卡尔费休水分测定原始记录
水分含量检测原始记录表
![水分含量检测原始记录表](https://img.taocdn.com/s3/m/d073d94aeef9aef8941ea76e58fafab069dc44c1.png)
/
22.4181
22.4180
/
23.6770
23.6768
/
22.3436
22.3435
/
23.4305
23.4304
/
24.1608
24.1606
/
22.0420
22.0418
/
21.1959
21.1957
/
计算值 X(g/100g)
34.79 34.52 41.20 41.31 37.57 37.44 41.99 41.96
平均值X 精密度 (g/100g) (%)
34.7
0.8
41.3
0.3
37.5
0.3
42.0
0.1
报告结果 (%)
34.7 41.3 37.5 42.0
仪器设备 计算公式
备注
电子天平(编号: ) 电子天平( ) 电热鼓风干燥箱(编号: )
数显恒温水浴锅 其他
X m m1 m2 100%
m
马弗炉
1、以重复性条件下获得的两次独立结果的差值不应超过算术平均值的 10% 2、以重复性条件下获得的两次独立结果的算术平均值表示,保留 两位有效数字 3、其他:
真空干燥箱( )
检测人:
复核人:
日期:
样品编号
-0001 -0002 -0003 -0004
样品名称
馒头1 馒头2 馒头3 千层饼
取样量 m/( g )
2.1463 2.1436 2.1287 2.1327 2.1383 2.1342 2.0956 2.0864
干燥后器皿质称重
第三次称 重
21.8930
21.8928
/
卡尔费休法测水分
![卡尔费休法测水分](https://img.taocdn.com/s3/m/c50398acb0717fd5370cdc0e.png)
卡尔费休自动滴定仪
双炉串联型或互换型
带三通阀的气体入口
滴定
用单刻度移液管量取10ml的甲醇样品萃取液至滴定管中,进行滴定。滴定结束后,排出滴定液并用甲醇清洗滴定瓶。重复滴定,计算含水量,若两次结果差值不大于0.5%,计算平均值,否则重复测定。
用滴定管向吸收池中缓慢加入卡尔费休溶液。在迅速变化点上选择一电流(30μA~40μA)作终点。继续滴定至此电流保持30s为止。每隔10min加一次卡尔费休溶液,直到恢复初测电流值并维持30s,它所需的增加量不大于0.05ml.
在105℃±2℃的氮气中加热预干燥使吸湿水释放出来。继续在另一950℃炉内加热,用乙二醇—甲醇混合液收集释放的化合水。
试样粒度小于100μm
取样过程中保证气流温度高于露点温度,必要时取样装置可加热。
试剂
分析纯试剂
三级水
无吡啶卡尔费休试剂
分析纯试剂
去离子水或同等பைடு நூலகம்度的水
卡尔费休试剂在使用当日需标定
卡尔费休专用试剂
卡尔费休法测水分
被测物
项目
烟草及烟草制品
GB/T 23357-2009
铁矿石化合物
GB/T 24190-2009
天然气(库伦法)
GB/T 18619.1-2002
可测含水量
2%~55%
0.05%~10%
5mg/cm3~5000mg/cm3
样品前处理
无水甲醇震荡萃取
样品粒径小雨4mm(不能研磨剪切,可能造成水分的损失,可惨用低温技术予以处理)
打开电磁搅拌器,通过三通阀吹扫样品管线,并放空至大气。转动三通阀使气体直接进入滴定池,并将气体流速调节到30L/h之间。用湿式气体流量计在滴定池出口测量气体流速,气体的进样体积取决于其水含量。当预定体积的气体通过滴定池后,将三通阀转向先前的位置。
karl fisher
![karl fisher](https://img.taocdn.com/s3/m/10bac98e6529647d272852b0.png)
水分测定
1935年卡尔 费休 年卡尔·费休 年卡尔 费休(KarlFj scher) 提出的测定水分的容量分拆方法 提出的测定水分的容量分拆方法
Karl fisher
费休法是对水最专一、 费休法是对水最专一、 最专一 最准确的方法 最准确的方法
经改进,提高了准确度, 经改进,提高了准确度,扩大了 测量范围, 测量范围,已被列为许多物质 中水分测定的标准方法 中水分测定的标准方法
C
注意的损失
搅拌充分且 均匀 注意被测定的 试样中是否有 能与卡尔费休试剂 足够的吡啶 生成水的物质 和甲醇量
D
定 仪 器 好 的 测
综上所述
操 作 细 心
测 量 结 果
准 确 的
目录
滴定原理 滴定步骤 注意事项 综上所述
A
滴定原理
I2十S02十2H2O=2HI十 I2十S02十2H2O=2HI十H2SO4
费休试剂
碘 1:
二氧化 硫
吡啶 3:
甲醇 1
1:
B
滴定步骤
取样时应尽量取均匀有代表性的样品 对于无色试液可用目视法判定, 一般采用的摩尔比为碘:二氧化硫:吡啶: 由于化合物性质的差异 ,故在测定前 根据试样含水量的多少决定取样量大小 如果是带有颜色或呈浑浊状的试液 甲醇=1:3:10:50 需对其分类,从而选择直接或非直接的 特别要注意进样时注射器中是否存在小 ,则需用水停滴走法或电位滴定法 标定方法一般有纯水标定、含水甲酵标准溶 测定方法 气泡, 以防产生严重的测量误差 判定终点 液标定和稳定的结晶水合物标定三种
卡尔费休水分测定全面信息
![卡尔费休水分测定全面信息](https://img.taocdn.com/s3/m/086d1db00975f46526d3e150.png)
卡尔费休氏水分测定法对样品中水分的含量测定建立在R.W.Bunsen描述的下面这个反应上:I2+SO2+2H2O 2HI+H2SO4Karl Fischer首先发现这个反应可以在非水环境中用来测定水分含量,反应系统中包含有过量的SO2,甲醇可以被选作理想的溶剂。
但反应是可逆的,为了使反应向右进行,Karl Fischer用吡啶来吸收反应生成的HI和H2SO4.Smith,Bryanz 和 Mitchell 将这个反应描述成两步:I2+SO2+H2O+3B5C5N → 2B5C5NH+I- + B5C5N.SO3B 5C5N.SO3+CH3OH → B5C5N H+CH3SO4-在第一步反应中,KF试剂和水反应生成的B5C5N.SO3不稳定,容易分解成吡啶和二氧化硫,甲醇可以和其反应生成稳定的B5C5N H+CH3SO4-。
由此可见,甲醇作溶剂有防止副反应发生的作用。
在醇溶剂中,碘和水反应的化学计量数为1:1。
在无醇的溶剂中,碘和水反应的化学计量数为1:2:I 2+SO2+H2O+3 B5C5N → 2 B5C5N H+I- + B5C5N.SO3(不稳定)B 5C5N.SO3+H2O → B5C5N H+HSO4-(稳定)卡尔.费休试剂的基本成份是碘、二氧化硫、溶剂和有机碱,溶剂主要是醇类。
通常,试剂中二氧化硫、有机碱和醇类物质都是过量的,试剂中碘与水以固定的化学计量数1:1进行反应,所以我们在进行实验前应先确定滴定剂中碘的浓度,也即对滴定剂进行标定,这是本实验定量的基础。
用已知浓度的卡氏试剂滴定样品中的水分,由消耗滴定剂的体积和称样量,即可求出样品的含水量。
以前,卡氏试剂中用的有机碱主要是有毒、恶臭的吡啶,但更重要的是如果我们不能确定反应到底受那些方面的影响的话,我们就无法用其来进行定量分析。
后来,E.Barenrecht和J.Cverhoff对Karl Fisher反应进行了更进一步的研究后,得出了如下结论:◎吡啶不直接参加反应,也就是说它只起调节PH值和缓冲剂的作用,可以用其它的有机碱替代。
卡尔费休法测定丙酮中微量水分
![卡尔费休法测定丙酮中微量水分](https://img.taocdn.com/s3/m/af9d6f253868011ca300a6c30c2259010202f392.png)
412 PCO2 垂直分布:在船上在20 ℃浴温下做平衡,得出的PCO2 ( 20 ℃) 垂直分布如图2a 。
换算到现场温度下PCO2 如图2b 。
PCO2 ( 现场) 随深度变化与TC O2 相似, 也在300 —400m 达最大值。
由温度降低造成向下减少,在135°E 以西与TC O2 一致。
从表层到1000m TCO2 值小于停泊点值。
停泊点上: 0 —100m , PCO2 ( 20 ℃) 在400m 可达1000uat m 左右,500m 出现个最小值, 以后又增加, 从600m 以下变化不大。
11 月26 日—11 月30 日, 再到2 月份, PCO2 值逐步减少。
垂直分布规律与以前相同。
从PCO2 (现场温度) 与TCO2 的关系图(图略) 可见在现场温度下当PCO2 大于μat m , TCO2 小于μmo l/ kg , 即对应着400m 以下深度时, PCO2 与TCO2 呈正相关趋势。
400m 以上与TCO2 不成正相关且PCO2 变化范围很大,显然是由于上层水温度变化影响增大的缘故。
参考文献:1 David W. Chip man and Jo hn G o ddard , Tachnical manual f o r ga schro matograp hic syst em f o r high p recisio n measurement of carbo n dio xide partical p ressures in discret e ocean wat er and air samples , R , New Y o r k , L amo nt - D o hert y G e ological Observato ry of Columb.马黎明,热带西太平洋海—气C02 交换与碳化学量的分布〈, 热带西太平洋海气相互作用综合研究〉M , 北京, 海洋出版社, 1993 ,156 - 173 .乔然, 马黎明, 张滨, 高精度测量海水和大气二氧化碳分压( PC02) 气相色谱系统的完善和应用, C , 微量元素研究进展( 1995 . 07) ,北京,化学工业出版社,1995 ,229 - 234 .乔然,海水二氧化碳分压的取样手段和分析计算方法, J , 北京, 海洋预报,1993 ,1 ( 1) 1 ,77 - 79 .234卡尔2费休法测定丙酮中微量水分代丽斌(北京燕山石油化工公司研究院,北京102500)摘要:本文采用乙二醇甲醚、吡啶、二氧化硫和碘配制成卡尔2费休试剂,在以乙二醇甲醚与吡啶( 4¬1) 的混和液作为本底溶剂的条件下,用其测定丙酮中的水分。
容量法卡尔费休法测定硬糖样品中水分的含量
![容量法卡尔费休法测定硬糖样品中水分的含量](https://img.taocdn.com/s3/m/699328770b1c59eef8c7b4d6.png)
容量法卡尔费休法测定硬糖样品中水分的含量
目的:
本实验用甲醇和甲酰胺的混合溶液作为溶剂增加硬糖样品在溶剂中的溶解度,使用AKF-1水分仪直接测定硬糖中水分的含量,验证AKF-1在硬糖样品中水分检测的可行性、准确度和重复性。
仪器配置:
1、AKF-1卡尔费休水份测定仪主机;
2、全封闭安全滴定池组件;
3、双铂片电极
4、滴定池搅拌台
5、10μL微量进样针
6、电子天平(0.1mg)
试剂:
1、滴定剂:容量法单组份卡尔费休试剂
2、溶剂:无水甲醇
3、辅助试剂:甲酰胺
测定方法:
1、向滴定池内加入甲醇和甲酰胺的混合溶液(甲醇:甲酰胺=2:1);
2、使用仪器中“标定”选项的“打空白”功能滴定至终点,彻底除去滴定池和
溶剂中的水分;
3、选择“试剂标定”功能,用经过干燥处理的微量进样针精确抽取10 μL纯水,
拭干针头后将针头插入滴定池内加样,加样结束后输入加样质量为10 mg,开始标定;
4、重复步骤3,反复测量3-5次,仪器后自动保存标定结果并计算出平均值作为
试剂的滴定度;
5、将硬糖样品用研钵粉碎细化后,称取硬糖样品约0.3 g加入滴定池,将样品的
进样质量输入仪器,并开始测量。
仪器参数
1、计量管体积:20 mL
2、终点电流值:60 μA
3、最小进液量:0.002 mL
4、滴定延时:90 s
5、终点延时:10 s
6、漂移扣除:On
7、终点保持:On
卡尔费休水份测定仪样品测定记录。
卡尔费休水分测定---原始记录
![卡尔费休水分测定---原始记录](https://img.taocdn.com/s3/m/292091f6aeaad1f347933f09.png)
数
据
处
理
编号
样品
□质量m,g
□体积V2,μL
试样耗卡尔.费休体积V1,mL
V1平均值
结果计算
□X=(V1×T)/m*100 □X=(V1×T)/(V2×ρ)*100
样品结果:
编号
X%
T=M/V最低检出限浓度为____;液体样品的密度ρ=____g/mL
备注
(1)水分含量≥1g/100g时,计算结果保留三位有效数字,水分含量<1g/100g时,计算结果保留两位有效数字:
水分的测定原始记录
(卡尔费休法)
样品名称
测试方法
GB/T 606-2003
样品编号
测试日期
仪器
天平:自动水分滴定仪:ZSD-2
实
验
流
程
试样
制备
分ห้องสมุดไป่ตู้
析
步
骤
1. 卡尔费休试剂的标定:在反应瓶中加一定体积(浸没铂电极)的无水甲醇,在搅拌下用卡尔费休试剂滴定至终点。加入10mg水(精确至0.0001g)(M,单位为mg),滴定至终点并记录卡尔.费休试剂的用量(V0,mL)。卡尔费休试剂的滴定度T=____。(V01=__,V02=,V03=,V04=,V0=____)(注:T=10/V0)
(2)在重复性条件下获得的两次独立测定结果的绝对差值不得超过算术平均值的10%。
实验人:复核员:审核人:
食品水分原始记录
![食品水分原始记录](https://img.taocdn.com/s3/m/a772f8dd9b89680202d82520.png)
样品编号:
检验项目
水分
检验方法
GB 5009.3-2016第一法
检测仪器
仪器名称
仪器编号
量值溯源状态
电子天平
电热鼓风干燥箱
检验过程
固体试样:取洁净铝制或玻璃制的扁形称量瓶,置于105℃干燥箱中,瓶盖斜支于瓶边,加热1.0h,取出盖好,置干燥器内冷却0.5h,称量,并重复干燥至前后两次质量差不超过2mg。将混合均匀的试样迅速磨细至颗粒小于2mm,不易研磨的样品应尽可能切碎,称取g试样(精确至0.0001g),放入此称量瓶中,加盖,精密称量后,置于105℃干燥箱中,瓶盖斜支于瓶边,干燥4h后,盖好取出,放入干燥器内冷却0.5h后称量。然后再放入105℃干燥箱中干燥1h左右,取出,放入干燥器内冷却0.5h后再称量。并重复以上操作至恒重。
半固体或液体试样:取洁净的称量瓶,内加10g海砂及一根小玻棒,置于105℃干燥箱中,干燥1.0h后取出,放入干燥器内冷却0.5h后称量,并重复干燥至恒重。然后称取g试样(精确0.0001g),置于称量瓶中,用小玻棒搅匀放在沸水浴上蒸干,并随时搅拌,擦去瓶底的水滴,置于105℃干燥箱中干燥4h后盖好取出,放入干燥器内冷却0.5h后称量。然后再放入105℃干燥箱中干燥1h左右,取出,放入干燥器内冷却0.5h后再称量。并重复以上操作至恒重。
样品编号:
检验日期:年月日
检验项目
水分
检验方法
GB 5009.3-2016第三法
检测仪器
仪器名称仪器编号Βιβλιοθήκη 量值溯源状态电子天平
试剂配制
甲苯或二甲苯制备:取甲苯或二甲苯,先以水饱和后,分去水层,进行蒸馏,收集馏出液备用。
检验过程
试样制备:粉末和结晶试样直接称取;较大块硬糖经研钵粉碎,混匀备用。
卡尔费休法及其样品中微量水分测定方法
![卡尔费休法及其样品中微量水分测定方法](https://img.taocdn.com/s3/m/8bd976fa81c758f5f61f6719.png)
卡尔费休法及其样品中微量水分测定方法一、背景:1935 年德国人卡尔费休(Karl Fischer发明了一种测定水分的新方法:利用碘和二氧化硫的氧化还原反应,在有机碱和甲醇的环境下,与水发应定量反应。
CH3OH + SO2 + RN —— [RNH]SO2CH3 RN为有机碱,例如吡啶。
这一步反应是二氧化硫与甲醇反应生成一种酯,而酯被碱中和。
I2 + H2O + [RNH]SO3CH3 + 2RN ——2HI + [RNH]SO4CH3 + 2(RNH)I 这一步反应是与水的定量发应:硫醚阴离子在水作用下被碘氧化成烷基硫酸盐,碘与水1:1定量反应。
用含碘的试剂不断滴定样品,判断终点的方法是观察碘过量时的颜色变化。
这就是最初的卡尔费休水分滴定法。
发展历:1.手动滴定、肉眼判断终点。
这是最初的卡尔费休滴定法。
2.手动滴定、电极极化判断终点。
在浸入溶液的双铂电极间加上一适当电压,因溶液中存在水而使阴极极化,电极间无电流通过。
滴定终点无水时,阴极去极化,电流突然增加至一最大值,并长久保持(电流表指针突然由0打到max,并保持在这个位置)。
这就是所谓的“永停法”判断终点。
3.自动滴定、自动判断终点。
所谓的全自动滴定仪,仪器内部都由精密的电路控制,滴定自动控制,漂移自动补偿,终点自动判断。
4.卡尔费休库仑法:这次测量方法本质的一个改进。
1959 年Meyer 和Boyd 将库仑法与卡尔费休法联立起来,改变试剂的成分,用碘离子替换了碘单质。
通过电解产生碘2I-— 2e —— I2。
其他过程不变。
10.71库仑电流相当于1mg的水。
由于计量方式由计量试剂体积到计量电流量,精确度大幅提高,可达1ppm。
而且不用预先确定试剂的滴定度,可以直接测量,也被称为一种“绝对方法”。
另外具有消耗试剂少,反应时间短等优点。
所以狭义的微量水分测定仪就是指的卡尔费休库仑法水分测定仪。
5.技术成熟的后仪器时代。
基本测量方法已经非常成熟了,相应的附加改进技术以及相关衍生产品层出不穷。
卡尔费休水分测定实验步骤
![卡尔费休水分测定实验步骤](https://img.taocdn.com/s3/m/34f813eed05abe23482fb4daa58da0116c171ffe.png)
卡尔费休水分测定实验步骤一、实验目的二、实验原理三、实验步骤1. 样品处理2. 样品称量3. 水分测定四、实验注意事项五、实验结果分析一、实验目的本实验旨在掌握卡尔费休法水分测定的原理和操作方法,提高学生对于水分测定技术的理解和应用能力。
二、实验原理卡尔费休法是利用样品中水分与卡尔费休试剂反应,生成硫酸铜五水合物,然后通过加热使其失去结晶水,最终得到干燥的硫酸铜。
根据反应前后质量差计算出样品中的水分含量。
三、实验步骤1. 样品处理将待测样品处理成均匀细粉末状态。
如果样品不易粉碎,则可采用切碎或撕裂等方法将其制成均匀颗粒。
2. 样品称量取约5g左右的样品放入干燥至恒重的量筒中,并记录下称量质量m1。
3. 水分测定将称好的样品放入卡尔费休管内,并加入适量的卡尔费休试剂。
然后用橡皮塞将其密封,轻轻摇晃使样品充分与试剂混合。
接着将卡尔费休管置于水浴中,加热至试管内无水滴凝结为止。
最后将卡尔费休管冷却至室温,并记录下称量质量m2。
四、实验注意事项1. 样品应当制成均匀颗粒或细粉末状态。
2. 卡尔费休试剂需保存干燥,避免受潮。
3. 卡尔费休管加热时应当注意控制火力,避免过度加热产生溢出现象。
4. 实验结束后应当清洗干净实验器材。
五、实验结果分析根据样品称重前后的质量差,可以计算出样品中的水分含量。
具体计算公式如下:水分含量(%)=(m1-m2)/m1×100%其中,m1为样品初始质量,m2为样品经过加热后的质量。
通过本实验可以掌握卡尔费休法测定水分含量的基本原理和操作方法,并加深对于水分测定技术的理解和应用能力。
卡尔费休法水分测定
![卡尔费休法水分测定](https://img.taocdn.com/s3/m/41160c57b90d6c85ec3ac66b.png)
六、测定精度
• 卡尔费休滴定法测定物质含水量范围很宽从几个ppm
到100%, 对精度的要求是根据含水量大小决定的。通
常要求平行测定两个结果与算术平均的差数不应大于
和不能直接进行测定两类。因此要求分析工作者在测
定某种化合物中的水时, 首先考虑它属于那一类,如果
是后者,而又采用直接测定,则将产生很大的测定误差或
根本无法进行测定。
3.如果要对不能进行直接测定的化合物中的水进行
测定时, 必须采用合适的方法消除各种干扰因素,达到
正确测定的目的。
四、仪器的标定物质
• 卡尔费休滴定仪通常用甲醇-水标准溶液,含水 酒石酸钠, 蒸馏水,含水饱和甲苯等类物质作为 标准对方法的可靠性进行校验。含水酒石酸钠 是一种常用的含水标准物质,理论含水量为 15.66%,在105℃加热失重为15.65±0.02%,长 期暴露于湿度为20~70%的空气中,增重为 0.01~0.09%。用含饱和水的甲苯和纯水的标 定结果也是满意的。当然,最简单还是用甲醇水标准溶液。
Karl Fischer 1901 - 1958
卡尔·费休法简称费休法,是 1935年卡尔·费休(KarlFj scher)提出的测定水分的容量 分析方法。费休法是测定物质水 分的各类化学方法中,对水最为 专一、最为准确的方法。虽属经 典方法但经过近年改进,提高了 准确度,扩大了测量范围,已被 列为许多物质中水分测定的标准 方法。
五、水分测定影响因素及注意事项
(4)电极的敏感度 影响双铂电极敏感度的主要因素是沉积在电
极表面的污垢。将电极保存在清洁的溶剂中并定 期清洗,以保持电极对电化学反应的灵敏度。
化工产品 水分含量的测定 卡尔·费休法 电量反滴定法
![化工产品 水分含量的测定 卡尔·费休法 电量反滴定法](https://img.taocdn.com/s3/m/702aadf70066f5335b8121cf.png)
FCLHCQT0004 化工产品水分含量的测定卡尔·费休法电量反滴定法F_CL_HC_QT0004化工产品—水分含量的测定—卡尔·费休法-电量反滴定法1范围本方法适用于大部分有机和无机固、液体化工产品游离水或结晶水含量的测定。
在某些情况下,样品需要采取预处理措施,预处理方法在相应的方法中作规定。
2原理2.1卡尔·费休法原理存在于试样的任何水分(游离水或结晶水)与已知水当量的卡尔·费休试剂(电、二氧化硫、吡啶和甲醇组成的溶液)进行定量反应。
反应式如下:H2O+I2+SO2+3C5H5N 2C5H5N·HI+C5H5N·SO3C5H5N·SO3+ROH C5H5NH·OSO2OR注:甲醇可用乙二醇甲醚代替。
用此试剂,可得更为恒定的滴定体积,而且可在不使用任何专门技术下测定某些醛和酮类化工产品的水分。
2.2直接电量滴定法终点滴定原理使侵入溶液中的两铂电极有一电位差,当溶液中存在水时,阴极极化反抗电流通过,有阴极去极化伴随着突然增加的电流(由适合的电装置示出)指示滴定终点。
3试剂3.1甲醇:水含量低于0.05%(m/m)。
如试剂水含量大于0.05%,于500mL甲醇中加入5A 分子筛(3.11.1)约50g,塞上瓶塞,放置过夜,吸取上层清液使用。
3.2乙二醇甲醚:水含量低于0.05%(m/m),如试剂水含量大于0.1%,按3.1方法处理。
3.3碘3.4吡啶:水含量低于0.05%(m/m),如试剂水含量大于0.1%,按3.1方法处理。
3.5冰乙酸3.6氯仿:水含量低于0.05%(m/m),如试剂水含量大于0.1%,按3.1方法处理。
3.7硫酸:化学纯3.8无水亚硫酸钠:化学纯3.9二氧化硫:钢瓶装二氧化硫或用硫酸(3.7)分解饱和亚硫酸钠溶液(3.8)制得的二氧化硫,均需经脱水干燥处理。
二氧化硫发生装置见图1。
1. 二氧化硫气体发生器;2. 空洗气瓶;3. 浓硫酸洗气瓶;4. 分离器5. 接水泵;6. 温度计;7. 盛有甲醇、碘、吡啶溶液的吸收瓶;8. 冰浴图1 二氧化硫发生装置3.10样品溶剂:含4体积甲醇(3.1)和1体积吡啶(3.4)的混合物,或含4体积乙二醇甲醚(3.2)和1体积吡啶(3.4)的混合物(尤适用于某些含羰基化合物)。
卡尔费休水分测定方法
![卡尔费休水分测定方法](https://img.taocdn.com/s3/m/a8bbdd9577a20029bd64783e0912a21614797fd3.png)
卡尔费休水分测定方法一、引言水分含量是许多物质的重要质量指标,精确测定水分对于许多行业至关重要。
卡尔费休水分测定方法是一种常用的测定水分的方法,具有高精度、高灵敏度和广泛应用的特点。
本文将详细介绍卡尔费休水分测定方法的原理、应用、实验步骤和注意事项。
二、卡尔费休水分测定原理卡尔费休水分测定方法基于碘和二氧化硫的反应原理。
在酸性条件下,二氧化硫与碘化钾反应生成碘,进而与水反应生成硫酸和氢碘酸,反应方程式如下:SO2 + I2 + 2H2O → H2SO4 + 2HI通过测量反应过程中所消耗的碘的量,可以计算出样品中的水分含量。
该方法的准确性极高,可用于多种样品中的水分测定,如固体、液体和气体样品。
三、卡尔费休水分测定方法的应用卡尔费休水分测定方法在许多领域都有广泛的应用,如制药、化工、食品、农业、环保等。
在制药行业中,该方法常用于药物中水分的测定,以保证药物的质量和稳定性;在化工行业中,可用于测定原材料和产品的水分含量,控制生产过程;在食品行业中,可以用于食品的水分测定,以保证食品的质量和安全性;在农业中,可以用于测定土壤中的水分含量,指导灌溉和施肥;在环保方面,可以用于测定气体样品中的水分含量,为环境监测提供数据支持。
四、卡尔费休水分测定的实验步骤1.样品准备:根据待测样品的具体情况,进行适当的处理和准备。
例如,对于固体样品,需要将其研磨成粉末状;对于液体样品,需要进行适当的稀释或萃取;对于气体样品,需要使用干燥剂去除其中的水分。
2.溶液配制:配制卡尔费休试剂,包括酸性溶液和碱性溶液。
酸性溶液中含有碘化钾、碘和硫酸,碱性溶液中含有二氧化硫。
3.滴定操作:将待测样品引入滴定池中,用卡尔费休试剂进行滴定。
在滴定过程中,要控制好滴定速度和温度,以保证实验结果的准确性和重复性。
4.数据记录与处理:记录滴定过程中的数据,如滴定体积、温度等。
根据记录的数据计算样品中的水分含量。
数据处理可以采用手工计算或使用专业的数据处理软件进行。
卡尔费休水分测定---原始记录
![卡尔费休水分测定---原始记录](https://img.taocdn.com/s3/m/292091f6aeaad1f347933f09.png)
试样耗卡尔.费休体积V1,mL来自V1平均值结果计算
□X=(V1×T)/m*100 □X=(V1×T)/(V2×ρ)*100
样品结果:
编号
X%
T=M/V最低检出限浓度为____;液体样品的密度ρ=____g/mL
备注
(1)水分含量≥1g/100g时,计算结果保留三位有效数字,水分含量<1g/100g时,计算结果保留两位有效数字:
2.试样中水分的测定:于反应瓶中加一定体积的无水甲醇或者卡尔费休测定仪中规定的溶剂浸没铂电极,在搅拌下用卡尔费休试剂滴定至终点。迅速将易溶于上述溶剂的试样直接加入滴定杯中;对于不易溶解的试样,应采用对滴定杯进行加热或加入已测定水分的其他溶剂辅助溶解后用卡尔费休试剂调至终点。
数
据
处
理
编号
样品
□质量m,g
水分的测定原始记录
(卡尔费休法)
样品名称
测试方法
GB/T 606-2003
样品编号
测试日期
仪器
天平:自动水分滴定仪:ZSD-2
实
验
流
程
试样
制备
分
析
步
骤
1. 卡尔费休试剂的标定:在反应瓶中加一定体积(浸没铂电极)的无水甲醇,在搅拌下用卡尔费休试剂滴定至终点。加入10mg水(精确至0.0001g)(M,单位为mg),滴定至终点并记录卡尔.费休试剂的用量(V0,mL)。卡尔费休试剂的滴定度T=____。(V01=__,V02=,V03=,V04=,V0=____)(注:T=10/V0)
(2)在重复性条件下获得的两次独立测定结果的绝对差值不得超过算术平均值的10%。
实验人:复核员:审核人:
卡尔费休法测定水分含量
![卡尔费休法测定水分含量](https://img.taocdn.com/s3/m/87b8271f326c1eb91a37f111f18583d048640f78.png)
卡尔费休法测定水分含量水分含量这个话题,说起来可真是“说东道西”,但如果你想搞清楚一件事情,测水分含量就像是你在厨房里做菜,得先把调料准备好。
今天咱们就聊聊卡尔费休法,听起来高大上的法子,其实用起来一点都不复杂,甚至可以说是“轻松搞定”!好了,准备好了吗?让我们一起探索这个“水”的秘密吧!1. 什么是卡尔费休法?1.1 基本概念卡尔费休法,这名字听着像是某位科学家的名字,其实就是一个测定水分含量的方法,发明者是个叫卡尔·费休的大神。
说白了,就是通过化学反应来判断样品里的水分有多少,准确到小数点后几位,简直是“干货满满”。
这种方法在化学实验、制药、食品加工等领域都能派上用场,绝对是科学家们的“秘密武器”。
1.2 为什么用这个方法?你可能会问,为什么不直接用水分计或者其他简单的方法呢?哈哈,这里有个道理,水分计有时候给出的结果可能会让你“摸不着头脑”,而卡尔费休法就像是个“侦探”,能够精确找到水分藏在哪儿,甚至在微量情况下也能一针见血。
它的精确性简直让人想拍手称快!2. 卡尔费休法的原理2.1 化学反应的“秘密”卡尔费休法的核心原理其实就是个化学反应。
听起来有点儿复杂,其实就是利用了碘和水反应生成的化学现象。
反正大致流程就是这样:你把样品放进一个特定的溶液里,然后加入碘,水分就会跟碘“亲密接触”,生成一种叫“氢碘酸”的东西。
通过这些反应,咱们就能算出水分的含量,真是神奇啊!2.2 一步一步来使用这个方法的时候,其实就像做一道简单的食谱。
首先,准备好你的样品,再配制好试剂,然后把样品放进仪器里,按下按钮,等待结果就行了。
这一过程就像在厨房里炖汤,不需要你一直守着,只需耐心等待,最后就能品尝到美味的“水分”结果。
3. 应用领域与注意事项3.1 广泛应用说到应用,这个卡尔费休法可真是“万金油”,在制药行业、食品行业,甚至在石油化工行业都能看到它的身影。
比如说,在药品生产中,水分过多可能会导致药效下降,而在食品加工中,水分含量会直接影响口感和保质期。
精选-卡尔费休氏水分测定法
![精选-卡尔费休氏水分测定法](https://img.taocdn.com/s3/m/910de8b6dd36a32d7275814c.png)
1.前言卡尔·费休水分测定法是以甲醇为介质以卡氏液为滴定液进行样品水分测量的一种方法。
此方法操作简单,准确度高,广泛应用于医药、石油、化工、农药、染料、粮食等领域。
尤其适用于遇热易被破坏的样品。
一般情况下,产品中水分的含量异常会严重地影响产品的质量和使用效果。
例如:药品、日用品、食品中所含水分过高会影响其稳定性、理化性状、及使用效果和保质期,化学试剂中所含水分过多会影响其化学特性等。
因此,对产品中的水分进行检查并控制其限度非常重要。
以前,人们普遍应用加热干燥法,此种方法不但繁琐、费时,而且系统误差较大不能满足现代化生产中对产品检验的需要。
1935年,Karl Fischer发现了一种用滴定法测定含水量从1ppm 到100%的样品的方法。
该方法测定水分含量的用途广泛、结果准确可靠、重复性好,能够最大限度的保证分析结果的准确性。
而且该方法滴定时间短,一般情况下测定一个样品仅需2到5分钟,适应现代化生产中快速检测的要求。
因而卡尔·费休氏水分测定法得到了各界的一致认可,现在已成为国际上通用的经典水分测定法。
2.基本原理卡尔·费休水分测定法是一种非水溶液中的氧化还原滴定法,其滴定的基本原理是碘氧化二氧化硫时需要一定量的水参与反应,化学反应方程式如下:I2+SO2+2H2O → 2HI+H2SO4 (2-1)I2+SO2+H2O+3RN+R1OH → 2RNHI+RNSO4R1 (2-2)卡氏试剂中含有分子碘而呈深褐色,当含有水的试剂或样品加入后,由于化学反应,生成甲基硫酸化合物(RNSO4R1)而使溶液变成黄色,由此可用目测法判断终点,即由浅黄色变成橙色.但是目测法误差教大而且在测定有颜色的物质时会遇到麻烦。
国家标准大都规定用“永停法”来判定卡氏反应的终点,其原理为:在反应溶液中插入双铂电极,在两电极之间加上一固定的电压,若溶剂中有水存在时,则溶液中不会有电对存在,溶液不导电,当反应到达终点时,溶液中存在I2和I-电对,即:2I-= I2+2e (2-3)因此,溶液的导电性会突然增大,在设有外加电压的双铂电极之间的电流值突然增大,并且稳定在我们事先设定一个阈值上面,即可判断到了滴定终点,机器便会自动停止滴定,从而通过消耗KF试剂的体积计算出样品的含水量。