人教版八年级数学上册多边形及其内角和教案
人教版初中数学课标版八年级上册第十一章 11.3.2 多边形及其内角和 教案
人教版初中数学课标版八年级上册第十一章 11.3.2 多边形及其内角和教案1、2、采用多媒体辅助教学,给课堂带来生机,通过几何画板等工具,突出重点、突破难点,发展学生思维,提高学生能力。
一、教学过程(一)知识引入1.教师操作课件,复习三角形、长方形、正方形的内角和。
2.播放FLASH视频,激发学生学习兴趣。
3.引入问题:今天我们就来学习多边形的内角和问题。
(板书课题)(二)探索新知1.启发:长方形、正方形的内角和是360°。
那么任意四边形的内角和都是360°吗?2.指导学生画图,先自行探究。
教师巡视。
3.学生交流结果,教师引导,操作课件演示。
(展台)①拼图法,②度量法,③辅助线法。
(注意几何画板的辅助教学)4.由四边形到六边形层层引入,归纳出结论。
多边形的边数图形从一个顶点出发所引的对角线条数及分割成的三角形个数多边形的内角和3 11×180º=180º2×180º=360º4 1 23×180º=540º5 2 34×180º=720º6 3 4 。
( n - 2)×180ºn n-3 n-2结论:多边形的内角和公式:n边形的内角和等于(n-2)·180°(三)另辟蹊径1.探索多边形的内角和关键是:把多边形分成几个三角形,再利用三角形的内角和求得。
你还有其它分法吗?和同学们交流一下吧!2.学生讨论后回答,教师操作几何画板演示。
3.小结:这几种方法都是从一个顶点出发和各顶点相连,把四边形的问题转化为三角形的问题。
注重“转化思想”。
(四)知识应用1、教师演示课件,请学生读题,启发思考:你能自己独立完成这道题目吗?2、教师请学生分析解题,师生共评。
(五)选择挑战1、演示课件,展示“海宝”2、学生选号抢答,教师点评。
注重“方程思想”。
多边形及其内角和第一课时教案数学八年级上第11章113人教版
11.3多边形及其内角和第一课时教案一、教学目标(1)观察生活中大量的图片,认识一些简单的几何体(四边形、五边形),了解多边形及其内角,对角线等数学概念;(2)能由实物中辨别寻找出几何体,由几何体图形联想或设计一些实物形状;(3) 了解类比的数学学习方法。
二、教学重难点重点:连接多边形、内角、外角、对角线的概念以及凸多边形的形状的辨别;难点:正多边形的正确理解以及凸多边形的辨别三、专家建议让学生认识生活中的多边形形状,感受数学与生活的联系;在三角形的基础上,学习多边形把多边形的有关问题转化为三角形问题。
在探究多边形的对角线的条数时,从特殊到一般进行分析,让学生体会从特殊到一般的分析问题的方法。
师生共同探究,教师注意多让学生活动,不要急于得出结论,在学生充分讨论的基础上再给出结论,有利于培养学生的探究精神,从而让学生感受成功的乐趣。
四、教学方法情境引入——探索研讨——总结归纳——练习提高五、教学用具多媒体,三角板,直尺六、教学过程(一)、情景导入[投影1]看下面的图片,你能从中找出由一些线段围成的图形吗?(二)、多边形及有关概念(1)多边形的定义这些图形有什么特点?由几条线段组成;它们不在同一条直线上;首尾顺次相接.这种在同一平面内,由一些不在同一条直线上的线段首尾顺次相接组成的图形叫做多边形。
多边形按组成它的线段的条数分成三角形、四边形、五边形……、n边形。
这就是说,一个多边形由几条线段组成,就叫做几边形,三角形是最简单的多边形。
例题讲解例1:请列出生活中的一些多边形,并指出其特征解:房屋顶是三角形,因为三角形有稳定性;螺母底面为六边形,是为了方便安装和拆卸;黑板为四边形,是为了满足教学的使用;等等教师强调:多边形概念的重要提示:在多边形的概念中,要分清以下几个方面(1)在同一平面内;(2)若干线段不在同一直线上;(3)首尾顺次相结;(4)所形成的封闭图形(2)多边形的内角与三角形类似地,多边形相邻两边组成的角叫做多边形的内角,如图中的∠A、∠B、∠C、∠D、∠E。
人教版初中数学八年级上册11.3多边形与其内角和(教案)
(2)运用多边形内角和解决实际问题:将理论知识应用于实际问题,需要学生具备一定的分析能力和运算技巧。
举例:针对多边形分割、组合等情形,指导学生运用内角和定理进行求解。
(3)多边形内角和与外角和的关系:理解多边形内角和与外角和的关系,有助于提高学生对几何图形的深入理解。
人教版初中数学八年级上册11.3多边形与其内角和(教案)
一、教学内容
人教版初中数学八年级上册11.3节,本节课将围绕多边形及其内角和展开教学。主要内容包括:
1.多边形的定义与性质,例如三角形的内角和定理。
2.多边形内角和的计算公式,即(n-2)×180°,其中n为多边形的边数。
3.通过实际操作,让学生理解并掌握多边形内角和的概念和计算方法。
4.解决与多边形内角和相关的实际问题,例如多边形分割、组合等情形。
5.培养学生运用多边形内角和定理进行几何推理和计算的能力。
本节课将结合教材内容,注重理论与实践相结合,提高学生对多边形内角和知识点的掌握和应用。
二、核心素养目标
本节课的核心素养目标主要包括以下方:1.培养学生的逻辑推理能力:通过多边形内角和定理的推导与应用,让学生理解几何图形之间的内在联系,提高逻辑推理和论证能力。
本节课将紧扣新教材要求,注重培养学生的学科核心素养,提高学生的综合素质。
三、教学难点与重点
1.教学重点
(1)多边形的定义及性质:理解多边形的组成要素,掌握多边形的基本性质,如三角形的内角和定理。
举例:强调三角形内角和为180°,四边形内角和为360°,引导学生发现多边形内角和与边数的关系。
(2)多边形内角和的计算公式:(n-2)×180°,其中n为多边形的边数。
八年级数学上册 11.3.2 多边形及其内角和教案
多边形的内角和《多边形的内角和》优秀教学设计教学目的1、会应用多边形内角和公式进行计算。
2、经历探究多边形内角和计算方法的过程,培养学生的探究能力。
3、感受数学的转化思想,认识多边形知识的实际应用价值。
重点多边形的内角和的应用。
难点推导多边形的内角和公式。
教具准备三角尺、小黑板教学过程一、回顾交流,讲授新课回顾与迁移:1、△ABC的内角和等于多少度?外角和等于多少度?2、正方形、长方形的内角和等于多少度?任意一个四边形ABCD的内角和又是多少呢?外角和呢?板书:多边形的内角和1、四边形从一个顶点出发能引几条对角线?它们把四边形分割成几块三角形?五边形、六边形、……、n边形呢?2、四边形的外角和为多少?五边形、六边形、……、n边形呢?填空:从四边形的一个顶点出发,可以引__________条对角线,它们将四边形分为________个三角形,四边形的内角和等于180º╳________。
从五边形的一个顶点出发,可以引__________条对角线,它们将五边形分为________个三角形,五边形的内角和等于180º╳________。
从六边形的一个顶点出发,可以引__________条对角线,它们将六边形分为________个三角形,六边形的内角和等于180º╳________。
从n边形的一个顶点出发,可以引__________条对角线,它们将n边形分为________个三角形,n边形的内角和等于180º╳________。
多边形的内角和计算公式:多边形的内角和等于______________。
问题:把一个多边形分成几个三角形,还有其他分法吗?由新的分法,能得出多边形内角和公式吗?二、范例学习,应用所学例1、如果一个四边形的一组对角互补,那么另外一组对角有什么关系呢?已知:如图,在四边形ABCD中,∠A+∠C=180º,问:∠B与∠D有什么关系?例2、如图,在六边形的每一个顶点处各取一个外角,这些外角的和叫做六边形的外角和。
八年级上册数学人教版教案《多边形》
《11.3.1 多边形》教学设计一、教材分析《多边形及其内角和》是新人教版八年级数学上册第十一章第三单元第一节课的内容。
本节教材属于平面几何图形内容,是在学习了“三角形”有关知识后认识的一种基本图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。
本节课主要介绍多边形的有关概念、理解凸多边形与凹多边形的联系与区别、会找出多边形的所有的对角线。
为使学生感受、理解数学知识来源于生活并应用于生活。
理解数学知识的产生和发展过程,培养学生的抽象思维,我将通过例举日常生活中的一些与多边形的关的图片引出多边形的概念;通过多媒体演示使学生对多边形的边,内角,外角,对角线有直观的表象;引导学生操作、观察、猜想、归纳、类比等方法探究多边形的特点.二、学情分析1.我授课的是陆川县初级中学八年级二班的学生,学生在学习了三角形的有关概念的基础上,在认识三角形的边,内角,外角方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力通过欣赏图片,自主学习,理解掌握多边形的边,内角,外角等概念。
关键是要理解什么是对角线的概念。
会记住几种特殊的正多边形。
班级学生,基础较好,思维活跃,表现力强,学习积极性高的特点,但学生的抽象思维能力不很好。
2.班级学生的年龄大多在14岁到16岁间.他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣.3.学生已有的与本课相联系的知识与技能、问题解决的方法,以及生活经验对多边形学习是在三角形有关知识的延续,它与三角形的联系较紧,由于学生以前没学过对角线的概念。
在这方面要让他们加强画对角线的操作,由于他们的推理归纳能力相对不高,缺乏实践经验,因此要让他们主动参与,勤于动手.自己总结归纳得出结论。
人教版八年级数学上册多边形及其内角和教学设计
3.学生在几何证明过程中的逻辑思维能力,是否能够灵活运用多边形的性质进行推理。
4.学生在小组合作学习中的参与程度,以及团队协作能力的培养。
针对以上情况,教师在教学过程中应注重启发式教学,引导学生主动探究多边形内角和的计算规律,提高学生的几何直观和空间想象能力。同时,关注学生的个体差异,给予每个学生充分的关注和指导,使他们在掌握知识的同时,提高解决问题的能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:多边形的定义、内角和的计算公式、多边形内角和与外角和的关系。
2.难点:
(1)理解多边形的内角和公式推导过程,能够熟练运用公式解决相关问题。
(2)运用多边形的性质进行几何证明,培养学生的逻辑思维能力和几何推理能力。
(3)将多边形内角和与外角和的关系应用于解决实际问题,提高学生的应用能力。
4.设计不同难度的例题和练习题,分层教学,使学生在掌握基础知识和技能的基础上,逐步提高几何证明能力。
(1)基础题:针对全体学生,巩固多边形内角和公式,提高计算能力。
(2)提高题:针对中等水平学生,运用多边形性质进行简单几何证明。
(3)拓展题:针对优秀学生,提高学生运用多边形知识解决实际问题的能力。
5.加强课堂互动,鼓励学生提问、发表见解,培养学生敢于质疑、勇于探索的精神。
5.布置课后作业,巩固所学知识,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学知识,培养学生的独立思考能力和解决问题的能力,特布置以下作业:
1.请同学们完成课本第chapter页的练习题,主要包括以下内容:
(1)多边形内角和的计算。
(2)运用多边形性质进行几何证明。
八年级数学上册《多边形及其内角和》优秀教学案例
2.结合实际生活,让学生举例说明多边形内角和的应用,并简要说明计算过程。
3.让学生撰写学习心得,反思自己在学习多边形内角和过程中的收获和不足。
五、案例亮点
本教学案例在设计与实施过程中,充分体现了以下五个突出亮点:
(一)情境创设与生活实际相结合
本案例以丰富的情境创设为载体,将多边形内角和的知识与学生的生活实际紧密结合。通过展示多边形在生活中的应用,让学生感受到数学知识的实用性和趣味性,提高他们学习数学的兴趣。
二、教学目标
(一)知识与技能
1.理解多边形的定义及分类,掌握多边形的基本概念,如边、顶点、对角线等。
2.掌握多边形内角和的计算公式,并能运用该公式解决相关问题。
3.学会使用三角形的内角和性质解决多边形内角和问题,培养几何变换与空间想象能力。
4.能够运用多边形内角和的性质解决实际生活中的问题,如房屋建筑、园林设计等。
4.通过课堂讲解、练习巩固、课后拓展等环节,使学生在实践中掌握知识,提高解决问题的能力。
5.注重培养学生的数学表达与交流能力,使他们能够清晰、准确地描述问题,展示自己的思维过程。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们学习数学的热情,树立自信心。
2.培养学生严谨、细致的学习态度,养成勤奋、刻苦的学习习惯。
5.提高学生的计算能力,培养他们在解决问题时运用数学符号、图表等表达方式的习惯。
人教版八年级数学上册多边形及其内角和教案 教学设计
多边形及其内角和教案三维目标1.经历探索多边形内角和公式的过程,进一步发展学生的合情推理能力,•养成主动探究的习惯.2.能运用多边形内角和公式解决问题.3.通过运用内角和公式解决问题,使学生认识到数学来源于实践,•又反过来作用于实践的观点.教学重点多边形内角和与外角和定理.教学难点多边形内角和公式的推导.教学过程导入新课我们知道三角形的内角和等于180°,正方形、长方形的内角和都等于360°,那么其他四边形的内角和等于多少?如图1•中的这两个漂亮的多边形的内角和又是多少呢?想信在本节课结束时,大家都会轻而易举地作出回答.推进新课动手试一试,你会有收获活动1.问题:任意画一个四边形,量出它的4个内角,计算它们的和.再画几个四边形,•量一量、算一算.你能得出什么结论?能否利用三角形内角和等于180•°得出这个结论?设计意图:通过学生自己动手操作,让他们积极参加数学活动,主动思考、合作交流的“做数学”过程,让学生亲自体验数学发现的过程,增强动手能力、主动思考的能力.师生活动:生:任意一个四边形,它的四个内角和都为360°.我们可以利用上节课学过的知识来解决.如图2,画出任意一个四边形的一条对角线,•都能将这个四边形分为两个三角形.这样,任意一个四边形的内角和,都等于两个三角形的内角和,即360°.活动3.问题:从上面的问题,你能想出五边形和六边形的内角和各是多少吗?观察图3,•请填空:从五边形的一个顶点出发,可以引_____条对角线,它们将五边形分为_____个三角形,五边形的内角和等于180°×______.从六边形的一个顶点出发,可以引_____条对角线,它们将六边形分为_____个三角形,六边形的内角和等于180°×______.设计意图:在得出任意四边形的内角和的求法后,再让学生思考五边形、六边形的内角和的求法,旨在让学生能从中找中规律,为后面求n边形的内角和打基础.师生活动:师:从五边形的一个顶点出发,可以引2条对角线,它们将五边形分成3个三角形,五边形的内角和等于3×180°=540°.从六边形的一个顶点出发,可以引3条对角线,它们将六边形分成4个三角形,•因此六边形的内角和等于4×180°=720°.师:由此我们可以看出,求多边形的内角和,可以把多边形用对角线分成若干个三角形,利用三角形的内角和求解,而分得的三角形的个数又与从一个顶点引出的对角线的条数有关.通过以上问题,你能发现多边形的内角和与边数的关系吗?一般地,怎样求n边形的内角和呢?请填空:从n边形的一个顶点出发,可以引____条对角线,它们将n边形分为____个三角形,n 边形的内角和等于180°×______.生:从n边形的一个顶点出发,可以引(n-3)条对角线,它们将n边形分成(n-2)•个三角形,n边形的内角和等于180°×(n-2),即n边形内角和等于(n-2)·180°.(n是大于等于3的整数)师:利用刚才的思路,大家猜想一下,还有其他的方法吗?生:以五边形为例,可以在五边形内部任找一点,如图4,•把这一点与各个顶点连接起来,把五边形分成五个三角形,这时多了一个周角,因此,五边形的内角和为:5×180°-360°=540°.师:非常了不起.生:老师,我还有别的方法,如图5可以在五边形的任一条边上取一个点,•然后将这个点与各顶点连接,这时五边形被分割成四个三角形,但多了一个平角.所以,五边形的内角和为180°×4-180°=540°.生:我还有不同方法,如图6,可以在五边形的外部任取一点,•将此点与各顶点连接,这时图中共有五个三角形,原五边形的内角和等于4•个三角形的内角和减去最下边一个三角形的内角和,即为4×180°-180°=540°.师:大家思维敏捷,富有创新精神,很棒.哪位同学来总结一下,•如何推导多边形的内角和公式呢?生:数学中有一个重要的思想是转化思想,即把求多边形的内角和转化为求若干个三角形的内角和,关键是将n边形分割转化为三角形,分割的方法很好,上面给出了好多方法.因此,可以得出结论:n边形的内角和公式为(n-2)·180°.尝试反馈巩固练习1.一个多边形的每个内角都等于140°,那么这个多边形是几边形?2.一个多边形有35条对角线,则这个多边形是几边形?答案:1.九 2.十活动3.例1:如果一个四边形的一组对角互补,那么另一组对角有什么关系?设计意图:利用多边形内角和解决问题.师生活动:师:大家思考一下,应从哪儿入手?生:应从四边形内角和入手.因为它只有一组对角互补,要求另一组对角之间的关系,而这两组对角和恰好构成四边形的内角和,是360°,从而可以求出另一组对角间的关系.师:可以写出证明过程吗?生:解:如图7,四边形ABCD中,∠A+∠C=180°.因为∠A+∠B+∠C+∠D=(4-2)×180°=360°,所以∠B+∠D=360°-(∠A+∠C)=360°-180°=180°.这就是说,如果四边形的一组对角互补,那么另一组对角也互补.活动4.例2:如图8,在六边形的每个顶点处各取一个外角,•这些外角的和叫做六边形的外角和.六边形的外角和等于多少?设计意图:利用内角和求外角和,从而得出n边形内角和.师生活动:师:请大家先分析题意,然后找出解决问题的方法.生:外角和是指每个顶点处各取一个外角,而每个顶点处的一个外角与它相邻的内角是互为邻补角,因此外角和与内角和之和就是6个平角再减去内角和,•就是外角和.师:请大家把过程写出来.生:∵∠1+∠BAF=180°,∠2+∠ABC=180°;∠3+∠BCD=180°,∠4+∠CDE=180°;∠5+∠DEF=180°,∠6+∠EFA=180°;∴(∠1+∠2+∠3+∠4+∠5+∠6)+(∠BAF+∠ABC+∠BCD+∠CDE+∠DEF+∠AFE)=•6×180=1080°.∵∠BAF+∠ABC+∠BCD+∠CDE+∠DEF+∠AFE=(6-2)·180°=720°,∴∠1+∠2+∠3+∠4+∠5+∠6=1080°-720°=360°.∴六边形的外角和为360°.师:如果将六边形换为n边形(n是大于等于3的整数),结果还相同吗?生:还相同.因为三角形、四边形、六边形的外角和都是360°.生:那也不一定正确,这只能作为猜想,不能作为结论,还要经过证明才行.师:能证明出来吗?生:可以.根据刚才的思路,n边形中,•每个顶点处的内角和外角组成一个平角,n 个顶点处有n个平角,它们的和180°n即为多边形的内角和与外角和的和,而内角和为(n-2)·180°,所以外角和应为180°·n-(n-2)·180°=180°·n-n·180•°+360°=360°.师:很好,还有其他的证明方法吗?生:有.你也可以像以下这样理解为什么多边形的外角和等于360°.如图9,从多边形的一个顶点A出发,沿多边形的各边走过各顶点,再回到点A,•然后转向出发时的方向.在行程中所转的各个角的和,就是多边形的外角和.•由于走了一周,所转的各个角的和等于一个周角,所以多边形的外角和等于360°.师:前面我们学习了n边形的内角和为(n-2)·180°,外角和为360°,下面我们做一些巩固练习.尝试反馈巩固练习1.一个多边形的内角和等于900°,求它的边数.2.一个多边形的每一个内角都等于140°,求它的边数.3.一个多边形的每一个外角都等于40°,求它的边数.答案:1.7 2.9 3.9课堂小结本节学习了以下主要内容:1.探索了n边形的内角和公式、外角和公式.2.学会转化的数学思想方法.布置作业习题7.3 4、5.活动与探究1.如图10,六边形ABCDEF的每个内角都是120°,AF=AB=2,BC=CD=3.求DE、EF的长.解:把边AB、CD、EF向两方延长,分别交于M、N、P.∵六边形的每个内角都是120°,∴△MNP是等边三角形,△NAF、△MBC、•△PDE也都是等边三角形.设EF=x,DE=y,则x+2+y=3+3+y=2+2+3.∴x=4,y=1.2.在一个凸n边形中,有(n-1)个内角的和恰为8 940°,求边数n的值.解:设此凸n边形中有一个内角为α,剩余(n-1)个内角之和恰好8940°.∴α=(n-2)·180°-8940°.∵0°<α<180°,∴0°<(n-2)·180°-8940°<180°.∴894091202180180n<-<.∴49.67<n-2<50.67.∵n-2是整数,∴n-2=50,∴n=52.∴这个凸多边形是凸52边形.。
多边形及其内角和人教版数学八年级上册教案
多边形及其内角和人教版数学八年级上册教案多边形内角和定理:多边形内角和定理n边形的内角的和等于:(n - 2)×180°,则正多边形各内角度数为:(n - 2)×180°÷n。
以下是整理的多边形及其内角和人教版数学八年级上册教案,欢迎大家借鉴与参考!11.3多边形及其内角和:教学设计一、创设情景,明确目标多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题.二、自主学习,指向目标学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标多边形的定义及有关概念活动一:阅读教材P19.展示点评:多边形是怎么组成的?常见的多边形有哪些?边数最少的多边形是几边形?什么是多边形的边、内角、外角?小组讨论:结合具体图形说出多边形的边、内角、外角?反思小结:多边形的定义及相关概念.针对训练:见《学生用书》相应部分多边形的对角线活动二:(1)十边形的对角线有__35__条.(2)如果经过多边形的一个顶点有36条对角线,这个多边形是__39__边形.展示点评:结合图形说明什么是多边形的对角线?三角形是否有对角线?从五边形的一个顶点出发可以引几条对角线?五边形有几条对角线?从n边形的一个顶点出发可以引几条对角线?n边形有多少条对角线?表达式中的(n-3)是什么意思?为什么要除以2?反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数.小组讨论:如何灵活运用多边形对角线条数的规律解题?针对训练:见《学生用书》相应部分正多边形的有关概念活动二:阅读教材P20.展示点评:画图说明什么是凸多边形和凹多边形?正多边形要求的条件是什么?边数最少的正多边形是什么?小组讨论:判断一个多边形是否是正多边形的条件?反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形.针对训练:见《学生用书》相应部分四、总结梳理,内化目标本节学习的数学知识是:1.多边形、多边形的外角,多边形的对角线.2.凸凹多边形的概念.五、达标检测,反思目标1.下列叙述正确的是( D )A.每条边都相等的多边形是正多边形B.如果画出多边形某一条边所在的直线,这个多边形都在这条直线的同一侧,那么它一定是凸多边形C.每个角都相等的多边形叫正多边形D.每条边、每个角都相等的多边形叫正多边形2.小学学过的下列图形中不可能是正多边形的是( D )A.三角形B.正方形C.四边形D.梯形3.多边形的内角是指__多边形相邻两边组成的角__;多边形的外角是指__多边形的边与它的邻边的延长线组成的角__;多边形的内角和它相邻的外角是__邻补角__关系.4.已知一个四边形的四个内角的比为1∶2∶3∶4,求这个四边形的各个内角的度数.《11.3多边形的内角和与外角和》同步测试19. 本题主要考查了平行四边形的性质,三角形的内角和定理,四边形的内角和定理,勾股定理,含角的直角三角形的性质等知识点,解此题的关键是综合运用性质求出BE和AB的长根据四边形的内角和等于,求出,根据平行四边形的性质得到,进一步求出,根据,,求出BC、AB的长,根据勾股定理求出BE的长,根据平行四边形的面积公式即可求出答案.20. 根据平行线的性质先求的度数,再根据五边形的内角和公式求x的值.本题主要考查了平行线的性质和多边形的内角和,属于基础题.《11.3多边形及其内角和》同步测试拓展训练1.(2018福建南平三中期中,7,★★☆)已知一个多边形的最小的外角是60°,其余外角依次增加20°,则这个多边形的边数为()A.6B.5C.4D.32.(2018辽宁抚顺新宾期中,16,★★☆)如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为°.多边形及其内角和人教版数学八年级上册教案。
人教版八年级数学上册多边形的内角和教学设计
(三)学生小组讨论
1.教学活动:教师将学生分成小组,每组讨论以下问题:
a.多边形内角和公式的推导过程是怎样的?
b.如何运用多边形内角和公式解决实际问题?
c.多边形内角和性质在生活中的应用实例。
2.小组讨论:学生积极思考,互相交流,共同解决问题。
a.选择一个生活中的多边形物品,测量其内角度数,并计算出其内角和,与理论值进行比较,分析可能的原因。
b.探究多边形内角和与边数之间的关系,尝试总结规律,并用文字或图形进行说明。
3.开放性作业:
a.结合本节课所学知识,设计一道与多边形内角和相关的实际问题,并给出解题步骤。
b.搜集生活中的多边形实例,分析其内角和的特点,探讨多边形内角和在实际应用中的作用。
人教版八年级数学上册多边形的内角和教学设计
一、教学目标
(一)知识与技能
1.理解多边形的内角和的概念,掌握多边形内角和的计算公式,能够准确计算出任意多边形的内角和。
2.学会运用多边形内角和的性质,解决实际问题,如计算多边形的未知角度,判断多边形的类型等。
3.能够运用多边形内角和的性质,推导出多边形对角线的数量关系,并应用于实际问题的解答。
3.教师指导:教师巡回指导,解答学生的疑问,引导学生深入探讨。
(四)课堂练习
1.教学活动:教师发放课堂练习题,让学生独立完成。
2.练习内容:练习题包括基础题和提高题,涵盖多边形内角和的各种应用场景。
3.学生解答:学生在规定时间内完成练习题,教师及时给予反馈。
4.解答讨论:教师选取部分学生的解答进行展示,组织学生讨论解题思路和方法。
4.提出问题:教师提出问题:“那么,对于任意多边形,它的内角和是否有规律可循呢?这节课我们就来探讨这个问题。”
八年级数学上册《多边形的内角和》教案、教学设计
-请同学们认真完成作业,确保计算的准确性和证明的严密性。
-对于选做题,鼓励同学们进行实际操作,增强对多边形内角和的直观认识。
-思考题旨在培养学生的几何直觉和空间想象力,同学们可以尝试用不同的方法解决问题。
作业提交:
-请在课后及时完成作业,下节课前提交。
-对于有疑问的问题,可以与同学讨论,或在课堂上向老师提问。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,每组讨论以下问题:
-多边形内角和公式是如何推导出来的?
-除了内角和,多边形还有哪些性质与内角和有关?
-你能举出生活中应用多边形内角和的例子吗?
2.各小组分享讨论成果,教师点评并总结。
(四)课堂练习,500字
1.教师布置以下练习题,让学生独立完成:
-创设轻松愉快的学习氛围,鼓励学生积极参与课堂讨论,培养学生的表达能力和思维能力。
四、教学内容与过程
(一)导入新课,500字
1.教师通过多媒体展示一组生活中的多边形实物图片,如五角星、六边形的地板图案等,引导学生观察并思考:“这些图形有什么共同特点?它们由几个角组成?这些角的和是多少?”
2.学生分享观察到的多边形实物,教师总结:这些图形都是由直线段组成的封闭图形,它们都有内角,今天我们要研究的就是这些多边形的内角和。
4.通过多边形的内角和的学习,使学生认识到数学与生活的紧密联系,体会数学在生活中的重要作用,培养学生的数学应用意识。
二、学情分析
八年级的学生已经具备了一定的几何基础,掌握了三角形、四边形的基本性质,能够进行基本的几何推理。在此基础上,学生对多边形的内角和概念有了初步的认识,但对于内角和的计算方法和应用仍存在一定的困难。因此,在本章节的教学中,教师需要关注以下几点:
人教版数学八年级上册11.3多边形及其内角和教学设计
1.学生按时完成作业,确保作业质量。
2.家长督促学生完成作业,关注学生的学习进度。
3.教师认真批改作业,及时了解学生的学习情况,针对问题进行辅导。
4.学生遇到问题要主动请教同学或老师,积极解决困难。
2.情境导入:向学生展示一些生活中的多边形实物,如五角星、六边形的地砖等,引导学生观察这些多边形的特点,激发学生学习多边形的兴趣。
3.问题导入:提出问题:“我们已经知道三角形的内角和是180度,那么四边形的内角和是多少度呢?五边形、六边形呢?”引发学生思考,为新课的学习做好铺垫。
(二)讲授新知
1.多边形的定义与分类:讲解多边形的定义,即由三条以上的线段首尾相连围成的图形。根据边数,多边形可分为三角形、四边形、五边形、六边形等。
2.引导学生回顾学习过程,反思自己在小组讨论、课堂练习中的表现,总结学习方法和经验。
3.提醒学生加强对多边形性质的记忆,为后续学习打下基础。
4.鼓励学生将所学知识运用到生活中,发现数学的乐趣和价值。
五、作业布置
1.基础作业:请学生完成课本练习题11.3中的第1-10题,巩固多边形内角和、外角和及对角线性质的相关知识,提高解题能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:多边形的定义、分类、内角和、外角和及对角线性质。
2.难点:
(1)理解多边形的内角和定理,并能灵活运用到实际问题中;
(2)掌握多边形外角和的性质,解决与外角和相关的实际问题;
(3)运用对角线性质解决多边形相关问题,提高空间想象能力。
(二)教学设想
1.教学方法:
人教版数学八年级上册11.3多边形及其内角和教学设计
一、教学目标
(一)知识与技能
2024年人教版八年级数学上册教案及教学反思全册第11章 三角形(11.3.1 多边形教案
第十一章三角形11.3 多边形及其内角和11.3.1 多边形一、教学目标【知识与技能】了解多边形的有关概念,理解正多边形和有关概念.【过程与方法】经历动手、作图的过程,进一步发展空间能力.【情感态度与价值观】经历探索、归纳等过程,学会研究问题的方法.二、课型新授课三、课时第1课时四、教学重难点【教学重点】1.了解多边形的边、顶点、内角、外角、对角线等有关概念.2.了解正多边形的基本性质.【教学难点】1.在多边形的概念中,对“在同一平面内”的理解.2.对多边形对角线的理解.3.对正多边形性质的理解.五、课前准备教师:课件、三角尺、多边形图片等。
学生:三角尺、直尺、多边形纸片。
六、教学过程(一)导入新课在实际生活当中,除了三角形,还有许多由线段围成的图形.观察图片,你能找到由一些线段围成的图形吗?(出示课件2-4)(二)探索新知1.师生互动,探究多边形的定义及其有关概念教师问1:观察下面的图片,你能找到哪些我们熟悉的图形?学生回答:三角形、长方形、正方形、平行四边形、五边形、六边形、八边形等.教师讲解引入多边形:上面这些图形我们要给出一个统一的名称,称它们为多边形.那么到底什么是多边形呢?我们先回忆一下三角形的定义.教师问2:同学们想一想,什么是三角形呢?学生回答:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.做一做教师讲解:请同学们拿出准备好的材料,随意画几个多边形.教师问3:观察画多边形的过程,类比三角形的概念,你能说出什么是多边形吗?学生回答:在平面内,由一些线段首尾顺次相接组成的封闭图形叫多边形.(出示课件6)教师问4:比较多边形的定义与三角形的定义,为什么要强调“在平面内”呢?怎样命名多边形呢?学生交流,教师讲解并强调“在平面内”,并总结:这是因为三角形中的三个顶点肯定都在同一个平面内,而四点,五点,甚至更多的点就有可能不在同一个平面内.根据边数的多少来命名为,有四条边就是四边形,有五条边就是五边形,依次命名为六边形、七边形、八边形…学生问:观察这个多边形,为什么有一条边是虚线?教师回答:虚线代表的是“不止一条边”,所以这个图形不仅可以代表七边形,也可以代表八边形、九边形等任意一个多边形.教师问5:根据图示,类比三角形的有关概念,说明什么是多边形的边、顶点、内角、外角和对角线.学生讨论回答,教师引导如下:内角:多边形相邻两边组成的角.外角:多边形的边与它的邻边的延长线组成的角.对角线:连接多边形两个顶点的线段教师问6:多边形按边数分类,可以分为哪一些呢?学生回答:多边形按它的边数可分为:三角形,四边形,五边形等等.其中三角形是最简单的多边形.(出示课件8)教师总结如下:(1)多边形的分类:多边形按组成它的线段的条数分成三角形、四边形、五边形……如果一个多边形由n条线段组成,那么这个多边形就叫做n边形. 其中,三角形是最简单的多边形.如图所示的多边形记作五边形ABCDE.(2)多边形的边:所连接的线段叫做多边形的边. 如图中的AB、BC、CD、DE、EA都是五边形ABCDE的边.(3)多边形的角:①内角:多边形相邻的两边所组成的角叫做多边形的内角,如图中的∠EAB、∠ABC、∠BCD、∠CDE、∠DEA都是五边形ABCDE的内角;n 边形共有n个内角.②外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角,如图中的∠DCF是五边形ABCDE的一个外角.n边形共有2n个外角,其中每个顶点处有两个相等的外角,这两个外角是对顶角.(4)多边形的对角线:多边形不相邻的两个顶点的连线组成的线段叫做多边形的对角线. 如图中,AC、AD是五边形ABCDE的两条对角线.教师问7:回想三角形的表示方法,多边形应如何表示?学生讨论回答并得出结论.多边形用图形名称以及它的各个顶点的字母表示.字母要按照顶点的顺序书写,可以按顺时针或逆时针的顺序.(出示课件7)教师问8:请分别画出下列两个图形各边所在的直线,你能得到什么结论?学生讨论回答,并得出结论:如图(2)这样,此类多边形被一条边所在的直线分成了两部分,不在这条直线同侧是凹多边形.如图(1)这样,画出多边形的任何一条边所在的直线,整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.(出示课件9)例:凸六边形纸片剪去一个角后,得到的多边形的边数可能是多少?画出图形说明.师生共同解答如下:(出示课件10)解:∵六边形截去一个角的边数有增加1、减少1、不变三种情况,∴新多边形的边数为7、5、6三种情况,如图所示.总结点拨:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条.①从所截角的两边截,边数增加1.②从所截角的相邻两角的顶点截,边数减少1.③从所截角的一边及相邻角的顶点截,边数不变.2.动手画图,寻找多边形对角线的特征教师问9:三角形有对角线吗?为什么?学生回答:三角形没有对角线,因为三角形只有三个顶点,而这三个顶点是两两相邻的,它没有不相邻的顶点,所以没有对角线.教师问10:四边形有对角线,过四边形的一个顶点有几条对角线?学生画图并回答:过四边形的一个顶点有1条对角线.(如下图所示)教师问11:过五边形的一个顶点有几条对角线?学生回答:过五边形的一个顶点有2条对角线.(如下图所示)(出示课件13)教师问12:请画出下列图形从某一顶点出发的对角线的条数,并看一下边数与对角线的条数之间有何规律?多边形三角形四边形五边形六边形八边形n边形从同一顶点引出的对角线的条数0 1 2 3 5 n-3分割出的三角形的个数1 2 3 4 6 n-2学生动手操作并回答(如上表数字)教师问13:每个多边形被过同一顶点的对角线分为几个三角形?学生观察并回答(如上表数字)(出示课件14)教师指导学生完成下列问题:(1)学生画一画画出下列多边形的全部对角线.(出示课件17)(2)观察下列图形,并阅读图形下面的相关文字,解答下列问题:教师问14:十边形有多少条对角线?n边形呢?(出示课件18)学生解答如下:(出示课件19)解:∵四边形的对角线条数为4×(4-3)×1=2.2=5.五边形的对角线条数为5×(5-3)× 12=9.六边形的对角线条数为6×(6-3)× 12∴十边形的对角线条数为10×(10-3)× 1=35.2n(n-3) .n边形的对角线条数为12教师问15:多边形一共有多少条对角线呢?学生讨论并回答,教师引导总结如下:(出示课件15)从n(n≥3)边形的一个顶点可以作出(n-3)条对角线.将多边形分成(n-2)个三角形.n(n≥3)边形共有对角线n(n−3)条.2例2:过多边形的一个顶点的所有对角线的条数与这些对角线分割多边形所得三角形的个数的和为21,求这个多边形的边数.师生共同解答如下:(出示课件16)解:设这个多边形为n边形,则有(n-3)条对角线,所分得的三角形个数为n-2,∴n-3+n-2=21,解得n=13.答:该多边形的边数有13条.3.自主探索正多边形的概念及基本性质教师问16:观察下列图形,它们的边、角有什么特点?学生回答:它们的边都相等,它们的角也都相等.教师问17:像这样的多边形我们称为正多边形.请用自己的语言说明什么是正多边形?学生回答:各个角都相等,各条边都相等的多边形叫做正多边形.问题3:由定义可知,正多边形有什么性质?学生回答:正多边形的各个角都相等,各条边都相等.教师问18:下列多边形是正多边形吗?如不是,请说明为什么?(出示课件21)(四条边都相等)(四个角都相等)学生回答:都不是,第一个图形不符合四个角都相等;第二个图形不符合各边都相等.总结点拨:判断一个多边形是不是正多边形,各边都相等,各角都相等,两个条件必须同时具备.(三)课堂练习(出示课件24-27)1.下列多边形中,不是凸多边形的是()2. 九边形的对角线有()A. 25条B. 31条C. 27条D. 30条3. 把一张形状是多边形的纸片剪去其中一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形 B .五边形C.四边形D.三角形4. 若从一个多边形的一个顶点出发,最多可以引10条对角线,则这是__________边形.5. 过八边形的一个顶点画对角线,把这个八边形分割成________个三角形.6. 过m边形的一个顶点有7条对角线,n边形没有对角线,k边形共有k条对角线,则(m-k)n为多少?参考答案:1.B2.C3.A4. 十三5.六6. 解:∵m=10,n=3,k=5.∴(m-k)n=(10-5)3=53=125.(四)课堂小结今天我们学了哪些内容:1.本节主要学习多边形及有关概念,多边形的分类和正多边形的概念及基本性质.2.本节涉及的思想方法是类比思想.(五)课前预习预习下节课(11.3.2)的相关内容。
人教版八年级数学上册《第十一章第3单元多边形及其内角和》教案设计
人教版八年级数学上册《第十一章第3课时多边形及其内角和》教案设计11.3.1多边形1.掌握多边形的定义及其有关概念,理解正多边形及其相关概念.(重点)2.正确区分凹多边形和凸多边形.(重点)3.理解多边形的对角线的概念,探索一个多边形能画几条对角线.(难点)一、情境导入利用多媒体展示生活、建筑方面等的图片(包含一个或多个明显的多边形).问题:请学生观察图片,在图中能找出哪些多边形?长方形、正方形、平行四边形等都是四边形,还有边数很多的图形,它们在日常生活、工农业生产中都有应用,引出本节课课题:多边形.二、合作探究探究点一:多边形的概念【类型一】多边形及其概念下列图形不是凸多边形的是( )解析:根据凸多边形的概念,如果多边形的边都在任意一条边所在的直线的同旁,该多边形即是凸多边形,否则即是凹多边形.由此可得选项D的图形不是凸多边形.故选D.方法总结:多边形可分为凸多边形和凹多边形,辨别凸多边形可有两种方法:(1)画多边形任何一边所在的直线,整个多边形都在此直线的同一侧;(2)每个内角的度数均小于180°.通常所说的多边形指凸多边形.【类型二】 确定多边形的边数若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为( ) A .14或15或16 B .15或16 C .14或16 D .15或16或17解析:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.故选A.方法总结:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,解决此类问题可以亲自动手画一下.探究点二:多边形的对角线【类型一】 确定多边形的对角线的条数从四边形的一个顶点出发可画________条对角线,从五边形的一个顶点出发可画________条对角线,从六边形的一个顶点出发可画________条对角线,请猜想从七边形的一个顶点出发有________条对角线,从n 边形的一个顶点出发有________条对角线,从而推导出n 边形共有________条对角线.解析:根据n 边形从一个顶点出发可引出(n -3)条对角线.从n 个顶点出发引出n (n -3)条对角线,而每条重复一次,可得答案.解:从四边形的一个顶点出发可画1条对角线,从五边形的一个顶点出发可画2条对角线,从六边形的一个顶点出发可画3条对角线,从七边形的一个顶点出发有4条对角线,从n 边形的一个顶点出发有(n -3)条对角线,从而推导出n 边形共有n (n -3)2条对角线.方法总结:(1)多边形有n 条边,则经过多边形的一个顶点的对角线有(n -3)条;(2)多边形有n 条边,对角线的条数为n (n -3)2.【类型二】 根据对角线条数确定多边形的边数从一个多边形的任意一个顶点出发都只有5条对角线,则它的边数是( ) A .6 B .7 C .8 D .9解析:设这个多边形是n 边形.依题意,得n -3=5,解得n =8.故这个多边形的边数是8.故选C.【类型三】 根据分成三角形的个数,确定多边形的边数连接多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是( )A .五边形B .六边形C .七边形D .八边形解析:设原多边形是n 边形,则n -2=6,解得n =8.故选D.方法总结:从n 边形的一个顶点出发可引出(n -3)条对角线,这(n -3)条对角线把n 边形分成(n -2)个三角形.探究点三:正多边形的有关概念下列图形中,是正多边形的是( ) A .等腰三角形 B .长方形 C .正方形D .五边都相等的五边形解析:根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形进行解答.正方形四个角相等,四条边都相等,故选C.方法总结:解答此类问题的关键是要搞清楚正多边形的定义,各个角相等、各条边相等的多边形是正多边形,这两个条件缺一不可.三、板书设计多边形1.定义:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接组成的封闭图形.2.相关概念:顶点、边、内角、对角线.3.多边形的对角线:n 边形从一个顶点出发的对角线条数为(n -3)条;n 边形共有对角线n (n -3)2条(n ≥3).4.正多边形:如果多边形的各边都相等,各内角也都相等,那么就称为正多边形.本节课采取的是合作探究的教学方式,在小组活动中,每个学生都能发挥自己的作用,都有表达和倾听的机会,每个人的价值作用都能显现出来.在这个过程中,学生得到了锻炼,明白了和他人怎样合作,取长补短.在教学设计时要从学生的角度出发,设计出合理的,具有可操作性的探究步骤,充分估计探究中的不确定因素和障碍点,并在教学过程中加强组织引导和巡视力度.11.3.1 多边形教学过程(师生活动)复习:1.什么是三角形?怎样表示?2.什么是三角形的边,角以及外角?图片观赏:你能从图中找出几个由一些线段围成的图形吗?学生回答,相互补充,教师点明本节课题.这些线段围成的图形有何特性?如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)明确概念:1.多边形相邻两边组成的角叫做多边形的内角2.多边形的边与它的邻边的延长线组成的角叫做多边形的外角.3.多边形的对角线连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.让学生画出五边形的所有对角线.4.凸多边形与凹多边形在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.5.正多边形由正方形的特征出发,得出正多边形的概念.各个角都相等,各条边都相等的多边形叫做正多边形.课本P21练习1.2.课堂小结1、今天本节课学习的主要内容(概念)。
最新人教版八年级数学上册《多边形》优质教案
11.3多边形及其内角和11.3.1多边形一、新课导入1.导入课题:请同学们仔细观察下面的三个图形,它们给我们以由一些线段围成的图形的形象,这些图形叫做什么形呢?这节课我们就来学习多边形.2.学习目标:(1)能叙述多边形、多边形的内角、外角和对角线的意义.(2)知道什么是凸多边形和正多边形.3.学习重、难点:重点:多边形及其有关的概念.难点:多边形的边的特征.二、分层学习1.自学指导:(1)自学内容:教材第19页的内容.(2)自学时间:5分钟.(3)自学方法:认真阅读课文,可以结合下面的自学参考提纲学习,通过观察、比较,初步建立边的概念,初步认识四边形、五边形、六边形等平面图形,理解多边形、多边形的内角及其外角的定义.(4)自学参考提纲:①认识多边形a.回忆三角形的概念,说说多边形的概念.在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.b.下面这些图形分别是几边形?五边形六边形八边形如果一个多边形由n条线段组成,那么这个多边形就叫做n边形.②认识多边形的内角、外角多边形的内角是多边形相邻两边组成的角,多边形的外角是多边形的边与它的邻边的延长线组成的角,指出图2中多边形ABCDEF的外角∠1,∠2,∠3,∠4,∠5,∠6.③列举出我们生活中见到的多边形.2.自学:同学们可参照自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:在日常生活中,学生接触的多边形比较多,本层次的内容学生能够很快掌握.②差异指导:引导学生列举出生活中的多边形.(2)生助生:学生之间相互交流学习的成果和困惑.4.强化:(1)多边形及其有关的角的概念.(2)练习:下列图形包含了哪些多边形?六边形四边形五边形和六边形1.自学指导:(1)自学内容:教材第20页内容.(2)自学时间:5分钟.(3)自学方法:认真阅读课本,抓住各个概念中的关键词.(4)自学参考提纲:①什么叫多边形的对角线?连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.②什么叫凸多边形?指出下列多边形哪些是凸多边形.画出多边形任何一条边所在直线,整个多边形都在这条直线的同一侧,这样的多边形叫做凸多边形.a,c,e是凸多边形.③什么叫正多边形?正多边形有什么特征?各个角都相等,各条边都相等的多边形叫做正多边形.正多边形各个角相等,各条边相等.④试从四边形、五边形、六边形中探究n边形的对角线条数m与边数n之间的关系.m=n(3)2n(n≥4)2.自学:同学们可参照自学指导进行自学.3.助学:(1)师助生:①明了学情:多边形的对角线比较多,一般学生会有疏漏,应注意了解.②差异指导:引导学生领会对角线的重要应用是它可以把多边形分为几个三角形,从而把多边形的问题转化为三角形的问题来解决.(2)生助生:学生之间相互交流帮助.4.强化:(1)多边形的对角线的定义,正多边形的定义.(2)练习:画出右图多边形的全部对角线.(3)完成教材第21页练习第2题.答:四边形的一条对角线将四边形分成2个三角形,从五边形的一个顶点出发,可以画出2条对角线,它们将五边形分成了三个三角形.三、评价1.学生自我评价(围绕三维目标):学生当众交谈自己的学习收获和困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成效和存在的不足进行点评.(2)纸笔评价:课堂评价检测3.教师自我评价(教学反思):学习本课时,可让学生先自主探索再合作交流,小组内、小组之间充分交流后概括所得结论,既巩固了三角形的知识,又用类比的方法引出多边形的有关概念,加深对本课时的学习.一、基础巩固(每小题10分,共50分)1.六边形的对角线共有(D)A.6条B.7条C.8条D.9条2.下列属于正多边形的是(B)A.长方形B.等边三角形C.梯形D.圆3.从一个顶点出发的对角线,可以把十边形分成互不重叠的三角形的个数(B)A.7个B.8个C.9个D.10个4.四边形有2条对角线,五边形有5条对角线,十边形有35条对角线.5.十二边形共有54条对角线,过一个顶点可作9条对角线,可把十二边形分成10个三角形.二、综合应用(20分)6.某学校七年级六个班举行篮球比赛,比赛采用单循环积分制(即每个班都进行一次比赛).一共需要多少场比赛?解:一共需要15场比赛.如图:三、拓展延伸(30分)7.四边形中,过一个顶点可画一条对角线,共可画两条对角线;五边形中,过一个顶点可画两条对角线,共可画五条对角线;六边形中,过一个顶点可画三条对角线,共可画九条对角线,请从以上三种情况寻找一下规律,看一看多边形的边数和对角线之间有关系吗?如果有,请找出来.如果是n边形,可画多少条对角线呢?解:有关系,多边形对角线的条数等于边数与(边数-3)的乘积的12即n边形对角线的条数=n(3)2n.学习小提示同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。
八年级数学上册 11.3 多边形及其内角和教案 新人教版
业
探究题:小明有一个设想:2008年奥运会在北京召开,他设计一个内角和是2008°的多边形图案多有意义,小明的想法能实现吗?
教学
后记
教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和。
二、探究五边形的内角和
三、归纳探究n边形的内角和
根据以上分割三角形的方法,引导学生归纳n边形内角和公式及不同公式间的联系,指明为了书写整齐,便于记忆,我们选择(n-2)·180°这个公式。
四、多边形的外角和公式:
A
B C
课题:多边形的内角和与外角和
教师提问,学生思考作答。
教师总结:三角形的内角和等于180°。
情境
导入
问题:你知道任意一个四边形的内角和是多少吗
学生猜想,引入课题
探
求
新
知
一、探究四边形的内角和
A D
B C
教师汇总学生所探索出的不同方法,除测量与拼凑法外,并提出疑问:你们添加辅助线的目的是什么?说一说你的想法。
小明家有一张六边形的地毯,小明绕各顶点走了一圈,回到起点A,他的身体旋转了多少度?
例:六边形外角和等于多少度?
E 4 D
5
F 3 C
6
2
A 1 B
问题2:n边形外角和等于多少度?
n边形外角和等于360°
1、学生分小组交流与探究,进一步来论证自己的猜想。
2、由各小组成员汇报探索的思路与方法,讲明理由。
情感态度与价值观:通过学生间交流、探索,进一步激发学生的学习热情,求知欲望,养成良好的数学思维品质。
重点
难点
重点:探索多边形的内角和及外角和公式
难点:如何把多边形转化成三角形,用分割多边形法推导多边形的内角和与外角和。
八年级数学上册 11.3 多边形及其内角和教案 (新版)新人教版-(新版)新人教版初中八年级上册数学
§多边形教学目标1.了解多边形及有关概念,理解正多边形及其有关概念.2.区别凸多边形与凹多边形.重点难点1.重点:(1)了解多边形及其有关概念,理解正多边形及其有关概念.(2)区别凸多边形和凹多边形.2.难点:多边形定义的准确理解.教学过程一、新课讲授投影:图形见课本P19图11.3一l.你能从投影里找出几个由一些线段围成的图形吗?上面三图中让同学边看、边议.在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?(1)它们在同一平面内.(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?提问:三角形的定义.你能仿照三角形的定义给多边形定义吗?1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)2.多边形的边、顶点、内角和外角.多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.3.多边形的对角线连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.让学生画出五边形的所有对角线.4.凸多边形与凹多边形看投影:图形见课本P19.11.3—6.在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.5.正多边形由正方形的特征出发,得出正多边形的概念.各个角都相等,各条边都相等的多边形叫做正多边形.二、课堂练习课本P21练习1.2.三、课堂小结引导学生总结本节课的相关概念.四、课后作业课本P24第1题.备用题:一、判断题.1.由四条线段首尾顺次相接组成的图形叫四边形.()2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()二、填空题.1.连接多边形的线段,叫做多边形的对角线.2.多边形的任何所在的直线,整个多边形都在这条直线的,这样的多边形叫凸多边形.3.各个角,各条边的多边形,叫正多边形.三、解答题.1.画出图(1)中的六边形ABCDEF的所有对角线.2.如图(2),O为四边形ABCD内一点,连接OA、OB、OC、OD可以得几个三角形?它与边数有何关系?3.如图(3),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系?4.如图(4),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?§多边形的内角和教学目标1.使学生了解多边形的内角、外角等概念.2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.重点难点1.重点:(1)多边形的内角和公式.(2)多边形的外角和公式.2.难点:多边形的内角和定理的推导.教学过程一、探究1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.从中你得到什么结论?同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导.二、思考几个问题1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?综上所述,你能得到多边形内角和公式吗?设多边形的边数为n,则n边形的内角和等于(n一2)·180°.想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°.如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n 边形内角和=n×l80°一2×180°=(n一2)×180°.分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠1、∠2、∠3、∠4不是五边形的内角,应舍去.∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°.三、例题例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.解:如图,四边形ABCD中,∠A+∠C=180°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多边形及其内角和教案三维目标1.掌握多边形的定义,多边形的内、外角及凸多边形的有关概念.2.理解多边形的对角线的概念,探索一个多边形能画几条对角线.3.经历观察、实验、猜想、证明等数学活动过程,•发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.教学重点:理解有关多边形的概念;探索多边形的边数与对角线的数量之间的关系及转化思想的渗透.教学难点:探索多边形的边数与对角线的数量之间的关系.教学过程导入新课前面我们已经研究过三角形的有关概念、性质,那么边数大于三的图形的概念和性质是什么呢?它们和三角形中的有关概念和性质是否有相似之处呢?让我们一起来探究一下.推进新课动手试一试,你会有收获活动1.问题:由三角形的有关概念类推有关多边形的概念.设计意图:在三角形的基础上,学习多边形或把多边形的有关问题转化为三角形.师生活动:1.多边形的定义师:大家还记得三角形的定义吗?生:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.师:大家能否据此猜想一下多边形的定义呢?生:可以.由不在同一条直线上的几条线段首尾顺次相接所组成的图形叫做多边形.师:它们之间一点区别也没有吗?请大家认真讨论后作答.生:有区别,三角形中有三条线段,多边形中不止有三条线段.师:大家看课本上的定义,和猜想得到的定义有何区别?生:加了一个条件:在平面内.师:是的.三角形中的三个顶点肯定都在同一个平面内,而四点、五点甚至更多的点就有可能在同一平面内,也有可能不在同一个平面内,而我们在初中阶段主要探讨的是平面几何,所以应在前面加上条件:在平面内.在定义中应抓住几点:①在同一平面内;②若干条线段;③首尾顺次相连.具体来讲四边形、n边形的定义,你可以吗?生:在平面内,由四条线段首尾顺次相接所组成的图形叫做四边形.在平面内,由若干条不在同一条直线上的线段首尾顺次相接组成的图形叫做多边形.多边形按组成它的线段的条数分成三角形、四边形、五边形……若一个多边形由几条线段组成,那么这个多边形就叫做n边形.师:总结得非常好.请看屏幕上出现的图形中有哪些多边形呢?(出示投影片如图1所示)生:有六边形和八边形.2.多边形的内角和外角师:先回忆三角形的内角和外角.生:三角形中相邻两边所组成的角叫做三角形的内角.三角形的一边与另一边的延长线所组成的角,叫做三角形的外角.师:能类推多边形的内角和外角的定义吗?生:多边形中相邻两边组成的角叫做它的内角;多边形的边与它的邻边的延长线组成的角,叫做多边形的外角.尝试反馈巩固练习(出示投影片如图2所示)问题:指出图中的内角和外角,相邻的内角与外角之间的关系如何.设计意图:检验对内角和外角的定义是否掌握.师生活动:师:大家先思考,然后互相交流.生:如图2是一个五边形,∠BAE,∠ABC,∠C,∠D,∠CDE是它的内角,∠1,∠2,∠3是它的外角,因为∠1+∠BAE=∠2+∠AED=∠3+∠ABC=180°.所以可知:相邻的内角与外角之间的关系是互补并且相邻,所以是邻补角.3.凸多边形的定义师:在图3中,你能发现有什么不同吗?请大家细心观察,认真思考,互相讨论,•然后归纳出结论.生:在图3(1)中,把线段CD向两边延长,发现整个四边形都在这条直线CD•的同一侧;图3(2)中,把线段CD向两方延长后,整个四边形不都在这条直线的同一侧.师:很好.在多边形中,画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,否则叫凹多边形,本节我们只讨论凸多边形.4.正多边形的定义师:大家能从字面意思来作出解释吗?生:所谓正,就是不歪,如果歪的话,可能是边长不等,或者角度不等造成的,而不歪就是边长相等,角度相等的多边形.师:非常棒,确实是这样的.正多边形的定义即为各个角都相等,各条边都相等的多边形.如图4•就是正多边形.活动2.问题:掌握多边形的对角线的定义,并探究多边形的对角线和边数之间的关系.设计意图:一方面是训练学生的探究能力,另一方面为下一节求多边形的内角和作准备.师生活动:大家能猜想一下对角线这个名词的意思吗?生:对角线就是相对的角之间的连线.师:有道理.但也还有点问题,如果是四边形,每一个角都有一个相对的角,如果是五边形,那么每个角是否有相对角?有几个呢?生:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.师:知道多边形的对角线的定义后,下面我们亲自来画一些多边形的对角线,画出三角形、四边形、五边形、六边形所有的对角线,并观察过每一个顶点可画出几条对角线. 生:三角形没有对角线,因为没有不相邻的两个顶点:四边形中,过一个顶点可画一条对角线,共可画两条对角线;五边形中,过一个顶点可画两条对角线,共可画出五条对角线;六边形中,过一个顶点可画三条对角线,共可画出九条对角线.师:下面我们从这三种情况中找一下规律:四边形的边数是4,有2条对角线;五边形的边数是5,有5条对角线;六边形的边数是6,有9条对角线.多边形的边数和对角线之间有关系吗?如果有,请找出来,如果是n 边形,•可画几条对角线呢?生:从对角线的定义可知,连接多边形不相邻的两个顶点的线段,叫多边形的对角线.那么在n 边形中,以一个顶点为例,•除了它自身和左右与它相邻的三个顶点外,这一点与其他各点都可连接画出对角线,也就是说从n•边形的一个顶点可画出(n-3)条对角线,n 边形共有n 个顶点,所以应该画出n (n-3)条对角线.师:这位同学分析得有道理.下面我们把刚才的三种情况验证一下.生:当n=4时,4(4-3)=4;当n=5时,5(5-3)=10;当n=6时,6(6-3)=18.与实践得出的结论不相符.师:从这两种情况来看4、10、18分别是2、5、9的2倍,为什么都是2倍?再讨论解决.生:如图5,在五边形中,对角线AC 以A 为顶点时计算了一次,以C 为顶点时又计算了一次,所以在n (n-3)中每条对角线都算了两次,因此应该除以2,即为共有的对角线数量.因此n 边形的对角线数量应为(3)2n n 条.师:分析得非常棒.下面我们再探究从n边形的一个顶点出发作出的对角线,把n边形分成几个三角形?生:四边形中,过一个顶点可作出1条对角线,把四边形分成了2个三角形;五边形中,过一个顶点可作出2条对角线,把五边形分成了3个三角形;六边形中,过一个顶点可作出3条对角线,把六边形分成了4个三角形.由此可知,过n边形的一个顶点可作出(n-3)条对角线,把n边形分成了(n-2)个三角形.师:大家真的很了不起哟.尝试反馈巩固练习问题:过十边形的一个顶点可作出几条对角线?把十边形分成了几个三角形?设计意图:检查刚才讨论的问题是否掌握.师生活动:生:这还不简单,可作出7条对角线,把十边形分成了8个三角形.课堂小结本节课学习了多边形的含义,正多边形、多边形的内角、外角,对角线,凸多边形的定义;重点探究了n边形的边数n与对角线的数量之间的关系,以及过n•边形的一个顶点可作出(n-3)条对角线,把n边形分成(n-2)个三角形.为下节课讨论n边形的内角和作好了准备.布置作业习题7.3 1.活动与探究1.一个多边形的边都相等,它的内角一定都相等吗?答案:不一定相等.如图6①四条边都相等,但它的内角不相等.2.一个多边形的内角都相等,它的边一定都相等吗?答案:如图6②,四边形的内角都相等,它的边不相等,•所以一个多边形的内角都相等,它的边不一定相等.3.十二边形共有几条对角线?过一个顶点可作几条对角线?•可把十二边形分成多少个三角形?答案:十二边形共有12(123)2⨯-=54条对角线,过一个顶点可作9条对角线,•可把十二边形分成10个三角形.备课资料:从三角形内角和想起三角形的内角和是180°,那么三角形的外角和(当说到三角形外角和时,三角形的每一个顶点处的外角只算其中一个)是多少度呢?如图7,∠ABC+∠GBC=180°,∠BCA+∠HCA=180°,∠CAB+∠FAB=180°.所以∠ABC+∠GBC+∠BCA+∠HCA+∠CAB+∠FAB=3×180°=540°.而∠ABC+∠BCA+∠CAB=180°.所以∠GBC+∠HCA+∠FAB=2×180°=360°,即三角形的外角和为360°.让△ABC逐渐缩小,直至A,B,C三个点重合(如图8•所示)•,•此时三角形的外角∠FAG,∠GBH,∠HCF都变成了什么?一般地,凸多边形的外角和又是多少度呢?仍以凸五边形为例(如图9所示),凸多边形每一个内角与一个外角构成一个平角,即为180°,五个这样的平角为5×180°=900°.但现在要求的是其外角和,•所以还需减去其内角和,而内角和为3×180°,于是凸五边形的外角和为2×180°.你会类似于三角形那样把凸五边形缩为一点,去想象它的外角和是多少度吗?当然,凸五边形的外角和还可以从“思维实验”的角度去想象:如图3,当从五边形的顶点A出发面向B,按“A─B─C─D─E─A”行进一周时,•你的视线转动了多少度?显然仍为360°.不管三角形的形状、位置和大小怎样,它们的内角和都是180°,令人惊奇.•而所有的凸多边形的外角和都是360°,更令人惊叹.难怪有人认为,•外角和比内角和更能反映多边形的本质.细心的同学会发现,我们在多边形的前面都加了一个“凸”字,凸多边形是什么意思呢?那是指“多边形总在任意一边所在直线的同一侧”.人们自然会问:如果是凹多边形,其内、外角和又该是多少?这个问题请同学自己思考并解答.。