数学史上的三次危机无理数的发现
三次数学危机——长达一个世纪的关于数学基础问题上的争论
三次数学危机——长达⼀个世纪的关于数学基础问题上的争论悖论的产⽣科学的发展今天,超模君⼜“⼿痒”想要码字了,奈何⼀时找不到话题,正在⽆⽐纠结时,⼩天⼀语惊醒梦中最近评论区不是有好多要求超模君介绍什么什么的吗?难道你忘了?⼈:最近评论区不是有好多要求超模君介绍什么什么的吗?是的,这位 Z(⼩朋友?),你被翻牌了!数学史上的三次⼤危机吧。
那超模君今天来讲讲数学史上的三次⼤危机1、⽆理数的发现希伯索斯发现边长为1的正⽅形的对⾓线在公元前580~568年间,古希腊毕达哥拉斯学派的希伯索斯长度(根号2)既不是整数,也不能⽤整数之⽐来表⽰。
(传送门)这不仅严重地违背了毕达哥拉斯学派的信条(万物皆为数),也冲击了当时希腊⼈的传统见解。
当时希腊数学家们对此深感不安,希伯索斯还因此遭到沉⾈⾝亡的惩处。
⽆理数的发现以及芝诺悖论(传送门)引发了第⼀次数学危机。
过了两百年,希腊数学家欧多克斯和阿契塔斯两⼈给出了“两个数的⽐相等”的新定义,建⽴起⼀套完整的⽐例论,其中巧妙避开了⽆理数这⼀“逻辑上的丑闻”,并保留住与之相关的⼀些结论,缓解了这次数学危机。
然⽽,“世界万物皆为整数或整数⽐”的错误并没有解决,欧多克斯只是借助⼏何⽅法,直接避免⽆理数的出现。
直到1872年,德国数学家对⽆理数作出了严格的定义,⽆理数本质被彻底搞清,⽆理数在数才真正彻底、圆满地解决了第⼀次数学危机。
学中合法地位的确⽴,才真正彻底、圆满地解决了第⼀次数学危机2、贝克莱悖论⼗七世纪后期,⽜顿、莱布尼茨创⽴微积分学,成为解决众多问题的重要⽽有⼒的⼯具,并在实际应⽤中获得了巨⼤成功。
然⽽,微积分学产⽣伊始,迎来的并⾮全是掌声,在当时它还遭到了许多⼈的强烈攻击和指责,原因在于当时的微积分主要建⽴在⽆穷⼩分析之上,⽽⽆穷⼩后来证明是包含逻辑⽭盾的。
原来,在1734年,英国哲学家乔治·贝克莱出版了名为《分析学家或者向⼀个不信神数学家的进⾔》的⼀本书。
在这本书中,贝克莱对⽜顿的理论进⾏了攻击,指出求x2的导数时,会出现如下⽭盾:依靠双重错误得到了不科学却正确的结果。
数学三大危机简介
数学三大危机简介数学三大危机第一次数学危机毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。
毕达哥拉斯学派所说的数仅指整数。
而“一切数均可表示成整数或整数之比”则是这一学派的数学信仰。
然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数根号2的诞生。
小小根号2的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。
这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。
这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的根号2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。
更糟糕的是,面对这一荒谬人们竟然毫无办法。
这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的,史称“第一次数学危机”。
第二次数学危机出现第二次数学危机导源于微积分工具的使用。
伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹共同发现。
这一工具一问世,就显示出它的非凡威力。
许许多多疑难问题运用这一工具后变得易如反掌。
但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。
(整理)数学史上的三次危机.
数学史上的三次危机张清利第一次数学危机在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。
因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。
它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。
这是数学史上的一个里程碑。
毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。
后来,又发现数轴上还存在许多点也不对应于任何有理数。
因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。
例如, ,22,8,6,2等都是无理数。
无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。
事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。
第一次数学危机表明,当时希腊的数学已经发展到这样的阶段:1. 数学已由经验科学变为演绎科学;2. 把证明引入了数学;3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有更加重要的地位。
这种状态一直保持到笛卡儿解析几何的诞生。
中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。
即算术阶段。
希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。
在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。
总之,第一次数学危机是人类文明史上的重大事件。
无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。
首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。
自然辩证法考试题
1 数学史上的三大危机及解决办法三次数学危机:1 毕达哥拉斯学派发现无理数,第一次数学危机。
希帕苏斯因泄露秘密被抛入大海。
2 微积分危机四伏。
基本概念、定律未严格建立。
直到19世纪,数学完成严密化之后,前两次数学危机才解决。
微积分的严密化。
柯西、韦尔斯特拉斯奠定了数学分析的现代基础。
建立了实数、复数公理化体系第三次数学危机的起因:罗素---策梅罗悖论。
2 什么是公理化原则?基于对公理化方法的彻底考察,希尔伯特第一次系统的提出了公理化方法的基本原则。
这些基本原则是:一、相容性:由公理出发不能推出矛盾的命题,即无矛盾性,通俗讲就是自圆其说。
这一条原则主要侧重于在定理层次规范公理。
二、独立性:公理相互独立,任何一条公理不能由其余公理推出(否则即为定理)。
这一条原则主要侧重于就公理本身来规范公理。
三、完备性:公理对于证明公理系统成立的充分性。
这一条原则主要侧重于从整个公理体系规范公理。
以此为基础提出了著名的“希尔伯特纲领”:建立起形式化公理系统之后,一切数学系统内的定理都是可证的;并且一切数学真理都是这个公理系统的定理,即,数学是完备的。
简单说,希尔伯特要求数学体系要达到将下述三者完全融为一体的境界:就构成要素而言毫无欠缺,就每一个构成要素而言都是真理,就整个体系的秩序化而言没有任何内在矛盾。
3 什么是科学精神?自由[然]科学的目的是为了追求真理,而真理的本性是自由——自由非主观状态,自由是内在的必然性,自由是至高的必然性。
平等1、所有学科没有高低贵贱之分,数学并不比文学更高,历史学也并不比逻辑学更高。
文科与理科平等一如。
2、所有从事科学研究的人没有高低贵贱之分,科学面前人人平等。
3、科学超越阶级,超越国家,因为科学的对象是真理,而真理是不受阶级、国家立场束缚的,相反,任何阶级、国家、个人必须遵循真理和规律。
普遍主义、不谋私利、天下为公。
博爱科学的人文底蕴。
有两个互补的维度:博与爱。
“博”就是科学要使人对人生和宇宙具有极为开阔的理解,如此才能将人带入更伟大更本真生存的境界;“爱”就是科学要为谋求全人类的自由和幸福而服务。
数学史上一共发生过三次危机,都是怎么回事
数学史上一共发生过三次危机,都是怎么回事?在数学历史上,有三次大的危机深刻影响着数学的发展,三次数学危机分别是:无理数的发现、微积分的完备性、罗素悖论。
第一次数学危机第一次数学危机发生在公元400年前,在古希腊时期,毕达哥拉斯学派对“数”进行了定义,认为任何数字都可以写成两个整数之商,也就是认为所有数字都是有理数。
但是该学派的一个门徒希帕索斯发现,边长为“1”的正方形,其对角线“√2”无法写成两个整数的商,由此发现了第一个无理数。
毕达哥拉斯的其他门徒知道后,为了维护门派的正统性,把希帕索斯杀害了,并抛入大海之中,看来古人也是解决不了问题时,先解决提出问题的人。
即便如此,无理数的发现很快引起了一场数学革命,史称第一次数学危机,这危机影响数学史近两千年的时间。
第二次数学危机微积分是一项伟大的发明,牛顿和莱布尼茨都是微积分的发明者,两人的发现思路截然不同;但是两人对微积分基本概念的定义,都存在模糊的地方,这遭到了一些人的强烈反对和攻击,其中攻击最强烈的是英国大主教贝克莱,他提出了一个悖论:从微积分的推导中我们可以看到,△x在作为分母时不为零,但是在最后的公式中又等于零,这种矛盾的结果是灾难性的,很长一段时间内数学家都找不到解决办法。
直到微积分发明100多年后,法国数学家柯西用极限定义了无穷小量,才彻底解决了这个问题。
第三次数学危机数学家总有一个梦想,试图建立一些基本的公理,然后利用严格的数理逻辑,推导和证明数学的所有定理;康托尔发明集合论后,让数学家们看到了曙光,法国科学家庞加莱认为:我们可以借助结合论,建造起整座数学大厦。
正在数学家高兴之时,英国哲学家、逻辑学家罗素,提出了一个惊人的悖论——罗素悖论:罗素悖论通俗描述为:在某个城市中,有一位名誉满城的理发师说:“我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。
”那么请问理发师自己的脸该由谁来刮?罗素悖论的提出,引发了数学上的又一次危机,数学家辛辛苦苦建立的数学大厦,最后发现基础居然存在缺陷,数学家们纷纷提出自己的解决方案;直到1908年,第一个公理化集合论体系的建立,才弥补了集合论的缺陷。
数学的三次危机
从哲学上来看,矛盾是无处不存在的,即便以确定无疑着称的数学也不例外。
数学中有大大小小的许多矛盾,例如正与负、加与减、微分与积分、有理数与无理数、实数与虚数等等。
在整个数学发展过程中,还有许多深刻的矛盾,例如有穷与无穷、连续与离散、存在与构造、逻辑与直观、具体对象与抽象对象、概念与计算等等。
在数学史上,贯穿着矛盾的斗争与解决。
当矛盾激化到涉及整个数学的基础时,就会产生数学危机。
而危机的解决,往往能给数学带来新的内容、新的发展,甚至引起革命性的变革。
数学的发展就经历过三次关于基础理论的危机。
一、第一次数学危机从某种意义上来讲,现代意义下的数学,也就是作为演绎系统的纯粹数学,来源予古希腊毕达哥拉斯学派。
它是一个唯心主义学派,兴旺的时期为公元前500年左右。
他们认为,“万物皆数”(指整数),数学的知识是可靠的、准确的,而且可以应用于现实的世界,数学的知识由于纯粹的思维而获得,不需要观察、直觉和日常经验。
整数是在对于对象的有限整合进行计算的过程中产生的抽象概念。
日常生活中,不仅要计算单个的对象,还要度量各种量,例如长度、重量和时间。
为了满足这些简单的度量需要,就要用到分数。
于是,如果定义有理数为两个整数的商,那么由于有理数系包括所有的整数和分数,所以对于进行实际量度是足够的。
有理数有一种简单的几何解释。
在一条水平直线上,标出一段线段作为单位长,如果令它的定端点和右端点分别表示数0和1,则可用这条直线上的间隔为单位长的点的集合来表示整数,正整数在0的右边,负整数在0的左边。
以q为分母的分数,可以用每一单位间隔分为q等分的点表示。
于是,每一个有理数都对应着直线上的一个点。
古代数学家认为,这样能把直线上所有的点用完。
但是,毕氏学派大约在公元前400年发现:直线上存在不对应任何有理数的点。
特别是,他们证明了:这条直线上存在点p不对应于有理数,这里距离op等于边长为单位长的正方形的对角线。
于是就必须发明新的数对应这样的点,并且因为这些数不可能是有理数,只好称它们为无理数。
数学史上的三次危机
数学史上的三次危机1 无理数的发现——第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。
当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算数、天文、音乐称为“四艺”,在其中追求宇宙的和谐规律性。
他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不可能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。
这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的“危机”,从而产生了第一次数学危机。
到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。
他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中,欧多克斯和狄德金于1872年给出的无理数的解释和现代解释基本一致。
今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。
第一次数学危机对古希腊的数学家观点有极大冲击。
这表明,几何学的某些真理和算数无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。
危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的。
从此希腊人开始重视演绎推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!2 无穷小量是零吗?——第二次数学危机18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。
1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础——无穷小的问题,提出了所谓贝克莱悖论。
他指出:“牛顿在求的导数时,采取了先给以增量0,应用二项式,从中减去以求得增量,并除以0以求出的增量与增量之比,然后又让0消逝,这样得出增量的最终比。
这里牛顿做了违反矛盾律的手续——先设有增量,又令增量为零,也即假设没有增量。
数学史上的三次危机及其解决
论数学史上的三次数学危机学号:100521026 姓名:付东群摘要:数学发展从来不是完全直线,而是常常出现悖论。
历史上一连串的数学悖论动摇了人们对数学的可靠性的信仰,数学史上曾经发生了三次数学危机。
数学悖论的产生和危机的出现,不单给数学带来麻烦和失望,更重要的是给数学的发展带来新的生机和希望,促进了数学的繁荣。
危机的产生、解决,又产生的无穷反复过程,不断推动着数学的发展,这个过程也是数学思想获得重要发展的过程。
关键词:数学危机;无理数;微积分;集合论;悖论;引言:数学史不仅仅是单纯的数学成就的编年记录。
数学的发展决不是一帆风顺,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至面临危机。
数学史也是数学家们克服困难和战胜的斗争记录。
无理数的发现,微积分和非欧集合的创立,乃至费马定理的证明......这样的例子在数学史上不胜枚举,他们可以帮助人们了解数学创造的完美过程。
对这种创造的过程的了解则可以使我们从前人的探索与奋斗中西区教益,获得鼓舞和增强信心。
第一次数学危机(无理数的产生)第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。
这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。
(一)、危机的起源毕达哥拉斯学派认为“万物皆数”,这个数就是整数,他们确定数学的目的是企图通过数的奥秘来探索宇宙的永恒真理,并且认为宇宙间的一切现象都能归结为整数或整数之比。
后来这个学派发现了毕达哥拉斯学定理(勾股定理),他们认为这是一件很了不起的事,然而了不起的事后面还有更了不起的事。
毕达哥拉斯学派的希帕索斯从毕达哥拉斯定理出发,发现边长为1的正方形对角线不能用整数来表示,这就产生了这个无理数。
这无疑对“万物皆数”产生了巨大的冲击,由此引发了第一次数学危机【1】。
(二)、危机的解决由无理数引发的第一次数学危机对古希腊的数学观点产生了极大的冲击。
数学史上的三次数学危机的成因分析
课 改 前 沿【摘 要】①公元前580~568年之间,希帕索斯发现了第一个无理数,促使了第一次数学危机的发生。
而后,在几何学中引进了不可通约量,使欧式几何变得更加完善。
②大约在公元前450年,莱布尼茨提出“无穷小量是零还是非零”促使了第二次数学危机的发生。
而后,柯西提出极限理论,使微积分更完善。
③十九世纪下半叶,罗素悖论的提出,促使了第三次数学危机的发生。
而后,弗芝克尔改进策梅罗的七条公理得出ZF公理系统,使得集合论得到了发展。
【关键词】危机;无理数;无穷小;罗素悖论数学,绝对不是只有加、减、乘、除那样简单的运算而已。
它是一个早从“石器时代”就开始发展的一段历史,是一个演变和提升的过程。
悖论历史悠久,它的出现,本来并没有引起人们的重视,可是由于19世纪末20世纪初,在集合论中出现了3个著名的悖论,引起了当时数学界、逻辑学界以至于哲学界的震惊,触发了数学史上的第三次危机,才引起了现代数学界和逻辑学界的极大注意。
本文试图对悖论的定义、成因以及由于数学悖论引起的数学史上的三次危机作以简要分析。
1第一次数学危机及成因1.1危机介绍第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。
这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。
当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。
该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。
希伯索斯的发现被认为是“荒谬”和违反常识的事。
它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。
使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。
噶米数学史上的三次危机
数学史上的三次危机张清利第一次数学危机在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。
因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。
它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。
这是数学史上的一个里程碑。
毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。
后来,又发现数轴上还存在许多点也不对应于任何有理数。
因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。
例如, ,22,8,6,2等都是无理数。
无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。
事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。
第一次数学危机表明,当时希腊的数学已经发展到这样的阶段:1. 数学已由经验科学变为演绎科学;2. 把证明引入了数学;3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有更加重要的地位。
这种状态一直保持到笛卡儿解析几何的诞生。
中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。
即算术阶段。
希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。
在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。
总之,第一次数学危机是人类文明史上的重大事件。
无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。
首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。
数学史知识点
•埃及数学1.古埃及的数学知识常常记载在纸草书上。
2.古埃及数学的知识,主要来源于莱茵德纸草书和莫斯科纸草书。
3.数学史上三大数学危机是:无理数的发现、无穷小是“ 0”吗?、悖论的产生。
4.最早采用位值制记数的国家或民族是美索不达米亚。
5.. 在代数和几何这两大传统的数学领域,古代美索不达米亚的数学成就主要在苏美尔人还会分数、加减乘除四则运算和解一元二次方程,发明了10 进位法和16进位法。
他们把圆分为360度,并知道π近似于3。
甚至会计算不规则多边形的面积及一些锥体的体积。
方外,他们能够卓有成效地处理相当一般的解一元二次方程。
•古希腊数学1.欧几里得欧几里得,古希腊数学家,被称为“几何之父” 。
他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书。
欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品,是几何学的奠基人。
两千年来有关欧几里得几何原本第五公设的争议,导致了非欧几何的诞生。
(五条公理 1. 等于同量的量彼此相等;2. 等量加等量,其和相等;3. 等量减等量,其差相等;4. 彼此能重合的物体是全等的;5. 整体大于部分。
五条公设 1. 过两点能作且只能作一直线; 2. 线段(有限直线)可以无限地延长; 3. 以任一点为圆心, 任意长为半径, 可作一圆; 4. 凡是直角都相等; 5. 同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交。
)2.阿基米德阿基米德,古希腊哲学家、数学家、物理学家。
阿基米德到过亚历山大里亚,据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机。
后来阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。
阿基米德流传于世的数学著作有10 余种,多为希腊文手稿。
阿基米德曾说过:给我一个支点,我可以翘起地球。
这句话告诉我们:要有勇气去寻找这个支点,要用于寻找真理。
数学史复习资料
1、数学发展史上的三次危机。
①第一次数学危机:无理数的发现毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家,他曾创立毕达哥拉斯学派,“一切数均可表成整数或整数之比”则是这一学派的数学信仰。
毕达哥拉斯定理(勾股定理)提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数2的诞生。
这在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。
由2000年后的数学家们建立的实数理论才消除它。
②第二次数学危机导源于微积分工具的使用。
x(n是正整数)求导时既把△x不当做0 1734年英国哲学家、大主教贝克莱一针见血地指出牛顿在对n看而又把△x当作0看是一个严重的自相矛盾,从而几乎使微积分停滞不前。
后来还是柯西和魏尔斯特拉斯等人提出无穷小是一个无限向0靠近,但是永远不等于0的变量,这才把微积分重新稳固地建立在严格的极限理论基础上,从而消灭的这次数学危机。
③第三次数学危机:集合论悖论(或罗素悖论)的产生十九世纪下半叶,康托尔创立了著名的集合论。
后来集合概念逐渐渗透到众多的数学分支中,并且实际上集合论成了数学的基础。
可是,1903年,英国数学家罗素提出:集合论是有漏洞的!这就是著名的罗素悖论。
罗素构造了一个集合S:S由一切不是自身元素的集合所组成。
然后问:S是否属于S呢?如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。
无论如何都是矛盾的。
它所引起的巨大反响则导致了第三次数学危机。
危机产生后,数学家纷纷提出自己的解决方案。
比如ZF公理系统。
这一问题的解决现在还在进行中。
罗素悖论的根源在于集合论里没有对集合的限制,以至于让罗素能构造一切集合的集合这样“过大”的集合,对集合的构造的限制至今仍然是数学界里一个巨大的难题。
史上数学三大危机简介
---------------------------------------------------------------最新资料推荐------------------------------------------------------史上数学三大危机简介数学三大危机数学三大危机简述:第一,希帕索斯(Hippasu,米太旁登地方人,公元前 5 世纪)发现了一个腰为 1 的等腰直角三角形的斜边(即根号 2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论。
相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希帕索斯抛入大海;第二,微积分的合理性遭到严重质疑,险些要把整个微积分理论推翻;第三,罗素悖论:S 由一切不是自身元素的集合所组成,那 S 包含 S 吗?用通俗一点的话来说,小明有一天说:我正在撒谎!问小明到底撒谎还是说实话。
罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论!第一次数学危机毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题万物皆数是该学派的哲学基石。
毕达哥拉斯学派所说的数仅指整数。
而一切数均可表成整数或整数之比则是这一学派的数学信仰。
1 / 6然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的掘墓人。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为 1 的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数的诞生。
小小的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。
数学史上的三次危机及对数学发展的影响
《校园百家讲坛》演讲稿数学史上的三次危机及对数学发展的影响主讲卢伯友一引言“校园百家讲坛”很早就邀请我,要我给同学们讲点什么,因为这个讲坛的神圣性和严肃性,我一直没有敢答应下来。
今天,站在这个讲坛上,我仍然感到诚惶诚恐的。
讲什么呢?从哪儿开始呢?我一直思考着这个问题。
国学大师王国维在《人间词话》中说过:“诗人对宇宙人生,须入乎其内,又须出乎其外。
入乎其内,故能写之。
出乎其外,故能观之。
入乎其内,故有生气。
出乎其外,故有高致。
”同学们平时听课、读书、做习题是入乎其内,今天听讲座是出乎其外,两者相互相成。
只知入乎其内,那是见木不见林,常常会迷失方向。
所以,还要辅助以出乎其外,站出来作高瞻远瞩。
正所谓“风声、雨声、读书声、声声入耳;家事、国事、天下事,事事关心!”整个人类文明的历史就像长江的波浪一样,一浪高过一浪,滚滚向前,科学巨人们站在时代的潮头,以他们的勇气、智慧和勤劳把人类的文明从一个高潮推向另一个高潮。
我们认为,整个人类文明可以分为三个层次:(1) 以锄头为代表的农耕文明;(2) 以大机器流水线作业为代表的工业文明; (3) 以计算机为代表的信息文明。
数学在这三个文明中都是深层次的动力,其作用一次比一次明显。
基于此原因,我今天演讲的题目是:数学史上的三次危机及对数学发展的影响古人讲,欲穷千里目,更上一层楼。
今天,我们站在历史的角度,剖析历史上发生的三次数学危机及其对数学发展的重要影响,让同学们不仅从数学自身的思想方法和应用的角度,而且从文化和历史的高度审视数学的全貌和美丽。
赞美数学思想的博大精深,赞美由数学文化引出的理性精神,以及在理性精神的指导下,人类文明的蓬勃发展。
二数学史上的三次危机及对数学发展的影响1毕达哥拉斯与第一次数学危机1.1第一次数学危机的内容毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。
微积分(一)三次数学危机
微积分(一)三次数学危机这三次数学危机其实对东方(主要是中国和印度)影响不大,所以只能算是西方的三次数学危机。
三次数学危机对数学及其哲学产生了重大影响。
虽然他们在当时造成了一些困难,但他们从未阻碍数学的发展和应用。
但困境过去后,又给数学带来了新的活力。
从历史阶段上看,数学的三次危机分别发生在公元前5世纪、17世纪和19世纪末,都是发生在西方文化大发展的时期,因此,数学危机的产生,都有其一定的文化背景。
第一次危机是古希腊时代,由于不可公度的线段——无理数的发现与一些直觉的经验相抵触而引发的;第二次危机是在牛顿和莱布尼茨建立了微积分理论后,由于对无穷小量的理解未及深透而引发的;第三次危机是当罗素发现了集合论中的悖论,危及整个数学的基础而引起的。
一、第一次数学危机公元前5世纪古希腊的数学非常发达,尤其是毕达哥拉斯创立的学派。
毕达哥拉斯游历埃及和波斯,学习几何、语言和宗教,知识渊博。
后来,他定居在意大利一个叫克罗顿的海滨城市,并招收了300名弟子,被称为毕达哥拉斯学派。
毕达哥拉斯学派对几何学贡献很大,最着名的是所谓毕达哥拉斯定理(中国称勾股定理)的发现:即任何直角三角形的两直角边a、b和斜边c,都有的关系式。
据说当时曾屠牛百头欢宴庆贺。
华达哥拉斯学派研究数学,还很重视音乐,倡导一种“惟数论”的哲学观,“数”与“和谐”是他们的主要的哲学思想。
他们认为,宇的宙的本质是数的和谐。
一切事物都必须而且只能通过数学得到解释。
他们坚持的信条是:“宇宙间的一切现象都可归结为整数或整数与整数的比。
”也就是一切现象都可以用有理数来描述。
例如,他们认为“任何两条不等的线段,总有一个最大公度线段。
”其求法如下(如图 32-1):设两条线段AB>CD,在AB上用圆规从一端A起,连续截取长度为CD的线段,使截取的次数尽可能地多。
若没有剩余,则CD 就是最大公度线段。
若有剩余,则设剩余线段为EB (EB<CD),再在CD上截取次数尽可能多的EB线段,若没有剩余,则EB 就是最大公度线段,若有剩余,则设为FD (FD<EB),再在EB 上连续尽可能多地截取线段长度等于FD的线段,如此反复下去。
三大数学危机
三大数学危机数学危机是数学公理在定义上的不完全或不够严谨,导致在理性推论下,将会得到错误的结论。
例如:在无理数还没被发现之前,在毕氏定理中出现腰长为1的等腰直角三角形的斜边长度,竟是无法写成有理数的数。
这是第一次数学危机。
第二次数学危机得解决微积分引入无穷小量而产生的极值问题(飞矢不动的悖论)。
第三次数学危机则是因罗素悖论而起,罗素悖论点出了数学集合论中的缺失。
飞矢不动悖论是古希腊数学家芝诺(Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论中的一个。
人们通常把这些悖论称为芝诺悖论。
芝诺提出,由于箭在其飞行过程中的任何瞬间都有一个暂时的位置,所以它在这个位置上和不动没有什么区别。
中国古代的名家惠施也提出过,“飞鸟之景,未尝动也”的类似说法。
芝诺问他的学生:“一支射出的箭是动的还是不动的?”“那还用说,当然是动的。
”“确实是这样,在每个人的眼里它都是动的。
可是,这支箭在每一个瞬间里都有它的位置吗?”“有的,老师。
”“在这一瞬间里,它占据的空间和它的体积一样吗?”“有确定的位置,又占据着和自身体积一样大小的空间。
”“那么,在这一瞬间里,这支箭是动的,还是不动的?”“不动的,老师”“这一瞬间是不动的,那么其他瞬间呢?”“也是不动的,老师”“所以,射出去的箭是不动的?”罗素悖论(Russell's paradox),也称为理发师悖论,是罗素于1901年提出的悖论,一个关于类的内涵问题。
罗素悖论当时的提出,造成了第三次数学危机。
理发师悖论”悖论内容一位理发师说:“我只给不给自己刮脸的人刮脸。
”那么他是否给自己刮脸呢?如果他给的话,但按照他的话,他就不该给自己刮脸;如果他不给的话,但按照他的话,他就该给自己刮脸。
于是矛盾出现了。
罗素悖论我们通常希望:任给一个性质,满足该性质的所有类可以组成一个类。
但这样的企图将导致悖论:罗素悖论:设性质P(x)表示“”,现假设由性质P确定了一个类A——也就是说“”。
数学史上三大危机
数学史上三大危机数学的发展史中,并不是那么一帆风顺的,其中历史上曾发生过三大危机,危机的发生促使了数学本生的发展,因此我们应该辨证地看待这三大危机。
第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯(Pythagoras,约公元前580~约前500)建立了毕达哥拉斯学派。
他证明许多重要的定理,包括后来以他的名字命名的毕达哥拉斯定理(勾股定理),即直角三角形两直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积。
毕达哥拉斯将数学知识运用得纯熟之后,觉得不能只满足于用来算题解题,于是他试着从数学领域扩大到哲学,用数的观点去解释一下世界。
经过一番刻苦实践,他提出"万物皆为数"的观点:数的元素就是万物的元素,世界是由数组成的,世界上的一切没有不可以用数来表示的,数本身就是世界的秩序。
公元前500年,毕达哥拉斯学派的弟子希伯索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形的边长为1,则对角线的长不是一个有理数),这一不可公度性与毕氏学派的"万物皆为数"(指有理数)的哲理大相径庭。
这一发现使该学派领导人惶恐,认为这将动摇他们在学术界的统治地位,于是极力封锁该真理的流传,希伯索斯被迫流亡他乡,不幸的是,在一条海船上还是遇到毕氏门徒。
被毕氏门徒残忍地投入了水中杀害。
科学史就这样拉开了序幕,却是一场悲剧。
希伯索斯的发现,第一次向人们揭示了有理数系的缺陷,证明了它不能同连续的无限直线等同看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的"孔隙"。
而这种"孔隙"经后人证明简直多得"不可胜数"。
于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了。
不可公度量的发现连同芝诺悖论一同被称为数学史上的第一次数学危机,对以后2000多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学和逻辑学的发展,并且孕育了微积分思想萌芽。
数学历史上三大危机
数学历史上三大危机数学作为一门研究数量、结构、变化和空间等概念的学科,自诞生以来就不断面临着各种挑战和危机。
其中,数学历史上最为著名的三大危机,分别是无理数的发现、无穷小量的悖论以及集合论中的罗素悖论。
这三大危机不仅推动了数学的发展,也深刻地影响了数学哲学和科学哲学的演变。
一、无理数的发现无理数的发现是数学史上的一次重大突破,也是数学历史上第一次危机。
自古以来,人们一直认为所有的数都可以表示为分数,即两个整数的比例。
然而,公元前5世纪,古希腊数学家毕达哥拉斯学派发现了一个重要的几何事实:边长为1的正方形的对角线长度无法用两个整数的比例来表示。
这个发现不仅颠覆了毕达哥拉斯学派关于数的理论,也引发了一场关于无理数存在性的哲学争论。
无理数的发现揭示了数学中存在着一类无法用分数精确表示的数,这对当时的数学观念产生了巨大的冲击。
为了解决这个问题,古希腊数学家们发展了无理数的理论,并提出了诸如平方根、立方根等概念。
无理数的发现不仅推动了数学的发展,也促使人们重新审视数学的基础和本质。
二、无穷小量的悖论无穷小量的悖论是数学史上第二次重大危机。
在17世纪,随着微积分的诞生,无穷小量的概念逐渐被引入数学研究。
然而,无穷小量的性质和应用却引发了诸多悖论和争论。
例如,无穷小量是0还是非0?无穷小量乘以无穷大是什么?这些问题困扰着当时的数学家,也对微积分的发展产生了阻碍。
为了解决无穷小量的悖论,数学家们进行了深入的研究和探索。
19世纪,柯西、黎曼等数学家提出了极限的概念,建立了微积分的严格基础。
极限概念的引入不仅解决了无穷小量的悖论,也推动了数学分析的进一步发展。
三、集合论中的罗素悖论集合论中的罗素悖论是数学史上第三次重大危机。
19世纪末,德国数学家康托尔创立了集合论,为数学提供了一个全新的研究对象。
然而,1901年,英国哲学家罗素发现了一个关于集合论的基本悖论:一个集合如果包含所有不包含自身的集合,那么这个集合是否包含自身?罗素悖论揭示了集合论中存在的基本矛盾,对数学的基础产生了严重的挑战。
三大数学危机
第一次数学危机简介从某种意义上来讲,现代意义下的数学(也就是作为演绎系统的纯粹数学)来源于古希腊的毕达哥拉斯学派。
这个学派兴旺的时期为公元前500年左右,它是一个唯心主义流派。
他们重视自然及社会中不变因素的研究,把几何、算术、天文学、音乐称为“四艺”,在其中追求宇宙的和谐及规律性。
他们认为“万物皆数”,认为数学的知识是可靠的、准确的,而且可以应用于现实的世界。
数学的知识是由于纯粹的思维而获得,并不需要观察、直觉及日常经验。
毕达哥拉斯的数是指整数,他们在数学上的一项重大发现是证明了勾股定理。
他们知道满足直角三角形三边长的一般公式,但由此也发现了一些直角三角形的三边比不能用整数来表达,也就是勾长或股长与弦长是不可通约的。
这样一来,就否定了毕达哥拉斯学派的信条:宇宙间的一切现象都能归结为整数或整数之比。
第二次数学危机简介早在古代,人们就对长度、面积、体积的度量问题感兴趣。
古希腊的欧多克斯引入量的观念来考虑连续变动的东西,并完全依据几何来严格处理连续量。
这造成数与量的长期脱离。
古希腊的数学中除了整数之外,并没有无理数的概念,连有理数的运算也没有,可是却有量的比例。
他们对于连续与离散的关系很有兴趣,尤其是芝诺提出的四个著名的悖论:第一个悖论是说运动不存在,理由是运动物体到达目的地之前必须到达半路,而到达半路之前又必须到达半路的半路……如此下去,它必须通过无限多个点,这在有限长时间之内是无法办到的。
第二个悖论是跑得很快的阿希里赶不上在他前面的乌龟。
因为乌龟在他前面时,他必须首先到达乌龟的起点,然后用第一个悖论的逻辑,乌龟者在他的前面。
这两个悖论是反对空间、时间无限可分的观点的。
而第三、第四悖论是反对空间、时间由不可分的间隔组成。
第三个悖论是说“飞矢不动”,因为在某一时间间隔,飞矢总是在某个空间间隔中确定的位置上,因而是静止的。
第四个悖论是游行队伍悖论,内容大体相似。
这说明希腊人已经看到无穷小与“很小很小”的矛盾。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学史上的三次危机无理数的发现数学史上的三次危机
无理数的发现 ?? 第一次数学危机
大约公元前,世纪,不可通约量的发现导致了毕达哥拉斯悖论。
当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为,在其中追求宇宙的和谐规律性。
他们认为:宇宙间一切事物都可归结为"四艺"
整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为,的直角三角形就是如此。
这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。
到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。
他的处理不可通约量的方法,出现在欧几里得《原本》第,卷中。
欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。
今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。
第一次数学危机对古希腊的数学观点有极大冲击。
这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。
危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演绎推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命~
无穷小是零吗 , ?? 第二次数学危机
18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。
1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。
他指出:"牛顿在求xn的导数时,采取了先给x以增量,,应用二项式(x+0)n,从中减去xn以求得增量,并除以,以求出xn的增量与x的增量之比,然后又让,消逝,这样得出增量的最终比。
这里牛顿做了违反矛盾律的手续??先设x有增量,又令增量为零,也即假设x没有增量。
"他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,"dx为逝去量的灵魂"。
无穷小量究竟是不是零,无穷小及其分析是否合理,由此而引起了数学界甚至哲学界长达一个半世纪的争论。
导致了数学史上的第二次数学危机。
18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。
其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级数求和的任意性,符号的不严格使用,不考虑连续就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。
直到19世纪20年代,一些数学家才比较关注于微积分的严格基础。
从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到威尔斯特拉斯、戴德金和康托的工作结束,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了严格的基础。
悖论的产生 --- 第三次数学危机
数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。
这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。
由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。
1897年,福尔蒂揭示了集合论中的第一个悖论。
两年后,康托发现了很相似的悖论。
1902年,罗素又发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。
罗素悖论曾被以多种形式通俗化。
其中最著名的是罗素于1919年给出的,它涉及到某村理发师的困境。
理发师宣布了这样一条原则:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸。
当人们试图回答下列疑问时,就认识到了这种情况的悖论性质:"理发师是否自己给自己刮脸,"如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则。
罗素悖论使整个数学大厦动摇了。
无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第,卷末尾写道:"一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的时候,罗素先生的一封信把我置于这种境地"。
于是终结了近12年的刻苦钻研。
承认无穷集合,承认无穷基数,就好像一切灾难都出来了,这就是第三次数学危机的实质。
尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。
现代公理集合论的大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。
所以,第三次危机表面上解决了,实质上更深刻地以其它形式延续着。