分线.2.双曲线的标准方程(1)中心在坐标原点,焦点在x 轴上的双曲线的 标准方程为x 2a 2-y 2b2=1(a >0,b >0).(2)中心在坐标原点,焦点在y 轴上的双曲线的 标准方程为y 2a 2-x 2b 2=1(a >0,b >0).3.双曲线的几何性质标准方程 x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 范围 |x |≥a ,y ∈R|y |≥a ,x ∈R对称性 对称轴:x 轴,y 轴;对称中心:原点 焦点 F 1(-c,0),F 2(c,0) F 1(0,-c ),F 2(0,c ) 顶点 A 1(-a,0),A 2(a,0)A 1(0,-a ),A 2(0,a )轴 线段A 1A 2,B 1B 2分别是双曲线的实轴和虚轴;实轴长为2a ,虚轴长为2b焦距|F 1F 2|=2c离心率e =c a= 1+b 2a2∈(1,+∞) e 是表示双曲线开口大小的 一个量,e 越大开口越大.渐近线 y =±b axy =±a bxa ,b ,c 的关系a 2=c 2-b 2二、常用结论(1)过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a,也叫通径.(2)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).(3)双曲线的焦点到其渐近线的距离为b .(4)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .考点一 双曲线的标准方程[典例] (1)(2018·石家庄摸底)已知双曲线过点(2,3),渐近线方程为y =±3x ,则该双曲线的标准方程是( )A.7x 216-y 212=1 B.y 23-x 22=1 C .x 2-y 23=1 D.3y 223-x 223=1 (2)(2018·天津高考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A.x 24-y 212=1 B.x 212-y 24=1 C.x 23-y 29=1 D.x 29-y 23=1 [解析] (1)法一:当双曲线的焦点在x 轴上时,设双曲线的标准方程是x 2a 2-y 2b2=1(a >0,b >0),由题意得⎩⎨⎧4a 2-9b 2=1,ba =3,解得⎩⎨⎧a =1,b =3,所以该双曲线的标准方程为x 2-y 23=1;当双曲线的焦点在y 轴上时,设双曲线的标准方程是y 2a 2-x 2b2=1(a >0,b >0),由题意得⎩⎨⎧9a 2-4b 2=1,a b =3,无解.故该双曲线的标准方程为x 2-y 23=1,选C. 法二:当其中的一条渐近线方程y =3x 中的x =2时,y =23>3,又点(2,3)在第一象限,所以双曲线的焦点在x 轴上,设双曲线的标准方程是x 2a 2-y 2b2=1(a >0,b >0),由题意得⎩⎨⎧4a 2-9b 2=1,b a =3,解得⎩⎨⎧a =1,b =3,所以该双曲线的标准方程为x 2-y 23=1,故选C.法三:因为双曲线的渐近线方程为y =±3x ,即y3=±x ,所以可设双曲线的方程是x 2-y 23=λ(λ≠0),将点(2,3)代入,得λ=1,所以该双曲线的标准方程为x 2-y 23=1,故选C. (2)法一:如图,不妨设A 在B 的上方,则A ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b2a . 又双曲线的一条渐近线为bx -ay =0, 则d 1+d 2=bc -b 2+bc +b 2a 2+b 2=2bcc =2b=6,所以b =3.又由e =ca =2,知a 2+b 2=4a 2,所以a = 3.所以双曲线的方程为x 23-y 29=1.法二:由d 1+d 2=6,得双曲线的右焦点到渐近线的距离为3,所以b =3.因为双曲线 x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,所以ca =2,所以a 2+b 2a 2=4,所以a 2+9a 2=4,解得a 2=3,所以双曲线的方程为x 23-y 29=1,故选C.[答案] (1)C (2)C [题组训练]1.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,若|PF 1|-|PF 2|=4b ,且双曲线的焦距为25,则该双曲线的标准方程为( )A.x 24-y 2=1 B.x 23-y 22=1 C .x 2-y 24=1 D.x 22-y 23=1 解析:选A 由题意可得⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a =4b ,c 2=a 2+b 2,2c =25,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,则该双曲线的标准方程为x 24-y 2=1.2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的实轴长为4,离心率为 5,则双曲线的标准方程为( )A.x 24-y 216=1 B .x 2-y 24=1C.x 22-y 23=1 D .x 2-y 26=1 解析:选A 因为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的实轴长为4,所以a =2,由离心率为5,可得c a =5,c =25,所以b =c 2-a 2=20-4=4,则双曲线的标准方程为x 24-y 216=1.3.经过点P (3,27),Q(-62,7)的双曲线的标准方程为____________. 解析:设双曲线方程为mx 2+ny 2=1(mn <0), 因为所求双曲线经过点P (3,27),Q(-62,7),所以⎩⎪⎨⎪⎧9m +28n =1,72m +49n =1,解得⎩⎨⎧m =-175,n =125.故所求双曲线方程为y 225-x 275=1.答案:y 225-x 275=1考点二 双曲线定义的应用考法(一) 利用双曲线的定义求双曲线方程[典例] 已知动圆M 与圆C 1:(x +4)2+y 2=2外切,与圆C 2:(x -4)2+y 2=2内切,则动圆圆心M 的轨迹方程为( )A.x 22-y 214=1(x ≥ 2) B.x 22-y 214=1(x ≤-2) C.x 22+y 214=1(x ≥ 2) D.x 22+y 214=1(x ≤-2) [解析] 设动圆的半径为r ,由题意可得|MC 1|=r +2,|MC 2|=r -2,所以|MC 1|-|MC 2|=22=2a ,故由双曲线的定义可知动点M 在以C 1(-4,0),C 2(4,0)为焦点,实轴长为2a =22的双曲线的右支上,即a =2,c =4⇒b 2=16-2=14,故动圆圆心M 的轨迹方程为x 22-y 214=1(x ≥ 2). [答案] A[解题技法]利用双曲线的定义判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程.考法(二) 焦点三角形问题[典例] 已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于( )A .2B .4C .6D .8[解析] 由双曲线的方程得a =1,c =2, 由双曲线的定义得||PF 1|-|PF 2||=2. 在△PF 1F 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°, 即(22)2=|PF 1|2+|PF 2|2-|PF 1|·|PF 2| =(|PF 1|-|PF 2|)2+|PF 1|·|PF 2| =22+|PF 1|·|PF 2|, 解得|PF 1|·|PF 2|=4. [答案] B [解题技法]在双曲线中,有关焦点三角形的问题常用双曲线定义和解三角形的知识来解决,尤其是涉及|PF 1|,|PF 2|的问题,一般会用到双曲线定义.涉及焦点三角形的面积问题,若顶角θ已知,则用S △PF 1F 2=12|PF 1||PF 2|sin θ,|||PF 1|-|PF 2|=2a 及余弦定理等知识;若顶角θ未知,则用S △PF 1F 2=12·2c ·|y 0|来解决.[题组训练]1.已知点F 1(-3,0)和F 2(3,0),动点P 到F 1,F 2的距离之差为4,则点P 的轨迹方程为( )A.x 24-y 25=1(y >0) B.x 24-y 25=1(x >0) C.y 24-x 25=1(y >0) D.y 24-x 25=1(x >0) 解析:选B 由题设知点P 的轨迹方程是焦点在x 轴上的双曲线的右支,设其方程为x 2a 2-y 2b 2=1(x >0,a >0,b >0),由题设知c =3,a =2,b 2=9-4=5,所以点P 的轨迹方程为x 24-y 25=1(x >0). 2.已知双曲线x 2-y 224=1的两个焦点为F 1,F 2,P 为双曲线右支上一点.若|PF 1|=43|PF 2|,则△F 1PF 2的面积为( )A .48B .24C .12D .6解析:选B 由双曲线的定义可得 |PF 1|-|PF 2|=13|PF 2|=2a =2,解得|PF 2|=6,故|PF 1|=8,又|F 1F 2|=10, 由勾股定理可知三角形PF 1F 2为直角三角形, 因此S △F 1PF 2=12|PF 1|·|PF 2|=24.考点三 双曲线的几何性质考法(一) 求双曲线的离心率(或范围)[典例] (2018·长春二测)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则双曲线离心率的取值范围是( )A.⎝⎛⎦⎤53,2B.⎝⎛⎦⎤1,53 C .(1,2]D.⎣⎡⎭⎫53,+∞ [解析] 由双曲线的定义可知|PF 1|-|PF 2|=2a ,又|PF 1|=4|PF 2|,所以|PF 2|=2a3,由双曲线上的点到焦点的最短距离为c -a ,可得2a 3≥c -a ,解得c a ≤53, 即e ≤53,又双曲线的离心率e >1,故该双曲线离心率的取值范围为⎝⎛⎦⎤1,53,故选B. [答案] B [解题技法]1.求双曲线的离心率或其范围的方法(1)求a ,b ,c 的值,由c 2a 2=a 2+b 2a 2=1+b 2a2直接求e .(2)列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=c 2-a 2消去b ,然后转化成关于e 的方程(或不等式)求解.2.求离心率的口诀归纳离心率,不用愁,寻找等式消b 求; 几何图形寻迹踪,等式藏在图形中. 考法(二) 求双曲线的渐近线方程[典例] (2019·武汉部分学校调研)已知双曲线C :x 2m 2-y 2n 2=1(m >0,n >0)的离心率与椭圆x 225+y 216=1的离心率互为倒数,则双曲线C 的渐近线方程为( ) A .4x ±3y =0 B .3x ±4y =0C .4x ±3y =0或3x ±4y =0D .4x ±5y =0或5x ±4y =0[解析] 由题意知,椭圆中a =5,b =4,∴椭圆的离心率e = 1-b 2a 2=35,∴双曲线的离心率为 1+n 2m 2=53,∴n m =43,∴双曲线的渐近线方程为y =±n m x =±43x ,即4x ±3y =0.故选A.[答案] A[解题技法] 求双曲线的渐近线方程的方法求双曲线x 2a 2-y 2b 2=1(a >0,b >0)或y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程的方法是令右边的常数等于0,即令x 2a 2-y 2b 2=0,得y =±b a x ;或令y 2a 2-x 2b 2=0,得y =±ab x .反之,已知渐近线方程为y =±b a x ,可设双曲线方程为x 2a 2-y 2b2=λ(a >0,b >0,λ≠0).[题组训练]1.(2019·潍坊统一考试)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到渐近线的距离为3,且离心率为2,则该双曲线的实轴的长为( )A .1 B.3 C .2D .23解析:选C 由题意知双曲线的焦点(c,0)到渐近线bx -ay =0的距离为bca 2+b 2=b =3,即c 2-a 2=3,又e =ca=2,所以a =1,该双曲线的实轴的长为2a =2.2.已知直线l 是双曲线C :x 22-y 24=1的一条渐近线,P 是直线l 上一点,F 1,F 2是双曲线C 的左、右焦点,若PF 1―→·PF 2―→=0,则点P 到x 轴的距离为( )A.233B.2 C .2D.263解析:选C 由题意知,双曲线的左、右焦点分别为F 1(-6,0),F 2(6,0),不妨设直线l 的方程为y =2x ,设P (x 0,2x 0).由PF 1―→·PF 2―→=(-6-x 0,-2x 0)·(6-x 0,-2x 0)=3x 20-6=0,得x 0=±2,故点P 到x 轴的距离为|2x 0|=2,故选C.3.(2019·成都一诊)如图,已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),长方形ABCD 的顶点A ,B 分别为双曲线E 的左、右焦点,且点C ,D 在双曲线E 上,若|AB |=6,|BC |=52,则双曲线E 的离心率为( )A. 2B.32C.52D.5解析:选B 根据|AB |=6可知c =3,又|BC |=52,所以b 2a =52,b 2=52a ,所以c 2=a 2+52a=9,解得a =2(舍负),所以e =c a =32.4.(2018·郴州二模)已知双曲线y 2m -x 29=1(m >0)的一个焦点在直线x +y =5上,则双曲线的渐近线方程为( )A .y =±34xB .y =±43xC .y =±223xD .y =±324x解析:选B 由双曲线y 2m -x 29=1(m >0)的焦点在y 轴上,且在直线x +y =5上,直线x+y =5与y 轴的交点为(0,5),有c =5,则m +9=25,得m =16, 所以双曲线的方程为y 216-x 29=1,故双曲线的渐近线方程为y =±43x .故选B.[课时跟踪检测]A 级1.(2019·襄阳联考)直线l :4x -5y =20经过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点和虚轴的一个端点,则双曲线C 的离心率为( )A.53 B.35 C.54D.45解析:选A 由题意知直线l 与两坐标轴分别交于点(5,0),(0,-4),从而c =5,b =4,∴a =3,双曲线C 的离心率e =c a =53.2.设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点,若点P 在双曲线上,且|PF 1|=6,则|PF 2|=( )A .6B .4C .8D .4或8解析:选D 由双曲线的标准方程可得a =1,则||PF 1|-|PF 2||=2a =2,即|6-|PF 2||=2,解得|PF 2|=4或8.3.(2018·全国卷Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则点(4,0)到C的渐近线的距离为( )A. 2 B .2 C.322D .22解析:选D ∵e =ca=1+b 2a 2=2,∴b a=1. ∴双曲线的渐近线方程为x ±y =0. ∴点(4,0)到C 的渐近线的距离d =42=2 2. 4.若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .离心率相等B .虚半轴长相等C .实半轴长相等D .焦距相等解析:选D 由0<k <9,易知两曲线均为双曲线且焦点都在x 轴上,由25+9-k =25-k +9,得两双曲线的焦距相等.5.(2018·陕西部分学校摸底)在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1,过C 1的左顶点引C 1的一条渐近线的平行直线,则该直线与另一条渐近线及x 轴所围成的三角形的面积为( )A.24B.22C.28D.216解析:选C 设双曲线C 1的左顶点为A ,则A ⎝⎛⎭⎫-22,0,双曲线的渐近线方程为y =±2x ,不妨设题中过点A 的直线与渐近线y =2x 平行,则该直线的方程为y =2⎝⎛⎭⎫x +22,即y =2x +1.联立⎩⎨⎧y =-2x ,y =2x +1,解得⎩⎨⎧x =-24,y =12.所以该直线与另一条渐近线及x 轴所围成的三角形的面积S =12·|OA |·12=12×22×12=28,故选C.6.(2019·辽宁五校协作体模考)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b 2=1(a>0,b >0)的离心率为5,从双曲线C 的右焦点F 引渐近线的垂线,垂足为A ,若△AFO 的面积为1,则双曲线C 的方程为( )A.x 22-y 28=1 B.x 24-y 2=1 C.x 24-y 216=1 D .x 2-y 24=1 解析:选D 因为双曲线C 的右焦点F 到渐近线的距离|F A |=b ,|OA |=a ,所以ab =2,又双曲线C 的离心率为5,所以 1+b 2a2=5,即b 2=4a 2,解得a 2=1,b 2=4,所以双曲线C 的方程为x 2-y 24=1,故选D. 7.(2018·北京高考)若双曲线x 2a 2-y 24=1(a >0)的离心率为52,则a =________.解析:由e =ca =a 2+b 2a 2,得a 2+4a 2=54, ∴a 2=16. ∵a >0,∴a =4. 答案:48.过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=________.解析:双曲线的右焦点为F (2,0),过F 与x 轴垂直的直线为x =2,渐近线方程为x 2-y 23=0,将x =2代入x 2-y 23=0,得y 2=12,y =±23,故|AB |=4 3. 答案:43 9.(2018·海淀期末)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =________.解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax ,由已知可得两条渐近线互相垂直,由双曲线的对称性可得b a=1.又正方形OABC 的边长为2,所以c =22,所以a 2+b 2=c 2=(22)2,解得a =2.答案:210.(2018·南昌摸底调研)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,过点F 作圆(x -a )2+y 2=c 216的切线,若该切线恰好与C 的一条渐近线垂直,则双曲线C 的离心率为________.解析:不妨取与切线垂直的渐近线方程为y =b a x ,由题意可知该切线方程为y =-a b(x -c ),即ax +by -ac =0.圆(x -a )2+y 2=c 216的圆心为(a,0),半径为c 4,则圆心到切线的距离d =|a 2-ac |a 2+b2=ac -a 2c =c 4,又e =c a ,则e 2-4e +4=0,解得e =2,所以双曲线C 的离心率e =2. 答案:211.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4, -10),点M (3,m )在双曲线上.(1)求双曲线的方程;(2)求证:MF 1―→·MF 2―→=0;(3)求△F 1MF 2的面积.解:(1)∵e =2,∴双曲线的实轴、虚轴相等.则可设双曲线方程为x 2-y 2=λ.∵双曲线过点(4,-10),∴16-10=λ,即λ=6.∴双曲线方程为x 26-y 26=1. (2)证明:不妨设F 1,F 2分别为双曲线的左、右焦点, 则MF 1―→=(-23-3,-m ),MF 2―→=(23-3,-m ).∴MF 1―→·MF 2―→=(3+23)×(3-23)+m 2=-3+m 2,∵M 点在双曲线上,∴9-m 2=6,即m 2-3=0,∴MF 1―→·MF 2―→=0.(3)△F 1MF 2的底边长|F 1F 2|=4 3.由(2)知m =± 3.∴△F 1MF 2的高h =|m |=3,∴S △F 1MF 2=12×43×3=6. 12.中心在原点,焦点在x 轴上的椭圆与双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求椭圆和双曲线的方程;(2)若P 为这两曲线的一个交点,求cos ∠F 1PF 2的值.解:(1)由题知c =13,设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),双曲线方程为x 2m 2-y 2n 2=1(m >0,n >0),则⎩⎪⎨⎪⎧ a -m =4,7·13a =3·13m ,解得a =7,m =3.则b =6,n =2.故椭圆方程为x 249+y 236=1,双曲线方程为x 29-y 24=1. (2)不妨设F 1,F 2分别为椭圆与双曲线的左、右焦点,P 是第一象限的交点, 则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,所以|PF 1|=10,|PF 2|=4.又|F 1F 2|=213,所以cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=102+42-21322×10×4=45.B 级1.已知圆(x -1)2+y 2=34的一条切线y =kx 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)有两个交点,则双曲线C 的离心率的取值范围是( )A .(1,3)B .(1,2)C .(3,+∞)D .(2,+∞)解析:选D 由题意,知圆心(1,0)到直线kx -y =0的距离d =|k |k 2+1=32,∴k =±3, 由题意知b a >3,∴1+b 2a 2>4,即a 2+b 2a 2=c 2a 2>4,∴e >2. 2.(2019·吉林百校联盟联考)如图,双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,直线l 过点F 1且与双曲线C 的一条渐近线垂直,与两条渐近线分别交于M ,N 两点,若|NF 1|=2|MF 1|,则双曲线C 的渐近线方程为( )A .y =±33x B .y =±3x C .y =±22x D .y =±2x解析:选B ∵|NF 1|=2|MF 1|,∴M 为NF 1的中点,又OM ⊥F 1N ,∴∠F 1OM =∠NOM ,又∠F 1OM =∠F 2ON ,∴∠F 2ON =60°,∴双曲线C 的渐近线的斜率k =±tan 60°=±3,即双曲线C 的渐近线方程为y =±3x .故选B.3.设A ,B 分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程;(2)已知直线y =33x -2与双曲线的右支交于M ,N 两点,且在双曲线的右支上存在点D ,使OM ―→+ON ―→=t OD ―→,求t 的值及点D 的坐标.解:(1)由题意知a =23,∵一条渐近线为y =b ax ,∴bx -ay =0.由焦点到渐近线的距离为3,得|bc |b 2+a 2= 3. 又∵c 2=a 2+b 2,∴b 2=3,∴双曲线的方程为x 212-y 23=1. (2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0),则x 1+x 2=tx 0,y 1+y 2=ty 0.将直线方程y =33x -2代入双曲线方程x 212-y 23=1得 x 2-163x +84=0,则x 1+x 2=163,y 1+y 2=33(x 1+x 2)-4=12. ∴⎩⎨⎧ x0y 0=433,x 2012-y 203=1.解得⎩⎨⎧x 0=43,y 0=3. ∴t =4,点D 的坐标为(43,3).。
高中数学双曲线知识归类总结
高中数学双曲线知识归类总结一、双曲线上点到坐标轴上点的距离最大值及最小值根据两点距离公式,利用双曲线方程,借助代入消元法,消去其中一个变量,得到双曲线上点到坐标轴上点的距离关于变量的函数表达式,将点点之间距离的最值问题转化成常见函数——二次函数的最值问题进行求解,注意变量的取值范围. 先看例题:已知双曲线224:y C x -=求点(1,0)P 到此双曲线上的点的最近距离.整理:焦点在x 轴上的双曲线)0,0(12222>>=-b a b y a x 上任一点(),P x y , (),0M m ,2222222||()()(1)x PM x m y x m b a =-+=---()0,N n ,2222222||()(1)()y PN x y n a y n b =+-=++-两点距离的最值问题转化成二次函数的最值问题进行求解,注意变量,x y 的取值范围,其中||,x a ≥y R ∈焦点在y 轴上的双曲线)0,0(12222>>=-b a b x a y 类似处理. 再看一个例题,加深印象例:已知双曲线)0,0(12222>>=-b a b y a x 的离心率25=e ,点A (0,1)与双曲线上的点的最小距离是5302,求双曲线的方程.总结:1.根据双曲线不同形式的标准方程及两点距离公式,写出双曲线上点到坐标轴上点的距离关于变量x或y的函数表达式.2.根据变量,x y的取值范围,求出二次函数的最值,进而求出双曲线上点到坐标轴上点的距离最值.练习:1.已知双曲线C:221x y-=,点A(a,0) (a>0) 到双曲线上的点的最近距离为d,求解析式d=f(a).2.已知双曲线C:2214xy-=,P是C上的任意点.(Ⅰ)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数; (Ⅱ)设点A的坐标为(3,0),求|PA|的最小值.答案:1.解:2222222()()12()122a a d x a y x a x x =-+=-+-=-+-,||1x ≥0<a ≤2时,点A(a ,0)到双曲线的距离的最小值()|1|f a a ==-;当 a >2时,点A(a ,0)到双曲线的距离的最小值()f a =(Ⅱ)设P 的坐标为(x ,y ),则|PA |2=(x -3)2+y 222(3)14x x =-+-25124()455x =-+.∵|x|≥2, ∴当125x =时,|PA|2的最小值为45,即|PA |的最小值为5.二、有关双曲线中线段的和的最值问题本内研究双曲线中线段之和的最值.根据双曲线的第一定义,利用三角形中两边之和大于第三边,三角形中两边之差小于第三边,处理线段之和的最值问题时,画出图形,利用几何图形的性质三点共线线段之和取得最值. 先看例题:例:已知F 是双曲线221412x y -=的左焦点,A (1,4),P 是双曲线上的动点,则|PF |+|PA |的最小值为________.思考:P 是双曲线右支上的动点,答案如何?例如:已知F 是双曲线221412x y -=的左焦点,A (1,4),P 是双曲线右支上的动点,则|PF |+|PA |的最小值为________.整理:根据双曲线的第一定义,利用三角形两边之和大于第三边或三角形两边之差小于第三 边画出图形,利用几何图形的性质三点共线线段之和取得最值.设P 为平面内一动点,A 、B 为两定点,则||||||PA PB AB +≥当且仅当点P 在线段AB 上时取得最小值;BA图1||||||||AB PA PB AB -≤-≤ 当且仅当点P 在线段AB (或BA )的延长线时取等号.B A P P图2再看一个例题,加深印象:例:已知F 是双曲线22: 2C x y -=的右焦点,P 是C 的左支上一点,()0,2A .当APF ∆ 周长最小时,求P 的坐标.总结:1.在遇到双曲线中线段和的最值问题时,常利用双曲线上点的性质(12||2MF MF a-=)及三角形三边关系.2.注意双曲线上点的位置,在哪一支上,影响所求最值.1.已知F是双曲线C:2218yx-=的右焦点,P是C的左支上一点,A(0,).当△APF周长最小时,该三角形的面积为________.2.已知F是双曲线221412x y-=的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为________.3.已知以原点O为中心的双曲线的一条准线方程为x=,离心率e=(Ⅰ)求该双曲线的方程;(Ⅱ)如图,点A的坐标为(,B是圆22(1x y+=上的点,点M在双曲线右支上,求MA MB+的最小值,并求此时M点的坐标;(Ⅱ)设点D的坐标为,则点A 、D 为双曲线的焦点,||||22MA MD a -== 所以||||2||||2||MA MB MB MD BD +=+++≥ ,B是圆22(1x y +=上的点,其圆心为C ,半径为1,故||||11BD CD -=≥从而||||2||1MA MB BD ++≥由方程组2244x y y x ⎧-=⎪⎨=-+⎪⎩得x y ==∴M .三、双曲线中另一种线段之和的最值问题本内容主要研究双曲线中线段之和1+||eM MFA(|MF|为焦半径,A是定点)的最值.根据双曲线的第二定义,利用三角形中两边之和大于第三边,三角形中两边之差小于第三边,处理线段之和的最值问题时,画出图形,利用几何图形的性质三点共线线段之和取得最值.先看例题:例:已知点A(5,3),F(2,0),在双曲线2213yx-=上求一点P,使1||||2PA PF+的值最小.显然直线垂直于准线时合题意,且在双曲线的右支上,此时P点纵坐标为3,所以所求点P的坐标为P(2,3)注意:题目中PF的系数并不是任意的,它与双曲线的离心率有关.再看一个例题,加深印象例:已知P是双曲线221169yx-=右支上的动点,点F是双曲线的右焦点,定点()8,4A,求45PF PA+的最小值.解:由所求45PF PA+和54e=的特殊性,巧用第二定义化归为平几最值求解.总结:1.在遇到双曲线中线段和的最值问题时,常利用双曲线上点的性质(12||2MF MF a-=)及三角形三边关系.2.注意双曲线上点的位置,在哪一支上,影响所求最值.练习:1.已知点A(3,2),F(2,0),在双曲线2213yx-=上求一点P,使1||||2PA PF+的值最小.2.已知P是双曲线2211620yx-=右支上的动点,点P是双曲线的右焦点,定点()7,6A,求23PF PA+的最小值.答案: 1.解:∵a=1,c=2,e=2ca=, 设点P 到与焦点(2,0)相应的准线的距离为d ,则||12,||2PF PF d d =∴=即在双曲线上求点P ,使P 到定点A 的距离与到准线的距离之和最小,显然直线垂直于准线时合题意,且在双曲线的右支上,此时P 点纵坐标为2,∴所求的点为P(3,2).2.四、双曲线中线段之差的最值问题本内容主要研究双曲线中线段之差的最值.根据双曲线的第一定义和第二定义,利用三角形中两边之和大于第三边,三角形中两边之差小于第三边,处理线段之和的最值问题时,画出图形,利用几何图形的性质三点共线线段之和取得最值.例:已知F 是双曲线221412x y -=的左焦点,A (1,4),P 是双曲线上的动点,则|PF |-|PA |的最大值为________.解:由双曲线的图象,连接F A 延长交双曲线于点P ,满足|PF |-|P A |最大.由两点间距离公式,A (1,4),F (-4,0)求得最大值为||AF =整理:根据双曲线第一定义和第二定义利用三角形两边之和大于第三边或三角形两边之差小于第三边,画出图形利用几何图形的性质,三点共线线段之和取得最值.例如:设P为平面内一动点,A、B为两定点,则||||||PA PB AB+≥当且仅当点P在线段AB上时取得最小值;BA图1||||||||AB PA PB AB-≤-≤当且仅当点P在线段AB(或BA)的延长线时取等号.BAP P图2再看一个例题:例:P为双曲线x2-y215=1右支上一点,M、N分别是圆(x+4)2+y2=4和(x-4)2+y2=1上的点,则|PM|-|PN|的最大值为__________.解:已知两圆圆心(-4,0)和(4,0)(记为F1和F2)恰为双曲线x2-y215=1的两焦点.如图:当|PM |最大,|PN |最小时,|PM |-|PN |最大, |PM |最大值为P 到圆心F 1的距离|PF 1|与圆F 1半径之和, 同样|PN |最小=|PF 2|-1,从而|PM |-|PN |的最大值为|PF 1|+2-(|PF 2|-1)=|PF 1|-|PF 2|+3=2a +3=5.总结:1.在遇到双曲线中线段差的最值问题时,常利用双曲线上点的性质(12||2MF MF a-=)及三角形三边关系.2.双曲线上到的双曲线内(不含焦点的区域)一个定点的距离与它到焦点距离之差取得最大值或最小值的点是这个定点与焦点连线延长线或反向延长线与双曲线的交点.3.注意双曲线上点的位置,在哪一支上,影响所求最值.练习:1.P 为双曲线2218-=y x 右支上一点,M 、N 分别是圆(x +3)2+y 2=4和(x -3)2+y 2=1上的点,则|PM |-|PN |的最大值为__________.2.设圆C与两圆2222(4,(4x y x y +=+=,中的一个内切,另一个外切. (Ⅰ)求C 的圆心轨迹L 的方程;(Ⅱ)已知点M且P 为L 上动点.求||MP|-|FP||的最大值及此时点P的坐标.答案:1.解:已知两圆圆心(-3,0)和(3,0)(记为F1和F2)恰为双曲线2218yx-=的两焦点.当|PM|最大,|PN|最小时,|PM|-|PN|最大,|PM|最大值为P到圆心F1的距离|PF1|与圆F1半径之和,同样|PN|最小=|PF2|-1,从而|PM|-|PN|的最大值为|PF1|+2-(|PF2|-1)=|PF1|-|PF2|+3=2a+3=5.五、双曲线中另一种线段之差的最值问题本内容主要研究双曲线中线段之差1-||eM MFA(|MF|为焦半径,A是定点)的最值.根据双曲线的第二定义,利用三角形中两边之和大于第三边,三角形中两边之差小于第三边,处理线段之和的最值问题时,画出图形,利用几何图形的性质三点共线线段之和取得最值.先看例题:例:已知点A(5,3),F(2,0),在双曲线2213yx-=上求一点P,使1||||2-PA PF的值最大.解:∵a=1,c=2,e=2ca=,设点P到与焦点(2,0)相应的准线的距离为d,则||12,||2PFPF d d=∴=即在双曲线上求点P,使P到定点A的距离与到准线的距离之差最大,显然直线垂直于准线时合题意,且在双曲线的左支上,此时P点纵坐标为3,∴所求的点为P(-2,3).注意:题目中PF的系数并不是任意的,它与双曲线的离心率有关. 整理:根据双曲线的第二定义,将1||MF e 转化为点到准线的距离,利用三角形两边之和大于第三边,或三角形两边之差小于第三边, 画出图形,利用几何图形的性质三点共线线段之差取得最值.例:已知P 是双曲线221169y x -=右支上的动点,点F 是双曲线的右焦点,定点()5,4A ,求45PF PA-的最大值.解:由所求4|PF|-5|PA|和45=e 的特殊性,巧用第二定义化归为平几最值求解.设P 1为P 在右准线上的射影,A 1为A 在右准线上的射影, 则4|PF|-5|P A |=5(|P A 1|-|P A |)≤5|A 1A |.当且仅当A ,P ,P 1,A 1共线时取最大值. 此时的最大值为116955(5)5955AA =-=⨯=.即4|PF |-5|P A |的最大值为9.总结:1.在遇到双曲线中线段和的最值问题时,常利用双曲线上点的性质(12||2MF MF a-=)及三角形三边关系.2.注意双曲线上点的位置,在哪一支上,影响所求最值.练习:1.已知点A (3,2),F (2,0),在双曲线2213y x -=上求一点P,使1||||2-PA PF 的值最大.2.已知P 是双曲线2211620y x -=右支上的动点,点P 是双曲线的右焦点,定点()7,6A ,求23PF PA-的最大值.答案: 1.解:∵a=1,c=2,e=2ca=, 设点P 到与焦点(2,0)相应的准线的距离为d ,则||12,||2PF PF d d =∴=即在双曲线上求点P ,使P 到定点A 的距离与到准线的距离之差最大,显然直线垂直于准线时合题意,且在双曲线的左支上,此时P 点纵坐标为2,∴所求的点为P (3-,2).2.解:设P 1为P 在右准线上的射影,A 1为A 在右准线上的射影,则2|PF |-3|P A |=3(|P A 1|-|P A |)≤3|A 1A |. 当且仅当A ,P ,P 1,A 1共线时取最大值. 此时的最大值为1163AA 3(7)196=-=.即4|PF |-5|P A |的最大值为19.。
双曲线知识点归纳总结
双曲线知识点归纳总结双曲线是高中数学中的一个重要概念,属于二次曲线的一种。
其特点是曲线两支无限延伸且不相交,且中心对称。
双曲线有很多重要的性质和应用,在此对双曲线的知识点进行归纳总结。
1. 双曲线的方程形式双曲线的标准方程由两部分构成,具体形式为:(x-h)^2/a^2 - (y-k)^2/b^2 = 1 或者 (y-k)^2/b^2 - (x-h)^2/a^2 = 1其中(h, k)为中心点坐标,a和b为两支曲线的半轴长度。
2. 双曲线的焦点和直径双曲线上的点到两个焦点的距离之差的绝对值恒为常数,记作2c。
而双曲线的直径是指通过中心点且垂直于双曲线的线段,其长度为2a。
3. 双曲线的渐近线双曲线有两条渐近线,分别与两支曲线无限接近而永不相交。
渐近线的方程为:y = k1(x-h) + k2 或者 y = k1(x-h) - k2其中k1为双曲线的纵轴斜率,k2为两支曲线与渐近线的交点与中心距离之差。
4. 双曲线的对称轴双曲线的对称轴是通过两支曲线的对称轴的中点且垂直于对称轴的一条直线。
对称轴的方程为:x = h5. 双曲线的准线和离心率离心率是双曲线的一个重要性质,定义为焦点到中心点的距离与准线的长度之比,记作e。
准线是通过中心点且与两支曲线相切的一条直线。
准线的方程为:y = k 或者 y = -k其中k为焦点到中心点的距离。
6. 双曲线的图象特点双曲线的图象是两个关于中心点对称的分支,并且曲线无限延伸。
双曲线的左右两支是无边界的,而上下两支则被渐近线所截断。
双曲线在原点处有一个拐点,两支曲线在拐点处相切。
7. 双曲线的变形双曲线可以通过坐标变换进行平移、伸缩和旋转等变形。
平移是通过改变中心点的坐标实现的,伸缩是通过改变半轴长度实现的,旋转是通过改变坐标轴的方向实现的。
8. 双曲线的应用双曲线在科学和工程领域有着广泛的应用。
例如在物理学中,双曲线可以用于描述光的折射和反射现象;在工程领域,双曲线可以用于设计梁和拱桥等结构。
双曲线性质总结及经典例题
双曲线性质总结及经典例题双曲线知识点总结1. 双曲线的第一定义:⑴①双曲线标准方程:.一般方程:.⑵①i. 焦点在x轴上:顶点:焦点:准线方程渐近线方程:或ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距(两准线的距离). ⑤参数关系. ⑥焦点半径公式:对于双曲线方程(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)例题分析定义类1,已知12(5,0),(5,0)F F -,一曲线上的动点P 到21,F F 距离之差为6,则双曲线的方程为点拨:一要注意是否满足122||a F F <,二要注意是一支还是两支12||||610PF PF -=< ,P 的轨迹是双曲线的右支.其方程为)0(116922>=-x y x2双曲线的渐近线为x y 23±=,则离心率为 点拨:当焦点在x 轴上时,23=a b ,213=e ;当焦点在y轴上时,23=b a ,313=e4 设P 为双曲线11222=-y x 上的一点F 1、F 2是该双曲线的两个焦点,若|PF 1|:|PF 2|=3:2,则△PF 1F 2的面积为 ( )A .36B .12C .312D .24 解析:2:3||:||,13,12,121====PF PF c b a 由 ①又,22||||21==-a PF PF ②由①、②解得.4||,6||21==PF PF,52||,52||||2212221==+F F PF PF为21F PF ∴直角三角形,.124621||||212121=⨯⨯=⋅=∴∆PF PF S F PF 故选B 。
1已知双曲线C 与双曲线162x -42y =1有公共焦点,且过点(32,2).求双曲线C 的方程.【解题思路】运用方程思想,列关于c b a ,,的方程组 [解析] 解法一:设双曲线方程为22a x -22b y =1.由题意易求c =25.又双曲线过点(32,2),∴22)23(a -24b =1.又∵a 2+b 2=(25)2,∴a 2=12,b 2=8.故所求双曲线的方程为122x-82y =1.解法二:设双曲线方程为kx -162-ky +42=1,将点(32,2)代入得k =4,所以双曲线方程为122x -82y =1.2.已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ; [解析]设双曲线方程为λ=-224y x ,当0>λ时,化为1422=-λλy x ,2010452=∴=∴λλ, 当0<λ时,化为1422=---λλy y ,2010452-=∴=-∴λλ,综上,双曲线方程为221205x y -=或120522=-x y3.以抛物线x y 382=的焦点F 为右焦点,且两条渐近线是03=±y x 的双曲线方程为___________________.[解析] 抛物线x y 382=的焦点F 为)0,32(,设双曲线方程为λ=-223y x ,9)32(342=∴=∴λλ,双曲线方程为13922=-y x【例1】若椭圆()0122 n m ny m x =+与双曲线221x y a b-=)0( b a 有相同的焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是 ( )A. a m -B. ()a m -21 C. 22a m -D.am -()1221m PF PF m∴+=,()1222a PF PF a∴-=±,()()()2212121244PF PF m a PF PF m a-⋅=-⇒⋅=-:,故选A.【评注】严格区分椭圆与双曲线的第一定义,是破解本题的关键. 【例2】已知双曲线127922=-y x 与点M(5,3),F 为右焦点,若双曲线上有一点P ,使PMPF 21+最小,则P 点的坐标为XY O F(6,0)M(5,3)P N P ′N ′X=32【分析】待求式中的12是什么?是双曲线离心率的倒数.由此可知,解本题须用双曲线的第二定义.【解析】双曲线的右焦点F (6,0),离心率2e =, 右准线为32l x =:.作MN l ⊥于N ,交双曲线右支于P , 连FP ,则122PF e PN PN PN PF ==⇒=.此时 PM 1375225PF PM PN MN +=+==-=为最小. 在127922=-y x 中,令3y =,得2122 3.xx x =⇒=±∴0,取23x =所求P 点的坐标为23(,).【例3】过点(1,3)且渐近线为x y 21±=的双曲线方程是【解析】设所求双曲线为()2214x y k -=点(1,3)代入:135944k =-=-.代入(1): 22223541443535x y x y -=-⇒-=即为所求.【评注】在双曲线22221x y a b -=中,令222200x y x y a b a b-=⇒±=即为其渐近线.根据这一点,可以简洁地设待求双曲线为2222x y k a b-=,而无须考虑其实、虚轴的位置.【例7】直线l 过双曲线12222=-by a x 的右焦点,斜率k =2.若l 与双曲线的两个交点分别在左右两支上,则双曲线的离心率e 的范围是 ( ) A .e >2 B.1<e <3 C.1<e <5 D.e >5【解析】如图设直线l 的倾斜角为α,双曲线渐近线m的倾斜角为β.显然。
高中数学双曲线知识点总结
高中数学双曲线知识点总结一、双曲线的定义双曲线是由平面上距离不变的所有点的轨迹组成的曲线。
具体地说,双曲线是平面上的一条曲线,其上的每一点到两个给定的不同点F1和F2的距离之差是一个常数。
在平面直角坐标系中,双曲线的定义可以表示为:一个点到两个不同点F1和F2的距离之差是一个常数e,即PF1-PF2=e。
二、双曲线的性质1. 双曲线包括两条分支,它们分别靠近两个焦点。
对于双曲线的每个分支来说,离焦点越远,离另一个分支越近。
2. 双曲线的两个焦点之间的距离称为焦距,是双曲线的重要参量,通常用2c表示。
3. 双曲线的渐近线是双曲线的一条特殊的直线,与双曲线有两个不同的交点。
双曲线的两条分支在渐近线上无限趋近。
4. 双曲线具有对称性,关于两个坐标轴都具有对称性,即当双曲线与一个坐标轴相交时,在另一个坐标轴上也有交点。
5. 双曲线有一个中心,它是两个焦点的中点,也是双曲线的对称中心。
6. 双曲线的方程通常可以表示为x^2/a^2-y^2/b^2=1或者y^2/b^2-x^2/a^2=1,其中a 和b分别是椭圆的轴长。
三、双曲线的方程在平面直角坐标系中,双曲线的一般方程可以表示为:1. 若横轴为实轴,纵轴为虚轴,则双曲线的方程为x^2/a^2-y^2/b^2=1;2. 若横轴为虚轴,纵轴为实轴,则双曲线的方程为y^2/b^2-x^2/a^2=1。
在双曲线的方程中,a和b分别代表横轴和纵轴方向的轴长,e为离心率。
四、双曲线的图像1. 当a>b时,双曲线的中心在x轴上,两分支朝向y轴;2. 当a<b时,双曲线的中心在y轴上,两分支朝向x轴。
双曲线的图像可以通过手工绘图或者计算机绘图软件来绘制,使学生更好地理解双曲线的性质和特点。
双曲线的图像在实际生活中也有许多应用,比如在光学中的抛物面镜和双曲面镜、在通信中的双曲线天线和成像原理等。
五、双曲线的相关定理和定律1. 双曲线的面积定理:双曲线的面积等于焦距的一半与两个辅助椭圆的面积之和。
高二数学双曲线知识点汇总
高二数学双曲线知识点汇总双曲线是高二数学中重要的一章,它是解析几何的重要内容之一。
在本文中,将对双曲线的定义、性质以及相关公式进行详细的总结与汇总,以帮助学生更好地理解和掌握双曲线的知识。
1. 双曲线的定义双曲线是一个平面上的曲线,其定义为平面上所有点到两个不相交定点(称为焦点)的距离之差等于常数的点的轨迹。
双曲线有两种类型:横向双曲线和纵向双曲线,具体形状与焦点之间的距离差有关。
2. 双曲线的标准方程横向双曲线的标准方程为:x²/a² - y²/b² = 1,其中a为焦点到原点的距离,b为垂直于主轴的距离。
纵向双曲线的标准方程为:y²/a² - x²/b²= 1,其中a和b的含义同上。
3. 双曲线的焦点、准线和直径横向双曲线的焦点为(±c,0),准线为x = ±a,直径为两焦点间的距离,即2c。
纵向双曲线的焦点为(0, ±c),准线为y = ±a,直径同样为2c。
4. 双曲线的离心率离心率是双曲线的一个重要属性,表示焦点到准线的距离与焦点到曲线上任意点的距离之比。
对于横向双曲线,离心率的计算公式为e = √(a² + b²)/a,而对于纵向双曲线,离心率的计算公式为e = √(a² + b²)/b。
5. 双曲线的对称性和渐近线横向双曲线关于y轴对称,纵向双曲线关于x轴对称。
双曲线还有两条渐近线,横向双曲线的渐近线方程为y = ±b/a * x,纵向双曲线的渐近线方程为y = ±a/b * x。
6. 双曲线的图像特点当双曲线的焦点位于原点时,曲线两支在原点相交;当焦点位于x轴上时,曲线两支分离,称为“非奇异双曲线”;当焦点位于y轴上时,曲线两支开口向下,称为“奇异双曲线”。
7. 双曲线的参数方程双曲线也可以通过参数方程来表示。
高中数学双曲线
双曲线一、知识梳理1.双曲线定义平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(1)当2a<|F1F2|时,P点的轨迹是双曲线;(2)当2a=|F1F2|时,P点的轨迹是两条射线;(3)当2a>|F1F2|时,P点不存在.2.双曲线的标准方程和几何性质x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a题型一双曲线的定义及标准方程例1△ABC的顶点为A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是( )A.x 29-y 216=1 B.x 216-y 29=1 C.x 29-y 216=1(x >3) D.x 216-y 29=1(x >4) 例2 已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________.引申探究:本例中,若将条件“|PF 1|=2|PF 2|”改为“∠F 1PF 2=60°”,则△F 1PF 2的面积是多少?跟踪训练 (1)设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为________________.(2)设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点.若点P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→|等于( )A.10 B.210 C. 5 D.25题型二 求双曲线方程例3 根据下列条件,求双曲线的标准方程:(1) 虚轴长为12,离心率为54; (2)焦距为26,且经过点M (0,12);(3)过两点P (-3,27)和Q (-62,-7).(4)过点A (3,-1),且对称轴都在坐标轴上的等轴双曲线,题型三 双曲线的几何性质例4 (1)已知F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( ) A.2x ±y =0 B.x ±2y =0 C.x ±2y =0 D.2x ±y =0(2) 已知O ,F 分别为双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的中心和右焦点,点G ,M 分别在E 的渐近线和右支上,FG ⊥OG ,GM ∥x 轴,且|OM |=|OF |,则E 的离心率为( )(3) A.52 B.62 C.72D.2 跟踪训练 已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( ) A. 2 B.32C. 3D.2三、课时作业1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( )(2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( ) (3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±y n=0.( ) (4)等轴双曲线的渐近线互相垂直,离心率等于 2.( )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此条件中两条双曲线称为共轭双曲线).( )2已知双曲线x 2a 2-y 2=1的一条渐近线方程是y =33x ,则双曲线的离心率为( ) A.33 B.63 C.32 D.2333.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),右焦点F 到渐近线的距离为2,点F 到原点的距离为3,则双曲线C 的离心率e 为( ) A.53 B.355 C.63 D.624.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,点B 是虚轴的一个端点,线段BF 与双曲线C 的右支交于点A ,若BA →=2AF →,且|BF →|=4,则双曲线C 的方程为( )A.x 26-y 25=1B.x 28-y 212=1C.x 28-y 24=1D.x 24-y 26=1 5.已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A.(-1,3) B.(-1,3) C.(0,3) D.(0,3) 6.已知离心率为52的双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF 2,O 为坐标原点,若S △OMF 2=16,则双曲线的实轴长是( )A.32B.16C.84D.47. 已知l 是双曲线C :x 22-y 24=1的一条渐近线,P 是l 上的一点,F 1,F 2是C 的两个焦点,若PF 1→·PF 2→=0,则P 到x 轴的距离为( ) A.233 B. 2 C. 2 D.2638.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点与对称轴垂直的直线与渐近线交于A ,B 两点,若△OAB 的面积为13bc 3,则双曲线的离心率为( ) A.52 B.53 C.132 D.1339.设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,若在曲线C 的右支上存在点P ,使得△PF 1F 2的内切圆半径为a ,圆心记为M ,又△PF 1F 2的重心为G ,满足MG 平行于x 轴,则双曲线C 的离心率为( )A. 2B.3C.2D.58.若双曲线x 2a 2-y 2b2=1(a >0,b >0)上存在一点P 满足以|OP |为边长的正方形的面积等于2ab (其中O 为坐标原点),则双曲线的离心率的取值范围是( )A.⎝⎛⎦⎤1,52B.⎝⎛⎦⎤1,72C.⎣⎡⎭⎫52,+∞D.⎣⎡⎭⎫72,+∞ 10.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则a =________;b =________.11.设动圆C 与两圆C 1:(x +5)2+y 2=4,C 2:(x -5)2+y 2=4中的一个内切,另一个外切,则动圆圆心C 的轨迹方程为____________. 12.设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________. 13.已知双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,双曲线的离心率为e ,若双曲线上存在一点P 使sin ∠PF 2F 1sin ∠PF 1F 2=e ,则F 2P →·F 2F 1→的值为( ) A.3 B.2 C.-3 D.-2 14.已知双曲线C :x 2a 2-y 2b2=1的右顶点为A ,O 为坐标原点,以A 为圆心的圆与双曲线C 的某一条渐近线交于两点P ,Q ,若∠P AQ =π3且OQ →=5OP →,则双曲线C 的离心率为( ) A.213 B.2 C.72D.3 15.已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为________.。
高中数学双曲线知识点与性质大全
双曲线与方程【知识梳理】 1、双曲线的定义(1)平面内,到两定点1F 、2F 的距离之差的绝对值等于定长()1222,0a F F a a >>的点的轨迹称为双曲线,其中两定点1F 、2F 称为双曲线的焦点,定长2a 称为双曲线的实轴长,线段12F F 的长称为双曲线的焦距.此定义为双曲线的第一定义.【注】12122PF PF a F F -==,此时P 点轨迹为两条射线.(2)平面内,到定点的距离与到定直线的距离比为定值()1e e >的点的轨迹称为双曲线,其中定点称为双曲线的焦点,定直线称为双曲线的准线,定值e 称为双曲线的离心率.此定义为双曲线的第二定义.3、渐近线双曲线()22221,0x y a b a b -=>的渐近线为22220x y a b -=,即0x y a b ±=,或by x a=±.【注】①与双曲线22221x y a b -=具有相同渐近线的双曲线方程可以设为()22220x y a bλλ-=≠;②渐近线为by x a=±的双曲线方程可以设为()22220x y a b λλ-=≠;③共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.共轭双曲线具有相同的渐近线.④等轴双曲线:实轴与虚轴相等的双曲线称为等轴双曲线. 4、焦半径双曲线上任意一点P 到双曲线焦点F 的距离称为焦半径.若00(,)P x y 为双曲线()22221,0x y a b a b -=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左、右焦点,则10||PF ex a =+,20||PF ex a =-,其中ce a=. 5、通径过双曲线()22221,0x y a b a b-=>焦点F 作垂直于虚轴的直线,交双曲线于A 、B 两点,称线段AB 为双曲线的通径,且22b AB a=.6、焦点三角形P 为双曲线()22221,0x y a b a b-=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左右焦点,称12PF F ∆为双曲线的焦点三角形.若12F PF θ∠=,则焦点三角形的面积为:122cot 2F PF S b θ∆=.7、双曲线的焦点到渐近线的距离为b (虚半轴长).8、双曲线()22221,0x y a b a b-=>的焦点三角形的内心的轨迹为()0x a y =±≠9、直线与双曲线的位置关系直线:0l Ax By C ++=,双曲线Γ:()22221,0x y a b a b-=>,则l 与Γ相交22222a A b B C ⇔->; l 与Γ相切22222a A b B C ⇔-=; l 与Γ相离22222a A b B C ⇔-<.10、平行于(不重合)渐近线的直线与双曲线只有一个交点.【注】过平面内一定点作直线与双曲线只有一个交点,这样的直线可以为4条、3条、2条,或者0条. 11、焦点三角形角平分线的性质点(,)P x y 是双曲线()22221,0x y a b a b-=>上的动点,12,F F 是双曲线的焦点,M 是12F PF ∠的角平分线上一点,且20F M MP ⋅=,则OM a =,即动点M 的点的轨迹为()222x y a x a +=≠±.【推广2】设直线()110l y k x m m =+≠:交双曲线()22221,0x y a b a b -=>于C D 、两点,交直线22l y k x =:于点E .若E为CD 的中点,则2122b k k a=.13、中点弦的斜率直线l 过()()000,0M x y y ≠与双曲线()22221,0x y a b a b -=>交于,A B 两点,且AM BM =,则直线l 的斜率2020AB b x k a y =.14、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作实轴的平行线,交渐近线于,M N 两点,则PM PN =定值2a .15、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作渐近线的平行线,交渐近线于,M N 两点,则OMPNS =定值2ab .【典型例题】例1、双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_________.【变式1】若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是_________.【变式2】双曲线22148x y -=的两条渐近线的夹角为_________.【变式3】已知椭圆2222135x y m n +=和双曲线2222123x y m n-=有公共的焦点,那么双曲线的渐近线方程为_________.【变式4】若椭圆221(0)x y m n m n +=>>和双曲线221(0,0)x y a b a b-=>>有相同焦点1F 、2F ,P 为两曲线的一个交点,则12PF PF ⋅=_________.【变式5】如果函数2y x =-的图像与曲线22:4C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是( )A .[1,1)-B . {}1,0-C . (,1][0,1)-∞-D . [1,0](1,)-+∞【变式6】直线2=x 与双曲线14:22=-y x C 的渐近线交于B A ,两点,设P 为双曲线C 上的任意一点,若b a +=(O R b a ,,∈为坐标原点),则下列不等式恒成立的是( )A .222a b +≥B .2122≥+b a C .222a b +≤ D .2212a b +≤【变式7】设连接双曲线22221x y a b -=与22221y x b a-=的四个顶点为四边形面积为1S ,连接其四个焦点的四边形面积为2S ,则12S S 的最大值为_________.例2、设12F F 、分别是双曲线2219y x -=的左右焦点,若点P 在双曲线上,且12=0PF PF ,则12PF PF +=_________.【变式1】过双曲线221109x y -=的左焦点1F 的弦6AB =,则2ABF ∆(2F 为右焦点)的周长为_________.【变式2】双曲线2211620x y -=的左、右焦点1F 、2F ,P 是双曲线上的动点,且19PF =,则2PF =_________.例3、设12F F 、是双曲线2214x y -=的两个焦点,点P 是双曲线的任意一点,且123F PF π∠=,求12PF F ∆的面积.例4、已知直线1y kx =+与双曲线2231x y -=有A B 、两个不同的交点,如果以AB 为直径的圆恰好过原点O ,试求k 的值.例5、已知直线1y kx =+与双曲线2231x y -=相交于A B 、两点,那么是否存在实数k 使得A B 、两点关于直线20x y -=对称?若存在,求出k 的值;若不存在,说明理由.例6、已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,求此直线的斜率的取值范围为_________.【变式1】已知曲线C :21(4)x y y x -=≤; (1)画出曲线C 的图像;(2)若直线l :1y kx =-与曲线C 有两个公共点,求k 的取值范围; (3)若()0P p ,()0p >,Q 为曲线C 上的点,求PQ 的最小值.【变式2】直线l :10ax y --=与曲线C :2221x y -=. (1)若直线l 与曲线C 有且仅有一个交点,求实数a 的取值范围;(2)若直线l 被曲线C 截得的弦长PQ =,求实数a 的取值范围;(3)是否存在实数a ,使得以PQ 为直径的圆经过原点,若存在,求出a 的值;若不存在,请说明理由.例7、已知F 是双曲线221412x y -=的左焦点,(14)A ,,P 是双曲线右支上的动点,求PF PA +的最小值.【变式】P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值等于_________.例8、已知动圆P 与两个定圆()2251x y -+=和()22549x y ++=都外切,求动圆圆心P 的轨迹方程.【变式1】ABC ∆的顶点为()50A -,,()5,0B ,ABC ∆的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是_________.【变式2】已知双曲线的中心在原点,且一个焦点为)F,直线1y x =-与其相交于M N 、两点,线段MN的中点的横坐标为23-,求此双曲线的方程.例9、已知双曲线221916x y -=,若点M 为双曲线上任一点,则它到两渐近线距离的乘积为_________.例10、焦点在x 轴上的双曲线C 的两条渐近线经过原点,且两条渐近线均与以点P 为圆心,以1为半径的圆相切,又知双曲线C 的一个焦点与P 关于直线y x =对称 (1)求双曲线的方程;(2)设直线1y mx =+与双曲线C 的左支交于,A B 两点,另一直线l 经过点(2,0)M -及AB 的中点,求直线l 在轴上的截距n 的取值范围.【变式】设直线l 的方程为1y kx =-,等轴双曲线C :222x y a -=右焦点为).(1)求双曲线的方程;(2)设直线l 与双曲线的右支交于不同的两点A B 、,记AB 中点为M ,求实数k 的取值范围,并用k 表示点M 的坐标;(3)设点()1,0Q -,求直线QM 在y 轴上的截距的取值范围.例11、已知双曲线C 方程为:2212y x -=. (1)已知直线0x y m -+=与双曲线C 交于不同的两点A B 、,且线段AB 的中点在圆225x y +=上,求m 的值; (2)设直线l 是圆O :222x y +=上动点00(,)P x y (000x y ≠)处的切线,l 与双曲线C 交于不同的两点A B 、,证明AOB ∠的大小为定值.例12、已知中心在原点,顶点12A A 、在x 轴上,其渐近线方程是3y x =±,双曲线过点()6,6P . (1)求双曲线的方程;(2)动直线l 经过12A PA ∆的重心G ,与双曲线交于不同的两点M N 、,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.例13、已知点1F 、2F 为双曲线C :()01222>=-b by x 的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且︒=∠3021F MF .圆O 的方程是222b y x =+. (1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求21PP PP ⋅的值; (3)过圆O 上任意一点()00y ,x Q 作圆O 的切线l 交双曲线C 于A 、B 两点,AB 中点为M ,例14、已知双曲线C :()222210,0x y a b a b-=>>的一个焦点是()22,0F ,且a b 3=.(1)求双曲线C 的方程;(2)设经过焦点2F 的直线的一个法向量为)1,(m ,当直线l 与双曲线C 的右支相交于B A ,不同的两点时,求实数m 的取值范围;并证明AB 中点M 在曲线3)1(322=--y x 上.(3)设(2)中直线l 与双曲线C 的右支相交于B A ,两点,问是否存在实数m ,使得AOB ∠为锐角?若存在,请求出m 的范围;若不存在,请说明理由.仰望天空时,什么都比你高,你会自卑; 俯视大地时,什么都比你低,你会自负; 只有放宽视野,把天空和大地尽收眼底, 才能在苍穹泛土之间找准你真正的位置。
双曲线知识点总结及练习题
双曲线知识点总结及练习题Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】一、双曲线的定义1、第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))。
这两个定点叫双曲线的焦点。
要注意两点:(1)距离之差的绝对值。
(2)2a <|F 1F 2|。
当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;用第二定义证明比较简单 或两边之差小于第三边当2a >|F 1F 2|时,动点轨迹不存在。
2、第二定义:动点到一定点F 的距离与它到一条定直线l (准线2ca )的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线。
这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程(222a c b -=,其中|1F 2F |=2c )焦点在x 轴上:12222=-b y a x (a >0,b >0)焦点在y 轴上:12222=-bx a y (a >0,b >0)(1)如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上。
a 不一定大于b 。
判定焦点在哪条坐标轴上,不像椭圆似的比较x2、y2的分母的大小,而是x2、y2的系数的符号,焦点在系数正的那条轴上(2)与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x (3)双曲线方程也可设为:221(0)x y mn m n-=> 三、双曲线的性质四、双曲线的参数方程:sec tan x a y b θθ=⋅⎛ =⋅⎝ 椭圆为cos sin x a y b θθ=⋅⎛=⋅⎝五、 弦长公式[提醒]解决直线与椭圆的位置关系问题时常利用数形结合法、根与系数的关系、整体代入、设而不求的思想方法。
高中数学双曲线知识点与性质大全
双曲线与方程【知识梳理】 1、双曲线的定义(1)平面内,到两定点1F 、2F 的距离之差的绝对值等于定长()1222,0a F F a a >>的点的轨迹称为双曲线,其中两定点1F 、2F 称为双曲线的焦点,定长2a 称为双曲线的实轴长,线段12F F 的长称为双曲线的焦距.此定义为双曲线的第一定义.【注】12122PF PF a F F -==,此时P 点轨迹为两条射线.(2)平面内,到定点的距离与到定直线的距离比为定值()1e e >的点的轨迹称为双曲线,其中定点称为双曲线的焦点,定直线称为双曲线的准线,定值e 称为双曲线的离心率.此定义为双曲线的第二定义.3、渐近线双曲线()22221,0x y a b a b -=>的渐近线为22220x y a b -=,即0x y a b ±=,或by x a=±.【注】①与双曲线22221x y a b -=具有相同渐近线的双曲线方程可以设为()22220x y a bλλ-=≠;②渐近线为by x a=±的双曲线方程可以设为()22220x y a b λλ-=≠;③共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.共轭双曲线具有相同的渐近线.④等轴双曲线:实轴与虚轴相等的双曲线称为等轴双曲线. 4、焦半径双曲线上任意一点P 到双曲线焦点F 的距离称为焦半径.若00(,)P x y 为双曲线()22221,0x y a b a b -=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左、右焦点,则10||PF ex a =+,20||PF ex a =-,其中ce a=. 5、通径过双曲线()22221,0x y a b a b -=>焦点F 作垂直于虚轴的直线,交双曲线于A 、B 两点,称线段AB 为双曲线的通径,且22b AB a=.6、焦点三角形P 为双曲线()22221,0x y a b a b-=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左右焦点,称12PF F ∆为双曲线的焦点三角形.若12F PF θ∠=,则焦点三角形的面积为:122cot 2F PF S b θ∆=.7、双曲线的焦点到渐近线的距离为b (虚半轴长).8、双曲线()22221,0x y a b a b-=>的焦点三角形的内心的轨迹为()0x a y =±≠9、直线与双曲线的位置关系直线:0l Ax By C ++=,双曲线Γ:()22221,0x y a b a b-=>,则l 与Γ相交22222a A b B C ⇔->; l 与Γ相切22222a A b B C ⇔-=; l 与Γ相离22222a A b B C ⇔-<.10、平行于(不重合)渐近线的直线与双曲线只有一个交点.【注】过平面内一定点作直线与双曲线只有一个交点,这样的直线可以为4条、3条、2条,或者0条. 11、焦点三角形角平分线的性质点(,)P x y 是双曲线()22221,0x y a b a b-=>上的动点,12,F F 是双曲线的焦点,M 是12F PF ∠的角平分线上一点,且20F M MP ⋅=,则OM a =,即动点M 的点的轨迹为()222x y a x a +=≠±.【推广2】设直线()110l y k x m m =+≠:交双曲线()22221,0x y a b a b -=>于C D 、两点,交直线22l y k x =:于点E .若E为CD 的中点,则2122b k k a=.13、中点弦的斜率直线l 过()()000,0M x y y ≠与双曲线()22221,0x y a b a b -=>交于,A B 两点,且AM BM =,则直线l 的斜率2020AB b x k a y =.14、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作实轴的平行线,交渐近线于,M N 两点,则PM PN =定值2a .15、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作渐近线的平行线,交渐近线于,M N 两点,则OMPNS =定值2ab .【典型例题】例1、双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_________.【变式1】若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是_________.【变式2】双曲线22148x y -=的两条渐近线的夹角为_________.【变式3】已知椭圆2222135x y m n +=和双曲线2222123x y m n-=有公共的焦点,那么双曲线的渐近线方程为_________.【变式4】若椭圆221(0)x y m n m n +=>>和双曲线221(0,0)x y a b a b-=>>有相同焦点1F 、2F ,P 为两曲线的一个交点,则12PF PF ⋅=_________.【变式5】如果函数2y x =-的图像与曲线22:4C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是( )A .[1,1)-B . {}1,0-C . (,1][0,1)-∞-D . [1,0](1,)-+∞【变式6】直线2=x 与双曲线14:22=-y x C 的渐近线交于B A ,两点,设P 为双曲线C 上的任意一点,若OB b OA a OP +=(O R b a ,,∈为坐标原点),则下列不等式恒成立的是( )A .222a b +≥B .2122≥+b a C .222a b +≤ D .2212a b +≤【变式7】设连接双曲线22221x y a b -=与22221y x b a-=的四个顶点为四边形面积为1S ,连接其四个焦点的四边形面积为2S ,则12S S 的最大值为_________.例2、设12F F 、分别是双曲线2219y x -=的左右焦点,若点P 在双曲线上,且12=0PF PF ,则12PF PF +=_________.【变式1】过双曲线221109x y -=的左焦点1F 的弦6AB =,则2ABF ∆(2F 为右焦点)的周长为_________.【变式2】双曲线2211620x y -=的左、右焦点1F 、2F ,P 是双曲线上的动点,且19PF =,则2PF =_________.例3、设12F F 、是双曲线2214x y -=的两个焦点,点P 是双曲线的任意一点,且123F PF π∠=,求12PF F ∆的面积.例4、已知直线1y kx =+与双曲线2231x y -=有A B 、两个不同的交点,如果以AB 为直径的圆恰好过原点O ,试求k 的值.例5、已知直线1y kx =+与双曲线2231x y -=相交于A B 、两点,那么是否存在实数k 使得A B 、两点关于直线20x y -=对称?若存在,求出k 的值;若不存在,说明理由.例6、已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,求此直线的斜率的取值范围为_________.【变式1】已知曲线C :21(4)x y y x -=≤; (1)画出曲线C 的图像;(2)若直线l :1y kx =-与曲线C 有两个公共点,求k 的取值范围; (3)若()0P p ,()0p >,Q 为曲线C 上的点,求PQ 的最小值.【变式2】直线l :10ax y --=与曲线C :2221x y -=. (1)若直线l 与曲线C 有且仅有一个交点,求实数a 的取值范围;(2)若直线l 被曲线C 截得的弦长PQ =,求实数a 的取值范围;(3)是否存在实数a ,使得以PQ 为直径的圆经过原点,若存在,求出a 的值;若不存在,请说明理由.例7、已知F 是双曲线221412x y -=的左焦点,(14)A ,,P 是双曲线右支上的动点,求PF PA +的最小值.【变式】P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值等于_________.例8、已知动圆P 与两个定圆()2251x y -+=和()22549x y ++=都外切,求动圆圆心P 的轨迹方程.【变式1】ABC ∆的顶点为()50A -,,()5,0B ,ABC ∆的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是_________.【变式2】已知双曲线的中心在原点,且一个焦点为)F,直线1y x =-与其相交于M N 、两点,线段MN的中点的横坐标为23-,求此双曲线的方程.例9、已知双曲线221916x y -=,若点M 为双曲线上任一点,则它到两渐近线距离的乘积为_________.例10、焦点在x 轴上的双曲线C 的两条渐近线经过原点,且两条渐近线均与以点P 为圆心,以1为半径的圆相切,又知双曲线C 的一个焦点与P 关于直线y x =对称 (1)求双曲线的方程;(2)设直线1y mx =+与双曲线C 的左支交于,A B 两点,另一直线l 经过点(2,0)M -及AB 的中点,求直线l 在轴上的截距n 的取值范围.【变式】设直线l 的方程为1y kx =-,等轴双曲线C :222x y a -=右焦点为).(1)求双曲线的方程;(2)设直线l 与双曲线的右支交于不同的两点A B 、,记AB 中点为M ,求实数k 的取值范围,并用k 表示点M 的坐标;(3)设点()1,0Q -,求直线QM 在y 轴上的截距的取值范围.例11、已知双曲线C 方程为:2212y x -=. (1)已知直线0x y m -+=与双曲线C 交于不同的两点A B 、,且线段AB 的中点在圆225x y +=上,求m 的值; (2)设直线l 是圆O :222x y +=上动点00(,)P x y (000x y ≠)处的切线,l 与双曲线C 交于不同的两点A B 、,证明AOB ∠的大小为定值.例12、已知中心在原点,顶点12A A 、在x 轴上,其渐近线方程是3y x =±,双曲线过点()6,6P . (1)求双曲线的方程;(2)动直线l 经过12A PA ∆的重心G ,与双曲线交于不同的两点M N 、,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.例13、已知点1F 、2F 为双曲线C :()01222>=-b by x 的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且︒=∠3021F MF .圆O 的方程是222b y x =+. (1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求21PP PP ⋅的值;(3)过圆O 上任意一点()00y ,x Q 作圆O 的切线l 交双曲线C 于A 、B 两点,AB 中点为M ,例14、已知双曲线C :()222210,0x y a b a b-=>>的一个焦点是()22,0F ,且a b 3=.(1)求双曲线C 的方程;(2)设经过焦点2F 的直线的一个法向量为)1,(m ,当直线l 与双曲线C 的右支相交于B A ,不同的两点时,求实数m 的取值范围;并证明AB 中点M 在曲线3)1(322=--y x 上.(3)设(2)中直线l 与双曲线C 的右支相交于B A ,两点,问是否存在实数m ,使得AOB ∠为锐角?若存在,请求出m 的范围;若不存在,请说明理由.仰望天空时,什么都比你高,你会自卑; 俯视大地时,什么都比你低,你会自负; 只有放宽视野,把天空和大地尽收眼底, 才能在苍穹泛土之间找准你真正的位置。
高中数学知识点:双曲线方程知识点总结
双曲线方程1. 双曲线的第一定义:⑴①双曲线标准方程:. 一般方程:.⑵①i. 焦点在x轴上:顶点:焦点:准线方程渐近线方程:或ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或,参数方程:或.②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距(两准线的距离);通径. ⑤参数关系. ⑥焦点半径公式:对于双曲线方程(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:构成满足(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为.例如:若双曲线一条渐近线为且过,求双曲线的方程?解:令双曲线的方程为:,代入得.⑹直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.(2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号.⑺若P在双曲线,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m︰n.简证:=.常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.。
高中双曲线知识点总结
高中双曲线知识点总结1. 双曲线的定义双曲线是一种二次曲线,由平面上的一点P到两个给定点F1和F2的距离之差等于常数2a确定。
2. 双曲线的标准方程双曲线的标准方程为$$\\frac{x^2}{a^2} - \\frac{y^2}{b^2} = 1$$其中a和b分别代表双曲线的横轴半轴长和纵轴半轴长,双曲线的中心在原点(0,0)处。
3. 双曲线的图像特征•双曲线关于原点对称。
•双曲线有两个分离的不相交的枝。
•双曲线与x轴和y轴相交于四个点,分别为(±a, 0)和(0, ±b)。
4. 双曲线的离心率双曲线的离心率定义为$$e = \\sqrt{1 + \\frac{b^2}{a^2}}$$离心率是用来衡量双曲线形状的参数,e的值大于1,表示双曲线的形状更加扁平。
离心率越大,双曲线的枝越“开”,离心率等于1时,双曲线退化为一条抛物线。
5. 双曲线的焦点和直径双曲线的焦点为F1和F2,焦点到中心的距离为c,满足关系式$$c = \\sqrt{a^2 + b^2}$$双曲线的直径为两个焦点之间的距离,即D=2a6. 双曲线的渐近线双曲线有两条渐近线,分别是直线y = ±(b/a)x,当x趋向于±∞时,双曲线的一支趋向于渐近线。
渐近线与双曲线相切的点称为渐近点。
7. 双曲线的参数方程双曲线的参数方程为$$x = a \\cosh t$$和$$y = b \\sinh t$$其中t为参数,cosh和sinh分别为双曲函数。
8. 双曲线的性质双曲线具有以下性质:•双曲线是无界曲线,极限曲线为渐近线。
•双曲线的切线与直径的夹角为45°。
•双曲线的弧长公式为$$S = a(\\theta - \\sinh\\theta)$$•,其中θ为渐近线和中心到曲线之间的夹角。
9. 双曲线的应用双曲线在数学和物理中有广泛的应用,特别是在椭圆方程、电磁场、光学等领域中。
双曲线的特殊形式也常常出现在数学分析中的级数、积分等中。
高中数学双曲线知识点及题型总结(学生版)
,两准线之距为 K 1K 2 21 双曲线定义:① 到 两 个 定 点 F 1 与 F 2 的 距 离 之 差 的 绝 对 值 等 于 定 长 ( < |F 1F 2| ) 的 点 的 轨 迹PF 1 PF 2 2a F 1F 2 ( a 为常数)) 这两个定点叫双曲线的焦点.要注意两点: (1)距离之差的绝对值 .( 2)2a < |F 1F 2|,这两点与椭圆的定义有本质的不同 . 当|MF1|-|MF 2|=2a 时,曲线仅表示焦点 F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点 F 1所对应的一支; 当 2a=|F 1F 2|时,轨迹是一直线上以 F 1、F 2 为端点向外的两条射线; 当 2a > | F 1F 2| 时,动点轨迹不存在 .②动点到一定点 F 的距离与它到一条定直线 l 的距离之比是常数 e (e > 1)时,这个动点的轨迹是双曲线 这定点叫做双曲线的焦点,定直线 l 叫做双曲线的准线2 2 2 22.双曲线的标准方程: x2 y2 1和 y 2 x 2 1(a >0,b >0).这里 b 2 c 2 a 2,其中| F 1 F 2 |=2c. a 2 b 2 a 2 b 2 要注意这里的 a 、b 、c 及它们之间的关系与椭圆中的异同 .223.双曲线的标准方程判别方法是: 如果x 2项的系数是正数,则焦点在 x 轴上;如果 y 2 项的系数是正数, 则焦点在 y 轴上 .对于双曲线, a 不一定大于 b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在 哪一条坐标轴上4. 求双曲线的标准方程 ,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数 法求解 .5. 曲线的简单几何性质在 y 轴上)双曲线知识点及题型总结④特别地当 b时可设为 x 2 离心率 eb y= x , a 2 b y= - x a 两渐近线互相垂直,分别为 (什么是共轭双曲线 ?)⑸准线: l 1:x=-y= x ,此时双曲线为等轴双曲线,a 2 a 2,l 2:x=ca 2c22xy2 - 2 =1(a >0,b >0)a2 b 2⑴范围: |x|≥a , y ∈R⑵对称性:关于 x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点 A 1(- a ,0),A 2 ⑷渐近线: a ,0)yM1M 2PF 1 A 1 K 1 o K 2 A 2 F 2①若双曲线方程为 2x 2a 2y b2 2x渐近线方程 2ay b 2②若渐近线方程为 b y0 双曲线可设为2x2 a2y b2 ③若双曲线与 2x 2 a2 y b2 1有公共渐近线,可设为 2x 2a2 y b 20 ,焦点在 x 轴上, 0 ,焦点y1 k 12 y 2 y 1⑹焦半径: PF 1PF 2 a 2e(x )c2 e(a x) cex ex a ,(点 P 在双曲线的右支上a ,(点 P 在双曲线的右支上 当焦点在 y 轴上时,标准方程及相应性质(略) 2 ⑺与双曲线 x 2 a 2 x 2 ⑻与双曲线 x 2 a 2 2 yb 2 2 y b 2 1共渐近线的双曲线系方程是 1共焦点的双曲线系方程是2 x a 2x 2a 2k2 y b 2 2 y b 2 6 曲线的内外部 (1) 点 P(x 0,y 0) 在双曲线 (2) 点 P(x 0,y 0) 在双曲线 2 x2 a2 x 2 a2y b2 2 y b2 1(a 1(a 7 曲线的方程与渐近线方程的关系 (1 )若双曲线方程为 2 x 2 a 2 y b 2 0,b 0,b (2) 若渐近线方程为 bx a x a ); x a );0)0) 的内部0) 的外部 渐近线方程: b y 0 2 x 2a 2 yb 2双曲线可设为2 (3) 若双曲线与 x 2 a 2 在 y 轴上) . 2 y b 2 1有公共渐近线,可设为2 x 2a 2y b 2 8 双曲线的切线方程 2 x (1) 双曲线 x 2 a 2 yb 2 1(a 2 x0 2a2 x 0y 02b 22 y 0 b 21. 1.bx .a2x 2 a2 y b2 0 ,焦点在 x 轴上,0,b 0) 上一点 P(x 0,y 0 )处的切线方程是 02 02 1. ab 0 ,焦点2 x 2 a 2x 3)双曲线 x 2 a 2 2)过双曲线 b 2 2 b y 2 1(a b1(a 0,b 0)外一点 P(x 0,y 0)所引两条切线的切点弦方程是 22 0,b 0)与直线 Ax By C 0 相切的条件是 A 2a 2 x 0x2 a22B 2b2y 0y1 b 02 1.2c .AB (x 1 x 2) 2 (y 1 y 2)2 若斜率为 k 的直线被圆锥曲线所截得的弦为 AB , A 、B 两点分别为 A(x 1,y 1)、 AB 9 线与椭圆相交的弦长公式 B(x 2,y 2),则弦长x 2 x 122 k 2)[( x 1 x 2)24x 1x 2] 1(1 12) [(y 1 y 2)2 4y 1y 2] ,这里体现了解析几何“设而不求”的解题思想; k 2(1A. 10B. 5C. 3x 2y 21 已知双曲线 x a2 - y b 2 = 1 (a > 0,b > 0)的左右焦点分别为∣PF 1∣=4∣PF 2∣,则此双曲线的离心率 e 的最大值为 45 A .3 B .3 2y22.已知 F 1,F 2 是双曲线 于 A 、B 两点 ,若A. 2x 23.过双曲线 M: C,且|AB|=|BC|, 则双曲线F 1、 F 2,点 P 在双曲线的右支上,且) 7D .7322 x2 y21,(a b 0 )的左、右焦点,过 F 1且垂直于 x 轴的直线与双曲线的左支交 a2b 2ABF 2 是正三角形 ,那么双曲线的离心率为 ( )B. 32 y b 2C .2 C. 2 D. 31 的左顶点 A 作斜率为 1 的直线 l ,若 l 与双曲线 M 的两条渐近线分别相交于M 的离心率是 ( )105D. 2B 、题型一:双曲线定义问题A. 充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件222. 若 k R ,则“ k 3”是“方程 x y 1表示双曲线”的 ( )k3k3A.充分不必要条件 .B.必要不充分条件 .C.充要条件 .D. 既不充分也不必要条件 .22 3. 给出问题: F 1、F 2是双曲线 x- y =1 的焦点,点 P 在双曲线上 .若点 P 到焦点 F 1的距离等于 16 20P 到焦点 F 2的距离 .某学生的解答如下: 双曲线的实轴长为 8,由||PF 1|-|PF 2||=8,即|9-|PF 2||=8,得|PF 2|=1 或 17.该学生的解答是否正确?若正确,请将他的解题依据填在下面横线上;若不正确,将正确结果填在下面 横线上 . _____ .4. 过双曲线 x 2-y 2=8的左焦点 F 1有一条弦 PQ 在左支上,若 | PQ|=7 ,F 2是双曲线的右焦点,则△ PF 2Q 的周长 是 .题型二:双曲线的渐近线问题题型三:双曲线的离心率问题高考题型解析1.“ ab<0”是“曲线ax 2+by 2=1 为双曲线”的 ( 9,求点x 21.双曲线43 A. y=± x22 y=1 的渐近线方程是92.过点( 2,- 2) 22yx A. - =1 242B.y=± x3x 22 2y 2=12 C.y=±9x 4D.y= ± 4 x9且与双曲线2 xB. - 4-y 2=1 有公共渐近线的双曲线方程是22yx C. - =1 422 x D. - 22 y 2=1414.在给定双曲线中,过焦点垂直于实轴的弦长为 2,焦点到相应准线的距离为 2,则该双曲线的离心率为 ( ) A. 22题型四:双曲线的距离问题2x- 1y6 =1 的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是 题型五:轨迹问题1.已知椭圆 x 2+2y 2 =8 的两焦点分别为 F 1、 F 2, A 为椭圆上任一点。
高中数学解析几何专题之双曲线(汇总解析版)
圆锥曲线第2讲 双曲线【知识要点】 一、双曲线的定义 1. 双曲线的第一定义:平面内到两个定点1F 、2F 的距离之差的绝对值等于定长a 2(2120F F a <<)的点的轨迹叫双曲线,这两个定点叫做双曲线的焦点,两个焦点之间的距离叫做焦距。
注1:在双曲线的定义中,必须强调:到两个定点的距离之差的绝对值(记作a 2),不但要小于这两个定点之间的距离21F F (记作c 2),而且还要大于零,否则点的轨迹就不是一个双曲线。
具体情形如下:(ⅰ)当02=a 时,点的轨迹是线段21F F的垂直平分线; (ⅱ)当c a 22=时,点的轨迹是两条射线; (ⅲ)当c a 22>时,点的轨迹不存在; (ⅳ)当c a 220<<时,点的轨迹是双曲线。
特别地,若去掉定义中的“绝对值”,则点的轨迹仅表示双曲线的一支。
注2:若用M 表示动点,则双曲线轨迹的几何描述法为aMF MF 221=-(c a 220<<,cF F 221=),即2121F F MF MF <-。
2. 双曲线的第二定义:平面内到某一定点的距离与它到定直线的距离之比等于常数e (1>e )的点的轨迹叫做双曲线。
二、双曲线的标准方程 1. 双曲线的标准方程(1)焦点在x 轴、中心在坐标原点的双曲线的标准方程是12222=-b y a x (0>a ,0>b );(2)焦点在y 轴、中心在坐标原点的双曲线的标准方程是12222=-b x a y (0>a ,0>b ).注:若题目已给出双曲线的标准方程,那其焦点究竟是在x 轴还是在y 轴,主要看实半轴跟谁走。
若实半轴跟x 走,则双曲线的焦点在x 轴;若实半轴跟y 走,则双曲线的焦点在y 轴。
2. 等轴双曲线当双曲线的实轴与虚轴等长时(即b a 22=),我们把这样的双曲线称为等轴双曲线,其标准方程为λ=-22y x (0≠λ) 注:若题目已明确指出所要求的双曲线为等轴双曲线,则我们可设该等轴双曲线的方程为λ=-22y x (0≠λ),再结合其它条件,求出λ的值,即可求出该等轴双曲线的方程。
双曲线知识点总结及练习题
一、双曲线的定义1、第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长<|F 1F 2|的点的轨迹21212F F a PF PF <=-a 为常数;这两个定点叫双曲线的焦点; 要注意两点:1距离之差的绝对值;22a <|F 1F 2|;当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;用第二定义证明比较简单 或两边之差小于第三边当2a >|F 1F 2|时,动点轨迹不存在;2、第二定义:动点到一定点F 的距离与它到一条定直线l 准线2ca 的距离之比是常数ee >1时,这个动点的轨迹是双曲线;这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程222a c b -=,其中|1F 2F |=2c焦点在x 轴上:12222=-b y a x a >0,b >0焦点在y 轴上:12222=-bx a y a >0,b >01如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上; a 不一定大于b ;判定焦点在哪条坐标轴上,不像椭圆似的比较x2、y2的分母的大小,而是x2、y2的系数的符号,焦点在系数正的那条轴上2与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3双曲线方程也可设为:221(0)x y mn m n-=> 三、双曲线的性质四、双曲线的参数方程:sec tan x a y b θθ=⋅⎛ =⋅⎝ 椭圆为cos sin x a y b θθ=⋅⎛=⋅⎝ 五、 弦长公式2、通径的定义:过焦点且垂直于实轴的直线与双曲线相交于A 、B 两点,则弦长ab AB 22||=;3、特别地,焦点弦的弦长的计算是将焦点弦转化为两条焦半径之和后,利用第二定义求解 六、焦半径公式双曲线12222=-by a x a >0,b >0上有一动点00(,)M x y左焦半径:r=│ex+a │ 右焦半径:r=│ex-a │当00(,)M x y 在左支上时10||MF ex a =--,20||MF ex=-+当00(,)M x y 在右支上时10||MF ex a =+,20||MF ex a =- 左支上绝对值加-号,右支上不用变化双曲线焦点半径公式也可用“长加短减”原则:与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号aex MF a ex MF -=+=0201 构成满足a MF MF 221=-注:焦半径公式是关于0x 的一次函数,具有单调性,当00(,)M x y 在左支端点时1||MF c a =-,2||MF c a =+,当00(,)M x y 在左支端点时1||MF c a =+,2||MF c a =-七、等轴双曲线12222=-b y a x a >0,b >0当a b =时称双曲线为等轴双曲线 1; a b =; 2;离心率2=e ;3;两渐近线互相垂直,分别为y=x ±; 4;等轴双曲线的方程λ=-22y x ,0λ≠; 八、共轭双曲线以已知的虚轴为,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,通常称它们互为共轭双曲线;λ=-2222b y a x 与λ-=-2222b y a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by a x . 九、点与双曲线的位置关系,直线与双曲线的位置关系1、点与双曲线点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的内部2200221x y a b ⇔-> 代值验证,如221x y -=点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>上220022-=1x y a b⇔2、直线与双曲线 代数法:设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得10m =时,b bk a a -<<,直线与双曲线交于两点左支一个点右支一个点; b k a ≥,bk a≤-,或k 不存在时,直线与双曲线没有交点;20m ≠时,k 存在时,若0222=-k a b ,abk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;相交 若2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a+=直线与双曲线有一个交点;相切 k 不存在,a m a -<<时,直线与双曲线没有交点;m a m a ><-或直线与双曲线相交于两点;十、双曲线与渐近线的关系1、若双曲线方程为22221(0,0)x y a b a b -=>>⇒渐近线方程:22220x y a b -=⇔x aby ±=2>0,b >0⇒渐近线方程:22220y x a b -= ay x b=±3、若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x , 0λ≠;4、若双曲线与12222=-by a x 有公共渐近线,则双曲线的方程可设为λ=-2222b y a x 0>λ,焦点在x 轴上,0<λ,焦点在y 轴上十一、双曲线与切线方程1、双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y ya b-=;2、过双曲线22221(0,0)x y a b a b -=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b -=;3、双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=;椭圆与双曲线共同点归纳十二、顶点连线斜率双曲线一点与两顶点连线的斜率之积为K 时得到不同的曲线; 椭圆参照选修2-1P41,双曲线参照选修2-1P55;1、A 、B 两点在X 轴上时2、A 、B 两点在Y 轴上时十三、面积公式双曲线上一点P 与双曲线的两个焦点 构成的三角形 称之为双曲线焦点三角解:在12PF F ∆中,设12F PF α∠=,11PF r =,22PF r =,由余弦定理得222121212cos 2PF PF F F PF PF α+-=⋅2221212(2)2r r c r r +-=⋅ ∴21212cos 2r r r r b α=-即21221cos b r r α=-,∴12212112sin sin 221cos PF F b S r r ααα∆==⨯⨯-2sin 1cos b αα=-=2cot 2b α.图3解:在12PF F ∆中,设12F PF α∠=,11PF r =,22PF r =,由余弦定理得222121212cos 2PF PF F F PF PF α+-=⋅2221212(2)2r r c r r +-=⋅ ∴21212cos 2r r b r r α=- 即21221cos br r α=+,∴12212112sin sin 221cos PF F b S r r ααα∆==⨯⨯+2sin 1cos b αα=+=2tan 2b α. 十四、双曲线中点弦的斜率公式:设00(,)M x y 为双曲线22221x y a b -=弦AB AB 不平行y 轴的中点,则有22AB OM b k k a⋅=证明:设11(,)A x y ,22(,)B x y ,则有1212ABy y k x x -=-,22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩ 两式相减得:22221212220x x y y a b ---=整理得:2221222212y y b x x a -=-,即2121221212()()()()y y y y b x x x x a+-=+-,因为00(,)M x y 是弦AB 的中点,所以0012001222OMy y y y k x x x x +===+,所以22AB OM b k k a⋅= 椭圆中线弦斜率公式22AB OMb k k a⋅=-图1双曲线基础题1.双曲线2x2-y2=8的实轴长是A.2 B.2错误!C.4 D.4错误!2.设集合P=错误!,Q={x,y|x-2y+1=0},记A=P∩Q,则集合A中元素的个数是A.3 B.1 C.2 D.43.双曲线错误!-错误!=1的焦点到渐近线的距离为A.2 B.3 C.4 D.54.双曲线错误!-错误!=1的共轭双曲线的离心率是________.5.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点4,-2,则它的离心率为6.设双曲线错误!-错误!=1a>0的渐近线方程为3x±2y=0,则a的值为A.4 B.3 C.2 D.17.从错误!-错误!=1其中m,n∈{-1,2,3}所表示的圆锥曲线椭圆、双曲线、抛物线方程中任取一个,则此方程是焦点在x轴上的双曲线方程的概率为8.双曲线错误!-错误!=1的渐近线与圆x-32+y2=r2r>0相切,则r=B.3 C.4 D.6图K51-19.如图K51-1,在等腰梯形ABCD中,AB∥CD且AB=2AD,设∠DAB=θ,θ∈错误!,以A、B为焦点且过点D的双曲线的离心率为e1,以C、D为焦点且过点A的椭圆的离心率为e2,则e1·e2=________.10.已知双曲线错误!-错误!=1a>0,b>0的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是________.11.已知双曲线错误!-错误!=1a>0,b>0的一条渐近线方程为y=错误!x,它的一个焦点为F6,0,则双曲线的方程为________.12.13分双曲线C与椭圆错误!+错误!=1有相同焦点,且经过点错误!,4.1求双曲线C的方程;2若F1,F2是双曲线C的两个焦点,点P在双曲线C上,且∠F1PF2=120°,求△F1PF2的面积.13.16分已知双曲线错误!-错误!=1和椭圆错误!+错误!=1a>0,m>b>0的离心率互为倒数,那么以a,b,m为边长的三角形是A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形26分已知F1、F2为双曲线C:x2-y2=1的左、右焦点,点P在双曲线C上,且∠F1PF2=60°,则|PF1|·|PF2|=A.2 B.4 C.6 D.8双曲线综合训练一、选择题本大题共7小题,每小题5分,满分35分1.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是A .双曲线B .双曲线的一支C .两条射线D .一条射线2.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于A .2B .3C .2D .33.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠21π=Q PF ,则双曲线的离心率e等于A .12-B .2C .12+D .22+ 4.双曲线221mx y +=的虚轴长是实轴长的2倍,则m =A .14-B .4-C .4D .145.双曲线)0,(12222>=-b a by a x 的左、右焦点分别为F 1,F 2,点P 为该双曲线在第一象限的点,△PF 1F 2面积为1,且,2tan ,21tan 1221-=∠=∠F PF F PF 则该双曲线的方程为 A .1351222=-y x B .1312522=-y x C .1512322=-y x D .1125322=-y x 6.若1F 、2F 为双曲线12222=-by a x 的左、右焦点,O 为坐标原点,点P 在双曲线的左支上,点M 在双曲线的右准线上,且满足)(,111OMOM OF OF OP PM O F +==λ)0(>λ,则该双曲线的离心率为A .2B .3C .2D .37.如果方程221x y p q+=-表示曲线,则下列椭圆中与该双曲线共焦点的是A .2212x y q p q +=+B . 2212x y q p p+=-+C .2212x y p q q+=+ D . 2212x y p q q+=-+二、填空题:本大题共3小题,每小题5分,满分15分8.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________;9.若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是 ; 10.若双曲线1422=-my x 的渐近线方程为x y 23±=,则双曲线的焦点坐标是_________. 三、解答题:本大题共2小题,满分30分11. 本小题满分10分双曲线与椭圆有共同的焦点12(0,5),(0,5)F F -,点(3,4)P 是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程;12.本小题满分20分已知三点P5,2、1F -6,0、2F 6,0; 1求以1F 、2F 为焦点且过点P 的椭圆的标准方程;2设点P 、1F 、2F 关于直线y =x 的对称点分别为P '、'1F 、'2F ,求以'1F 、'2F 为焦点且过点P '的双曲线的标准方程.基础热身1.C解析双曲线方程可化为错误!-错误!=1,所以a2=4,得a=2,所以2a=4.故实轴长为4.2.B解析由于直线x-2y+1=0与双曲线错误!-y2=1的渐近线y=错误!x平行,所以直线与双曲线只有一个交点,所以集合A中只有一个元素.故选B.3.B解析双曲线错误!-错误!=1的一个焦点是5,0,一条渐近线是3x-4y=0,由点到直线的距离公式可得d=错误!=3.故选B.解析双曲线错误!-错误!=1的共轭双曲线是错误!-错误!=1,所以a=3,b=错误!,所以c=4,所以离心率e=错误!.能力提升5.D解析设双曲线的标准方程为错误!-错误!=1a>0,b>0,所以其渐近线方程为y=±错误!x,因为点4,-2在渐近线上,所以错误!=错误!.根据c2=a2+b2,可得错误!=错误!,解得e2=错误!,所以e=错误!,故选D.6.C解析根据双曲线错误!-错误!=1的渐近线方程得:y=±错误!x,即ay±3x=0.又已知双曲线的渐近线方程为3x±2y=0且a>0,所以有a=2,故选C.7.B解析若方程表示圆锥曲线,则数组m,n只有7种:2,-1,3,-1,-1,-1,2,2,3,3,2,3,3,2,其中后4种对应的方程表示焦点在x轴上的双曲线,所以概率为P=错误!.故选B.8.A解析双曲线的渐近线为y=±错误!x,圆心为3,0,所以半径r=错误!=错误!.故选A.9.1解析作DM⊥AB于M,连接BD,设AB=2,则DM=sinθ,在Rt△BMD中,由勾股定理得BD=错误!,所以e1=错误!=错误!,e2=错误!=错误!,所以e1·e2=1.10.2,+∞解析依题意,双曲线的渐近线中,倾斜角的范围是60°,90°,所以错误!≥tan60°=错误!,即b2≥3a2,c2≥4a2,所以e≥2.-错误!=1解析错误!=错误!,即b=错误!a,而c=6,所以b2=3a2=336-b2,得b2=27,a2=9,所以双曲线的方程为错误!-错误!=1.12.解答1椭圆的焦点为F10,-3,F20,3.设双曲线的方程为错误!-错误!=1,则a2+b2=32=9.①又双曲线经过点错误!,4,所以错误!-错误!=1,②解①②得a2=4,b2=5或a2=36,b2=-27舍去,所以所求双曲线C的方程为错误!-错误!=1.2由双曲线C的方程,知a=2,b=错误!,c=3.设|PF1|=m,|PF2|=n,则|m-n|=2a=4,平方得m2-2mn+n2=16.①在△F1PF2中,由余弦定理得2c2=m2+n2-2mn cos120°=m2+n2+mn=36.②由①②得mn=错误!,所以△F1PF2的面积为S=错误!mn sin120°=错误!.难点突破13.1B2B解析1依题意有错误!·错误!=1,化简整理得a2+b2=m2,故选B.2在△F1PF2中,由余弦定理得,cos60°=错误!,=错误!,=错误!+1=错误!+1.因为b=1,所以|PF1|·|PF2|=4.故选B.一、选择题1.D 2,2PM PN MN -==而,P ∴在线段MN 的延长线上2.C 2222222,2,2,2a c c c a e e c a===== 3.C Δ12PF F 是等腰直角三角形,21212,22PF F F c PF c === 4.A.5. A 思路分析:设),(00y x p ,则1,2,2100000==-=+cy cx yc x y ,命题分析:考察圆锥曲线的相关运算6. C 思路分析:由PM O F =1知四边形OMP F 1是平行四边形,又11(OF OF OP λ=)OMOM +知OP 平分OM F 1∠,即OMP F 1是菱形,设c OF =1,则c PF =1.又a PF PF 212=-,∴c a PF +=22,由双曲线的第二定义知:122+=+=ec c a e ,且1>e ,∴2=e ,故选C .命题分析:考查圆锥曲线的第一、二定义及与向量的综合应用,思维的灵活性.7.D .由题意知,0pq >.若0,0p q >>,则双曲线的焦点在y 轴上,而在选择支A,C 中,椭圆的焦点都在x轴上,而选择支B,D 不表示椭圆;若0,0p q <<,选择支A,C 不表示椭圆,双曲线的半焦距平方2c p q =--,双曲线的焦点在x 轴上,选择支D 的方程符合题意.二、填空题8.221205x y -=± 设双曲线的方程为224,(0)x y λλ-=≠,焦距2210,25c c == 当0λ>时,221,25,2044x y λλλλλ-=+==;当0λ<时,221,()25,2044y x λλλλλ-=-+-==--- 9.(,4)(1,)-∞-+∞ (4)(1)0,(4)(1)0,1,4k k k k k k +-<+->><-或.10. (7,0) 渐近线方程为my x =,得3,7m c ==且焦点在x 轴上.三、解答题11.解:由共同的焦点12(0,5),(0,5)F F -,可设椭圆方程为2222125y x a a +=-; 双曲线方程为2222125y x b b +=-,点(3,4)P 在椭圆上,2221691,4025a a a +==- 双曲线的过点(3,4)P 的渐近线为225b y x b =-,即2243,1625b b b =⨯=-所以椭圆方程为2214015y x +=;双曲线方程为221169y x += 12.1由题意,可设所求椭圆的标准方程为22a x +122=by )0(>>b a ,其半焦距6=c ;||||221PF PF a +=56212112222=+++=, ∴=a 53, 93645222=-=-=c a b ,故所求椭圆的标准方程为452x +192=y ; 2点P5,2、1F -6,0、2F 6,0关于直线y =x 的对称点分别为:)5,2(P '、'1F 0,-6、'2F 0,6设所求双曲线的标准方程为212a x -1212=b y )0,0(11>>b a ,由题意知半焦距61=c ,|''||''|2211F P F P a -=54212112222=+-+=, ∴=1a 52,162036212121=-=-=a c b ,故所求双曲线的标准方程为202y -1162=x .。
高中数学双曲线知识点及题型总结(学生版)
双曲线知识点及题型总结1 双曲线定义:①到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点. 要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|,这两点与椭圆的定义有本质的不同. 当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线; 当2a >|F 1F 2|时,动点轨迹不存在.②动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线2.双曲线的标准方程:12222=-b y a x 和12222=-bx a y (a >0,b >0).这里222a c b -=,其中|1F 2F |=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.5.曲线的简单几何性质22a x -22by =1(a >0,b >0) ⑴范围:|x |≥a ,y ∈R⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线:①若双曲线方程为12222=-b y a x ⇒渐近线方程⇒=-02222b y a x x aby ±=②若渐近线方程为x aby ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222b y a x③若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上)④特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,可设为λ=-22y x ;y =a b x ,y =-abx (什么是共轭双曲线?)⑸准线:l 1:x =-c a 2,l 2:x =c a 2,两准线之距为2122a K K c=⋅⑹焦半径:21()a PF e x ex a c =+=+,(点P 在双曲线的右支上x a ≥);22()a PF e x ex a c=-=-,(点P 在双曲线的右支上x a ≥);当焦点在y 轴上时,标准方程及相应性质(略)⑺与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222by a x 0(≠λ⑻与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 6曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b⇔-<. 7曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). 8双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y ya b-=.(2)过双曲线22221(0,0)x y a b a b -=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y a b -=.(3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=.9线与椭圆相交的弦长公式 AB =若斜率为k 的直线被圆锥曲线所截得的弦为AB , A 、B 两点分别为A(x 1,y 1)、B(x 2,y 2),则弦长]4))[(1(1212212122x x x x k x x k AB -++=-⋅+= ]4)[()11(11212212122y y y y ky y k -+⋅+=-⋅+=,这里体现了解析几何“设而不求”的解题思想;高考题型解析题型一:双曲线定义问题1.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( )A.充分不必要条件B.必要不充分条件 C .充分必要条件 D.既不充分又不必要条件2.若R ∈k ,则“3>k ”是“方程13322=+--k yk x 表示双曲线”的( )A .充分不必要条件. B.必要不充分条件. C.充要条件. D.既不充分也不必要条件.3.给出问题:F 1、F 2是双曲线162x -202y =1的焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,求点P 到焦点F 2的距离.某学生的解答如下:双曲线的实轴长为8,由||PF 1|-|PF 2||=8,即|9-|PF 2||=8,得|PF 2|=1或17.该学生的解答是否正确?若正确,请将他的解题依据填在下面横线上;若不正确,将正确结果填在下面横线上. _________.4.过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是 .题型二:双曲线的渐近线问题1.双曲线42x -92y =1的渐近线方程是( )A . y =±23x B.y =±32x C.y =±49x D.y =±94x2.过点(2,-2)且与双曲线22x-y 2=1有公共渐近线的双曲线方程是( )A .22y -42x =1 B.42x -22y =1 C.42y -22x =1 D.22x -42y =1题型三:双曲线的离心率问题1已知双曲线 x 2a 2 - y 2b2 = 1 (a >0,b >0)的左右焦点分别为F 1、F 2,点P 在双曲线的右支上,且∣PF 1∣=4∣PF 2∣,则此双曲线的离心率e 的最大值为 ( )A .43B .53C .2D .732.已知21,F F 是双曲线)0(,12222>>=-b a b y a x 的左、右焦点,过1F 且垂直于x 轴的直线与双曲线的左支交于A 、B 两点,若2ABF ∆是正三角形,那么双曲线的离心率为 ( )A.2 B.3 C. 2 D. 33.过双曲线M:2221y x b -=的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是 (4.在给定双曲线中,过焦点垂直于实轴的弦长为2,焦点到相应准线的距离为21,则该双曲线的离心率为( ) A.22 B. 2 C .2 D. 225..已知双曲线12222=-by a x (a>0,b<0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A.( 1,2)B. (1,2) C .[2,+∞) D.(2,+∞) 题型四:双曲线的距离问题1.设P 是双曲线22ax -92y =1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1、F 2分别是双曲线的左、右焦点.若|PF 1|=3,则|PF 2|等于( ) A.1或5 B.6 C .7 D.92.已知双曲线141222=-y x 的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是 A.(33-,33) B. (-3,3) C .[ 33-,33] D. [-3,3] 3.已知圆C 过双曲线92x -162y =1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是____________.题型五:轨迹问题1.已知椭圆x 2+2y 2 =8的两焦点分别为F 1、F 2,A 为椭圆上任一点。
(完整版)双曲线经典知识点总结
双曲线知识点总结班级姓名知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点);4.若常数满足约束条件:,则动点轨迹不存在;5.若常数,则动点轨迹为线段F1F2的垂直平分线。
知识点二:双曲线的标准方程1.当焦点在轴上时,双曲线的标准方程:,其中;2.当焦点在轴上时,双曲线的标准方程:,其中.注意:1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程;2.在双曲线的两种标准方程中,都有;3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,.知识点三:双曲线的简单几何性质双曲线(a>0,b>0)的简单几何性质(1)对称性:对于双曲线标准方程(a>0,b>0),把x换成―x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以双曲线(a>0,b >0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。
(2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。
因此双曲线上点的横坐标满足x≤-a或x≥a。
(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。
②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。
高中数学双曲线知识点总结
螆【例 7】已知抛物线 y=x2,动弦 AB 的长为 2,求 AB 的中点纵坐标的最小值。
莄分析一:要求 AB 中点纵坐标最小值,可求出 y1+y2 的最小值,从形式上看变量较多, 结合图形可以观察到 y1、y2 是梯形 ABCD 的两底,这样使得中点纵坐标 y 成为中位线,可 以利用几何图形的性质和抛物线定义求解。
的关系,构造出 e c 和 c2 a2 b2 的关系式。 a
芃【例
2】双曲线
x2 a2
y2 b2
1(a
0,b
0) 的焦距为 2c,直线
l 过点(a,0)和(0,b),且
点(1,0)到直线 l 的距离与点(-1,0)到直线 l 的距离之和 s≥ 4 c 。求双曲线的离心率 5
e 的取值范围。
羂(2)设 A(x1,y1) , B(x2 ,y2 ) ,
螀由题意建立方程组
y=kx-1
x
2
-y2
=1
消去
y,得
(1
k
2
)x2
2kx
2
0
。
肇又已知直线与双曲线左支交于两点 A、B,有
1 k 2 0,
(2k)2 8(1 k 2 ) 0,
蒅
x1
x2
2k 1 k2
0,
解得 2 k 1。
|BC1|=|BF|,∴ 2(y+ 1 ) =|AF|+|BF|≥|AB|=2, 4
蒈∴ 2(y+ 1 ) 2 4
肃∴ y 3 ,即点 M 纵坐标的最小值为 3 。
4
4
膄 分析二:要求 AB 中点 M 的纵坐标 y 的最小值,可列出 y 关于某一变量的函数,然后 求此函数的最小值。
椭圆和双曲线知识点表格
椭圆和双曲线知识点表格椭圆和双曲线知识点表格椭圆和双曲线是高中数学中比较重要的内容之一,它们在数学、物理、工程和经济学中都有广泛的应用。
下面我们将针对椭圆和双曲线的相关知识点进行详细的说明和比较。
椭圆椭圆是一个平面上的闭合曲线,它的形状像一个拉长的圆形。
下面是椭圆的主要特点:1. 焦点性质:椭圆有两个焦点,所有到这两个焦点的距离之和是常数。
2. 中心性质:椭圆的中心位于椭圆的长轴和短轴的交点处,也就是它的几何中心。
3. 离心率性质:离心率是用来描述椭圆形状的一个参数,它等于焦距与长轴长度之比。
4. 方程性质:椭圆的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中 $a$ 和 $b$ 分别为椭圆长轴和短轴的长度。
双曲线双曲线也是一个平面上的闭合曲线,不同于椭圆的是,它的两条渐近线永远不会相交。
下面是双曲线的主要特点:1. 焦点性质:双曲线同样有两个焦点,所有到这两个焦点的距离之差是常数。
2. 中心性质:和椭圆一样,双曲线的中心位于它的几何中心,也就是它的两条渐近线的交点处。
3. 离心率性质:离心率也是用来描述双曲线形状的一个参数,它等于焦距与渐近线距离之比。
4. 方程性质:双曲线的标准方程为 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a$ 和$b$ 分别为双曲线横轴和纵轴的长度。
椭圆和双曲线的比较虽然椭圆和双曲线都是平面上的闭合曲线,但它们之间还是有一些明显的差异。
下面是椭圆和双曲线的比较:1. 形状差异:椭圆形状更加圆润,而双曲线则更倾向于沿着两个方向无限延伸。
2. 焦点性质差异:椭圆的焦点距离和为常数,而双曲线的焦点距离差为常数。
3. 离心率性质差异:椭圆的离心率范围是 $0 \le e \lt 1$,而双曲线的离心率范围是 $e \gt 1$。
4. 应用领域差异:椭圆在天文学、植物学和热力学等领域有广泛应用,而双曲线则在光学、电磁学和近代物理学等领域有广泛应用。