小波去噪代码

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1:

load leleccum;

index = 1:1024;

x = leleccum(index);

%产生噪声信号

init = 2055615866;

randn('seed',init);

nx = x + 18*randn(size(x));

%获取消噪的阈值

[thr,sorh,keepapp] = ddencmp('den','wv',nx);

%对信号进行消噪

xd = wdencmp('gbl',nx,'db4',2,thr,sorh,keepapp);

subplot(221);

plot(x);

title('原始信号');

subplot(222);

plot(nx);

title('含噪信号');

subplot(223);

plot(xd);

title('消噪后的信号');

例2:

本例中,首先使用函数wnoisest获取噪声方差,然后使用函数wbmpen获取小波去噪阈值,最后使用wdencmp实现信号消噪。

load leleccum;

indx = 1:1024;

x = leleccum(indx);

%产生含噪信号

init = 2055615886;

randn('seed',init);

nx = x + 18*randn(size(x));

%使用小波函数'db6'对信号进行3层分解

[c,l] = wavedec(nx,3,'db6');

%估计尺度1的噪声标准差

sigma = wnoisest(c,l,1);

alpha = 2;

%获取消噪过程中的阈值

thr = wbmpen(c,l,sigma,alpha);

keepapp = 1;

%对信号进行消噪

xd = wdencmp('gbl',c,l,'db6',3,thr,'s',keepapp);

subplot(221);

plot(x);

title('原始信号');

subplot(222);

plot(nx);

title('含噪信号');

subplot(223);

plot(xd);

title('消噪后的信号');

例3:

本例中,对小波分解系数使用函数wthcoef进行阈值处理,然后利用阈值处理后的小波系数进行重构达到去噪目的。load leleccum;

indx = 1:1024;

x = leleccum(indx);

%产生含噪信号

init = 2055615866;

randn('seed',init);

nx = x + 18*randn(size(x));

%使用小波函数'db5'对信号进行3层分解

[c,l] = wavedec(nx,3,'db5');

%设置尺度向量

n = [1,2,3];

%设置阈值向量

p = [100,90,80];

%对高频系数进行阈值处理

nc = wthcoef('d',c,l,n,p);

%对修正后的小波分解结构进行重构

rx = waverec(nc,l,'db5');

subplot(221);

plot(x);

title('原始信号');

subplot(222);

plot(nx);

title('含噪信号');

subplot(223);

plot(rx);

title('消噪后的信号');

例4:

本例中,使用一维信号的自动消噪函数wden对信号进行消噪。

load leleccum;

indx = 1:1024;

x = leleccum(indx);

%产生含噪信号

init = 2055615866;

randn('seed',init);

nx = x + 18*randn(size(x));

%将信号nx使用小波函数'sym5'分解到第5层

%使用mimimaxi阈值选择系数进行处理,消除噪声信号

lev = 5;

xd = wden(nx,'minimaxi','s','mln',lev,'sym5');

subplot(221);

plot(x);

title('原始信号');

subplot(222);

plot(nx);

title('含噪信号');

subplot(223);

plot(xd);

title('消噪后的信号');

原帖:/detail/3450.html

x=[-1.58 0.42 0.46 0.78 -0.49 0.59 -1.3 -1.42 -0.16 -1.47 -1.350.36 -0.44 -0.14 1 -0.5 -0.2 -0.06 -0.6 0.42 -1.52 0.51 0.76 -1.50.16 -1.29 -0.65 -1.48 0.6 -1.65 -0.55];

lev=5;

wname='db3';

[c,l]=wavedec(x,lev,wname);

sigma=wnoisest(c,l,1);

alpha=2;

thr1=wbmpen(c,l,sigma,alpha)

[thr2,nkeep]=wdcbm(c,l,alpha)

xd1=wdencmp('gbl',c,l,wname,lev,thr1,'s',1);

[xd2,cxd,lxd,perf0,perfl2]=wdencmp('lvd',c,l,wname,lev,thr2,'h');

[thr,sorh,keepapp]=ddencmp('den','wv',x)

xd3=wdencmp('gbl',c,l,wname,lev,thr,'s',1);

subplot(411);plot(x);title('原始信号','fontsize',12);

subplot(412);plot(xd1);title('使用penalty阈值降噪后信号','fontsize',12);

subplot(413);plot(xd2);title('使用Birge-Massart阈值降噪后信号','fontsize',12);

subplot(414);plot(xd3);title('使用缺省阈值降噪后信号','fontsize',12);

其他相关帖子:

/p-17095216.html

/s/blog_5649784301000e20.html

/lxg1123

/blog/static/101639102201081710617825/

相关文档
最新文档