第十一章北航 材料力学 全部课件 习题答案
材料力学习题解答11ppt课件
解:
在C点虚加载荷P,由对称性:RB
RC
F 2
F A
由杆件AB的平衡有:
mA
PH
RB H
sin
22.5
FN
L 2 tan 22.5
0
45
FN D
B
H 4m
E FN
C
FN
2H
tan 22.5 (P L
RB
sin
22.5 )
P RB
P RC
2 4 0.414(P 0.383F / 2) 2
F AC 1 F CD 1
3
23
A
B
(F AC F AD ) cos 30 0 F AD 1 3
F AB (F AC F AD ) cos 60 0 F AB 1 F 23
D
i
Fi F ili 2 FL ( 2 1 1) 2FL
解: FBC F FAB 0 FDC FAD 0
FAC 2F F BC F AB F DC F AD 1
2 F AC 1
BD
i
Fi F ili 2FAC F ACa FBC F BCa
EA
EA
EA
2 2Fa Fa (2 2 ) Fa
2a M 2 a EI
M 2 d x F1
wC
2F (2a)3 3EI
Fa3 3EI
Fa2 2EI
a
a F1x x d x 2a [F1x F2 (x a)] x d x
0 EI
a
EI
材料力学第十一章
2F 2 ⋅ 3l 8
2F 2 ⋅ l
×2+
4=
7lF 2
2EAi π E(2d )2
π Ed 2 8π Ed 2
(c)取 d x 长的微段(如右图),在均布轴力 f 的作用下,它具有的应变能
dVε
=
1 2
FN (x)dΔ
式中
FN (x)
=
F l
x,
dΔ = FN (x)dx = Fx dx EA EAl
=
Vε
(F
)
+
Vε
(M
)
+
1 2
(Mθ
+
Fwmax
)
。
11-2 图示简支梁中点只承受集中力 F 时,梁的最大转角为θ max ,应变能为Vε (F ) ;中 点只承受集中力偶 M 时,最大挠度为 wmax ,梁的应变能为Vε (M ) 。当同时在中点施加 F
和 M 时,梁的应变能为多少?
解 对于线性结构简支梁,先加 F 时梁贮存的应变能
(顺)
(二)单位载荷法解(a)
(a3)
(a4)
(a5)
149
解 图(b)
FA
=
FB
=
Me 2a
AD 段
M (x1 ) =
Me 2a
x1 , M 1(x1 ) =
x1 , M
2 (x1 ) =
− x1 2a
DC 段
M (x2 ) = M e , M 1(x2 ) = 2a − x2 , M 2 (x2 ) = −1
11-5 超静定问题有哪几类?怎样确定超静定问题的次数?什么是相当系统?什么是静 定基?静定基是否唯一?
答 超静定问题有外约束超静定、内约束超静定及外约束超静定加内约束超静定混合。 全部未知力个数与全部独立平衡方程数的差就是超静定问题的次数。 拆去多余内、外约束,用相应的约束力代替其作用,使之成为静定形式的结构,它就 是原结构的相当系统(相当系统加上变形协调条件称为原超静定结构的等效系统)。 解除约束后的不包括外载荷的静定结构称为原结构的静定基。 静定基不唯一。
材料力学第十一章习题选及其解答
11-2. 桥式起重机上悬挂一重量G=50kN 的重物,以匀速度v=1m/s 向前移动(在图中移动的方向垂直于纸面)。
若起重机突然停止移动,重物将象单摆一样向前摆动。
若梁为No14工字钢,吊索截面面积A=5×10-4m 2,试问当惯性力为最大值时,梁及吊索内的最大应力增加多少?解:(1)起重机突然停止时,吊索以初速v 作圆周运动,此时吊索轴力增量是kN Rv g G ma N n D 28.12=⋅==Δ(2)吊索的应力增量是MPa AN σDd 56.2==ΔΔ (3)梁内最大弯矩的增量是l N M D ΔΔ41=(4)查表得梁的抗弯截面系数3610102m W -⨯=(5)梁内最大正应力的增量是MPa WM σd 68.15'==ΔΔ11-4. 轴上装一钢质圆盘,盘上有一圆孔。
若轴与盘ω=40 1/s 的匀角速度转动,试求轴内因这一圆孔引起的最大正应力。
解:(1)假设挖空圆盘和圆孔部分的质量分别是M 和m ,它们的质心距轴线的距离分别为R 的r ,则有mr MR =(2)挖空圆盘的惯性力是kN ωr gVγωmr ωMR Ma F n n 64.10222=⋅==== 上式中钢的密度取3/8.76m kN γ=(3)轴内的最大正应力增量是MPa WlF W M σnd 5.1241max max ===Δ11-5. 在直径为100mm 的轴上装有转动惯量I=0.5kN ⋅m ⋅s2的飞轮,轴的转速为300r/min 。
制动器开始作用后,在20转内将飞轮刹住,试求轴内最大剪应力。
设在制动器作用前,轴已与驱动装置脱开,且轴承的磨擦力矩可以不计。
解:(1)飞轮作匀减速转动2220/25.120/42.3130s rad φωωεωs rad πn ωt t -=-=∴=== (2)惯性力距是kNm εI m d 96.1=-=(3)轴在飞轮和制动器之间发生扭转变形MPa d πTW T τm T t d 10163max ===∴= 11-6. 钢轴AB 的直径为80mm ,轴上有一直径为80mm 钢质圆杆CD ,CD 垂直于AB 。
北航材料力学课后习题答案
σ max = 117MPa (在圆孔边缘处)
2-15 图示桁架,承受载荷 F 作用,已知杆的许用应力为[σ ]。若在节点 B 和 C 的
位置保持不变的条件下,试确定使结构重量最轻的α 值(即确定节点 A 的最佳位置)。
解:1.求各杆轴力
题 2-15 图
设杆 AB 和 BC 的轴力分别为 FN1 和 FN2 ,由节点 B 的平衡条件求得
分别为
FN
=
1 2
σmax A
=
1 2
× (100 ×106 Pa) × (0.100m × 0.040m)
=
2.00 ×105 N
=
200kN
Mz
=
FN
(
h 2
−
h )
3
=பைடு நூலகம்
1 6
FN h
=
1 × (200 ×103 N) × (0.100m) 6
= 3.33×103 N ⋅ m
=
3.33kN ⋅ m
2-5 .........................................................................................................................................................2
= 0.2 ×10−3 m 0.100m
= 2.00 ×10−3
rad
α AB
= 0.1×10−3 m = 1.00 ×10−3 0.100m
rad
得 A 点处直角 BAD 的切应变为
γ A = γ BAD = α AD − α AB = 1.00 ×10−3 rad
第十一章北航 材料力学 全部课件 习题答案
弹簧支持。试证明压杆的临界载荷满足下述方程:
sin
kl 2
sin
kl 2
kl 2
1
4k 2EI cl
cos
kl 2
0
式中, k F /(EI) 。
8
题 11-10 图 解:该细长压杆的微弯状态如图 11-10 所示。
图 11-10 按图中所取坐标,左、右段压杆得弯矩方程分别为
N/mm 时,截面 B 的挠度分别为何值。横梁与立柱均用低碳钢制成,弹性模量 E = 200 GPa,
比例极限 p =200 MPa。
11
题 11-13 图 解:1.求立柱的临界载荷
给立柱和梁编号分别为 1 和 2,我们有
λp π
E π σp
200109 200106
99.3
i I1 d 10mm0.010m A1 4
6
由此得
FN1 FN2 FN3 FN4
F 2
Fcr
2
(
π
2
l
EI
2
)
2π 2 EI l2
11-9 图 a 所示细长压杆,弯曲刚度 EI 为常数,试证明压杆的临界载荷满足下述方程:
式中,k2=F/(EI)。
sinkl(sinkl2klcoskl)0
题 11-9 图
解:在临界载荷作用下,压杆可在图 b 所示微弯状态保持平衡。
w2
A2sinkx2
B2coskx2
Fc 2F
x2
由此得
当x1 0,w1 0; 当x2 0,w2 0
位移连续条件为 代入通解后,得
重排后,得
工程力学材料力学答案-第十一章
11-6 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2F 2=5 kN ,试计算梁内的最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。
解:(1) 画梁的弯矩图(2) 最大弯矩(位于固定端):max 7.5 M kN =(3) 计算应力: 最大应力:K 点的应力:11-7 图示梁,由No22槽钢制成,弯矩M =80 N.m ,并位于纵向对称面(即x-y 平面)内。
试求梁内的最大弯曲拉应力与最大弯曲压应力。
解:(1) 查表得截面的几何性质:4020.3 79 176 z y mm b mm I cm ===(2) 最大弯曲拉应力(发生在下边缘点处)()30max880(7920.3)10 2.67 17610x M b y MPa I σ-+-⋅-⨯-⨯===⨯6max max max227.510176 408066ZM M MPa bh W σ⨯====⨯6max max 337.51030132 ********K ZM y M y MPa bh I σ⋅⋅⨯⨯====⨯x M1zM M z(3) 最大弯曲压应力(发生在上边缘点处)30max88020.3100.92 17610x M y MPa I σ---⋅⨯⨯===⨯ 11-8 图示简支梁,由No28工字钢制成,在集度为q 的均布载荷作用下,测得横截面C 底边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E =200 Gpa ,a =1 m 。
解:(1) 求支反力31 44A B R qa R qa ==(2) 画内力图(3) 由胡克定律求得截面C 下边缘点的拉应力为:49max 3.010******* C E MPa σε+-=⋅=⨯⨯⨯=也可以表达为:2max4C C z zqa MW W σ+== (4) 梁内的最大弯曲正应力:2maxmax max 993267.5 8C zz qa M MPa W W σσ+====qxxF SM11-14 图示槽形截面悬臂梁,F =10 kN ,M e =70 kNm ,许用拉应力[σ+]=35 MPa ,许用压应力[σ-]=120 MPa ,试校核梁的强度。
材料力学答案2及材料力学答案第十一章
习 题2-1 一木柱受力如图示,柱的横截面为边长20cm 的正方形,材料服从虎克定律,其弹性模量51010.0⨯=E MPa .如不计柱自重,试求:(1)作轴力图; (2)各段柱横截面上的应力; (3)各段柱的纵向线应变; (4) 柱的总变形.解:(1) 轴力图(2) AC 段应力a a MP P σ5.2105.22.010100623-=⨯-=⨯-=CB 段应力a a MP P σ5.6105.62.010260623-=⨯-=⨯-=(3) AC 段线应变45105.2101.05.2-⨯-=⨯-==E σε N-图 CB 段线应变45105.6101.05.6-⨯-=⨯-==E σε (4) 总变形 m 3441035.15.1105.65.1105.2---⨯=⨯⨯-⨯⨯-=AB ∆2-2 图(a)所示铆接件,板件的受力情况如图(b)所示.已知:P =7 kN ,t =0.15cm ,b 1=0.4cm ,b 2=0.5cm ,b 3=0.6cml 。
试绘板件的轴力图,并计算板内的最大拉应力。
解:(2)a MP σ4.194101024.015.0767311=⨯⨯⨯⨯⨯=- a MP σ1.311101025.015.0767322=⨯⨯⨯⨯⨯=-a MP σ9.388101026.015.07673=⨯⨯⨯⨯=- 最大拉应力a MP σσ9.3883max ==2-3 直径为1cm 的圆杆,在拉力P =10 kN 的作用下,试求杆内最大剪应力,以及与横截面夹角为α=30o 的斜截面上的正应力与剪应力。
解:(1) 最大剪应力a d MP ππP στ66.6310101102212672241max =⨯⨯⨯⨯===- (2)︒=30α界面上的应力()a MP ασσα49.952366.632cos 12=⨯=+= a MP αστα13.5530sin 66.632sin 2=⨯=⨯=︒ 2-4 图示结构中ABC 与CD 均为刚性梁,C 与D 均为铰接,铅垂力P =20kN 作用在C 铰,若(1)杆的直径d 1=1cm ,(2)杆的直径d 2=2cm ,两杆的材料相同,E =200Gpa ,其他尺寸如图示,试求(1)两杆的应力;(2)C 点的位移。
材料力学课后习题答案
2 2 Fl 2 4 Fl E (d1 d 2 ) d 2 d1 Ed 1 d 2
[习题 2-10] 受轴向拉力 F 作用的箱形薄壁杆如图所示。已知该材料的弹性常数为 E , ,试 求 C 与 D 两点间的距离改变量 CD 。
解:
'
(2)由变形能原理求 A 点的铅垂方向的位移
2 N12 l1 N 2 l2 1 F A 2 2 EA1 2 EA2 2 l2 1 N12 l1 N 2 ( ) F EA1 EA2
A
式中, l1 1000 / sin 45o 1414(mm) ; l 2 800 / sin 30 o 1600(mm)
解:墩身底面的轴力为:
N ( F G) F Alg
2-3 图
1000 (3 2 3.14 12 ) 10 2.35 9.8 3104.942(kN)
墩身底面积: A (3 2 3.14 12 ) 9.14(m 2 ) 因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
FN 2l 40 107 0.15 l2 4.76 EA2 210 109 12 106 从而得,Ax l2 4.76, Ay l2 2 l1 3 20.23 ( )
( 2)
V F Ay F1 l1 +F2 l2 0 Ay 20.33 ()
F 35kN 。已知杆 AB 和 AC 的直径分别为 d1 12mm 和 d 2 15mm ,钢的弹性模量
E 210GPa 。试求 A 点在铅垂方向的位移。 解: (1)求 AB、AC 杆的轴力 以节点 A 为研究对象,其受力图如图所示。 由平衡条件得出:
材料力学答案第十一章
第十一章能量要领之阳早格格创做第十一章问案图示桁架各杆的资料相共,截里里积相等.试供正在F 力效率下,桁架的变形能.估计图示各杆的应变能.传动轴受力情况如图所示.轴的直径为40mm ,资料为45钢,E = 210GPa ,G = 80GPa.由扭转引起的应变能: 由蜿蜒引起的应变能:估计图示梁的应变能,并证明是可谦脚叠加本理及其本果.而没有谦脚叠加本理,果为应变能取内力的闭系没有是线性的.借帮于附录E ,供跨度中面(睹课本下册p40例12-4)11.6 图示刚刚架的各杆的EI 皆相等,试供截里A 、B 的位移战截里C 的转角.(a)A 面:正在A 面加一个背下的单位力.M (x 1)=0, M (x 2)=Fx 2, M (x 3)=FbC 面:正在C 加一个顺时针的力奇矩为1的单位力奇(b) A 面:正在A面加一个背下的单位力B 面:正在B 面加一个背左的单位力图示桁架各杆的资料相共,截里里积相等C 处的火仄位移战笔直位移.CF BAR火仄位移:(122) 3.828Fl FlEA EA +=-=-.笔直位移:Fl EA ∆=-.2,E 索 = 177GPa.F = 20kN ,(a)假设横梁ABCD 为刚刚体,供C 面的笔直位移.(2)若没有把ABCD 假设为刚刚体,且已知其抗直刚刚度为EI 2,试再供C 面的笔直位移.(1)42110.87.891033F EA -⎛⎫∆=⨯=⨯ ⎪⎝⎭m.(2)20.44047.89102Fx dx EI -∆=⨯+⎰4447.8910 1.48109.3710---=⨯+⨯=⨯m.11.9 等截里直杆BC 的轴线为四分之三的圆周.若AB 杆可视为刚刚性杆,试供正在F 力效率下,截里B 的火仄位移及笔直位移.火仄位移:M ()=FR cos, ()sin M R θθ=33320sin cos 2FR FRd EI EI πθθθ∆==⎰.D CFAB60 ° 60 ° 800 400400RFO B BF ORA F笔直位移:()(1cos )M R θθ=--33.36FR EI =.11.10 图示圆弧形小直率杆,仄衡半径为R .力F笔直于圆环中线地圆的仄里.试供二个F 力效率面的相对于线位移.M ()=FR sin, ()sin M R θθ= T ()=FR (1-cos), ()(1cos )T R θθ=-333pFR FR EI GI ππ=+.11.11图示圆弧形小直率杆,仄衡半径为R .正在横截里A 取B 处受一对于集结力F 效率.力F 正在圆环中线地圆的仄里内.试供二个F 力效率面的相对于线位移. M ()=FR sin,()sin M R θθ=32320sin FR FRd EI EI πθπθ∆==⎰.11.12图示轴线为火仄里内四分之一圆周的直杆,正在自由端B 效率笔直荷载F ,设EI 战GI P 为已知,试供正在F 力效率下端里B 的笔直位移.F O O Rθ B F AM ()=FR sin, ()sin M R θθ= T ()=FR (1-cos), ()(1cos )T R θθ=- 33(38)44pFR FR EI GI ππ-=+.。
工程力学材料力学答案-第十一章
11-6 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2F 2=5 kN ,试计算梁内的最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。
解:(1) 画梁的弯矩图(2) 最大弯矩(位于固定端):max 7.5 M kN =(3) 计算应力: 最大应力:K 点的应力:11-7 图示梁,由No22槽钢制成,弯矩M =80 N.m ,并位于纵向对称面(即x-y 平面)内。
试求梁内的最大弯曲拉应力与最大弯曲压应力。
解:(1) 查表得截面的几何性质:4020.3 79 176 z y mm b mm I cm ===(2) 最大弯曲拉应力(发生在下边缘点处)()30max880(7920.3)10 2.67 17610x M b y MPa I σ-+-⋅-⨯-⨯===⨯6max max max227.510176 408066ZM M MPa bh W σ⨯====⨯6max max 337.51030132 ********K ZM y M y MPa bh I σ⋅⋅⨯⨯====⨯x M1zM M z(3) 最大弯曲压应力(发生在上边缘点处)30max88020.3100.92 17610x M y MPa I σ---⋅⨯⨯===⨯ 11-8 图示简支梁,由No28工字钢制成,在集度为q 的均布载荷作用下,测得横截面C 底边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E =200 Gpa ,a =1 m 。
解:(1) 求支反力31 44A B R qa R qa ==(2) 画内力图(3) 由胡克定律求得截面C 下边缘点的拉应力为:49max 3.010******* C E MPa σε+-=⋅=⨯⨯⨯=也可以表达为:2max4C C z zqa MW W σ+== (4) 梁内的最大弯曲正应力:2maxmax max 993267.5 8C zz qa M MPa W W σσ+====qxxF SM11-14 图示槽形截面悬臂梁,F =10 kN ,M e =70 kNm ,许用拉应力[σ+]=35 MPa ,许用压应力[σ-]=120 MPa ,试校核梁的强度。
材料力学 第十一章解读
讨论:
(2)横截面对某一形心主惯性轴的惯性矩 I
Fcr 与抗弯刚度( EI )成正比。
压杆失稳时,总是绕抗弯刚度最小的轴发生弯曲变形。
因此,对于各个方向约束相同的情形
I
应是截面最小的形心主惯性矩。
l 1、两端为铰支座的细长杆
2、线弹性,小变形
公式的推导中应用了弹性小挠度微分方程,因 此公式只适用于弹性稳定问题。
Fcr
2 EI用边界条件
xl
w0
即压杆没有弯曲变形;
A sin kl 0
kl n
A0
n 1 ,2,3,.... .
n 2 2 EI Fcr l2
实际工程中有意义的是最小的临界力值,即
n 1
Fcr
EI
2
l2
两端铰支细长压杆临界压力的欧拉公式。
压杆的极限承载能力
压杆失稳后,压力的微小增量会引起屈服变形的显 著增大,杆件丧失了继续增大荷载的能力。 且由失稳造成的失效可以导致整个结构的坍塌。 为了保证压杆安全可靠的工作,必须使压杆处于 直线平衡形式,因而压杆是以临界力为其极限承 载能力。
§11-2
支细长压杆的临界压力 欧拉公式
=Fcr
M
FN=Fcr
4、压杆的失稳
压杆丧失其直线形状的平衡而过渡为曲线形状平衡 (弯曲平衡) 屈曲: 压杆从直线平衡到弯曲平衡的转变过程; 屈曲位移:由于屈曲,压杆产生的侧向位移; 通常,屈曲将使构件失效,并导致相关的结构发生坍塌。 由于这种失效具有突发性,常常带来灾难性后果。
材料力学课后习题答案11章
S z (η2 ) = 2.5 × 10 − 5 + (0.010η2 )(0.050 −
S z ,max (η 2 ) = 3.75 × 10 −5 m 3
η2
2
)
τ1 =
FSy S z , max (η1 ) 5 × 103 × 2.5 × 10 −5 N = = 3.75 × 106 Pa = 3.75MPa I zδ 3.333 × 10 − 6 × 0.010m 2 FSy S z , max (η2 ) I zδ 5 × 103 × 3.75 × 10 −5 N = = 5.63 × 106 Pa = 5.63MPa −6 2 3.333 × 10 × 0.010m
2 = 2.5 × 10 −5 + 2.5 × 10 −4 η 2 − 5 × 10 −3 η 2
τ 1, max =
FSy S z , max (η1 ) I zδ 1
=
5 × 103 × 1.25 × 10 −5 N = 3.00 ×106 Pa = 3.00MPa 2.08 × 10 − 6 × 0.010m 2
S z , A (ω ) =
δ
2 yA =
0.010 × 0.050 2 m 3 = 1.25 × 10 − 5 m 3 2
= 1.875 × 10 −4 m 3
据公式
τ (η ) =
得
FS S z (ω ) I zδ
40 × 10 3 × 1.25 × 10 −5 N τA = = 1.499 × 10 6 Pa = 1.499MPa −5 2 3.335 × 10 × 0.010m
[
]
11-6
试指出图示截面的剪心位置。
题 11-6 图 解: (a)双对称截面,剪心与形心重合; (b)角钢形截面,剪心在二边条中心线相交处; (c)T 形截面,剪心在翼缘中心线与腹板中心线相交处。
材料力学第十一章
解超静定梁的基本步骤如下。 (1)判断超静定次数,去掉多余约束,得到静定基。 (2)用未知的多余约束力代替去掉的多余约束加到静定基上(即得到相 当系统)。 (3)根据多余约束处的变形条件及其相应的物理条件建立补充方程,解 出多余未知约束力。 (4)由静定基的平衡条件求出其他约束力,画出内力图,并作强度或刚度 计算。
Fl2 M Al 0 16EI 3EI
所以
MA
3Fl 16
(
)
这里与按图 11-5(b)所示的静定基求得的结果相同(负号表明 MA 实际方 向与图上所设方向相反)。
多余约束力求出后,可对超静定梁进行强度或刚度计算。一般在静定基
上进行。如图
11-5(b)所示的悬臂梁,在
F
和
FB(
FB
5 16
图 11-5(a)所示的梁,也可选 MA 作为多余约束力,即去掉 A 处的 转角约束,使 A 处变成固定铰支座,其静定基将变成简支梁 AB ,如图 116(a)所示,上面作用有载荷 F 和多余约束力矩 MA 。
(a)
(b) (c)
图11-6
A 处的变形协调条件可由叠加法写出,可得
θAF θAM A 0 式中, θAF 和 θAM A 分别为 F 和 MA 单独作用时 A 处的转角,如图 11-6(b)、(c) 所示。再由物理条件,代入式(a),得补充方程为
材料力学
第十一章 超静定系统
一
超静定系统的概念
二 弯曲超静定问题
三
力法解超静定系统
四
对称及反对称性质的应用
五
连续梁及三弯矩方程
第一节 超静定系统的概念
在图 11-1(a)中,将被车削的工件简化成悬臂梁。当车削力 F 作用时, 固定端(卡盘)有三个未知约束力 FAx , FAy 和 MA ,如图 11-1(b)所示。独 立的静力平衡方程式也有三个,即
材料力学答案第十一章
第十一章 能量方法第十一章答案11、1 图示桁架各杆的材料相同,截面面积相等。
试求在F 力作用下,桁架的变形能。
12,2N N F F F ==32N F F = 2222222()2222N F F l l F x V dx EA EA EA ε⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭==+⎰2234F l EA=、11、2计算图示各杆的应变能。
(a) 2223244F l F l F l V EA EA EAε=+=、 (b) 2212/32/3120022e e l l M M x x l l V dx dx EI EIε⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=+⎰⎰ /32/322221220023318l l e e M M l x x EIl EI ⎛⎫⎛⎫⎛⎫ ⎪=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭、11、3 传动轴受力情况如图所示。
轴的直径为40mm ,材料为45钢,E = 210GPa ,G = 80GPa 。
试计算轴的应变能。
由扭转引起的应变能:20.220800.0322pV dx GI ε==⎰由弯曲引起的应变能:20.210(531.4)20.0292x V dx EIε==⎰120.061J V V V εεε=+=、11、4 计算图示梁的应变能,并说明就是否满足叠加原理及其原因。
2230()26lFl Fx F lV dx EI EIε-==⎰而22310()22l Fl F lV dx EI EIε==⎰22320()26lFx F l V dx EI EIε-==⎰、不满足叠加原理,因为应变能与内力的关系不就是线性的。
、0、36kN(b)1kN200200 EIMe=FlFlx11、5在外伸梁的自由端作用力偶矩中点C 的挠度w c 。
(见课本下册p40例12-4)11、6 图示刚架的各杆的EI 皆相等,试求截面A 、B 的位移与截面C 的转角。
(a) A 点:在A 点加一个向下的单位力。
M (x 1)=0, M (x 2)=Fx 2, M (x 3)=Fb11()M x x =,22()M x Fx =,3()0M x = 3330()()h M x M x Fabhdx EI EI∆==-⎰、C 点:在C 加一个逆时针的力偶矩为1的单位力偶。
北航材料力学-习题集解-【全答案】(52页)
— 61 —
F Nx
dx
C
M dM
FNx dFNx
(b)
M C 0 , M dM M pdx
h 0 2
∴
ph dM dx 2
2-7
| M | max 。
试作 2-6 题中梁的轴力图和弯矩图, 并确定 | FNx | max 和
FN
l
x
pl
解: | FNx | max pl (固定端)
习题 2-4 图
( ql )
C
A
B
M 5 4
Fy 0 , FRA
M C FRB
1 ql (↓) , 4
1 1 l ql l ql 2 (+) 4 4
(a-1)
(b-1)
M A ql 2
A
M 2
C
D
E
M 2
B
M 2
M
A
C
1 4
B
M
3
— 59 —
| M | max
(d) M B 0
3 2 ql 2 1 ql l 0 2
( gl)
D
l
(c)
(d)
FRA 2l q 3l
FRA
FQ
FQ
( gl)
1.25
5 ql (↑) 4
A
B
1
C
A
(c-1)
D
B
0.75
C
1
3 Fy 0 , FRB ql (↑) 4 q MB 0 , MB l2 2 25 2 ql MD 0, MD 32 5 | FQ | max ql 4 25 2 | M | max ql 32 (e) Fy 0 ,FRC = 0 3 l M C 0 , ql l ql M C 0 2 2
第11章 课后习题答案 .doc
第11章课后习题答案11-1 解1)由公式可知:轮齿的工作应力不变,则则,若,该齿轮传动能传递的功率11-2解由公式可知,由抗疲劳点蚀允许的最大扭矩有关系:设提高后的转矩和许用应力分别为、当转速不变时,转矩和功率可提高69%。
11-3解软齿面闭式齿轮传动应分别验算其接触强度和弯曲强度。
(1)许用应力查教材表11-1小齿轮45钢调质硬度:210~230HBS取220HBS;大齿轮ZG270-500正火硬度:140~170HBS,取155HBS。
查教材图11-7,查教材图11-10 ,查教材表11-4取,故:(2)验算接触强度,验算公式为:其中:小齿轮转矩载荷系数查教材表11-3得齿宽中心距齿数比则:、,能满足接触强度。
(3)验算弯曲强度,验算公式:其中:齿形系数:查教材图11-9得、则:满足弯曲强度。
11-4解开式齿轮传动的主要失效形式是磨损,目前的设计方法是按弯曲强度设计,并将许用应力降低以弥补磨损对齿轮的影响。
(1)许用弯曲应力查教材表11-1小齿轮45钢调质硬度:210~230HBS取220HBS;大齿轮45钢正火硬度:170~210HBS,取190HBS。
查教材图11-10得,查教材表11-4 ,并将许用应用降低30%故(2)其弯曲强度设计公式:其中:小齿轮转矩载荷系数查教材表11-3得取齿宽系数齿数,取齿数比齿形系数查教材图11-9得、因故将代入设计公式因此取模数中心距齿宽11-5解硬齿面闭式齿轮传动的主要失效形式是折断,设计方法是按弯曲强度设计,并验算其齿面接触强度。
(1)许用弯曲应力查教材表11-1,大小齿轮材料40Cr 表面淬火硬度:52~56HRC,取54HRC。
查教材图11-10得,查材料图11-7得。
查教材表11-4 ,因齿轮传动是双向工作,弯曲应力为对称循环,应将极限值乘70%。
故(2)按弯曲强度设计,设计公式:其中:小齿轮转矩载荷系数查教材表11-3得取齿宽系数齿数,取齿数比齿形系数应将齿形系数较大值代入公式,而齿形系数值与齿数成反比,将小齿轮的齿形系数代入设计公式,查教材图11-9得因此取模数(3)验算接触强度,验算公式:其中:中心距齿宽,取满足接触强度。
材料力学第11章试题及答案 压杆稳定
11-1
11-5
图示铰接杆系 ABC 由两根截面和材料均相同的细长杆组
成。若由于杆件在 ABC 平面内失稳而引起毁坏,试确定载荷 F 为最 大时的 θ 角(假设 0 < θ < π / 2 )。
FN = F 2 cos 45o = F
(
)
2
手轮
对 CD 杆,由 ∑ M C = 0 : 可得 F = 7 FB 6
500
F d
πd 2 4
E
λp = π
λ0 =
σp
=π
200 × 103 = 99.3 200
查表得: a = 304 MPa ,b = 1.12 MPa , λp = 100 , λ0 = 62 ∴ λ0 < λ < λp ,AB 杆为中柔度压杆, 故有
C
FN
θ
F
a − σ s 304 − 235 = = 61.6 b 1.12 μl μa 1 × 1 × 103 = = 80 λ= = i d 4 50 / 4
i min =
欧拉公式适用于 λmax
I min = A ≥ λp ,即
hb 3 12 = b bh 2 3
E
解: 最合理的情况为 AB、BC 两杆同时失稳,此时 F 最大。 π 2 EI π 2 EI FcrAB = F cosθ = 2 = 2 l AB l AC cos 2 β FcrBC = F sin θ = 两式相除得到
11-8
图示托架,AB 杆的直径 d = 4 cm ,长度 l = 80 cm ,两端铰
支,材料为 Q235 钢。 (1) 试根据杆 AB 的稳定条件确定托架的临界力 Fcr ; (2) 若已知实际载荷 F = 70 kN ,杆 AB 规定的稳定安全因数
材料力学(单辉祖)第十一章压杆稳定问题
Pcr
=
π 2EI
l2
若杆端在各个方向的约束情况相同(如球形 铰),I 应取最小的形心主惯矩,得到直杆 的实际临界力
若杆端在不同方向的约束情况不同, I 应取 挠曲时横截面对其中性轴的惯性矩。即此 时要综合分析杆在各个方向发生失稳时的 临界压力,得到直杆的实际临界力(最小值)。
25
欧拉公式
求解上述非线性微分方程,得挠曲线中
点挠度δ 与压力P之间的近似关系
δ = 2 2l π
其图形为
P Pcr
⎡ − 1⎢1 −
⎣
1 2
⎛⎜⎜⎝
P Pcr
−1⎞⎟⎟⎠⎤⎥⎦
P
A
Pcr
可见,只有当P ≥Pcr时,压杆 B 才可能存在非直线的平衡态,
即直杆发生失稳,并且挠度δ
与压力P之间存在一对一关系,
M (x) = Pcrv(x) − Q(l − x)
x Pcr
Q A
M(x)
m
m
l
x
BQ MB y Pcr
39
Example-1
x
代入挠曲线近似微分方程
Pcr
EI
d 2v dx 2
=
−M
(x)
=
− Pcr v( x)
+
Q(l
−
x)
令 k 2 = Pcr
EI
则控制微分方程化简为
d 2v dx 2
+
k 2v
28
欧拉公式
思考题
29
不同约束下压杆临界力的 欧拉公式 • 压杆长度系数
30
长度系数
问题:
考虑下端固定、上端 自由并在上端承受轴 向压力作用等截面细 长杆,几何尺寸见图 确定此压杆临界压力
材料力学答案第十一章讲解学习
材料力学答案第十一章仅供学习与交流,如有侵权请联系网站删除 谢谢50第十一章 能量方法第十一章答案11.1 图示桁架各杆的材料相同,截面面积相等。
试求在F 力作用下,桁架的变形能。
12,2N N F F F == 32N F F = 222222()2222N F F l l F x V dx EA EA EA ε⎫⎛⎫⎪ ⎪⎝⎭⎝⎭==+⎰2234F l EA=.11.2计算图示各杆的应变能。
(a)仅供学习与交流,如有侵权请联系网站删除 谢谢512223244F l F l F l V EA EA EAε=+=.(b) 2212/32/3120022e e l l M M x x l l V dx dx EI EIε⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=+⎰⎰ /32/322221220023318l l ee M M l x x EIl EI ⎛⎫⎛⎫⎛⎫ ⎪=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.11.3 传动轴受力情况如图所示。
轴的直径为40mm ,材料为45钢,E = 210GPa ,G = 80GPa 。
试计算轴的应变能。
由扭转引起的应变能:20.220800.0322pV dx GI ε==⎰由弯曲引起的应变能:20.210(531.4)20.0292x V dx EIε==⎰120.061J V V V εεε=+=.11.4 计算图示梁的应变能,并说明是否满足叠加原理及其原因。
2230()26lFl Fx F l V dx EI EIε-==⎰0.08kN· 0.36kN (b) 1kN 2000200EIMe=FlFlx仅供学习与交流,如有侵权请联系网站删除 谢谢52而22310()22lFl F l V dx EI EIε==⎰22320()26lFx F l V dx EI EIε-==⎰.不满足叠加原理,因为应变能与内力的关系不是线性的。
11.5在外伸梁的自由端作用力偶矩M跨度中点C 的挠度w c 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(c)
Fcr
π 2 EI 4l 2
11-7
试确定图示各细长压杆的相当长度与临界载荷。设弯曲刚度 EI 为常数。
题 11-7 图 (a)解:相当长度为
5
leq a
临界载荷为
π 2 EI a2 (b)解:压杆微弯状态的挠曲轴如图 11-7b 中的虚线所示。 Fcr
由此得
sin
kl kl kl 4k 2 EI kl [sin (1 )cos ] 0 2 2 2 cl 2
图示阶梯形细长压杆,左、右两段各截面的弯曲刚度分别为 EI1 与 EI2 。试 证明压杆的临界载荷满足下述方程:
11-11
tank1l tank2l
式中: k1 F /( EI1 ) ; k2 F /( EI 2 ) 。
Fcr, 1
π 2 EI l2
Fcr, 2
显然,压杆的临界载荷为
1.359EI l2
1.359EI l2
Fcr Fcr, 2
11-10
图示两端铰支细长压杆,弯曲刚度 EI 为常数,压杆中点用弹簧常量为 c 的
弹簧支持。试证明压杆的临界载荷满足下述方程:
sin
式中, k F /( EI ) 。
第十一章
压杆稳定问题
11-1
图示两端铰支刚杆-蝶形弹簧系统,试求其临界载荷。图中,c 代表使蝶形弹
簧产生单位转角所需之力偶矩。
题 11-1 图 解:系统的临界状态(微偏斜状态)如图 11-1 所示。注意到蝶形弹簧产生的转角为 2θ , 由右段刚杆的力矩平衡方程
l c(2θ ) F (θ ) 0 2
FN5 F
由此得
Fcr
π 2 EI π 2 EI 2l 2 ( 2l ) 2
2.当 F 向内时 此时杆 5 受拉,其余各杆(编号 1,2,3,4)受压。且
6
FN1 FN2 FN3 FN4
由此得
F 2
Fcr 2 (
π 2 EI 2π 2 EI ) 2 l l2
11-9 图 a 所示细长压杆,弯曲刚度 EI 为常数,试证明压杆的临界载荷满足下述方程:
持稳定平衡,试确定轴 BC 的直径 d。已知 F = 42 kN,切变模量 G = 79 GPa。
3
题 11-4 图 解:刚性杆 AB 在微偏斜(设偏斜角为 ,见图 11-4)状态下处于平衡,此时加给轴 BC 的扭力矩为
M B Fa
而
注意到 T M B ,于是得
Tl GI p
F
可见, A1 , A2和Fc 存在非零解的条件为
(1) (2) (3)
sin 0
kl 2
0 kl 2 kl kcos 2 sin
kcos
kl 2
l 1 4F c l 1 4F c 1 F
0
展开上列行列式,并注意到 F EIk 2 ,得
1 kl kl l 2k 2 EI kl sin [sin k ( )cos ] 0 2 2 2 c 2 EIk 2
N/mm 时,截面 B 的挠度分别为何值。横梁与立柱均用低碳钢制成,弹性模量 E = 200 GPa, 比例极限 p =200 MPa。
11
题 11-13 图 解:1.求立柱的临界载荷 给立柱和梁编号分别为 1 和 2,我们有
λp π
E 200109 π 99.3 σp 200106
k2 k1
题 11-11 图 解:该压杆的微弯状态如图 11-11 所示。
图 11-11 弯矩方程为
M ( x1 ) F (δ w1 ), M ( x2 ) F (δ w2 )
进而可得
10
2 2 k12 w1 k12 δ, w2 k2 w1 w2 k2 δ
l
sin kl sin kl
0 - sinkl
1 0 0
k coskl kcoskl 1/l
由此得
sin kl sin kl 2kl coskl 0
上述方程有两组可能的解,即:
sin kl 0 sin kl 2kl coskl 0 由上述二方程的最小非零正根,分别得
于是得挠曲轴微分方程分别为
Fc F x1 Fw1, M ( x2 ) c x2 Fw2 2 2 Fc 2 F k 2 w2 c k 2 x2 k x1, w2 2F 2F
k 2 w1 w1
式中,
k2
上述微分方程的通解分别为
F EI
Fc x1 2F F w2 A2sinkx2 B2coskx2 c x2 2F w1 A1sinkx1 B1coskx1
图 11-7b 半个正弦波的长度为 a,即
leq a
由此得临界载荷为
Fcr
π 2 EI a2
11-8
图示正方形桁架,各杆各截面的弯曲刚度均为 EI,且均为细长杆。试问当载荷
F 为何值时结构中的个别杆件将失稳?如果将载荷 F 的方向改为向内, 则使杆件失稳的载荷 F 又为何值?
题 11-8 图 解:1.当 F 向外时 竖向杆 CD 受压,其余四根杆受拉。 设杆 CD 编号为 5,则有
M C 0,
得系统的临界载荷为
c l F 0 2 cl 2
Fcr
1
图 11-2a (b)解:设系统微偏转如图 11-2b(1)所示,铰链 A 与 B 的铅垂位移分别用与表示,于 是得杆 AB 的受力如图 11-2b(2)所示,杆的平衡方程为
M
由式(b)得
F
y
0, c2 2 c1 1 0
c2 2 l F ( 1 2 ) 0
(a) (b)
A 0,
F
由式(a)得
c 2 2 l 1 2
(c)
2
代入式(c) ,于是得系统的临界载荷为
c11 c2
Fcr
c1c2 l c1 c2
图 11-2b
11-3
图示结构,AB 为刚性杆,BC 为弹性梁,各截面的弯曲刚度均为 EI。在刚性杆
顶端承受铅垂载荷 F 作用,试求其临界值。
2
题 11-3 图 解:结构的临界状态示如图 11-3。
图 11-3 使梁 B 端截面产生转角 θ B 的力矩应为
Me
而
3EI θB l
M e F (θB a )
由此得
F
即
3EI al 3EI al
Fcr
11-4
图示刚性杆 AB,下端与圆截面钢轴 BC 相连。为使刚性杆在图示铅垂位置保
即
GI p al
πGd 4 32al
Fcr
由此得(题中给出 F= 42kN )
GI p al
d
4
32alFcr 4 32 0.500 0.300 42 103 m 0.030m 30 mm πG π 79 109
图 11-4
4
11-6
图示细长压杆,弯曲刚度 EI 为常数,试按§11-2 所述方法确定杆的临界载荷。
式中,除参数 k 外,积分常数 A1,A2,B1,B2 与端点挠度也均为未知。 压杆的位移边界条件与连续条件为:
(a) (b)
在 x1 0 处, w1 0
在 x2 0 处, w2
(1) (2) (3)
在 x1 l 处, w1 0
7
在 x1 x2 l 处, w1 w2 在 x1 x2 l 处, w'1 w' 2
由式(a),(b)与条件(1),(2)可知,
(4) (5)
B1 B2 0
由式(a),(b)与条件(3),(4),(5),得
A1 sin kl A1 sin kl A2 sin kl 0
A1k coskl A2 k coskl
可见,A1,A2 与存在非零解的条件为
wB Δl1
引入物理关系
wB
并代入相关数据及
F x1 Fw1 l
M ( x2 ) F ( w2 )
相应的挠曲轴近似微分方程分别为
" EIw1 Fw1
F l
" EIw2 Fw2 F
上述微分方程的通解分别为
w1 A1 sin kx1 B1 coskx1 x1 l
w2 A2 sin kx2 B2 coskx2
i
I1 d 10mm 0.010m A1 4
200 λp i 0.010 立柱 BD 为大柔度杆,其临界载荷为
Fcr
2.计算 qcr 这里的 qcr 系指使立柱刚刚到达 Fcr 时的 q 值,立柱 BD 还处在直线平衡状态。 B 处的变形 协调条件为
λ
l 12.00
π 2 EI1 π 2 200109 π 0.0404 N 6.2013104 N 62.013kN 2 2 64 l1 2.00
sinkl(sinkl2klcoskl )0
式中,k2=F/(EI)。
题 11-9 图 解:在临界载荷作用下,压杆可在图 b 所示微弯状态保持平衡。 设横截面 C 的挠度为,则由平衡方程求得支座 A 与 B 的支反力为
FAy FBy
杆段 AB 与 BC 的弯矩方程分别为
F l
M ( x1 )
由上述条件依次得
B1 δ
A1 0
B2 δcosk1l
(a)
A2
k1 δsink1l k2
(b)
A2sink2l B2cosk2l 0