高等代数-第4章习题及解答

合集下载

高等代数第四版习题答案

高等代数第四版习题答案

高等代数第四版习题答案【篇一:高等代数第四章矩阵练习题参考答案】xt>一、判断题1. 对于任意n阶矩阵a,b,有a?b?a?b.错.2. 如果a2?0,则a?0.错.如a11?2?,a?0,但a?0.1?1?23. 如果a?a?e,则a为可逆矩阵.正确.a?a2?e?a(e?a)?e,因此a可逆,且a?1?a?e.4. 设a,b都是n阶非零矩阵,且ab?0,则a,b的秩一个等于n,一个小于n. 错.由ab?0可得r(a)?r(b)?n.若一个秩等于n,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n.5.a,b,c为n阶方阵,若ab?ac, 则b?c.错.如a11??21??32?,b?,c,有ab?ac,但b?c.1?1?2?1?3?2?6.a为m?n矩阵,若r(a)?s,则存在m阶可逆矩阵p及n阶可逆矩阵q,使?ispaq0?0??. 0??正确.右边为矩阵a的等价标准形,矩阵a等价于其标准形.7.n阶矩阵a可逆,则a*也可逆.*?a*a?|a|e正确.由a可逆可得|a|?0,又aa.因此a*也可逆,且(a*)?1?1a. |a|8.设a,b为n阶可逆矩阵,则(ab)*?b*a*.正确.(ab)(ab)*?|ab|e?|a||b|e.又(ab)(b*a*)?a(bb*)a*?a|b|ea*?|b|aa*?|a||b|e.因此(ab)(ab)*?(ab)(b*a*).由a,b为n阶可逆矩阵可得ab可逆,两边同时左乘式ab的逆可得(ab)*?b*a*.二、选择题1.设a是n阶对称矩阵,b是n阶反对称矩阵(bt??b),则下列矩阵中为反对称矩阵的是(b ).(a) ab?ba (b) ab?ba(c) (ab)2 (d) bab(a)(d)为对称矩阵,(b)为反对称矩阵,(c)当a,b可交换时为对称矩阵.2. 设a是任意一个n阶矩阵,那么( a)是对称矩阵.(a) aa (b) a?a (c)a(d) a?a3.以下结论不正确的是( c ).(a) 如果a是上三角矩阵,则a也是上三角矩阵;(b) 如果a是对称矩阵,则 a也是对称矩阵;(c) 如果a是反对称矩阵,则a也是反对称矩阵;(d) 如果a是对角阵,则a也是对角阵.4.a是m?k矩阵, b是k?t矩阵, 若b的第j列元素全为零,则下列结论正确的是(b )(a) ab的第j行元素全等于零;(b)ab的第j列元素全等于零;(c) ba的第j行元素全等于零; (d) ba的第j列元素全等于零;2222tt2t5.设a,b为n阶方阵,e为n阶单位阵,则以下命题中正确的是(d )(a) (a?b)2?a2?2ab?b2(b) a2?b2?(a?b)(a?b)(c) (ab)2?a2b2 (d) a2?e2?(a?e)(a?e)6.下列命题正确的是(b ).(a) 若ab?ac,则b?c(b) 若ab?ac,且a?0,则b?c(c) 若ab?ac,且a?0,则b?c(d) 若ab?ac,且b?0,c?0,则b?c7. a是m?n矩阵,b是n?m矩阵,则( b).(a) 当m?n时,必有行列式ab?0;(b) 当m?n时,必有行列式ab?0(c) 当n?m时,必有行列式ab?0;(d) 当n?m时,必有行列式ab?0.ab为m阶方阵,当m?n时,r(a)?n,r(b)?n,因此r(ab)?n?m,所以ab?0.8.以下结论正确的是( c)(a) 如果矩阵a的行列式a?0,则a?0;(b) 如果矩阵a满足a?0,则a?0;(c) n阶数量阵与任何一个n阶矩阵都是可交换的;(d) 对任意方阵a,b,有(a?b)(a?b)?a?b9.设?1?,2?,3?,4是非零的四维列向量,a?(?1,?2,?3,?4),a*为a的伴随矩阵,222已知ax?0的基础解系为(1,0,2,0)t,则方程组a*x?0的基础解系为( c ).(a)?1,?2,?3.(b)?1??2,?2??3,?3??1.(c)?2,?3,?4.(d)?1??2,?2??3,?3??4,?4??1.10t由ax?0的基础解系为(1,0,2,0)可得(?1,?2,?3,?4)0,?1?2?3?0. ?2?0?因此(a),(b)中向量组均为线性相关的,而(d)显然为线性相关的,因此答案为(c).由a*a?a*(?1,?2,?3,?4)?(a*?1,a*?2,a*?3,a*?4)?o可得?1,?2,?3,?4均为a*x?0的解.10.设a是n阶矩阵,a适合下列条件( c )时,in?a必是可逆矩阵nn(a) a?a (b) a是可逆矩阵 (c) a?0(b) a主对角线上的元素全为零11.n阶矩阵a是可逆矩阵的充分必要条件是( d)(a) a?1 (b) a?0 (c) a?a (d)a?012.a,b,c均是n阶矩阵,下列命题正确的是( a)(a) 若a是可逆矩阵,则从ab?ac可推出ba?ca(b) 若a是可逆矩阵,则必有ab?ba(c) 若a?0,则从ab?ac可推出b?c(d) 若b?c,则必有ab?ac13.a,b,c均是n阶矩阵,e为n阶单位矩阵,若abc?e,则有(c ) (a) acb?e (b)bac?e(c)bca?e (d) cba?e14.a是n阶方阵,a是其伴随矩阵,则下列结论错误的是( d )(a) 若a是可逆矩阵,则a也是可逆矩阵;(b) 若a是不可逆矩阵,则a也是不可逆矩阵;***t**(c) 若a?0,则a是可逆矩阵;(D)aa?a.aa*?ae?a.*15.设a是5阶方阵,且a?0,则a?(D)234n(a) a (b) a (c) a(d) a16.设a是a?(aij)n?n的伴随阵,则aa中位于(i,j)的元素为(B) (a) **?ak?1njkaki (b) ?ak?1nkjaki (c) ?ajkaik (d) ?akiakj k?1k?1nn应为a的第i列元素的代数余子式与a的第j列元素对应乘积和.a11a1na11a1n17.设a, b,其中aij是aij的代数余子式,则(c ) an1?ann???an1?ann??(a) a是b的伴随 (b)b是a的伴随(c)b是a?的伴随(d)以上结论都不对18.设a,b为方阵,分块对角阵ca0?*,则c? ( C ) ??0b?0? *?bb?0?? abb*??a*(a) c0?aa*0?(b)c??*?b??0?ba*(c)c0?aba*0?? (d) c??ab*??0利用cc*?|c|e验证.19.已知a46??135?,下列运算可行的是( c ) ,b1?2??246?(a) a?b (b)a?b (c)ab(d)ab?ba【篇二:高等代数第4章习题解】题4.11、计算(1)(2,0,3,1)?3(0,1,2,4)?1(1,0,1,5) 2(2)5(0,1,2)?(1,1,0)?(1,1,1) 215517(1,0,1,5)?(,?3,?,?) 2222解:(1)(2,0,3,1)?3(0,1,2,4)?(2)5(0,1,2)?(1,19,0)?(1,1,1)?(0,,9) 222、验证向量加法满足交换律、结合律。

高等代数__课后答案__高等教育出版社

高等代数__课后答案__高等教育出版社

高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。

3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。

另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。

由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。

从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。

高等代数第4章习题解

高等代数第4章习题解

第四章习题解答习题4.11、计算(1)120313012410152(,,,)(,,,)(,,,)-+(2)15012101112(,,)(,,)(,,)+- 解:(1)15517203130124101532222(,,,)(,,,)(,,,)(,,,)-+=--- (2)195012101110922(,,)(,,)(,,)(,,)+-= 2、验证向量加法满足交换律、结合律。

证明:设121212(,,,),(,,,),(,,,),n n n a a a b b b c c c αβγ=== 则 12121122(,,,)(,,,)(,,,)n nnn a a a b b b a b a b a b αβ+=+=+++ 11221212(,,,)(,,,)(,,,)n n n n b a b a b a b b b a a a βα=+++=+=+ 121212()((,,,)(,,,))(,,,)n n n aa ab b bc c c αβγ++=++ 112212((,,,))(,,,)n n n a b a b a b c c c =++++111222(,,,)n n n a b c a b c a b c =++++++111222((),(),,())n n n a b c a b c a b c =++++++121122(,,,)((,,,))n n n a a a b c b c b c =++++121212(,,,)((,,,)(,,,))n n n a a a b b b c c c =++()αβγ=++3、证明性质4.1.5。

性质4.1.5的内容是:对任意n 维向量,αβ及数k ,有()()k k k ααα-=-=-,()k k k αβαβ-=-证明:设1212(,,,),(,,,)n n a a a b b b αβ==那么1212()()(,,,)((),(),,())n n k k a a a k a k a k a α-=-=---1212(,,,)((),(),,())n n ka ka ka k a k a k a =---=---1212((),(),,())((,,,))()n n k a a a k a a a k α=---=-=-其次1212()((,,,))(,,,)n n k k a a a k a a a k αα-=-=-=-最后:12121122112212121212()((,,,)(,,,))(,,,)(,,,)(,,,)(,,,)(,,,)(,,,)n n n n n n n n n n k k a a a b b b k a b a b a b ka kb ka kb ka kb ka ka ka kb kb kb k a a a k b b b k k αβαβ-=-=---=---=-=-=-4、设123101010001(,,),(,,),(,,)εεε===,求证:对任意的3F α∈,在F 中都有唯一的一组数123,,a a a 使112233a a a αεεε=++ 解:设α的坐标为123(,,)a a a ,那么123123123000000(,,)(,,)(,,)(,,)a a a a a a a a a α==+++=+123123000000000000(,,)(,,)(,,)(,,)(,,)a a a a a a =++++=++ 123112233100010001(,,)(,,)(,,)a a a a a a εεε=++=++由于给定向量的坐标是唯一的,所以上面等式中的数123,,a a a 是唯一的。

(完整word)高等代数第四章矩阵练习题参考答案

(完整word)高等代数第四章矩阵练习题参考答案

第四章 矩阵习题参考答案一、 判断题1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错.2. 如果20,A =则0A =. 错.如211,0,011A A A ⎛⎫==≠⎪--⎝⎭但.3. 如果2A A E +=,则A 为可逆矩阵.正确.2()A A E A E A E +=⇒+=,因此A 可逆,且1A A E -=+.4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,有,AC AB =但B C ≠.6.A 为n m ⨯矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使.000⎪⎪⎭⎫ ⎝⎛=sI PAQ 正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆.正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11(*)||A A A -=.8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB = 正确.*()()||||||.AB AB AB E A B E ==又()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====.因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆可得.**)*(A B AB = 二、 选择题1.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵()TB B =-,则下列矩阵中为反对称矩阵的是(B ).(A) AB BA - (B) AB BA + (C) 2()AB (D) BAB(A)(D)为对称矩阵,(B )为反对称矩阵,(C )当,A B 可交换时为对称矩阵. 2. 设A 是任意一个n 阶矩阵,那么( A )是对称矩阵.(A) TA A (B) TA A - (C) 2A (D) TA A -3.以下结论不正确的是( C ).(A) 如果A 是上三角矩阵,则2A 也是上三角矩阵; (B) 如果A 是对称矩阵,则 2A 也是对称矩阵; (C) 如果A 是反对称矩阵,则2A 也是反对称矩阵; (D) 如果A 是对角阵,则2A 也是对角阵.4.A 是m k ⨯矩阵, B 是k t ⨯矩阵, 若B 的第j 列元素全为零,则下列结论正确的是(B )(A ) AB 的第j 行元素全等于零; (B )AB 的第j 列元素全等于零; (C ) BA 的第j 行元素全等于零; (D ) BA 的第j 列元素全等于零;5.设,A B 为n 阶方阵,E 为n 阶单位阵,则以下命题中正确的是(D ) (A) 222()2A B A AB B +=++ (B) 22()()A B A B A B -=+-(C) 222()AB A B = (D) 22()()A E A E A E -=+-6.下列命题正确的是(B ).(A) 若AB AC =,则B C =(B) 若AB AC =,且0A ≠,则B C = (C) 若AB AC =,且0A ≠,则B C = (D) 若AB AC =,且0,0B C ≠≠,则B C = 7. A 是m n ⨯矩阵,B 是n m ⨯矩阵,则( B ). (A) 当m n >时,必有行列式0AB ≠; (B) 当m n >时,必有行列式0AB = (C) 当n m >时,必有行列式0AB ≠; (D) 当n m >时,必有行列式0AB =.AB 为m 阶方阵,当m n >时,(),(),r A n r B n ≤≤因此()r AB n m ≤<,所以0AB =.8.以下结论正确的是( C )(A) 如果矩阵A 的行列式0A =,则0A =; (B) 如果矩阵A 满足20A =,则0A =;(C) n 阶数量阵与任何一个n 阶矩阵都是可交换的; (D) 对任意方阵,A B ,有22()()A B A B A B -+=-9.设1234,,,αααα是非零的四维列向量,1234(,,,),*A A αααα=为A 的伴随矩阵,已知0Ax =的基础解系为(1,0,2,0)T ,则方程组*0A x =的基础解系为( C ).(A )123,,ααα. (B )122331,,αααααα+++.(C )234,,ααα. (D )12233441,,,αααααααα++++.由0Ax =的基础解系为(1,0,2,0)T可得12341310(,,,)0,2020αααααα⎛⎫ ⎪ ⎪=+= ⎪ ⎪⎝⎭.因此(A ),(B )中向量组均为线性相关的,而(D )显然为线性相关的,因此答案为(C ).由12341234**(,,,)(*,*,*,*)A A A A A A A O αααααααα===可得12,,αα34,αα均为*0A x =的解.10.设A 是n 阶矩阵,A 适合下列条件( C )时,n I A -必是可逆矩阵(A) nA A = (B) A 是可逆矩阵 (C) 0nA = (B) A 主对角线上的元素全为零11.n 阶矩阵A 是可逆矩阵的充分必要条件是( D )(A) 1A = (B) 0A = (C) TA A = (D) 0A ≠ 12.,,ABC 均是n 阶矩阵,下列命题正确的是( A )(A) 若A 是可逆矩阵,则从AB AC =可推出BA CA = (B) 若A 是可逆矩阵,则必有AB BA = (C) 若0A ≠,则从AB AC =可推出B C = (D) 若B C ≠,则必有AB AC ≠13.,,A B C 均是n 阶矩阵,E 为n 阶单位矩阵,若ABC E =,则有(C ) (A) ACB E = (B )BAC E = (C )BCA E = (D) CBA E = 14.A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是( D )(A) 若A 是可逆矩阵,则*A 也是可逆矩阵; (B) 若A 是不可逆矩阵,则*A 也是不可逆矩阵;(C) 若*0A ≠,则A 是可逆矩阵; (D)*.AA A =*.nAA A E A ==15.设A 是5阶方阵,且0A ≠,则*A =( D )(A) A (B) 2A (C) 3A (D) 4A 16.设*A 是()ij n n A a ⨯=的伴随阵,则*A A 中位于(,)i j 的元素为(B )(A)1njkki k aA =∑ (B)1nkjki k aA =∑ (C) 1n jk ik k a A =∑ (D) 1nki kj k a A =∑应为A 的第i 列元素的代数余子式与A 的第j 列元素对应乘积和.17.设1111n n nn a a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 1111n n nn A A B A A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,其中ij A 是ij a 的代数余子式,则(C ) (A) A 是B 的伴随 (B)B 是A 的伴随 (C)B 是A '的伴随 (D)以上结论都不对18.设,A B 为方阵,分块对角阵00A C B ⎡⎤=⎢⎥⎣⎦,则*C = ( C ) (A) **00A C B ⎡⎤=⎢⎥⎣⎦ (B)**00A A CB B ⎡⎤=⎢⎥⎣⎦(C) **00B A C A B ⎡⎤=⎢⎥⎣⎦ (D) **0A B A C A B B ⎡⎤=⎢⎥⎣⎦利用*||CC C E =验证.19.已知46135,12246A B ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,下列运算可行的是( C ) (A) A B + (B)A B - (C)AB (D)AB BA -20.设,A B 是两个m n ⨯矩阵,C 是n 阶矩阵,那么( D )(A) ()C A B CA CB +=+ (B) ()TTTTA B C A C B C +=+ (C) ()TTTC A B C A C B +=+ (D) ()A B C AC BC +=+21.对任意一个n 阶矩阵A ,若n 阶矩阵B 能满足AB BA =,那么B 是一个( C )(A) 对称阵 (B)对角阵 (C)数量矩阵 (D)A 的逆矩阵 与任意一个n 阶矩阵均可交换的矩阵为数量矩阵.22.设A 是一个上三角阵,且0A =,那么A 的主对角线上的元素( C )(A) 全为零 (B )只有一个为零(C )至少有一个为零 (D )可能有零,也可能没有零23.设1320A ⎡⎤=⎢⎥⎣⎦,则1A -=( D ) (A) 1021136⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦ (B )1031136⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ (C )1031126⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦(D )1021136⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦24. 设111222333a b c A a b c a b c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,若111222333222a c b AP a c b a c b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则P =( B ) (A) 100001020⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (B )100002010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (C )001020100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (D )200001010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦25.设(3)n n ≥阶矩阵1111a aa a a a A aa a aa a ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,若矩阵A 的秩为1,则a 必为(A )(A) 1 (B )-1 (C )11n - (D )11n -矩阵A 的任意两行成比例.26. 设,A B 为两个n 阶矩阵,现有四个命题: ①若,A B 为等价矩阵,则,A B 的行向量组等价;②若,A B 的行列式相等,即||||,A B =则,A B 为等价矩阵; ③若0Ax =与0Bx =均只有零解,则,A B 为等价矩阵; ④若,A B 为相似矩阵,则0Ax =与0Bx =解空间的维数相同. 以上命题中正确的是( D )(A) ①, ③. (B) ②, ④. (C) ②,③. (D)③,④.当AP P B 1-=时,,A B 为相似矩阵。

高等代数第四版习题答案

高等代数第四版习题答案

高等代数第四版习题答案【篇一:高等代数第四章矩阵练习题参考答案】xt>一、判断题1. 对于任意n阶矩阵a,b,有a?b?a?b.错.2. 如果a2?0,则a?0.错.如a11?2?,a?0,但a?0.1?1?23. 如果a?a?e,则a为可逆矩阵.正确.a?a2?e?a(e?a)?e,因此a可逆,且a?1?a?e.4. 设a,b都是n阶非零矩阵,且ab?0,则a,b的秩一个等于n,一个小于n. 错.由ab?0可得r(a)?r(b)?n.若一个秩等于n,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n.5.a,b,c为n阶方阵,若ab?ac, 则b?c.错.如a11??21??32?,b?,c,有ab?ac,但b?c.1?1?2?1?3?2?6.a为m?n矩阵,若r(a)?s,则存在m阶可逆矩阵p及n阶可逆矩阵q,使?ispaq0?0??. 0??正确.右边为矩阵a的等价标准形,矩阵a等价于其标准形.7.n阶矩阵a可逆,则a*也可逆.*?a*a?|a|e正确.由a可逆可得|a|?0,又aa.因此a*也可逆,且(a*)?1?1a. |a|8.设a,b为n阶可逆矩阵,则(ab)*?b*a*.正确.(ab)(ab)*?|ab|e?|a||b|e.又(ab)(b*a*)?a(bb*)a*?a|b|ea*?|b|aa*?|a||b|e.因此(ab)(ab)*?(ab)(b*a*).由a,b为n阶可逆矩阵可得ab可逆,两边同时左乘式ab的逆可得(ab)*?b*a*.二、选择题1.设a是n阶对称矩阵,b是n阶反对称矩阵(bt??b),则下列矩阵中为反对称矩阵的是(b ).(a) ab?ba (b) ab?ba(c) (ab)2 (d) bab(a)(d)为对称矩阵,(b)为反对称矩阵,(c)当a,b可交换时为对称矩阵.2. 设a是任意一个n阶矩阵,那么( a)是对称矩阵.(a) aa (b) a?a (c)a(d) a?a3.以下结论不正确的是( c ).(a) 如果a是上三角矩阵,则a也是上三角矩阵;(b) 如果a是对称矩阵,则 a也是对称矩阵;(c) 如果a是反对称矩阵,则a也是反对称矩阵;(d) 如果a是对角阵,则a也是对角阵.4.a是m?k矩阵, b是k?t矩阵, 若b的第j列元素全为零,则下列结论正确的是(b )(a) ab的第j行元素全等于零;(b)ab的第j列元素全等于零;(c) ba的第j行元素全等于零; (d) ba的第j列元素全等于零;2222tt2t5.设a,b为n阶方阵,e为n阶单位阵,则以下命题中正确的是(d )(a) (a?b)2?a2?2ab?b2(b) a2?b2?(a?b)(a?b)(c) (ab)2?a2b2 (d) a2?e2?(a?e)(a?e)6.下列命题正确的是(b ).(a) 若ab?ac,则b?c(b) 若ab?ac,且a?0,则b?c(c) 若ab?ac,且a?0,则b?c(d) 若ab?ac,且b?0,c?0,则b?c7. a是m?n矩阵,b是n?m矩阵,则( b).(a) 当m?n时,必有行列式ab?0;(b) 当m?n时,必有行列式ab?0(c) 当n?m时,必有行列式ab?0;(d) 当n?m时,必有行列式ab?0.ab为m阶方阵,当m?n时,r(a)?n,r(b)?n,因此r(ab)?n?m,所以ab?0.8.以下结论正确的是( c)(a) 如果矩阵a的行列式a?0,则a?0;(b) 如果矩阵a满足a?0,则a?0;(c) n阶数量阵与任何一个n阶矩阵都是可交换的;(d) 对任意方阵a,b,有(a?b)(a?b)?a?b9.设?1?,2?,3?,4是非零的四维列向量,a?(?1,?2,?3,?4),a*为a的伴随矩阵,222已知ax?0的基础解系为(1,0,2,0)t,则方程组a*x?0的基础解系为( c ).(a)?1,?2,?3.(b)?1??2,?2??3,?3??1.(c)?2,?3,?4.(d)?1??2,?2??3,?3??4,?4??1.10t由ax?0的基础解系为(1,0,2,0)可得(?1,?2,?3,?4)0,?1?2?3?0. ?2?0?因此(a),(b)中向量组均为线性相关的,而(d)显然为线性相关的,因此答案为(c).由a*a?a*(?1,?2,?3,?4)?(a*?1,a*?2,a*?3,a*?4)?o可得?1,?2,?3,?4均为a*x?0的解.10.设a是n阶矩阵,a适合下列条件( c )时,in?a必是可逆矩阵nn(a) a?a (b) a是可逆矩阵 (c) a?0(b) a主对角线上的元素全为零11.n阶矩阵a是可逆矩阵的充分必要条件是( d)(a) a?1 (b) a?0 (c) a?a (d)a?012.a,b,c均是n阶矩阵,下列命题正确的是( a)(a) 若a是可逆矩阵,则从ab?ac可推出ba?ca(b) 若a是可逆矩阵,则必有ab?ba(c) 若a?0,则从ab?ac可推出b?c(d) 若b?c,则必有ab?ac13.a,b,c均是n阶矩阵,e为n阶单位矩阵,若abc?e,则有(c ) (a) acb?e (b)bac?e(c)bca?e (d) cba?e14.a是n阶方阵,a是其伴随矩阵,则下列结论错误的是( d )(a) 若a是可逆矩阵,则a也是可逆矩阵;(b) 若a是不可逆矩阵,则a也是不可逆矩阵;***t**(c) 若a?0,则a是可逆矩阵;(D)aa?a.aa*?ae?a.*15.设a是5阶方阵,且a?0,则a?(D)234n(a) a (b) a (c) a(d) a16.设a是a?(aij)n?n的伴随阵,则aa中位于(i,j)的元素为(B) (a) **?ak?1njkaki (b) ?ak?1nkjaki (c) ?ajkaik (d) ?akiakj k?1k?1nn应为a的第i列元素的代数余子式与a的第j列元素对应乘积和.a11a1na11a1n17.设a, b,其中aij是aij的代数余子式,则(c ) an1?ann???an1?ann??(a) a是b的伴随 (b)b是a的伴随(c)b是a?的伴随(d)以上结论都不对18.设a,b为方阵,分块对角阵ca0?*,则c? ( C ) ??0b?0? *?bb?0?? abb*??a*(a) c0?aa*0?(b)c??*?b??0?ba*(c)c0?aba*0?? (d) c??ab*??0利用cc*?|c|e验证.19.已知a46??135?,下列运算可行的是( c ) ,b1?2??246?(a) a?b (b)a?b (c)ab(d)ab?ba【篇二:高等代数第4章习题解】题4.11、计算(1)(2,0,3,1)?3(0,1,2,4)?1(1,0,1,5) 2(2)5(0,1,2)?(1,1,0)?(1,1,1) 215517(1,0,1,5)?(,?3,?,?) 2222解:(1)(2,0,3,1)?3(0,1,2,4)?(2)5(0,1,2)?(1,19,0)?(1,1,1)?(0,,9) 222、验证向量加法满足交换律、结合律。

高等代数课后习题1-5章答案

高等代数课后习题1-5章答案

高等代数课后习题1-5章答案高等代数是大学数学中的一门重要基础课程,对于数学专业的学生来说,掌握这门课程的知识和解题技巧至关重要。

在学习过程中,课后习题是巩固知识、提高能力的重要途径。

下面,我将为大家详细解答高等代数 1-5 章的课后习题。

第一章主要介绍了多项式的基本概念和运算。

在这一章的习题中,我们经常会遇到多项式的整除、最大公因式、因式分解等问题。

例如,有这样一道题:设\(f(x)\)和\(g(x)\)是两个多项式,且\((f(x), g(x))= 1\),证明:对于任意的多项式\(h(x)\),都存在多项式\(u(x)\)和\(v(x)\),使得\(f(x)u(x) + g(x)v(x) =h(x)\)。

解答这道题,我们可以利用辗转相除法来求出\(f(x)\)和\(g(x)\)的最大公因式。

因为\((f(x), g(x))= 1\),所以存在\(u_1(x)\)和\(v_1(x)\),使得\(f(x)u_1(x) + g(x)v_1(x) = 1\)。

然后,将等式两边同时乘以\(h(x)\),得到\(f(x)(u_1(x)h(x))+ g(x)(v_1(x)h(x))= h(x)\),令\(u(x) = u_1(x)h(x)\),\(v(x) =v_1(x)h(x)\),即证明了结论。

第二章是行列式的相关内容。

行列式的计算是这一章的重点和难点。

比如,有一道求行列式值的题目:\(\begin{vmatrix} 2 & 1 & 3 \\ 1 &-1 & 2 \\ 3 & 2 & 1 \end{vmatrix}\)对于这道题,我们可以按照行列式的展开法则进行计算。

先按照第一行展开:\\begin{align}&\begin{vmatrix} 2 & 1 & 3 \\ 1 &-1 & 2 \\ 3 & 2 & 1 \end{vmatrix}\\=&2\times\begin{vmatrix} -1 & 2 \\ 2 & 1 \end{vmatrix}-1\times\begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix}+3\times\begin{vmatrix} 1 &-1 \\ 3 & 2 \end{vmatrix}\\=&2\times(-1\times1 2\times2) 1\times(1\times1 2\times3) +3\times(1\times2 (-1)\times3)\\=&2\times(-5) 1\times(-5) + 3\times(5)\\=&-10 + 5 + 15\\=&10\end{align}\第三章是线性方程组。

高等代数第四章及其习题答案

高等代数第四章及其习题答案

α b11
A1 0
= B1 0
β a11b11 a11β + α B1
A1 B1

为上三角形矩阵, 由归纳法假设知 A1 B1 为上三角形矩阵,故 AB 为上三 角形矩阵。 角形矩阵。
2)设 A = ( aij ) 为一可逆的上三角形矩阵,则 ) 为一可逆的上三角形矩阵, nn
= ε iT A j L 0 L L L 0 L a jn i 行 . L 0 L L L 0
0 M 0 a1i AEij = ( B1 , L , Bn ) ε j = Bi ε j = M ( 0, L , 0,1, 0, L , 0 ) a 0 ni M 0 0 0 = L 0 L L L 0 0 0 a1i a2 i L ani 0 L L 0 . L L L 0 L 0 0 L
T
y1 n T T 2 ( Ax) Ax = y y = ( y1 ,L, yn ) M = ∑ yi = 0, y i =1 n
从而 yi = 0, i = 1, L, n , 即 y = Ax = 0 ,由
x 的任意性知 Aε j = 0, j = 1,L , n ,其中
为数量矩阵. 为数量矩阵 级矩阵可交换, 注:因 A 与所有 n 级矩阵可交换,故 A 一定与 可交换, E i j ( i , j = 1, L , n ) 可交换,于是 AEij = Eij A.
10、已知 A为实对称矩阵 且 A2 = 0 , 不妨设 A = aij 、 为实对称矩阵, 阶矩阵, 为 n 阶矩阵, = x
T
( )
nn

高等代数第四章矩阵练习题参考答案

高等代数第四章矩阵练习题参考答案

第四章 矩阵习题参考答案一、 判断题1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错.2. 如果20,A =则0A =. 错.如211,0,011A A A ⎛⎫==≠⎪--⎝⎭但.3. 如果2A A E +=,则A 为可逆矩阵.正确.2()A A E A E A E +=⇒+=,因此A 可逆,且1A A E -=+.4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,有,AC AB =但B C ≠.6.A 为n m ⨯矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使.000⎪⎪⎭⎫ ⎝⎛=sI PAQ 正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆.正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11(*)||A A A -=. 8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB =正确.*()()||||||.AB AB AB E A B E ==又()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====.因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆可得.**)*(A B AB =二、 选择题1.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵()T B B =-,则下列矩阵中为反对称矩阵的是B .A AB BA - B AB BA +C 2()ABD BABAD 为对称矩阵,B 为反对称矩阵,C 当,A B 可交换时为对称矩阵. 2. 设A 是任意一个n 阶矩阵,那么 A 是对称矩阵. A T A A B T A A - C 2A D T A A - 3.以下结论不正确的是 C .(A) 如果A 是上三角矩阵,则2A 也是上三角矩阵; (B) 如果A 是对称矩阵,则 2A 也是对称矩阵; (C) 如果A 是反对称矩阵,则2A 也是反对称矩阵; (D) 如果A 是对角阵,则2A 也是对角阵.4.A 是m k ⨯矩阵, B 是k t ⨯矩阵, 若B 的第j 列元素全为零,则下列结论正确的是BA AB 的第j 行元素全等于零; B AB 的第j 列元素全等于零;C BA 的第j 行元素全等于零;D BA 的第j 列元素全等于零; 5.设,A B 为n 阶方阵,E 为n 阶单位阵,则以下命题中正确的是D A 222()2A B A AB B +=++ B 22()()A B A B A B -=+-C 222()AB A B =D 22()()AE A E A E -=+- 6.下列命题正确的是B . A 若AB AC =,则B C = B 若AB AC =,且0A ≠,则B C = (C) 若AB AC =,且0A ≠,则B C = D 若AB AC =,且0,0B C ≠≠,则B C = 7. A 是m n ⨯矩阵,B 是n m ⨯矩阵,则 B. (A)当m n >时,必有行列式0AB ≠; (B)当m n >时,必有行列式0AB = (C)当n m >时,必有行列式0AB ≠; (D)当n m >时,必有行列式0AB =.AB 为m 阶方阵,当m n >时,(),(),r A n r B n ≤≤因此()r AB n m ≤<,所以0AB =.8.以下结论正确的是 C(A)如果矩阵A 的行列式0A =,则0A =; (B)如果矩阵A 满足20A =,则0A =;(C)n 阶数量阵与任何一个n 阶矩阵都是可交换的; (D)对任意方阵,A B ,有22()()A B A B A B -+=-9.设1234,,,αααα是非零的四维列向量,1234(,,,),*A A αααα=为A 的伴随矩阵,已知0Ax =的基础解系为(1,0,2,0)T ,则方程组*0A x =的基础解系为 C .A 123,,ααα.B 122331,,αααααα+++.C 234,,ααα.D 12233441,,,αααααααα++++.由0Ax =的基础解系为(1,0,2,0)T 可得12341310(,,,)0,2020αααααα⎛⎫ ⎪ ⎪=+= ⎪ ⎪⎝⎭.因此A,B 中向量组均为线性相关的,而D 显然为线性相关的,因此答案为C.由可得12,,αα34,αα均为*0A x =的解.10.设A 是n 阶矩阵,A 适合下列条件 C 时,n I A -必是可逆矩阵(A) n A A = B A 是可逆矩阵 C 0n A = (B) A 主对角线上的元素全为零11.n 阶矩阵A 是可逆矩阵的充分必要条件是 D(A)1A = B 0A = C T A A = D 0A ≠12.,,A B C 均是n 阶矩阵,下列命题正确的是 A(A) 若A 是可逆矩阵,则从AB AC =可推出BA CA = (B) 若A 是可逆矩阵,则必有AB BA = (C) 若0A ≠,则从AB AC =可推出B C = (D) 若B C ≠,则必有AB AC ≠13.,,A B C 均是n 阶矩阵,E 为n 阶单位矩阵,若ABC E =,则有C (A) ACB E = B BAC E = C BCA E = D CBA E =14.A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是 D (A) 若A 是可逆矩阵,则*A 也是可逆矩阵; (B) 若A 是不可逆矩阵,则*A 也是不可逆矩阵; (C) 若*0A ≠,则A 是可逆矩阵; D*.AA A = 15.设A 是5阶方阵,且0A ≠,则*A = D(A)A B 2A C 3A D 4A16.设*A 是()ij n n A a ⨯=的伴随阵,则*A A 中位于(,)i j 的元素为BA 1n jk ki k a A =∑ B 1n kj ki k a A =∑ C 1n jk ik k a A =∑ D 1nki kj k a A =∑应为A 的第i 列元素的代数余子式与A 的第j 列元素对应乘积和.17.设1111n n nn a a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 1111n n nn A A B A A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,其中ij A 是ij a 的代数余子式,则C(A)A 是B 的伴随 B B 是A 的伴随 C B 是A '的伴随 D 以上结论都不对18.设,A B 为方阵,分块对角阵00A C B ⎡⎤=⎢⎥⎣⎦,则*C = C (A)**00A CB ⎡⎤=⎢⎥⎣⎦ B **00A A C B B ⎡⎤=⎢⎥⎣⎦ C **00B AC A B ⎡⎤=⎢⎥⎣⎦ D **0A B A C A B B ⎡⎤=⎢⎥⎣⎦ 利用*||CC C E =验证.19.已知46135,12246A B ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,下列运算可行的是 C (A) A B + B A B - C AB D AB BA -20.设,A B 是两个m n ⨯矩阵,C 是n 阶矩阵,那么 D21.对任意一个n 阶矩阵A ,若n 阶矩阵B 能满足AB BA =,那么B 是一个 C(A)对称阵 B 对角阵 C 数量矩阵 D A 的逆矩阵 与任意一个n 阶矩阵均可交换的矩阵为数量矩阵.22.设A 是一个上三角阵,且0A =,那么A 的主对角线上的元素 C(A) 全为零 B 只有一个为零(C ) 至少有一个为零 D 可能有零,也可能没有零23.设1320A⎡⎤=⎢⎥⎣⎦,则1A-= D(A)121136⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦B131136⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦C131126⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦D121136⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦24.设111222333a b cA a b ca b c⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,若111222333222a c bAP a c ba c b⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则P= B(A)100001020⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦B100002010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C001020100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦D200001010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦25.设(3)n n≥阶矩阵1111a a aa a aA a a aa a a⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,若矩阵A的秩为1,则a必为A(A)1 B-1 C11n-D11n-矩阵A的任意两行成比例.26. 设,A B为两个n阶矩阵,现有四个命题:①若,A B为等价矩阵,则,A B的行向量组等价;②若,A B的行列式相等,即||||,A B=则,A B为等价矩阵;③若0Ax=与0Bx=均只有零解,则,A B为等价矩阵;④若,A B为相似矩阵,则0Ax=与0Bx=解空间的维数相同.以上命题中正确的是 DA ①, ③.B ②, ④.C ②,③. D③,④.当APPB1-=时,,A B为相似矩阵;相似矩阵的秩相等;齐次线性方程组基础解系所含解的个数即为其解空间的维数;三、填空题1.设A 为三阶方阵,*A 为A 的伴随矩阵,有2A =,则11()2*3A A --=11*||2A A A A --==,111()33A A --=,因此11111311()2*34(1)32A A A A A A ------=-=-=-=-. 2.设,AB 为4阶方阵,且3A =,则1(3)A --= 1/27 , 21BA B -= 9 ; 3.设A 是一个m n ⨯矩阵,B 是一个n s ⨯矩阵,那么是()'AB 一个s m ⨯阶矩阵,它的第i 行第j 列元素为1njk ki k a b =∑.4.n 阶矩阵A 可逆A 非退化 ||0A ≠⇔ A 与单位矩阵等价 ⇔ A 可以表示为一系列初等矩阵的乘积 .4.三阶对角矩阵000000a A b c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则A 的伴随矩阵*A = 000000bc ac ab ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦. 5.设123023003A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则*1()A -=16A . 6.设0,1,2,i a i n ≠=,矩阵12100000000000n na a a a -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦的逆矩阵为 111121100000000000n n a a a a -----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 7.设,A B 都是可逆矩阵,矩阵00A C B ⎡⎤=⎢⎥⎣⎦的逆矩阵为1100B A --⎡⎤⎢⎥⎣⎦.8.设121331,,342424A B C ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则(2)B A C -= . 9.A 既是对称矩阵,又是反对称矩阵,则A 为 零 矩阵.10.设方阵111222333b x c A b x c b x c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111222333b y c B b y c b y c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且2,3A B =-=则行列式A B += 4 .11.设A 为m 阶方阵,B 为n 阶方阵,已知,A a B b ==,则行列式00A B=ab mn )1(-.将A 的各列依次与B 的各列交换,共需要交换mn 次,化为00A B12.设A 为n 阶方阵,且0A ≠,则 在A 等价关系下的标准形为 n 阶 单位矩阵 .13. 设12221311A a -⎛⎫⎪=- ⎪ ⎪⎝⎭a为某常数,B 为43⨯的非零矩阵,且0BA =,则矩阵B 的秩为 1 .由0BA =可得A 的各列为齐次线性方程组0Bx =的解,A 的前两列线性无关,因此0Bx =的基础解系至少有两个解,因此()1r B ≤.又B 为非零矩阵,因此()1r B ≥.即() 1.r B =四、解答下列各题 1.求解矩阵方程1 25461321X -⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;2 211113210432111X -⎛⎫-⎛⎫⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭; 3 142031121101X ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭;4 010100143100001201001010120X -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭解:11254635462231321122108X -----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 212111132212104328/352/3111X --⎛⎫--⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪--⎝⎭⎝⎭ ⎪-⎝⎭2.设033110123A ⎛⎫⎪= ⎪ ⎪-⎝⎭,2AB A B =+ ,求B 解:(2)A E B A -=.0332002332110020110123002121A E -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭.22A E -=,因此2A E -可逆.3..设1P AP -=Λ,其中1411P --⎛⎫= ⎪⎝⎭,1002-⎛⎫Λ= ⎪⎝⎭,求11A . 解:1,A P P -=Λ4.设3级方阵,A B 满足124A B B E -=-,证明:2A E -可逆,并求其逆. 证明:124A B B E -=-两边同左乘以A 得到24B AB A =-.因此有(2)4A E B A -=.由A 可逆可得2A E -,且111(2).4A E BA ---=5.设A 是一个n 级方阵,且()R A r =,证明:存在一个n 级可逆矩阵P 使1PAP -的后n r -行全为零.证明:()R A r =,因此矩阵A 可以经过一系列行初等变换化为后n r -行全为零.也即存在初等矩阵11,,,m P P P ,使得21m P P P A 后n r -行全为零. 21mP P P P =,则PA 的后n r -行全为零.由矩阵乘法运算可得1PAP -的后n r -行全为零.6.设矩阵,m n n m A B ⨯⨯,且,m n AB E <=,证明:A 的行向量组线性无关. 证明:由,m n AB E <=可得()()m r AB r A m =≤≤,因此()r A m =.因此A 的行向量组线性无关.7.如果,2A A =称A 为幂等矩阵.设B A ,为n 阶幂等矩阵,证明:B A +是幂等矩阵的充要条件是0.AB BA +=证明:当B A +时幂等阵时, 因此0.AB BA +=反之,当0.AB BA +=时有 B A +是幂等矩阵.。

第四章习题与复习题详细讲解(线性空间)----高等代数

第四章习题与复习题详细讲解(线性空间)----高等代数

习题5. 11. 判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间. 答 是.因为是通常意义的矩阵加法与数乘, 所以只需检验集合对加法与数乘运算的封闭性. 由n 阶实对称矩阵的性质知,n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵,数乘n 阶实对称矩阵仍然是n 阶实对称矩阵, 所以集合对矩阵加法与数乘运算封闭, 构成实数域上的线性空间.2.全体正实数R +, 其加法与数乘定义为 ,,k a b ab k a a a b R k R+⊕==∈∈其中 判断R +按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是. 设,R λμ∈.因为,a b R a b ab R ++∀∈⇒⊕=∈,,R a R a a R λλλ++∀∈∈⇒=∈,所以R +对定义的加法与数乘运算封闭. 下面一一验证八条线性运算规律 (1) a b ab ba b a ⊕===⊕; (2)()()()()()a b c ab c ab c abc a bc a b c ⊕⊕=⊕====⊕⊕;(3) R +中存在零元素1, ∀a R +∈, 有11a a a ⊕=⋅=;(4) 对R +中任一元素a ,存在负元素1n a R -∈, 使111a a aa --⊕==; (5)11a a a ==; (6)()()a a a a a λμμλμλμλλμ⎛⎫==== ⎪⎝⎭;(7) ()a a a a a a a a λμμμλλλμλμ++===⊕=⊕;()(8)()().a b ab ab a b a b a b λλλλλλλλλ⊕====⊕=⊕所以R +对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为A B AB BA ⊕=-按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 答 否.,()A B AB BA B A BA AB AB BA ⊕=-⊕=-=--A B B A ∴⊕⊕与不一定相等.故定义的加法不满足加法的交换律即运算规则(1), 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间.4.在22P ⨯中,{}2222/0,,W A A A P W P ⨯⨯==∈判断是否是的子空间. 答 否.121123123345⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例如和的行列式都为零,但的行列式不为零, 也就是说集合对加法不封闭.习题5.21.讨论22P ⨯中1234111111,,,111111a a A A A A a a ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的线性相关性.解 设11223344x A x A x A x A O +++=, 即123412341234123400ax x x x x ax x x x x ax x x x x ax +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩ . 由系数行列式3111111(3)(1)111111a a a a a a=+- 知, 3 1 , , a a ≠-≠且时方程组只有零解这组向量线性无关; 3 1 , , a a =-=或 时方程组有非零解这组向量线性相关. 2.在4R 中,求向量1234ααααα在基,,,下的坐标.其中1234010011001111ααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭2111,=,=,=,3010解 设11223344x x x x ααααα=+++由()1234100110010111ααααα⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭2111301010001010000010100010⎛⎫ ⎪ ⎪−−−−→⎪- ⎪⎝⎭初等行变换得13ααα=-. 故向量1234ααααα在基,,,下的坐标为 ( 1, 0 , - 1 , 0 ).2212342347P ααααα⨯⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭110-11-1103.在中求在基=,=,=,=下的坐标.11100000 解 设11223344x x x x ααααα=+++则有123412341234123402030040007x x x x x x x x x x x x x x x x +++=⎧⎪--+=⎪⎨+++=⎪⎪+++=-⎩.由101121000711103010011110040010211007000130-⎛⎫⎛⎫⎪ ⎪--⎪ ⎪−−−−→⎪⎪-⎪ ⎪-⎝⎭⎝⎭初等行变换 得12347112130ααααα=-+-+.故向量1234ααααα在基,,,下的坐标为(-7,11,-21,30). 4.已知3R 的两组基(Ⅰ): 123111ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11=,=0,=0-11(Ⅱ):123121βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23=,=3,=443(1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵;(2) 已知向量123123,,,,,αααααβββ⎛⎫⎪⎪ ⎪⎝⎭1在基下的坐标为0求在基下的坐标-1;(3) 已知向量123123,,,,,βββββααα⎛⎫ ⎪⎪ ⎪⎝⎭1在基下的坐标为-1求在基下的坐标2;(4) 求在两组基下坐标互为相反数的向量γ.解(1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由 ()()321321,,,,αααβββ= C即123111234100143111C ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,知基(Ⅰ)到基(Ⅱ)的过渡矩阵为1111123234100234010111143101C -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.(2)首先计算得11322201013122C -⎛⎫-- ⎪⎪=- ⎪ ⎪ ⎪-⎝⎭, 于是α 在基321,,βββ 下的坐标为131200112C -⎛⎫ ⎪⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪-⎝⎭.(3)β 在基321,,ααα 下的坐标为171123C ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.(4) 设γ在基321,,βββ 下的坐标为123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭, 据题意有234010101⎛⎫ ⎪- ⎪⎪--⎝⎭123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭123y y y -⎛⎫⎪=- ⎪ ⎪-⎝⎭, 解此方程组可得123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭=043k k ⎛⎫ ⎪⎪ ⎪-⎝⎭,为任意常数.231430,7k k k k γββ-⎛⎫⎪∴=-= ⎪ ⎪⎝⎭为任意常数.5.已知P [x ]4的两组基(Ⅰ):2321234()1()()1()1f x x x x f x x x f x x f x =+++=-+=-=,,,(Ⅱ):2323321234()()1()1()1g x x x x x x x x x x x x x =++=++=++=++,g ,g ,g (1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵; (2) 求在两组基下有相同坐标的多项式f (x ).解 ( 1 ) 设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由 ()()12341234,,,,,,g g g g f f f f =C有23230111101110111110(1,,,)(1,,)1101110011101000x x x x x x C ⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭,. 101101111000111011101011010000111100110100100112100111000011113⎛⎫⎛⎫⎪ ⎪--- ⎪ ⎪−−−−→⎪⎪-⎪ ⎪---⎝⎭⎝⎭初等行变换 1110001101121113C ⎛⎫ ⎪-⎪∴= ⎪- ⎪---⎝⎭. (2)设多项式f (x )在基(Ⅰ)下的坐标为1234(,,,)T x x x x .据题意有111222333444 ()x x x x x x C C E x x x x x x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⇒-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0 (*)因为01101101100111111001101021021021112C E ---==--==------所以方程组(*)只有零解,则f (x )在基(Ⅰ)下的坐标为(0,0,0,0)T,所以f (x ) = 0习题5.3证明线性方程组1234512345123453642022353056860x x x x x x x x x x x x x x x +--+=⎧⎪+--+=⎨⎪--+-=⎩ 的解空间与实系数多项式空间3[]R x 同构.证明 设线性方程组为AX = 0, 对系数矩阵施以初等行变换.316421568622353043751568600000A -----⎛⎫⎛⎫⎪ ⎪=--−−−−→ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭初等行变换()2()3R A R A =∴=线性方程组的解空间的维数是5-.实系数多项式空间3[]R x 的维数也是3, 所以此线性方程组的解空间与实系数多项式空间3[]R x 同构.习题5.41. 求向量()1,1,2,3α=- 的长度.解 α=.2. 求向量()()1,1,0,12,0,1,3αβ=-=与向量之间的距离.解 (,)d αβ=αβ-=3.求下列向量之间的夹角(1) ()()10431211αβ==--,,,,,,, (2) ()()12233151αβ==,,,,,,, (3)()()1,1,1,2311,0αβ==-,,, 解(1)(),1(1)02413(1)0,,2a παββ=⨯-+⨯+⨯+⨯-=∴=.(2)(),1321253118αβ=⨯+⨯+⨯+⨯=,6,αβ=,4πβ∴==.(3)(),13111(1)203αβ=⨯+⨯+⨯-+⨯=,α==β==,αβ∴=.3. 设αβγ,,为n 维欧氏空间中的向量,证明: (,)(,)(,)d d d αβαγγβ≤+. 证明 因为22(,)αβαγγβαγγβαγγβ-=-+-=-+--+-22(,)(,)(,)(,)(,)2(,)(,)2αγαγαγγβγβαγγβγβαγαγαγγβγβγβαγαγγβγβ=--+--+--+--=--+--+--≤-+-⋅-+-所以22()αβαγγβ-≤-+-, 从而(,)(,)(,)d d d αβαγγβ≤+.习题5.51. 在4R 中,求一个单位向量使它与向量组()()()1,1,1,11,1,1,11,1,1,1321--=--=--=ααα,, 正交.解 设向量1234123(,,,)x x x x αααα=与向量,,正交, 则有 112342123431234(0(,0(,)0x x x x x x x x x x x x αααααα=+--=⎧⎧⎪⎪=--+=⎨⎨⎪⎪=-+-=⎩⎩,)0)0即 (*). 齐次线性方程组(*)的一个解为 12341x x x x ====.取*1111(1,1,1,1), ,,,2222ααα=将向量单位化所得向量=()即为所求.2. 将3R 的一组基1231101,2,1111ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭化为标准正交基.解 (1 )正交化, 取11111βα⎛⎫ ⎪== ⎪ ⎪⎝⎭ , 12221111311(,)111211221(,)11111131113βαβαβββ⎛⎫- ⎪⎛⎫⎛⎫ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪- ⎪⎝⎭ 132333122221122113121020(1)()1(,)(,)2333100121(,)(,)3()()()11333123βαβαβαββββββ⎛⎫-⎛⎫⎪- ⎪⎛⎫⎪-⨯+⨯-+-⨯ ⎪ ⎪ ⎪=--=---= ⎪ ⎪ ⎪ ⎪ ⎪-++- ⎪⎝⎭⎪ ⎪-⎝⎭ ⎪⎝⎭(2 ) 将123,,βββ单位化***123,,0βββ⎛⎛⎪=== ⎪⎪⎪⎪⎪⎪ ⎪ ⎪⎝⎭⎝则*1β,*2β,*3β为R3的一组基标准正交基.3.求齐次线性方程组12345123530x x x x xx x x x+-+-=⎧⎨+-+=⎩的解空间的一组标准正交基.分析因齐次线性方程组的一个基础解系就是其解空间的一组基,所以只需求出一个基础解系再将其标准正交化即可.解对齐次线性方程组的系数矩阵施行初等行变换化为行最简阶梯形矩阵11113111011110100014---⎛⎫⎛⎫−−→⎪ ⎪--⎝⎭⎝⎭可得齐次线性方程组的一个基础解系123111100,,010004001ηηη--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪===⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由施密特正交化方法, 取11221331211/21/311/21/3111,,011/3223004001βηβηββηββ--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-⎪ ⎪ ⎪⎪ ⎪ ⎪===+==-+=⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,将123,,βββ单位化得单位正交向量组***12311/21/311/21/3,,011/3004001βββ--⎛⎫⎛⎫⎛⎫⎪ ⎪⎪-⎪ ⎪⎪⎪⎪⎪===⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为齐次线性方程组的解向量的线性组合仍然是齐次线性方程组的解,所以*1β,*2β,*3β是解空间的一组标准正交基.3. 设1α,2α ,… ,n α 是n 维实列向量空间n R 中的一组标准正交基, A 是n 阶正交矩阵,证明: 1αA ,2αA ,… ,n A α 也是n R 中的一组标准正交基.证明 因为n ααα,,,21 是n 维实列向量空间n R 中的一组标准正交基, 所以⎩⎨⎧=≠==j i j i j T i j i 10),(αααα (,1,2,,)i j n =. 又因为A 是n 阶正交矩阵, 所以T A A E =. 则⎩⎨⎧=≠====j i j i A A A A A A j T i j T T i j T i j i10)()()(),(αααααααα (,1,2,,)i j n = 故n A A A ααα,,,21 也是n R 中的一组标准正交基. 5.设123,,ααα是3维欧氏空间V 的一组标准正交基, 证明112321233123111(22),(22),(22)333βαααβαααβααα=+-=-+=--也是V 的一组标准正交基. 证明 由题知()()1231232211,,,,2123122βββααα⎛⎫⎪=-- ⎪ ⎪--⎝⎭1232211,,2123122ααα⎛⎫ ⎪-- ⎪ ⎪--⎝⎭因为是一组标准正交基,且的行向量组是单位正交向量组.()1232211,,2123122ααα⎛⎫ ⎪-- ⎪ ⎪--⎝⎭所以和都是正交矩阵.()123,,.βββ从而也是正交矩阵123,,βββ所以是单位正交向量组, 构成V 的一组标准正交基.习题五(A)一、填空题1.当k 满足 时,()()()31211,2,1,2,3,,3,,3k k R ααα===为的一组基. 解 三个三维向量为3R 的一组基的充要条件是123,,0ααα≠, 即26k k ≠≠且. 2.由向量()1,2,3α=所生成的子空间的维数为 .解 向量()1,2,3α=所生成的子空间的维数为向量组α的秩, 故答案为1.3.()()()()3123,,1,3,5,6,3,2,3,1,0R αααα====中的向量371在基下的坐标为 . 解 根据定义, 求解方程组就可得答案.设所求坐标为123(,,)x x x , 据题意有112233x x x αααα=++. 为了便于计算, 取下列增广矩阵进行运算 ()3213613100154,,133701082025100133αααα⎛⎫⎛⎫⎪ ⎪=−−−−→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭初等行变换, 所以123(,,)x x x = (33,-82,154). 4.()()()3123123,,2,1,3,1,0,1,2,5,1R εεεααα=-=-=---中的基到基的过渡矩阵为 .解 因为123123212(,,)(,,)105311αααεεε---⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 所以过渡矩阵为212105311---⎛⎫⎪- ⎪ ⎪-⎝⎭.5. 正交矩阵A 的行列式为 . 解 21T A A E A =⇒=⇒A =1±.6.已知5元线性方程组AX = 0的系数矩阵的秩为3, 则该方程组的解空间的维数为 . 解 5元线性方程组AX = 0的解集合的极大无关组(基础解系)含5 – 3 =2 个向量, 故解空间的维数为2.()()()()412342,1,1,1,2,1,,,3,2,1,,4,3,2,11,a a a R a αααα====≠7.已知不是的基且a 则满足 .解 四个四维向量不是4R 的一组基的充要条件是1234,,,0αααα=, 则12a =或1. 故答案为12a =. 二、单项选择题1.下列向量集合按向量的加法与数乘不构成实数域上的线性空间的是( ). (A ) (){}R x x x x V n n ∈=,,0,,0,111 (B ) (){}R x x x x x x x V i n n ∈=+++=,0,,,21212 (C ) (){}R x x x x x x x V i n n∈=+++=,1,,,21213(D) (){}411,0,,0,0V x x R =∈解 (C ) 选项的集合对向量的加法不封闭, 故选(C ).2.331,23P A ⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭在中由生成的子空间的维数为( ). (A) 1 (B) 2 (C) 3 (D) 4 解 向量组A =123⎛⎫ ⎪⎪ ⎪⎝⎭生成的子空间的维数是向量组A 的秩, 故选(A ). 331231223311223311223123123123123,,( )() ,, ()2,23,3() ,,2 () ,2322,355R R A B C D ααααααααααααααααααααααααααααααα++-+++++++++-++-3.已知是的基,则下列向量组是的基.解 因 ( B )选项1223311231012,23,3=(,,) 220033ααααααααα⎛⎫⎪+++ ⎪ ⎪⎝⎭中(), 又因123101,,220033ααα⎛⎫⎪⎪ ⎪⎝⎭线性无关且可逆, 所以1223312,23,3αααααα+++线性无关.故选(B ).33123122313122331122313122313,, () ,, () 2,2,2() ,, () 2,2,2R R A B C D ααααααααααααααααααααααααααα++++++------4.已知是的基,则下列向量组()不是的基. 解 因122313 ()()()0αααααα-+---=, 所以( C )选项中向量组线性相关, 故选(C ). 5.n 元齐次线性方程组AX = 0的系数矩阵的秩为r , 该方程组的解空间的维数为s, 则( ).(A) s=r (B) s=n-r (C) s>r (D) s<r 选(B )6. 已知A, B 为同阶正交矩阵, 则下列( )是正交矩阵. (A) A+B (B) A-B (C) AB (D) kA (k 为数) 解 A, B 为同阶正交矩阵()T T T T AB AB ABB A AA E ⇒=== 故选(C ).7. 线性空间中,两组基之间的过渡矩阵( ).(A) 一定不可逆 (B) 一定可逆 (C) 不一定可逆 (D) 是正交矩阵 选(B )(B)1.已知4R 的两组基 (Ⅰ): 1234, αααα,,(Ⅱ):11234223433444,βααααβαααβααβα=+++=++=+=,, ( 1 )求由基(Ⅱ)到(Ⅰ)的过渡矩阵; ( 2 )求在两组基下有相同坐标的向量.解 (1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 已知1234123410001100(,,,)(,,,)11101111ββββαααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 所以由基(Ⅱ)到基(Ⅰ)的过渡矩阵为11000110001100011C -⎛⎫⎪-⎪= ⎪-⎪-⎝⎭. (2)设在两组基下有相同坐标的向量为α, 又设α在基(Ⅰ)和基(Ⅱ)下的坐标均为),,,(4321x x x x , 由坐标变换公式可得11223344x x x x C x x x x ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ , 即 1234()x x E C x x ⎛⎫ ⎪⎪-= ⎪ ⎪ ⎪⎝⎭0 (*) 齐次线性方程(*)的一个基础解系为(0,0,0,1)η=, 通解为(0,0,0,) ()X k k R *=∈. 故在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量为12344000 ()k k k R αααααα=+++=∈.312312313123122323133123123123123123,, ,, ,, (1),, ,, ,, ;(3) 2 ,,R R αααβββββαααββααββααββββββαααααααβββ+=+++=++=+=+-2.已知是 的基,向量组满足证明 是的基;(2)求由基 到基的过渡矩阵求向量 在基 下的坐标.解 ( 1 ) 由题有123123110101(,,)011(,,)110101111βββααα⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⇒123123010(,,)(,,)-1-12100αααβββ⎛⎫⎪= ⎪ ⎪⎝⎭⇒123123001(,,)(,,)100111222βββααα⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭因 0011001112220≠,所以123,, βββ线性无关.故123,,βββ是3个线性无关向量,构成3 R 的基. (2 ) 因为123123010(,,)(,,)-1-12100αααβββ⎛⎫ ⎪= ⎪ ⎪⎝⎭所以从123123,,,,βββααα基到基的过渡矩阵为010-1-12100⎛⎫⎪⎪ ⎪⎝⎭(3) 123123123101012,,2,,-1-12211001αααααααβββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+-== ⎪ ⎪⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭()()1232,,-51βββ⎛⎫⎪= ⎪ ⎪⎝⎭()所以1232,,5.1αβββ⎛⎫ ⎪- ⎪ ⎪⎝⎭向量在基下的坐标为412341234123412341234123412002100,,,,0012002121001100,,,,003500121,,2 2R ααααββββααααββββααααααααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎪⎪ ⎪ ⎪⎝⎭=++-3.设的两组基,与=,,且由基,到基,的过渡矩阵为()求基,;()求向量1234,,ββββ在基,下的坐标.解 (1) 因为12341234,,,,ααααββββ由基,到基,的过渡矩阵为C = 2100110000350012⎛⎫ ⎪⎪⎪ ⎪⎝⎭, 所以112341234(,,,)(,,,)12001-10013002100-120010000012002-5000100210-13037C ααααββββ-=-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪==⎪⎪ ⎪⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭所以123413001000,,,00010037αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.(2 ) 11234123412341111 2(,,,)(,,,)1122C αααααααααββββ-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=++-== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭123401(,,,)127ββββ⎛⎫⎪ ⎪= ⎪ ⎪-⎝⎭,12341234012,,,12-7αααααββββ⎛⎫ ⎪ ⎪∴=++- ⎪ ⎪⎝⎭向量在基下的坐标为.222123324. ()1,()12,()123[]()6914f x x x f x x x f x x x P x f x x x =++=++=++=++证明是线性空间的一组基,并求在这组基下的坐标.证明 设112233()()()0t f x t f x t f x ++=,则有222123(1)(12)(123)0t x x t x x t x x ++++++++= 即123123123011120*11210230123t t t t t t t t t ++=⎧⎪++==-≠⎨⎪++=⎩()因为系数行列式所以方程组(*)只有零解. 故123(),(),()f x f x f x 线性无关, 构成3[]P x 线性空间的一组基. 设112233()()()()f x y f x y f x y f x =++ 则有1231123212336129223143y y y y y y y y y y y y ++=⎧⎛⎫⎛⎫⎪ ⎪ ⎪++=⇒=⎨ ⎪ ⎪⎪ ⎪⎪++=⎝⎭⎩⎝⎭所以()f x 123(),(),()f x f x f x 在基下的坐标为(1, 2, 3).5.当a 、b 、c 为何值时,矩阵A = 020010a bc ⎫ ⎪⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭是正交阵.解 要使矩阵A 为正交阵,应有 T AA E = 001002200100100010001a b a c bc ⎫ ⎪⎪⎛⎫⎪⎪ ⎪⇒=⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎪ ⎪⎪⎝⎭⎝⎭ 222101002201001000102a ac acbc ⎛⎫++ ⎪⎛⎫ ⎪ ⎪⇒=⎪ ⎪ ⎪⎪⎝⎭ ⎪++ ⎪⎝⎭⇒2221120 21a ac b c ⎧+=⎪⎪+=⇒⎨⎪+=⎪⎩①121212a b c ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩;②121212a b c ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩;③121212a b c ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩;④121212a b c ⎧=-⎪⎪⎪=-⎨⎪⎪=-⎪⎩. 6.设 是n 维非零列向量, E 为n 阶单位阵, 证明:T T E A αααα)(/2-=为正交矩阵. 证明 因为是n 维非零列向量, T αα所以是非零实数.又22TTT T T T T A E E A αααααααα⎛⎫=-=-= ⎪⎝⎭,所以22 T T T T T A A AA E E αααααααα⎛⎫⎛⎫==-- ⎪⎪⎝⎭⎝⎭()()2224444()()T T T T T TTTTTE E Eαααααααααααααααααααα=-+=-+=故A 为正交矩阵.7.设TE A αα2-=, 其中12,,,Tn a a a α=(), 若 ααT = 1. 证明A 为正交阵.证明 因为A E E E A TT T T T T T =-=-=-=αααααα2)(2)2(,所以A 为对称阵.又(2)(2)T T T A A E E αααα=--244()T T T E E αααααα=-+=, 所以A 为正交阵.8. , , , 0.A B n A B A B =-+=设均为阶正交矩阵且证明证明 因为, ,A B n 均为阶正交矩阵 所以0T A A =≠且T T T T T T TA AB E A B B B A B B A BB A B B A B+=+=+=+⋅=+⋅=⋅+()。

高等代数第四章矩阵练习题目参考问题详解

高等代数第四章矩阵练习题目参考问题详解

适用标准文案第四章矩阵习题参照答案一、判断题1.关于随意 n 阶矩阵A,B,有 A B A B .错 .2.假如 A20,则A 0.错.如A 110,但A 0. 1, A213.假如 A A2 E ,则 A 为可逆矩阵.正确. A A2E A( E A)E,所以A可逆,且A1 A E .4.设 A, B 都是n阶非零矩阵,且AB 0 ,则 A, B 的秩一个等于n,一个小于n.错.由AB0可得 r ( A)r (B)n .若一个秩等于n,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n .5.A, B, C为n阶方阵,若AB AC ,则 B C.错.如A 112132AC,但B C. 11, B,C3,有 AB2126.A为m n矩阵,若r ( A)s, 则存在m阶可逆矩阵 P 及n阶可逆矩阵 Q ,使I s0PAQ.00正确 .右侧为矩阵 A 的等价标准形,矩阵 A 等价于其标准形.7.n阶矩阵A可逆,则A *也可逆 .正确.由A可逆可得|A| 0,又AA*A* A | A| E.所以 A* 也可逆,且(A*) 11A . | A |8.设A, B为n阶可逆矩阵,则( AB)* B* A * .正确 .(AB)(AB)*| AB |E | A||B| E.又(AB)(B* A*) A(BB*) A* A|B|EA* | B| AA* | A||B| E .所以 ( AB)( AB )* ( AB)( B * A*) .由 A, B 为n阶可逆矩阵可得AB 可逆,两边同时左乘式 AB 的逆可得 (AB)* B* A* .二、选择题1.设A是n阶对称矩阵, B 是n阶反对称矩阵(B T B) ,则以下矩阵中为反对称矩阵的是( B ).(A)AB BA(B)AB BA(C)( AB)2(D)BAB(A)(D) 为对称矩阵,(B)为反对称矩阵,( C)当A, B可互换时为对称矩阵.2.设 A 是随意一个n阶矩阵,那么(A)是对称矩阵.(A)A T A(B) A A T(C)A2(D)A T A3.以下结论不正确的选项是(C) .(A)假如 A 是上三角矩阵,则A2也是上三角矩阵;(B)假如 A 是对称矩阵,则A2也是对称矩阵;(C) 假如A是反对称矩阵,则A2也是反对称矩阵;(D)假如 A 是对角阵,则 A2也是对角阵.4.A是m k 矩阵, B 是 k t 矩阵,若 B 的第 j 列元素全为零,则以下结论正确的是(B )( A)AB 的第 j 行元素全等于零;( B) AB的第j列元素全等于零;( C)BA 的第 j 行元素全等于零;( D)BA 的第 j 列元素全等于零;5 .设 A, B 为 n 阶方阵,E 为 n 阶单位阵,则以下命题中正确的选项是( D )(A)( A B)2 A 2 2AB B 2 (B)A 2B 2 (A B)( A B)(C)( AB)2 A 2B 2(D)A 2 E 2 (A E)(A E)6.以下命题正确的选项是( B ) . (A) 若AB AC ,则B C(B)若ABAC ,且 A 0,则BC(C) 若ABAC ,且A 0,则B C(D)若AB AC ,且B0,C0,则 BC7. A 是 m n 矩阵, B 是 n m 矩阵,则( B ) . (A) 当 mn 时,必有队列式 AB0 ;(B) 当 m n 时,必有队列式 AB 0 (C) 当 nm 时,必有队列式 AB0 ;(D) 当 n m 时,必有队列式 AB 0 .AB 为 m 阶方阵,当 m n 时, r ( A) n, r ( B) n, 所以 r ( AB ) n m ,所以AB 0.8.以下结论正确的选项是( C )(A) 假如矩阵 A 的队列式A 0,则A 0 ;(B) 假如矩阵 A 知足 A 2 0,则A 0 ;(C) n 阶数目阵与任何一个 n 阶矩阵都是可互换的;(D) 对随意方阵 A,B ,有 (A B)(A B) A 2 B 29.设 1,2,3,4是非零的四维列向量, A ( 1 ,2 ,3, 4 ), A* 为 A 的陪伴矩阵,已知 Ax0 的基础解系为 (1,0,2,0) T ,则方程组 A * x0 的基础解系为( C ) .(A ) 1, 2,3 .(B ) 12 ,23,31.(C ) 2, 3, 4.(D ) 12 ,23 ,34 ,41 .1由 Ax 0 的基础解系为(1,0,2,0) T可得 ( 1 ,2, 3,4 )0 0,1 230 .2所以( A ),(B )中向量组均为线性有关的,而( D )明显为线性有关的,所以答案为(C ).由A* A A*( 1, 2, 3, 4)(A*1, A* 2, A* 3, A* 4)O可得 1 , 2 , 3 , 4 均为 A* x0 的解 .10. 设 A 是 n 阶矩阵, A 合适以下条件(C)时, I nA 必是可逆矩阵(A)A nA(B)A 是可逆矩阵(C)A n(B)A 主对角线上的元素全为零11 . n 阶矩阵 A 是可逆矩阵的充足必需条件是(D)(A)A 1(B)A 0(C)AA T (D)A12 . A, B, C 均是 n 阶矩阵,以下命题正确的选项是(A)(A) 若 A 是可逆矩阵,则从 ABAC 可推出 BACA(B) 若 A 是可逆矩阵,则必有 ABBA(C) 若A0,则从 AB AC 可推出 BC(D) 若 B C ,则必有 ABAC13. A, B, C 均是 n 阶矩阵, E 为 n 阶单位矩阵,若ABC E ,则有( C )(A) ACBE ( B ) BAC E (C ) BCA E(D) CBAE14. A 是 n 阶方阵, A * 是其陪伴矩阵,则以下结论错误的选项是( D)(A) 若 A 是可逆矩阵,则A * 也是可逆矩阵;(B) 若 A 是不行逆矩阵,则A * 也是不行逆矩阵;适用标准文案(C)若 A * 0 ,则 A 是可逆矩阵;(D) AA *A .AA *A EnA .15.设 A 是 5 阶方阵,且 A0,则 A *( D)(A)A(B)23(D)A 4A(C) A16.设 A * 是 A(a )n n 的陪伴阵,则 A * A 中位于 (i , j ) 的元素为(B)ijnnnn(A)a jkAki(B)a kjAki(C)a jkAik(D)a kiAkjk 1k 1k 1k 1应为 A 的第 i 列元素的代数余子式与 A 的第 j 列元素对应乘积和 .a11a1nA11A1n17.设 A, B, 此中 A 是 a 的代数余子式, 则( C )ijijan1annAn1Ann(A) A 是 B 的陪伴 (B)B 是 A 的陪伴(C)B 是 A 的陪伴(D) 以上结论都不对18.设 A, B 为方阵,分块对角阵CA 0(C )0 ,则C*B(A)A *(B) CA A *C0 B *B B *(C) CB A *0 (D) ABA *A B *CA BB *利用 CC*|C |E 考证.4 6 1 35 19.已知 A2, B4 ,以下运算可行的是(C)12 6(A) A B(B)A B(C) AB (D) AB BA20.设A, B是两个m n 矩阵,C是 n 阶矩阵,那么(D)(A)C(A B) CA CB(B)( A T B T )C A T C B T CT()T TC C B(C)(D)(A B)C AC BC21.对随意一个n 阶矩阵A,若 n 阶矩阵B能知足AB BA ,那么 B 是一个(C)(A)对称阵(B)对角阵(C)数目矩阵(D) A 的逆矩阵与随意一个 n 阶矩阵均可互换的矩阵为数目矩阵.22.设A是一个上三角阵,且A0,那么 A 的主对角线上的元素(C)(A)全为零( B)只有一个为零( C)起码有一个为零( D)可能有零,也可能没有零23.设A 1 3,则A1( D)2001111 2332(A)( B)( C)( D)11111111 36362636a1b1c1a1c12b124.设Aa2b2c2,若 AP a2c22b2,则 P( B)a3b3c3a3c32b3100100001200(A)001( B )002(C)020(D)001020*********1 a a a a 1a a25.设 n(n 3) 阶矩阵 Aa a1a ,若矩阵 A 的秩为 1,则 a 必为( A )aa a1(A) 1(B )-1(C )111 n (D )n 1矩阵 A 的随意两行成比率 .26. 设 A, B 为两个 n 阶矩阵 , 现有四个命题 :①若 A, B 为等价矩阵 , 则 A, B 的行向量组等价 ;②若 A,B 的队列式相等 , 即 | A | |B |,则 A, B 为等价矩阵 ;③若 Ax0与 Bx 0 均只有零解 , 则 A, B 为等价矩阵 ;④若 A, B 为相像矩阵 , 则 Ax0 与 Bx 0 解空间的维数同样 .以上命题中正确的选项是( D ) (A) ①, ③. (B)②, ④.(C)②, ③.(D)③, ④.当 BP 1 AP 时, A, B 为相像矩阵。

高等代数第四章矩阵练习试题参考包括答案.docx

高等代数第四章矩阵练习试题参考包括答案.docx

第四章矩阵习题参考答案一、判断题1.对于任意 n 阶矩阵A,B,有A B A B .错.2.如果 A20, 则A0 .错 . 如A 110, 但A 0 . 1, A213.如果 A A2 E ,则 A 为可逆矩阵.正确 . A A2E A( E A) E ,因此A可逆,且A1 A E .4.设 A, B 都是 n 阶非零矩阵,且AB 0 ,则A, B的秩一个等于n,一个小于n.错 . 由AB0 可得r ( A)r (B)n .若一个秩等于 n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾. 只可能两个秩都小于n .5.A, B, C为n阶方阵,若AB AC ,则 B C.错 . 如A 112132,有 AB AC ,但B C. 1, B2, C32116.A为m n矩阵,若r ( A)s, 则存在 m 阶可逆矩阵P及 n 阶可逆矩阵 Q ,使I s0PAQ.00正确 . 右边为矩阵A的等价标准形,矩阵 A 等价于其标准形.7.n阶矩阵A可逆,则A *也可逆 .正确 . 由A可逆可得| A |0 ,又 AA* A* A| A | E .因此 A *也可逆,且( A*) 11A . | A |8.设A, B为n阶可逆矩阵,则( AB)* B * A* .正确 . ( AB)( AB)*| AB | E| A || B | E. 又( AB)( B * A*) A( BB*) A* A | B | EA* | B | AA* | A || B | E .因此 ( AB)( AB)* ( AB)( B * A*) .由 A, B 为 n 阶可逆矩阵可得AB 可逆,两边同时左乘式 AB 的逆可得( AB)* B * A * .二、选择题1.设A是n阶对称矩阵,B是n阶反对称矩阵(B T B ),则下列矩阵中为反对称矩阵的是( B ).(A) AB BA (B)AB BA (C)( AB)2(D)BAB(A)(D) 为对称矩阵,( B)为反对称矩阵,( C)当A, B可交换时为对称矩阵.2.设 A 是任意一个n阶矩阵,那么(A)是对称矩阵.(A)A T A(B) A A T(C)A2(D)A T A3.以下结论不正确的是(C).(A)如果 A 是上三角矩阵,则 A2也是上三角矩阵;(B)如果 A 是对称矩阵,则 A2也是对称矩阵;(C)如果 A 是反对称矩阵,则 A2也是反对称矩阵;(D)如果 A 是对角阵,则 A2也是对角阵.4.A是m k 矩阵, B 是 k t 矩阵,若 B 的第 j 列元素全为零,则下列结论正确的是( B )( A)AB 的第 j 行元素全等于零;( B) AB的第j列元素全等于零;( C)BA 的第 j 行元素全等于零;( D)BA 的第 j 列元素全等于零;5 .设 A, B 为 n 阶方阵,E 为 n 阶单位阵,则以下命题中正确的是(D )(A)( A B)2 A 2 2 ABB 2 (B) A 2 B 2( A B)( A B)(C) ( AB) 2A 2B 2 (D) A 2E 2( A E)( A E)6.下列命题正确的是( B ) .(A) 若 AB AC ,则 B C(B) 若 AB AC ,且 A0 ,则 B C(C) 若 AB AC ,且 A 0 ,则 BC(D)若 ABAC ,且 B 0, C 0 ,则 B C7.A 是 m n 矩阵,B 是 n m 矩阵,则( B ) .(A) 当 m n 时,必有行列式 AB 0 ; (B) 当 m n 时,必有行列式 AB 0 (C) 当 nm 时,必有行列式 AB0 ;(D) 当 n m 时,必有行列式 AB 0 .AB 为 m 阶方阵,当 m n 时, r ( A) n, r ( B) n, 因此 r ( AB) n m ,所以AB 0 .8.以下结论正确的是( C )(A) 如果矩阵 A 的行列式 A 0 , 则 A 0 ; (B) 如果矩阵A 满足 A 2 0 ,则A 0;(C) n 阶数量阵与任何一个 n 阶矩阵都是可交换的;(D) 对任意方阵 A, B ,有 ( A B)( A B) A 2 B 29.设 1 , 2 , 3 ,4 是非零的四维列向量, A ( 1 ,2 ,3 ,4 ), A * 为 A 的伴随矩阵,已知 Ax0 的基础解系为 (1,0, 2,0) T ,则方程组 A * x0 的基础解系为( C ) .( A ) 1 , 2,3 .( B ) 12 ,23 ,31 .( C)2,3,4 .( D)1 2 ,2 3 , 3 4 , 4 1 .1由 Ax 0 的基础解系为(1,0, 2,0)T可得 ( 1 , 2 , 3 , 4 )00, 1 2 30 .2D)显然为线性相关的,因此答案因此( A),(B)中向量组均为线性相关的,而(为( C) . 由A* A A*( 1 , 2 ,3, 4 )( A *1, A* 2 , A* 3 , A * 4 )O 可得 1 , 2 , 3 , 4 均为A* x0 的解.10.设 A 是n阶矩阵, A 适合下列条件(C)时,I n A 必是可逆矩阵(A)A n A(B) A 是可逆矩阵(C)A n0(B) A 主对角线上的元素全为零11. n 阶矩阵A是可逆矩阵的充分必要条件是(D)(A) A 1 (B)A 0 (C) A A T(D)A012. A, B, C 均是 n 阶矩阵,下列命题正确的是(A)(A)若 A 是可逆矩阵,则从 AB AC 可推出 BA CA(B)若 A 是可逆矩阵,则必有 AB BA(C) 若A0 ,则从 AB AC 可推出 B C(D) 若B C ,则必有 AB AC13.A, B,C均是n阶矩阵,E为 n 阶单位矩阵,若ABC E ,则有(C)(A) ACB E (B) BAC E (C) BCA E (D)CBA E14.A是n阶方阵,A*是其伴随矩阵,则下列结论错误的是(D)(A)若 A 是可逆矩阵,则 A*也是可逆矩阵;(B) 若A是不可逆矩阵,则A*也是不可逆矩阵;(C) 若 A *0 ,则 A 是可逆矩阵;(D) AA *A .AA *A E nA .15.设 A 是 5 阶方阵,且A0 ,则 A * ( D)(A)A(B)A23 (D)4(C)AA16.设 A * 是 A(a ij )n n 的伴随阵,则 A * A 中位于 (i , j) 的元素为(B )nnnn(A)ajkA ki (B)a kjAki(C)a jkAik(D)a kiAkjk 1k 1k 1k 1应为 A 的第 i 列元素的代数余子式与 A 的第 j 列元素对应乘积和 .a11L a 1nA11L A1n17. 设 ALL L, BLL L, 其中 A ij 是 a ij 的代数余子式, 则( C )an1LannAn1LAnn(A)A 是B 的伴随 (B)B 是 A 的伴随 (C) B 是 A 的伴随(D) 以上结论都不对18.设 A, B 为方阵,分块对角阵CA 0*( C )0 , 则 CB(A)A *(B)A A *C0 B *CB B *(C)CB A *0 (D)A B A *A B *CA B B *利用 CC*| C | E 验证 .46 1 3 5 19.已知 A, B4 ,下列运算可行的是(C)122 6(A)A B (B)A B(C)AB (D) AB BA20.设A, B是两个m n 矩阵,C是 n 阶矩阵,那么(D)(A) C ( A B) CA CB(B)( A T B T )C A T C B T C(C) C T( A B) C T A C T B(D)( A B)C AC BC21.对任意一个n阶矩阵A,若n阶矩阵B能满足AB BA ,那么 B 是一个(C)(A)对称阵(B) 对角阵(C)数量矩阵(D) A 的逆矩阵与任意一个 n 阶矩阵均可交换的矩阵为数量矩阵.22.设A是一个上三角阵,且A0,那么 A 的主对角线上的元素(C)(A)全为零( B)只有一个为零( C)至少有一个为零( D)可能有零,也可能没有零23.设A 13D2,则 A 1()1111 2332(A)( B)( C)( D)1111111136362636a1b1 24.设A a2b2a3b31 00(A)0 0 10 2 0c1a1c12b1c2,若 AP a2c22b2,则 P( B)c3a3c32b3100001200( B)002( C)020(D)001 0101000101 a a L aa 1a L a25.设 n(n3) 阶矩阵 Aa a1 L a ,若矩阵 A 的秩为 1,则 a 必为( A )L L LL La aa L1(A) 1( B ) -1(C ) 1(D )1 nn 11矩阵 A 的任意两行成比例 .26. 设 A, B 为两个 n 阶矩阵 , 现有四个命题 :①若 A, B 为等价矩阵 , 则 A, B 的行向量组等价 ;②若 A, B 的行列式相等 , 即 | A | | B |, 则 A, B 为等价矩阵 ; ③若 Ax 0 与 Bx 0 均只有零解 , 则 A, B 为等价矩阵 ; ④若 A, B 为相似矩阵 , 则 Ax 0 与 Bx 0 解空间的维数相同 .以上命题中正确的是 ( D )(A) ① , ③. (B) ② , ④. (C) ② , ③ .(D)③ , ④ .当 BP 1 AP 时, A, B 为相似矩阵。

高等代数__课后答案__高等教育出版社

高等代数__课后答案__高等教育出版社

高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。

3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。

另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。

由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。

从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。

高等代数第四章

高等代数第四章

§1 二次型及其矩阵表示教学目的: 使学生了解及掌握二次型及其矩阵的表示方法 重点: 矩阵的表示方法及矩阵合同关系 难点: 矩阵合同关系的性质 课时: 2学时 教学方法: 讲授法 教学内容:一、二次型及其矩阵表示设P 是一个数域,一个系数在数域P 中的n x x ,,1 的二次齐次多项式)1(222),,,(2222222112112211121nnn n n n n n x a x x a x a x x a x x a x a x x x f ++++++++= 称为数域P 上的一个n 元二次型,简称二次型.定义1 设n n y y x x ,,;,,11 是两组文字,系数在数域P 中的一组关系式⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111,, (2)称为由n x x ,,1 到n y y ,,1 的一个线性替换,或简称线性替换.如果系数行列式≠ij c ,那么线性替换(2)就称为非退化的.线性替换把二次型变成二次型.令.,j i a a ji ij <=由于,i j j i x x x x =所以二次型(1)可写成)3(),,,(11222112222221221112112211121∑∑===++++++++++++=ni nj ji ij n nn n n n n nn nn n x x a x a x x a x x a x x a x a x x a x x a x x a x a x x x f把(3)的系数排成一个n n ⨯矩阵,212222111211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A (4) 它称为二次型(3)的矩阵.因为,,,2,1,,n j i a a ji ij ==所以A A ='把这样的矩阵称为对称矩阵,因此,二次型的矩阵都是对称的.令()()∑∑===⎪⎪⎪⎪⎪⎭⎫⎝⎛+++++++++=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛='ni nj ji ij n nn n n n n n n n n nn n n n n n x x a x a x a x a x a x a x a x a x a x a x x x x x x a a a a a a a a a x x x AX X 11221122221211212111212121222211121121,,,,,,或AX X x x x f n '=),,,(21应该看到二次型(1)的矩阵A 的元素,当j i ≠时ji ija a =正是它的j i x x 项的系数的一半,而ii a 是2i x 项的系数,因此二次型和它的矩阵是相互唯一决定的.由此可得,若二次型BX X AX X x x x f n '='=),,,(21且B B A A ='=',,则B A =.令⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=n nn n n n n y y y Y c c c c c c c c c C21212222111211,,于是线性替换(4)可以写成⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n nn n n n n n y y y c c c c c c c c c x x x 2121222211121121 或者CY X =.经过一个非退化的线性替换,二次型还是变成二次型,替换后的二次型与原来的二次型之间有什么关系,即找出替换后的二次型的矩阵与原二次型的矩阵之间的关系.设A A AX X x x x f n '='=,),,,(21 (7)是一个二次型,作非退化线性替换CY X = (8)得到一个n y y y ,,,21 的二次型BY Y ' ,例1 试写出2211ni ji i j nxx x =≤< ≤+∑∑的矩阵解:111122211112221111222A ⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭例2写出11211(,,,)n n i i i f x x x ix x -+==∑ 的矩阵解:122334123(1)n n f x x x x x x n x x -=++++-∴100212022202102102A n n ⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪= ⎪ ⎪- ⎪ ⎪⎪- ⎪⎝⎭例3写出222121211n n n n n x x x x x x x ---+++++ 的矩阵解:(21)(21)121211212n n n n A -⨯-→⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭行列二、矩阵的合同关系 现在来看矩阵A 与B 的关系. 把(8)代入(7),有.)()()(),,,(21BY Y Y AC C Y ACYC Y CY A CY AX X x x x f n '=''=''='='=易看出,矩阵AC C '也是对称的,由此即得AC C B '=.这是前后两个二次型的矩阵的关系。

高等代数第四章矩阵知识点复习与相关练习

高等代数第四章矩阵知识点复习与相关练习
4. 设 A ∈ P n×n, 且 A2 = 2A, 证明 E − A, E + A 都可逆,并求 (E − A)−1, (E + A)−1. 5. 设 A2 = A, 但 A ̸= E, 证明 A 不可逆.
6. 证明关于秩的不等式: 1) r(A) + r(B) − n ≤ r(AB) ≤ min{r(A), r(B)}, r(A + B) ≤ r(A) + r(B); 2) 设 A, B ∈ P n×n, 且 AB = 0, 证明:r(A) + r(B) ≤ n;
()
(
)
对方程 Y C = B, C −初−等−−列−变−换→
E
.
B
Y = BC−1
4.2 相关练习
一. 填空题
1.设 A ∈ P n×m, B ∈ P m×s,则 r(AB) ≤

2
2.对一个 s × n 矩阵 A 作一次初等列变换就相当于在 A 的
边乘上一个相应的
初等矩阵。
3.设 A ∈ P n×n,写出 A 可逆的充要条件:
14. 设 A, B 是 n 级可逆方阵, A 0
=
0A
,
=
.
0 B
B0
k111
15.
设矩阵 A =
1 1
k 1
1 k
1 1
,

r(A) = 3,则 k =
.
111k
16. 设 A 为 3 级方阵,若 |A| = 2, 则 |2A| =
.
17. 设 A 是实对称矩阵,若 A2 = 0, 则 A =
7. 证明:若 A, B 分别为 n × m, m × n 矩阵,则 |λEn − AB| = λn−m|λEm − BA|.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 多项式4.1习题,()(),..(-)-(-)()()-(-)()--(-)(-)Z a c ad bc q Z s t ad bc q a c a c b d ab cd ad bc a c b d ab cd a c q a c b d q ab cd ∈-+∴∃∈+==++=++=+1. 设a,b,c,d 已知(a-c)(ad+bc),求证(a-c)(ab+cd)证明:又由 () 得 ()() 即 ,,-()()b d q Zb d q Z ac ab cd ∈∴+∈-+即有 121212,65(-3)13,65(-2)5,65-,65(-3)13(-2)571865-(6528)65(-65)-2828m m m m r c c m c m c c c m m r ⨯⨯∃⨯+⨯==-+∴=2. 一个整数被5除余3,被13除余2,求它被65除的余数解:设所求数为由题知 即 有 令 ,, 则有 故有 1723582957,581-143,-143202,0231414a b a b a b a b b a b a b a ==-=-==-=-=-=-=+=⋅+=⋅+3. 对于下列的整数,分别求出以除所得的商和余数: (1), (2), (3), (4)解:)由带余除法,可表示为 故商为,余数为;)同理得 故商为,余数为; )由 知商为,余数为; 49595b a =+ )由 知商为,余数为。

.()001a b a b b aq q Z b q b a q q a b≠≤=∈≠∴≠∴=≥∴≤4. 证明:若a b,b 0,则证明:由 可得 又 又1,) 1.b ∈=1 1 1115. 设a,b 是不全为零的整数,且a=da ,b=db ,d,a ,b Z.证明d 是a 与b 的一个最大公因数的充分必要条件是(a1111111111[] 4.1.3,,..01(,)1[](,)1''1''1,''u v Z s t ua vb d uda vdb d d ua vb a b a b u a v b a bu v u a v b d d d⇒∃∈+=+=≠∴+=∴=⇐=+=+=+=证明:根据定理得 即 又故有 即 则有 综上所述,结论得证6.(,)1,(,) 1.,(1),,..()()(1),,1,1a b a b ab a b ab d d Z d u v Z s t u a b vab d ua u va b d u v a Z u va Za b =+=+=∈≠∴∃∈++=∴++=∈∴+∈= 证明:若则 证明:反证 假设() 且 故 ()与 () 矛盾 ,17.1..,()(),,.a b ab a b p ab p a p b p p mn a b k k Z p abp b b k p a p b p k m b m k m k n b n k n k p ∴+===+∈∴+ () 设是一个大于的整数且具有以下性质:对于任意整数,,若,则或 证明是一个素数 证明:令 又当 不整除,有,不整除 又有,不整除或; 不整除或 若为合数,那,m k n k p p k p b p 么由可知必为素数,否则 同理可证当不整除时,也必为素数4.2习题224324321.,,(21)(1)251\2(2)(21)()12521-2,1,31k h m x hx x kx x x mx x x k h x hk x h k x h k hk m k h m h k +--+=++--=--+--++--=⎧⎪--====⎨⎪+=-⎩求使 解:对于左边 即有 解之得432322.()242,()25 4.()(),()(),()().f x x x x xg x x x x f x g x f x g x f x g x =+---=--++- 设 计算432443270765432()()4292()()6()0254()()()23913131868kki k i k i f x g x x x x x f x g x x x g x x x x x f x g x a b x x x x x x x x -==+=+--+-=+-=⋅+--+∴==+--++--∑∑解:由题得 令323122223.()59-73,()(53),()().-15-50[()()]3691()()04.()0().()0()()()f x x x xg x x x f x g x f x g x x f x g x s f x f x f x f x f x f x ︒=-++=++⨯=±∂===≠≠=⋅∴ 设求乘积 的次数及其系数和解:根据 得 令 则有 的系数和 证明:当时,是偶次多项式证明:又有 根据定理2 4.2.12()()()()(),()()2f x f x f x f x f x n n N f x n ︒︒︒︒︒∂⋅=∂+∂∂=∈∴∂=的()知 ()()() 再令 () 结论得证2225.(),(),()..()()(),()()()0.(),(),()1221222132212f x g x h x f x xg x xh x f x g x h x g x g f x f h x hg h f g g h f h g h f g f ︒︒︒︒︒︒=+===∂=∂=∂=>=+<=+==+= 设是实数域上的多项式证明如下 若是 则 证明:令 () () () 当 时,有 当 时,有 当 时,有 或 2222214()(),(),()(),(),()()()()06.(),(),()()0(),()1()0(),()h f x f x g x h x f x g x h x f x g x h x f x g x h x f x g x i h x f x xg x x xh x x +========-= 又由题可知 是偶次多项式,又由于是实数域上的多项式 故 的次数不存在 即 求一组满足上题结论的不全为零的复系数多项式解:令 , 即 , 222()()0()()0(),()1xg x xh x f x f x g x i h x ∴+===== 满足条件即 ,4.3 习题3221.()321,()321,()()()().f x x x xg x x x g x f x q x r x =-+-=-+设求用除所得的商式和余数232322217393213212133751337147399299172(),()3999()()()()x x x x x x x x x x x x x x x q x x r x f x g x q x r x --+-+--+-+--+--=-=-=+解: 故 即[]2432322412*********.,,(1)()?012,1(1)()3.()(()()),()(()()),:()(()()()()),(),()m p q x mx x px q p m m m r q m p m m q m x mx x px q g x f x f x g x f x f x g x u x f x u x f x u x u x F x ++++⎧+=-=⎨=-⎩=-=-+++++-+在适合什么条件时,解:由题知当余式时有 即当 时 有 设证明其中为中任意两个12121212121211()(()()),()(()())()(()()()())()(()()()())()(),()()3()()(i g x f x f x g x f x f x g x f x f x f x f x g x f x f x f x f x g x f x g x f x u x F x i +-∴++-+-+∃∀∈=多项式 证明:即 根据多项式整除性质)可知 1122112221,2)..()()(),()()()2()()(1,2)..()(()()()())4.(1)(),(1)(),(1)().11(1)(),(1)(i o s t g x u x f x g x u x f x u x F x i s t g x u x f x u x f x x f x x f x x f x x x f x x f ∃∀∈=+-+-≠±-+ 再根据性质)得 若则证明:1212)(),()[]()()(1)(1)()()(1)(2)x u x u x F x f x u x x f x u x x ∴∃∈=+⎧⎨=-⎩221()()(1)(-1)-(2)(1)()(-1)()2u x u x x x f x x -⨯⨯+= 得212()()()[]2(-1)()21-1()0o u x u x u x F x x f x x x f x -∃=∈=== 故 即 或时,可得出 同样结论成立1212121221212125.(1)()(()()),()()()()(2)()()(),()()()()1(),()1,()1()(()())()()()g x f x f x g x f x g x f x g x f x f x g x f x g x f x g x x f x x f x x g x f x f x g x f x f x +==+=-+ 若则且对吗? 若则或对吗?解:()不对 如 :令 可见 而 不整除 和 (21212122()-1,()1,()1()()()()()()g x x f x x f x x g x f x f x g x f x f x ==+=-)不对如 :令 可见 而 不整除 和(1)(2)6.(1)(1),.,1()1(1)(1),(1)(1).(1)(1)(0),1(1)1,(1)(1)(1)(d n n d q d q d q d d n d n n qd r d q r r d n d x x d n d n d n n qd x x x x x x x x x n qd r r d x x x x x x x x --+--⇐=-=-=-+++--⇒--=+≤<-==-+---- 证明:的充分必要条件是(这里是正整数)证明 设 ,即 则 即 设,令则且212121)(1)(1)0,0.7.()110220()32.(),()[]..(1)()10()(1)(2)()2d q d r x x x r d r d n f x x x f x x x u x u x F x s t x u x f x x u x -∴--≤<=++++∃∈++=++ ,又 故 ,即 设被除的余式为,被除的余式为, 求被 除的余式解:设 , 23120()(2)()[]..()32(3)(1)(2)-(2)(1)()32--10(1)434-10(1)f x u x F x s t f x x x u r x x f x x x u u x r x =∃∈=+++⨯+⨯+=+++=+ 又 , () 有 ()() () 由(),()可得习题4.4432424322432312(1)43243221(-1)1.1)()242,()322;2)()441,() 1.()24221)()()2222f x x x x x g x x x x x f x x x x x g x x x f x x x x x x x A x g x x x x x x x x x +-+=+---=+---=--++=--⎛⎫⎛⎫+----⎛⎫==−−−→ ⎪ ⎪ ⎪+---+---⎝⎭⎝⎭⎝⎭−计算以下各式多项式的最大公因式:解:由 11333221()1()21()42222222200x x xx x x x x x x x x x -++-⎛⎫⎛⎫⎛⎫⎛⎫----−−→−−−→−−−→−−−→ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭224324312(4)222212(-)2(1)12()221(1)()2()44132)()()112333212x x d x x f x x x x x x x A x g x x x x x x x x x x x x +++-++∴=-⎛⎫⎛⎫--++--⎛⎫==−−−→ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫--⎛⎫−−−−→−−−→−−−→ ⎪ ⎪ ⎪-+---+⎝⎭⎝⎭⎝⎭−−−→ 由 2311110()1x x x d x -⎛⎫⎛⎫⎛⎫→→ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭∴=2.(),()(),,0,(()(),()())((),()).((),())()()(),()()()()()),()()())(),()(f x g x F x a b c d F ad bc af x bg x cf x dg x f x g x f x g x d x d x f x d x g x d x af x bg x d x cf x dg x h x h x af ∈∈-≠++==∴++∃∀另而,,,并且证明证明:令 即有 ( ( 又设 ()()),()()())-0()()())-()())---()()())()())--()(),()(),()x bg x h x cf x dg x ad bc d bf x af x bg x cf x dg x ad bc ad bc c ag x af x bg x cf x dg x ad bc ad bch x f x h x g x h x d ++≠∴=++=+++∴ (有 (( (( 从而有 ()()()()())()(()(),()())((),())x af x bg x cf x dg x d x af x bg x cf x dg x f x g x ++=++= 即 (, 即 :3.()0,()((),())(()()(),()).()0(),..()()()()()()-()()1((),())(()())((),())(()()(g x h x f x g x f x h x g x g x g x h x s t f x g x h x r x r x f x g x h x f x g x g x r x f x g x f x h x g x ≠=-≠∃=+===-设为任意多项式,证明: 证明: 故 即 由引理可知 , 即 ),())g x1122121212124.1)(,)2)(,)(,)(,,,),,,().1(,),,,,(,),[],..f g hf gh f g f g f f f g g f g g f g h F x f g d d f d g dh fh dh gh dh hf hg f g d u v F x s t uf vg d ===∃∈+=∴证明:是与的最大公因式;此处都是的多项式证明:)设 即 从而有 即 是与的公因式又由 得 112211211212211211221214.4.42)(,),(,),(,[]),;,,,,(,),(,),,,ufh vgh dhdh fh gh f g m f g n m n F x m f m g m f m g mn f f mn f g mn f g mn g g f g m f g n k k l +===∈==∃ 由定理知 是与的最大公因式 设 即 从而有 又由 知 211112222121211221221121212122112112212122112[],..,(,,,)(,)(,)(,,,)l F x s t k f l g m k f l g nk k f f k f l g l k f g l l g g mn mn f f f g f g g g f g f g f f f g f g g g ∈+=+=+++=== 即有 由此可知 从而有4323243232324323235.(),()()()()()((),()):1)()343,()310232)()421659,()25453431033113333102301310u x v x u x f x v x g x f x g x f x x x x x g x x x x f x x x x x g x x x x x x x x x x x x x x x x +==+---=++-=--++=--+⎛⎫+--------→ ⎪++-⎝⎭+2求使解:)(A(x),I )=222322222232230159935993913310230156553296331393555591393132563555555x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ⎛⎫⎪⎪ ⎪+-⎝⎭⎛⎫----⎛⎫---- ⎪→→ ⎪- ⎪++---- ⎪⎝⎭⎝⎭⎛-+⎛⎫-+------ ⎪ ⎪→→--+ ⎪------+- ⎪⎝⎭⎝33-x -x 22243232323231550**321,()55122342165910332540125401x x x x x x x v x x x x x x x x x x x x x x ⎫ ⎪ ⎪ ⎪ ⎪⎭⎛⎫-+- ⎪→ ⎪ ⎪⎝⎭-∴-=⎛⎫⎛⎫--+---++ ⎪→ ⎪ ⎪--+ ⎪⎝⎭--+⎝⎭2 u(x)= 2)(A(x),I )=22222222121223231333332222412(2)1333312231330**1223(),()33x xx x x x x x x x xx x x x x x x x x x x u x v x ⎛⎫-++⎛⎫--+--- ⎪⎪ ⎪⎪→→ ⎪ ⎪--++--+-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫--+- ⎪→ ⎪ ⎪⎝⎭--+∴==4322432436.()1,()(1),,,()().(),()2,()()()()(,,)()(2)(2)(2)1of x Ax Bxg x x A B f x g x f x g x g x f x g x ax bx c a b c F f x ax b a x c b a x b c x c Ax Bx a A =++=-∂==++∈∴=+-+-++-+=++=设试决定使与 的最大公因式为二次多项式解:由于() 即 为最大公因式故不妨设 即有 -23,2,13,-4202013,-4b a B a bc A B c b a b c c A B ⎧⎪=⎪⎪=====-+=⎨⎪-=⎪=⎪⎩∴== 解得 即7.(),()((),())()()()(),((),())1((),())()()()()*()()()()()()()()()()*(),()[].f x g x f x g x u x f x v x g x u x v x f x g x u x f x v x g x u x f x v x g x f x u x f x v x g x g x m x n x F x s =+==+++∃∈设 不全为零,且证明:证明:()有 , 再由 () .()()[()()()()]()()[()()()()]1-()()()()()()11-()())()()()()221()t f x m x u x f x v x g x g x n x u x f x v x g x m x u x f x m x v x g x n x v x g x n x u x f x f x =+=+== 即() () ( () 将()代入(),消去得1-()()1-()()()()()()()()(),(),()01-()()()()()()()()()()()()1()()()()4.4.5((),())1m x u x n x v x g x m x v x g x n x u x f x g x g x n x v x m x u x m x n x u x v x m x n x u x v x m x n x u x v x u x v x =≠∴-+=∴==()()不全为零 即令 由定理 得8.((),()) 1.((),()) 1.,,((),()) 1.1()()()[]()()()()()()((),())1n m n o n n n f x g x n f x g x m n f x g x g x g x k x F x g x k x g x g x g x k x f x g x ===∃∈=∴==设令是任意正整数,证明:由此进一步证明: 对于任意正整数都有证明: 易见 , 即 s.t. (1)又 ()()1()()1()((),())1()(),()[]()()()()()()nn m m m f x g x f x g x k x f x g x x f x l x F x f x l x f x f x f x l x ∴∃∈+=+==∃∈=∴=o u(x),v(x)F[x] s.t. u(x)v(x) (2)v(x) 将(1)代入(2)得 u(x) 由定理4.4.5 知 2易见 f 即 s.t. ((),())1'''()()'()()11'()()'()()1()((),())1n n mn m n f x g x u x f x v x g x u x f x v x g x l x f x g x =∴∃∈+=+== (3)又u (x),v (x)F[x] s.t. (4) 将(3)代入(4)得 由定理4.4.5知 [][]1111119.((),()) 1.((),()())((),()())(()(),()()) 1.((),()())()()(),()()()()[()()]()()()]f x g x f x f x g x g x f x g x f x g x f x g x f x f x g x d x d x F x u x v x F x u x f x v x f x g x d x u x v x =+=+=+=+=∈∴∃∈++=+设 证明: 证明:令 ()s.t. 即 [1()()()()((),())1()1((),()())1((),()())1(()(),()())1f x v xg x d x f x g x d x f x f x g x g x f x g x f x g x f x g x +===+=+=+=故 即 同理可证得 再根据互素性质可知10.()0,()0,:1(),()()()()(),((),())12(),()(),()()()()(),((),())11((),())()1,()()f x g x h x f x g x h x f x h x f x g x h x f x h x g x h x f x g x h x f x g x f x g x d x f x d x m ≠≠===≠=设证明 )若对于任意多项式由可得到则必有 )若对于任意多项式由可得到则必有 证明:) 假设 则有(),()()()()()()()()()()()()()()x g x d x n x m x f x f x g x h x h x f x g x m x f x m x ︒︒=∂<∂∴ 其中 () ()又 (为任意多项式)即有()()((),())12((),())()1()()()()()()()()(),()()()()()()()1((f x m x f x g x f x g x d x f x d x m x h x m x g x f x g x m x g x g x m x f x g x g x m x f x ==≠==∴ 但 不整除,从而矛盾, 故 )假设 ,且 令 即有 () 又),())()()()()()()()1((),())1g x d x f x m x f x g x g x m x f x g x ︒︒︒︒=∴∂>∂∂>∂∴= () ()故 () () 与()矛盾1212111212112211.(),(),,()().1)((),(),,())(((),,()),((),,())),112(),(),,()(),(),,()()()()()()()n n k k n n n n f x f x f x F x f x f x f x f x f x f x f x k n f x f x f x u x u x u x F x u x f x u x f x u x +∈=≤≤-∈+++设证明: )互素的充分且必要条件是存在多项式 ,使得1211121()11((),(),,())(),((),,()(),((),,()()()(),1,2,,()(),1,2,,;()(),1,2,,()(),n n k k n i s t f x f x f x f x d x f x f x d x f x f x d x d x f x i nd x f x s k d x f x t k k nd x d x +=====∴==++∴证明:)设21212()()()(),1,2()(),1,2,,;()(),1,2,,()(),1,2,,()(),2((),(),,())1i s t i n d x d x c x d x i d x f x s k d x f x t k k nc x f x i nc xd x f x f x f x ===++∴=∴= 设结论得证。

相关文档
最新文档