数学发展史上的三次危机
数学三次危机的认识论意义
数学三次危机的认识论意义
数学三次危机是指在20世纪初期,数学界出现了三次被称为危机的事件,分别是:1902年的费马大定理的证明、1906年的卡尔·费马的无穷小问题和1908年的第一次国际数学会议。
这些事件对数学认识论的发展产生了重大影响。
费马大定理的证明:费马大定理是指所有自然数都是费马素数或者可以写成两个费马素数之积的形式。
这个定理的证明对于当时数学界来说是一个极其棘手的问题,直到20世纪初期才被证明。
费马大定理的证明对数学认识论产生了巨大影响,它揭示了数学知识的基本特征,即数学是建立在一些基本的公理和定理之上的。
卡尔·费马的无穷小问题:无穷小问题是指在数学中,一个数是否可以无限接近于0却永远不等于0。
卡尔·费马提出了无穷小问题,并建立了费马小数的概念,即一个数可以无限接近于0却永远不等于0。
这个问题对于当时数学界来说是一个棘手的问题,最终得到了解决。
无穷小问题的解决对数
学认识论产生了重大影响,它改变了人们对无限的理解,揭示了数学知识的基本特征,即数学是建立在一些基本的公理和定理之上的。
第一次国际数学会议:1908年,第一次国际数学会议在巴黎举行。
这次会议上,众多数学家聚集在一起,就数学的发展方向展开了讨论。
这次会议对数学认识论产生了重大影响,它揭示了数学知识的基本特征,即数学是一门跨越不同领域的学科,并且数学知识是由不同领域的数学家共同创造的。
总的来说,数学三次危机对数学认识论的发展产生了重大影响,它们揭示了数学知识的基本特征,即数学是建立在一些基本的公理和定理之上的,是一门跨越不同领域的学科,并且数学知识是由不同领域的数学家共同创造的。
数学三大危机简介
数学三大危机简介数学三大危机第一次数学危机毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。
毕达哥拉斯学派所说的数仅指整数。
而“一切数均可表示成整数或整数之比”则是这一学派的数学信仰。
然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数根号2的诞生。
小小根号2的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。
这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。
这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的根号2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。
更糟糕的是,面对这一荒谬人们竟然毫无办法。
这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的,史称“第一次数学危机”。
第二次数学危机出现第二次数学危机导源于微积分工具的使用。
伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹共同发现。
这一工具一问世,就显示出它的非凡威力。
许许多多疑难问题运用这一工具后变得易如反掌。
但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。
(整理)数学史上的三次危机.
数学史上的三次危机张清利第一次数学危机在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。
因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。
它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。
这是数学史上的一个里程碑。
毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。
后来,又发现数轴上还存在许多点也不对应于任何有理数。
因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。
例如, ,22,8,6,2等都是无理数。
无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。
事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。
第一次数学危机表明,当时希腊的数学已经发展到这样的阶段:1. 数学已由经验科学变为演绎科学;2. 把证明引入了数学;3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有更加重要的地位。
这种状态一直保持到笛卡儿解析几何的诞生。
中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。
即算术阶段。
希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。
在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。
总之,第一次数学危机是人类文明史上的重大事件。
无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。
首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。
数学史上的三次数学危机的成因分析
数学史上的三次数学危机的成因分析数学的发展并非一帆风顺,在其漫长的历史进程中,曾经历了三次重大的危机。
这些危机不仅对当时的数学界产生了巨大的冲击,也推动了数学的不断进步和完善。
第一次数学危机发生在古希腊时期,主要源于对无理数的发现。
在古希腊,毕达哥拉斯学派深信“万物皆数”,这里的数指的是整数以及整数之比(有理数)。
他们认为,宇宙中的一切现象都可以用有理数来解释和描述。
然而,毕达哥拉斯学派的一个成员希帕索斯却发现了一个惊人的事实:边长为 1 的正方形,其对角线的长度无法用有理数来表示。
按照勾股定理,这个对角线的长度应该是根号 2。
但根号 2 既不是整数,也不是两个整数之比,这一发现直接冲击了毕达哥拉斯学派的基本信念。
这次危机的成因可以归结为以下几点。
首先,当时的数学观念和认知存在局限性。
人们过度依赖于整数和有理数来理解世界,对于无法用已有数学概念表达的量缺乏准备。
其次,数学的推理和证明体系还不够完善。
在面对根号 2 这样的新对象时,缺乏严谨的逻辑方法来处理和理解。
第一次数学危机的影响是深远的。
它促使人们重新审视数学的基础,推动了数学逻辑和证明的发展。
数学家们开始意识到,仅仅依靠直观和经验是不够的,必须建立更加严谨的数学体系。
第二次数学危机则与微积分的基础问题相关。
在 17 世纪,牛顿和莱布尼茨各自独立地发明了微积分。
微积分在解决众多科学和工程问题中显示出了强大的威力,极大地推动了科学技术的发展。
然而,微积分在创立初期却存在着逻辑上的漏洞。
例如,在求导数的过程中,无穷小量的概念含糊不清。
无穷小量有时被看作是零,有时又被当作非零的量参与运算,这引发了广泛的争议。
造成第二次数学危机的原因主要有两个方面。
一方面,微积分的发展速度过快,其应用的迫切需求超过了理论基础的完善速度。
科学家们急于利用微积分解决实际问题,而对其内在的逻辑矛盾关注不够。
另一方面,当时的数学分析方法还不够精确和严格。
对于极限、无穷小等概念的理解和定义存在模糊性。
数学史三次危机简介
数学史三次危机简介
数学史上的三次危机,简要概括如下:
1. 第一次数学危机:公元前5世纪,毕达哥拉斯学派发现无理数,挑战了当时“万物皆数”(指整数或整数之比)的信念。
这次危机通过实数理论的建立得到解决。
2. 第二次数学危机:17至18世纪,围绕无穷小量的问题,主要与微积分的发展有关。
微积分学在理论不完善的情况下被广泛应用,但其基础—无穷小的概念受到质疑。
最终,通过实数理论和极限理论的建立,这次危机得到了缓解。
3. 第三次数学危机:19世纪末,集合论悖论的出现,如著名的罗素悖论,暴露了自洽性问题。
这些悖论挑战了集合论作为数学基础的地位。
至今,尽管哥德尔的不完备定理对形式系统的局限性做了阐述,但第三次数学危机并没有完全解决。
数学史上一共发生过三次危机,都是怎么回事
数学史上一共发生过三次危机,都是怎么回事?在数学历史上,有三次大的危机深刻影响着数学的发展,三次数学危机分别是:无理数的发现、微积分的完备性、罗素悖论。
第一次数学危机第一次数学危机发生在公元400年前,在古希腊时期,毕达哥拉斯学派对“数”进行了定义,认为任何数字都可以写成两个整数之商,也就是认为所有数字都是有理数。
但是该学派的一个门徒希帕索斯发现,边长为“1”的正方形,其对角线“√2”无法写成两个整数的商,由此发现了第一个无理数。
毕达哥拉斯的其他门徒知道后,为了维护门派的正统性,把希帕索斯杀害了,并抛入大海之中,看来古人也是解决不了问题时,先解决提出问题的人。
即便如此,无理数的发现很快引起了一场数学革命,史称第一次数学危机,这危机影响数学史近两千年的时间。
第二次数学危机微积分是一项伟大的发明,牛顿和莱布尼茨都是微积分的发明者,两人的发现思路截然不同;但是两人对微积分基本概念的定义,都存在模糊的地方,这遭到了一些人的强烈反对和攻击,其中攻击最强烈的是英国大主教贝克莱,他提出了一个悖论:从微积分的推导中我们可以看到,△x在作为分母时不为零,但是在最后的公式中又等于零,这种矛盾的结果是灾难性的,很长一段时间内数学家都找不到解决办法。
直到微积分发明100多年后,法国数学家柯西用极限定义了无穷小量,才彻底解决了这个问题。
第三次数学危机数学家总有一个梦想,试图建立一些基本的公理,然后利用严格的数理逻辑,推导和证明数学的所有定理;康托尔发明集合论后,让数学家们看到了曙光,法国科学家庞加莱认为:我们可以借助结合论,建造起整座数学大厦。
正在数学家高兴之时,英国哲学家、逻辑学家罗素,提出了一个惊人的悖论——罗素悖论:罗素悖论通俗描述为:在某个城市中,有一位名誉满城的理发师说:“我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。
”那么请问理发师自己的脸该由谁来刮?罗素悖论的提出,引发了数学上的又一次危机,数学家辛辛苦苦建立的数学大厦,最后发现基础居然存在缺陷,数学家们纷纷提出自己的解决方案;直到1908年,第一个公理化集合论体系的建立,才弥补了集合论的缺陷。
数学史上的三次危机
數學史上の三次危機1 無理數の發現——第一次數學危機大約西元前5世紀,不可通約量の發現導致了畢達哥拉斯悖論。
當時の畢達哥拉斯學派重視自然及社會中不變因素の研究,把幾何、算數、天文、音樂稱為“四藝”,在其中追求宇宙の和諧規律性。
他們認為:宇宙間一切事物都可歸結為整數或整數之比,畢達哥拉斯學派の一項重大貢獻是證明了畢氏定理,但由此也發現了一些直角三角形の斜邊不可能表示成整數或整數之比(不可通約)の情形,如直角邊長均為1の直角三角形就是如此。
這一悖論直接觸犯了畢氏學派の根本信條,導致了當時認識上の“危機”,從而產生了第一次數學危機。
到了西元前370年,這個矛盾被畢氏學派の歐多克斯通過給比例下新定義の方法解決了。
他の處理不可通約量の方法,出現在歐幾裏得《原本》第5卷中,歐多克斯和狄德金於1872年給出の無理數の解釋和現代解釋基本一致。
今天中學幾何課本中對相似三角形の處理,仍然反映出由不可通約量而帶來の某些困難和微妙之處。
第一次數學危機對古希臘の數學家觀點有極大衝擊。
這表明,幾何學の某些真理和算數無關,幾何量不能完全由整數及其比來表示,反之卻可以由幾何量來表示出來,整數の權威地位開始動搖,而幾何學の身份升高了。
危機也表明,直覺和經驗不一定靠得住,推理證明才是可靠の。
從此希臘人開始重視演繹推理,並由此建立了幾何公理體系,這不能不說是數學思想上の一次巨大革命!2 無窮小量是零嗎?——第二次數學危機18世紀,微分法和積分法在生產和實踐上都有了廣泛而成功の應用,大部分數學家對這一理論の可靠性是毫不懷疑の。
1734年,英國哲學家、大主教貝克萊發表《分析學家或者向一個不信正教數學家の進言》,矛頭指向微積分の基礎——無窮小の問題,提出了所謂貝克萊悖論。
他指出:“牛頓在求の導數時,採取了先給以增量0,應用二項式,從中減去以求得增量,並除以0以求出の增量與增量之比,然後又讓0消逝,這樣得出增量の最終比。
這裏牛頓做了違反矛盾律の手續——先設有增量,又令增量為零,也即假設沒有增量。
数学史上的三次危机
数学史上的三次危机从哲学上来看,矛盾是无处不存在的,即便以确定无疑著称的数学也不例外。
数学中有大大小小的许多矛盾,例如正与负、加与减、微分与积分、有理数与无理数、实数与虚数等等。
在整个数学发展过程中,还有许多深刻的矛盾,例如有穷与无穷、连续与离散、存在与构造、逻辑与直观、具体对象与抽象对象、概念与计算等等。
在数学史上,贯穿着矛盾的斗争与解决。
当矛盾激化到涉及整个数学的基础时,就会产生数学危机。
而危机的解决,往往能给数学带来新的内容、新的发展,甚至引起革命性的变革。
数学的发展就经历过三次关于基础理论的危机。
一、第一次数学危机从某种意义上来讲,现代意义下的数学,也就是作为演绎系统的纯粹数学,来源予古希腊毕达哥拉斯学派。
它是一个唯心主义学派,兴旺的时期为公元前500年左右。
他们认为,“万物皆数”(指整数),数学的知识是可靠的、准确的,而且可以应用于现实的世界,数学的知识由于纯粹的思维而获得,不需要观察、直觉和日常经验。
整数是在对于对象的有限整合进行计算的过程中产生的抽象概念。
日常生活中,不仅要计算单个的对象,还要度量各种量,例如长度、重量和时间。
为了满足这些简单的度量需要,就要用到分数。
于是,如果定义有理数为两个整数的商,那么由于有理数系包括所有的整数和分数,所以对于进行实际量度是足够的。
有理数有一种简单的几何解释。
在一条水平直线上,标出一段线段作为单位长,如果令它的定端点和右端点分别表示数0和1,则可用这条直线上的间隔为单位长的点的集合来表示整数,正整数在0的右边,负整数在0的左边。
以q为分母的分数,可以用每一单位间隔分为q等分的点表示。
于是,每一个有理数都对应着直线上的一个点。
古代数学家认为,这样能把直线上所有的点用完。
但是,毕氏学派大约在公元前400年发现:直线上存在不对应任何有理数的点。
特别是,他们证明了:这条直线上存在点p不对应于有理数,这里距离op等于边长为单位长的正方形的对角线。
于是就必须发明新的数对应这样的点,并且因为这些数不可能是有理数,只好称它们为无理数。
数学三大危机相关内容整理
数学三大危机相关内容整理数学三大危机是指“连续统假设”、“黎曼假设”和“质数分布问题”三个数学领域中长期存在的未解决问题,这些问题的解决将对整个数学领域产生重大影响。
本文将对这三大危机进行相关内容整理。
连续统假设,又称“希尔伯特第八问题”,是指在实数轴上存在着一个未知点集,该点集是唯一的,既不可数又不可测的,且其基数介于可数集合和未经度量集合之间。
如此一来,这个点集合就不具有任何可数性和测度性,这种奇怪的存在方式是到目前为止唯一没有被证明的数学假设。
在20世纪40年代,由于克劳斯·约尔丹(Klaus Jouannaud)和吕德维希·希尔伯特(David Hilbert)等人的工作,连续统假设成为了著名的数学三大危机之一。
黎曼假设,又称狄利克雷假设,是指黎曼猜测函数的零点的分布情况。
这个函数是一种用到许多数学领域中的函数,如计算质数密度、数值分析和量子力学等。
在黎曼假设的前提下,研究人员可以通过计算黎曼积分来推导数学中的许多问题。
然而,黎曼假设在很长一段时间内一直无法得证,而其证明的困难程度使学界普遍认为,要想证明黎曼假设至少需要数学主题中还未被发现的重要数学知识。
质数分布问题,也叫“圆簇假设”,是指关于质数分布法则的数学问题,也是数学领域中的一个未解决问题。
这个假设表明,即使没有办法精确计算每个质数的位置,但是质数导出的点可以被放置为一个有序而完整的模式。
这个假设最初由欧拉在18世纪提出,但芝诺茨(Bogomolny)和马克斯-普兰克研究黎曼猜想的随后工作引发了对这个问题的关注。
至今,质数分布问题仍然未被解决。
在20世纪,由于海德与范伊克和费切斯与萨尔贡等人的工作,质数分布问题成为了著名的数学三大危机之一。
总之,数学三大危机相关内容的整理说明了这三个未解决问题的复杂性和重要性,它们的解决将对数学领域产生深刻而广泛的影响。
数学家们在解决这些问题的过程中,不仅仅需要依靠自己的数学知识和技巧,还需要在各个领域之间建立联系和进行深入交流,共同寻求解决方案。
三次数学危机的产生与解决
感谢观看
解决措施
针对三次数学危机,数学家们提出了各种解决措施。在第一次数学危机中, 欧多克索斯提出了实数的概念,将数学从困境中解脱出来;在第二次数学危机中, 数学家们对集合论进行严格的公理化,提出了公理化集合论;在第三次数学危机 中,
数学家们发展出了新的数学逻辑系统——模态逻辑,为数学的发展提供了更 加坚实的基础。
三次数学危机的产生与解决
目录
01 第一次数学危机
03 第三次数学危机
02 第内容
目录
06 总结
数学作为一门基础学科,是人类文明的重要组成部分。然而,在数学发展史 上,曾先后出现过三次严重的危机。本次演示将分别探讨这三次数学危机的产生 背景、原因及后果,并提出相应的解决措施。
第一次数学危机
第一次数学危机发生在公元前580年至568年之间的古希腊时期。这场危机的 起因主要在于当时数学界对无理数认识的不足。古希腊的数学家们认为,所有的 数都可以表示为整数或分数,即有理数。然而,当时希腊数学家希帕索斯发现了 一个问题:如果将
正方形的对角线进行等分,那么所得的线段长度就无法用有理数来表示。这 个发现动摇了当时数学界的基础,引发了第一次数学危机。
第二次数学危机
第二次数学危机发生在19世纪末期。这次危机源于康托尔的集合论,由于集 合论的某些基本概念含混不清,引发了数学界的恐慌。这场危机的根本原因是, 当时数学家们并未对集合论进行严格的公理化。为了解决这次危机,数学家们对 集合论进行了深入
研究,最终由策梅洛提出了公理化集合论,平息了这次危机。
发展。而在第三次数学危机时期,人们对数学的认知发生了根本性的改变, 使数学进入了一个全新的发展阶段。
总结
三次数学危机的产生与解决,是人类文明发展的重要组成部分。这些危机不 仅推动了数学的快速发展,而且也启示人们要不断深入思考和探索数学的内涵和 基础。通过了解三次数学危机的历史背景、原因、后果及解决措施,我们可以更 好地理解数学的
历史上的三次数学危机
17
3.危机的解决 1)必要性 微积分虽然在发展,但微积分逻辑基 础上存在的问题是那样明显,这毕竟是数 学家的一块心病。
18
而且,随着时间的推移,研究范围的 扩大,类似的悖论日益增多。数学家在研 究无穷级数的时候,做出许多错误的证 明,并由此得到许多错误的结论。由于没 有严格的极限理论作为基础。数学家们在 有限与无限之间任意通行(不考虑无穷级 数收敛的问题)。
成“无穷小”了,而无穷小作为一个量,既不 是
0,又不是非0,那它一定是“量的鬼魂”了。 这就是著名的“贝克莱悖论”。 对牛顿微积分的这一责难并不是由数学家
提出的,但是,牛顿及他以后一百年间的数学 家,都不能有力地还击贝克莱的这种攻击。
13
3)实践是检验真理的唯一标准
应当承认,贝克莱的责难是击中要害的。
23
3)严格的实数理论的建立 ① 对以往理论的再认识 后来的一些发现,使人们认识到,极 限理论的进一步严格化,需要实数理论的 严格化。微积分或者说数学分析,是在实 数范围内研究的。但是,下边两件事,表 明极限概念、连续性、可微性和收敛性对 实数系的依赖比人们想象的要深奥得多。
24
一件事是,1874年德国数学家魏尔斯特拉 斯(K.T.W.Weirstrass,1815—1897)构造 了一个“点点连续而点点不可导的函数”。
无法解决的科技问题。但是逻辑上不严格,遭
到指责。
10
2)贝克莱的发难 英国的贝克莱大主教发表文章猛烈攻 击牛顿的理论。 贝克莱问道:“无穷小”作为一个量, 究竟是不是0?
11
① 如果是0,(*)式左端当 t 和 S 变
史上数学三大危机简介
---------------------------------------------------------------最新资料推荐------------------------------------------------------史上数学三大危机简介数学三大危机数学三大危机简述:第一,希帕索斯(Hippasu,米太旁登地方人,公元前 5 世纪)发现了一个腰为 1 的等腰直角三角形的斜边(即根号 2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论。
相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希帕索斯抛入大海;第二,微积分的合理性遭到严重质疑,险些要把整个微积分理论推翻;第三,罗素悖论:S 由一切不是自身元素的集合所组成,那 S 包含 S 吗?用通俗一点的话来说,小明有一天说:我正在撒谎!问小明到底撒谎还是说实话。
罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论!第一次数学危机毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题万物皆数是该学派的哲学基石。
毕达哥拉斯学派所说的数仅指整数。
而一切数均可表成整数或整数之比则是这一学派的数学信仰。
1 / 6然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的掘墓人。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为 1 的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数的诞生。
小小的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。
数学史上的三次危机3篇
数学史上的三次危机第一次危机:希腊数学危机希腊数学家们是数学历史上的伟大人物,他们创造了许多数学概念和理论,如欧几里得几何、三角学、锥曲线等。
但在公元前4世纪到公元前3世纪的时期,希腊数学发生了危机。
这一时期的希腊数学家纷纷开始关注无穷大和无穷小的概念。
然而,这些概念并不符合当时的逻辑和数学标准,他们甚至不能用现代的数学符号来表示。
因此,这些数学家的理论并没有得到广泛的认可和接受。
在这一时期,希腊数学的道路出现了两条分支。
一条是传统的代数学派,他们注重整数、有理数和分数的研究;另一条是几何学派,他们将一切几何测量归纳为单个不可减少的点。
两个学派的意见相左,争论不断,导致了希腊数学的危机。
这一时期的数学发展为数学的发展带来了许多思考,但也让希腊数学陷入了停滞和分化的境地。
第二次危机:19世纪末的非欧几何危机19世纪末期,非欧几何成为了当时的热门话题。
在欧几里得几何中,平行公设是一项基本性质,两条不重合的直线在平面上永远不会相交。
然而,非欧几何学派质疑这一性质,提出了一种名为反射性的新性质,也就是说,两条不重合的直线在特定的情况下是可以相交的。
这种观点的提出,引起了数学界的强烈反响和激烈争议。
欧几里得几何是基础数学,因此许多人认为非欧几何在一定程度上是在否认这一基础。
在这种文化和学术背景下,非欧几何的认可难以达成,成为了数学史上的一次危机。
第三次危机:20世纪初的集合论危机20世纪初,集合论成为了数学的新话题。
然而,当时对于集合论的探讨往往涉及到关于无限的思考,这些思考往往与人的直觉相悖,甚至有些违反逻辑。
其中最著名的例子就是悖论:一个包含所有时空中的点的集合是否存在?如果存在,那么这个集合中是否包含它自身?如果不包含,那么就不能称其为包含所有时空中的点的集合;如果包含,那么这个集合就非常巨大,超出了我们的想象。
这个悖论意味着个体和整体的关系无法解决,出现了数学中的自我矛盾。
这一数学危机的解决需要借鉴哲学和逻辑学的工具,很多数学家因此开始关注哲学基础和逻辑体系,试图建立一个完备的集合论,以应对数学的自我矛盾和前进。
三大数学危机
三大数学危机数学危机是数学公理在定义上的不完全或不够严谨,导致在理性推论下,将会得到错误的结论。
例如:在无理数还没被发现之前,在毕氏定理中出现腰长为1的等腰直角三角形的斜边长度,竟是无法写成有理数的数。
这是第一次数学危机。
第二次数学危机得解决微积分引入无穷小量而产生的极值问题(飞矢不动的悖论)。
第三次数学危机则是因罗素悖论而起,罗素悖论点出了数学集合论中的缺失。
飞矢不动悖论是古希腊数学家芝诺(Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论中的一个。
人们通常把这些悖论称为芝诺悖论。
芝诺提出,由于箭在其飞行过程中的任何瞬间都有一个暂时的位置,所以它在这个位置上和不动没有什么区别。
中国古代的名家惠施也提出过,“飞鸟之景,未尝动也”的类似说法。
芝诺问他的学生:“一支射出的箭是动的还是不动的?”“那还用说,当然是动的。
”“确实是这样,在每个人的眼里它都是动的。
可是,这支箭在每一个瞬间里都有它的位置吗?”“有的,老师。
”“在这一瞬间里,它占据的空间和它的体积一样吗?”“有确定的位置,又占据着和自身体积一样大小的空间。
”“那么,在这一瞬间里,这支箭是动的,还是不动的?”“不动的,老师”“这一瞬间是不动的,那么其他瞬间呢?”“也是不动的,老师”“所以,射出去的箭是不动的?”罗素悖论(Russell's paradox),也称为理发师悖论,是罗素于1901年提出的悖论,一个关于类的内涵问题。
罗素悖论当时的提出,造成了第三次数学危机。
理发师悖论”悖论内容一位理发师说:“我只给不给自己刮脸的人刮脸。
”那么他是否给自己刮脸呢?如果他给的话,但按照他的话,他就不该给自己刮脸;如果他不给的话,但按照他的话,他就该给自己刮脸。
于是矛盾出现了。
罗素悖论我们通常希望:任给一个性质,满足该性质的所有类可以组成一个类。
但这样的企图将导致悖论:罗素悖论:设性质P(x)表示“”,现假设由性质P确定了一个类A——也就是说“”。
数学史上的三次危机
数学史上的三次危机摘要①公元前580~568年之间,希帕索斯发现了第一个无理数√2,促使了第一次数学危机的发生。
而后,在几何学中引进了不可通约量,使欧式几何变得更加完善。
②大约在公元前450年,莱布尼茨提出“无穷小量是零还是非零”促使了第二次数学危机的发生。
而后,柯西提出极限理论,使微积分更完善。
③十九世纪下半叶,罗素悖论的提出,促使了第三次数学危机的发生。
而后,弗芝克尔改进策梅罗的七条公理得出ZF公理系统,使得集合论得到了发展。
关键词危机无理数无穷小罗素悖论正文数学是研究现实世界数量关系和空间形式的科学。
是在人类长期的实践活动中产生和发展的。
发源于计数和度量,随着生产力的发展,越来越多地要求对自然现象作定量研究;同时由于数学自身的发展,使其具有高度的抽象性、严谨的逻辑性和广泛的适用性。
数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。
它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。
因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。
数学是自然中最基础的学科,它是所有科学之父,它常常被人们认为是自然科学中发展得最完善,最具有严谨的逻辑性的一门学科,但是在数学的发展史中,人们为了使数学更快的向前发展,从而引入一些新的东西使问题得到化解,在这样的基础上,引发了三次危机。
第一次危机发生在公元前580~568年之间的古希腊。
毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。
而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。
然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。
数学三次危机的启示和感悟
数学三次危机的启示和感悟聊起数学三次危机,感觉就像翻开了一本充满波折与智慧的探险日记。
咱们都知道,数学这东西,平时看起来挺高冷,但其实它也有热血沸腾、让人揪心的时候。
今天,咱们就来聊聊数学历史上那三次让人目瞪口呆的“大事件”,看看它们能给我们带来啥启示和感悟。
话说第一次数学危机,发生在古希腊那会儿。
那时候的人们特别爱思考,他们想啊,这世界上的一切是不是都能用数学来解释呢?于是,毕达哥拉斯学派的大佬们就提出了一个牛气冲天的观点:万物皆数。
但好景不长,有个叫希帕索斯的家伙,不小心踢到了数学的“铁板”——他居然发现了个不能表示为两个整数比的数,也就是咱们现在说的无理数。
这事儿一出,整个学派都炸了锅,毕竟他们的信仰受到了严重挑战。
这场危机告诉我们,世界远比我们想象的要复杂得多。
有时候,你以为已经掌握了真理,结果却发现只是冰山一角。
所以,咱们得保持谦逊,别轻易说“我懂了”。
生活中也一样,别总觉得自己啥都知道,多听听别人的意见,说不定会有新发现呢。
第二次数学危机,发生在17世纪。
那时候,微积分这个超级工具刚刚问世,牛顿和莱布尼茨两位大佬争得不可开交,都说是自己发明的。
但微积分这东西,虽然好用,却有点“模糊”,比如无穷小量这个概念,就让人头疼不已。
数学家们开始质疑:这玩意儿到底靠不靠谱啊?于是,数学界又陷入了一片混乱。
这场危机教会我们,创新总是伴随着风险和挑战。
微积分虽然厉害,但一开始也遇到了不少麻烦。
就像咱们创业或者尝试新事物一样,刚开始可能会遇到很多困难和质疑,但只要坚持下去,不断完善,总会找到属于自己的路。
所以,别怕困难,别怕质疑,相信自己,勇往直前就对了。
第三次数学危机,发生在20世纪初。
这次的主角是罗素和他的“理发师悖论”。
简单来说,就是有个理发师只给那些不给自己剪头发的人剪头发。
那么问题来了:理发师到底应不应该给自己剪头发呢?如果他给自己剪头发,那他就违反了只给不给自己剪头发的人剪头发的规则;如果他不给自己剪头发,那他又符合给自己剪头发的条件。
数学历史上三大危机
数学历史上三大危机数学作为一门研究数量、结构、变化和空间等概念的学科,自诞生以来就不断面临着各种挑战和危机。
其中,数学历史上最为著名的三大危机,分别是无理数的发现、无穷小量的悖论以及集合论中的罗素悖论。
这三大危机不仅推动了数学的发展,也深刻地影响了数学哲学和科学哲学的演变。
一、无理数的发现无理数的发现是数学史上的一次重大突破,也是数学历史上第一次危机。
自古以来,人们一直认为所有的数都可以表示为分数,即两个整数的比例。
然而,公元前5世纪,古希腊数学家毕达哥拉斯学派发现了一个重要的几何事实:边长为1的正方形的对角线长度无法用两个整数的比例来表示。
这个发现不仅颠覆了毕达哥拉斯学派关于数的理论,也引发了一场关于无理数存在性的哲学争论。
无理数的发现揭示了数学中存在着一类无法用分数精确表示的数,这对当时的数学观念产生了巨大的冲击。
为了解决这个问题,古希腊数学家们发展了无理数的理论,并提出了诸如平方根、立方根等概念。
无理数的发现不仅推动了数学的发展,也促使人们重新审视数学的基础和本质。
二、无穷小量的悖论无穷小量的悖论是数学史上第二次重大危机。
在17世纪,随着微积分的诞生,无穷小量的概念逐渐被引入数学研究。
然而,无穷小量的性质和应用却引发了诸多悖论和争论。
例如,无穷小量是0还是非0?无穷小量乘以无穷大是什么?这些问题困扰着当时的数学家,也对微积分的发展产生了阻碍。
为了解决无穷小量的悖论,数学家们进行了深入的研究和探索。
19世纪,柯西、黎曼等数学家提出了极限的概念,建立了微积分的严格基础。
极限概念的引入不仅解决了无穷小量的悖论,也推动了数学分析的进一步发展。
三、集合论中的罗素悖论集合论中的罗素悖论是数学史上第三次重大危机。
19世纪末,德国数学家康托尔创立了集合论,为数学提供了一个全新的研究对象。
然而,1901年,英国哲学家罗素发现了一个关于集合论的基本悖论:一个集合如果包含所有不包含自身的集合,那么这个集合是否包含自身?罗素悖论揭示了集合论中存在的基本矛盾,对数学的基础产生了严重的挑战。
数学的三大危机和悖论
•
现 得 很 优 秀 ︒
数 学 体 系 ︐ 尽 管 很 多 方 面 表
机 ︐ 就 没 能 完 全 形 成 真 正 的
大 国 ︐ 因 为 没 有 这 次 数 学 危
向 不 同 的 路 ︐ 像 中 国 这 样 的
使 得 东 西 方 数 学 体 系 完 全 走
大 定 律 ︒ 正 是 因 为 这 次 危 机 ︐
• 下面我来跟大伙聊聊这三次有意思的事件。
第一次数学文化
第一次数学危机发生在公元前500年左右,我感觉跟 精确度有关,我们平时用到的数学知识,几乎都只要 精确到一定程序就可以了,所以古希腊毕达哥拉斯学 派认为,任何一个数都能用a/b的形式来表示,其中a 和b都是整数,这些数在数学上有个专有名词叫有理 数。但是有一天,有个叫希帕索斯的学者发现,好像 不是这么回事,他作了一个这样的假设,就是等腰直 角三角形,如果直边都为1,那么它的斜边(√2)就不 满足这个条件。这个证明起来其实很简单,但是对于 当时着了迷的毕达哥拉斯派学者来说,这完全不能接 受,就好像发现自己一直深爱的很纯洁的美女是绿茶 妹一样,这些气急败坏的学者们最后把希帕索斯扔到 海里面去了。这就是典型的学术迫害啊。
数学的三大危机和悖论
• 在数学的历史上,有过三次比较重大的危机。
• 第一次是关于无理数的,这次危机把毕达哥拉斯的数 学王朝推翻。 • 第二次数学危机是关于微积分的,是常识跟数学之间 的契合的问题。
• 第三次数学危机发生在二十世纪初,这次危机涉及到 了数学中最基础的大厦,差点把整个数学理论推翻重 来。
的 地 位 下 降 ︐ 几 何 学 的 地 位
第 一 次 数 学 危 机 使 得 纯 代 数
多 的 学 者 发 现
一 个 希 帕 索 斯 ︐ ︐ 自 然 会 ︐ 有 更 ︔ √2 √3 √5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
%山西师大临汾学院
陈云波
古希腊到现代 # 数学的基础曾受到三次危 ! 无穷小计算讲义 " 中给出了数学分析一系列基本概 念的精确定义 $ 例如 ’ 他给出了精确的极限定义 # 然后 用极限定义连续性 * 导数 * 微分 # 定积分和无穷级数的 收敛性 # 接着魏尔斯特拉斯及其追随者们实现了分析 的算术化 $ 这时 # 人们认为 # 数学基础的第二次危机已 经克服 # 数学的整个结构已被恢复 $ 数学建立在无懈 可击的基础上了 $ 到了 %- 世纪末 # 康托尔的集合论已经得到数学家 们的承认 # 集合论成功地应用到了其他的数学分支 # 集 合 论 是 数 学 的 基 础 #由 于 集 合 论 的 使 用 #数 学 似 乎 已经达到了, 绝对的严格 ) # 但是 # 正当人们兴高采烈 时 # 数学王国的大地爆发了又一次强烈的地震 $ 数学基础的第三次危机是在 %3-. 年突然出现的 # 这次危机是由于康托尔的一般集合论的边缘发现的 悖论造成的 # 因为那么多数学分支都建立在集合论的 基础上 # 所以集合论中悖论的发现自然引起了对数学 的整个基本结构的有效性的怀疑 $ 康 托 尔 曾 证 明 了 #对 于 任 意 给 定 的 超 限 数 #总 存 在一个比它大的超限数 # 所以不存在最大的超限数 $ 现在考虑这样一个集合# 它的元素是所有可能的集 合 #肯 定 地 #没 有 一 个 集 合 所 含 的 元 素 个 数 比 这 个 集 合多 $ 但是 # 如果这样 # 怎么可能有一个超限数比这个 集合的超限数大呢 康托尔悖论用到集合论的深入结果 # 但英国数学 家罗素发现了一个悖论 # 它除了集合概念本身外不需 要 别 的 概 念 #罗 素 悖 论 的 内 容 是 #如 果 用4表 示 是 它 们本身的成员的所有集合 的 集 合 # 而 用 5 表 示 不 是 它 们 本 身 成 员 的 所 有 集 合 的 集 合 #那 么 #集 合5是 否 它 本身的成员 . 如 果 5 是 它 本 身 的 成 员 # 则 5 是 4 的 成 员 #而 不 是5的 成 员 #于 是5不 是 它 本 身 的 成 员 #而 如 果5不 是 它 本 身 的 成 员 #则5是5的 成 员 #而 不 是 4的 成员 # 于是 5 是它本身的成员 # 无 论 何 种 情 况 # 我 们 都 将得到矛盾 / 罗素的悖论在数学中引起了真正的麻烦 # 这样就 出现了数学史上第三次教学危机 $ 第三次危机使数学家们意识到 # 应当建立某种公 理系统来对集合论作出必要的规定 # 以排除罗素悖论 和其他悖论 # 于是不久就出现了好几种公理系统 $ 时 至今日 # 第三次数学危机从整体看来还没有解决到令 人满意的程度 $ % 责任编辑 刘永庆 & 0 !" 0
! 教学与管理 "
!""# 年 # 月 !" 日
!"#$%&’
!"#$
从
机的困扰 # 每一次都是大部分被人们认为 确凿无疑的数学受到质疑 # 并且必须改造 $ 数 学 基 础 的 第 一 次 危 机 பைடு நூலகம் 生 在 公 元 前$世 纪 #当 时希腊论证数学的祖师之一毕达哥拉斯在希腊建立 了一个秘密会社 #也就是今天所称的毕达哥拉斯学派 $ 毕达哥拉斯学派相信任何量都可以表示成两个 整数之比% 即某个有理量 & # 这在几何上相当于 ’ 对于 任意给定的两条线段 $ 总能找到第三条线段 # 以它为 单位线段能将给定的两条线段划分为整数线段 # 希腊 人 称 这 样 两 条 给 定 线 段 为( 可 公 度 量 ) # 意 即 有 公 共 的度量单位 # 然而毕达哥拉斯学派后来发现并不是任 意两条线段都是可公度的 # 存在着不可公度的线段 # 例如边长为 % 的正方形的对角线和其一边就构不成可 公 度 线 段 #也 就 是 说 # ! ! 不 是 两 个 整 数 之 比 #不 是 有理数 $ 大约一个世纪以后 # 数学家欧多克斯提出了新比 例理论 ’ 设 & *’ *( *) 是 任 意 四 个 量 # 其 中 & 和 ’ 同 类 #% 即 均为线段 * 角 * 面积等 & #( 和 ) 同类 $ 如果对于任意两 个 正 整 数 * 和 + # 关 系 *& "+’ 是 否 成 立 # 相 应 地 取 决 于关系*,#+)是否成立#则称&与’之比等于(与)之比$ 这一定义并未限制汲及的量是可公度的还是不 可公度的 # 从而巧妙地回避了无理量引起的麻烦 # 但 是 危 机 的 根 本 解 决 # 是 在 %- 世 纪 # 人 们 借 助 极 限 概 念 对无理数作出严格定义之后 $ 这次危机的产生和解决 大大推动了数学的发展 $ 数 学 基 础 的 第 二 次 危 机 是 %. 世 纪 随 着 牛 顿 和 莱 布尼兹发现微积分而产生的 $ 在微积分的发展过程中 # 一方面是成果丰硕 # 另 一方面是基础的不稳固 # 出现了越来越多的谬论和悖 论 $ 数学的发展又遇到了深刻的令人不安的危机 $ 例 如为了求幂 / 的流数 $ 牛顿假设 / 有一个增量 $0 # 并 以 它 去 除 / 的 增 量 得 +/ 2
% +1% & +1! + / $02 ++ 然 !
+1%
后又让 $0 , 消失 ) 得到 / 的流数 +/
# 这里关于增量
$0 的假设前后矛盾 # 不合逻辑 $
为了补救第二次数学危机 # 数学家们开始在严格 化基础上重建微积分 # 其中贡献最大者首推法国数学 家 柯 西 # 他 写 出 了 一 系 列 著 作 # 他 在! 分 析 教 程 " 和