西北农林科技大学数值分析数值法实验报告

合集下载

数值分析实验报告

数值分析实验报告

数值分析实验报告【引言】数值分析是一门研究利用计算机和数学方法解决实际问题的学科,它在工程、科学和经济领域中有着广泛的应用。

在这个实验报告中,我将分享我在数值分析实验中的一些发现和结果。

【实验目的】本次实验的目的是通过数值方法对给定的问题进行求解,并分析数值方法的精确性和稳定性。

我们选择了经典的插值和数值积分问题来进行实验。

【实验过程】在插值问题中,我使用了拉格朗日插值和样条插值两种方法。

通过使用已知的数据点,这些方法能够通过构造多项式函数来逼近原始函数,从而能够在未知点上进行预测。

通过比较两种插值方法的结果,我发现拉格朗日插值在低维数据上表现更好,而样条插值在高维数据上更能保持插值曲线的平滑性。

在数值积分问题中,我使用了复合梯形公式和复合辛普森公式来进行数值积分。

这两种方法可以将复杂的区间上的积分问题转化为对若干个小区间进行数值积分的问题。

实验结果表明,复合辛普森公式在使用相同的步长时,其数值积分结果更为精确。

【实验结果】我以一个实际问题作为例子来展示实验结果。

问题是计算半径为1的圆的面积。

通过离散化的方法,我将圆划分为多个小的扇形区域,并使用数值积分方法计算每个扇形的面积。

最后将每个扇形的面积相加,即可得到圆的近似面积。

通过调整离散化的精度,我发现随着扇形数量的增加,计算得到的圆的面积越接近真实的圆的面积。

在插值问题中,我选择了一段经典的函数进行插值研究。

通过选择不同的插值节点和插值方法,我发现当插值节点越密集时,插值结果越接近原函数。

同时,样条插值方法在高阶导数连续的情况下能够更好地逼近原始函数。

【实验总结】通过这次实验,我对数值分析中的插值和数值积分方法有了更深入的理解。

我了解到不同的数值方法在不同的问题中有着不同的适用性和精确度。

在实际应用中,我们需要根据具体问题选择合适的数值方法,并进行必要的数值计算和分析,以获得准确可靠的结果。

总的来说,数值分析作为一种重要的工具和方法,在科学研究和工程实践中具有广泛的应用,并且不断发展和创新。

数值分析综合实验报告

数值分析综合实验报告

一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。

二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。

(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。

2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。

(2)Newton法:利用函数的导数信息,通过迭代逼近根。

(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。

3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。

(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。

(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。

三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。

(2)计算插值多项式在未知点的函数值。

2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。

(2)计算插值多项式在未知点的函数值。

3. 方程求根方法(1)输入方程和初始值。

(2)选择求解方法(二分法、Newton法、不动点迭代法)。

(3)迭代计算,直到满足精度要求。

4. 数值积分方法(1)输入被积函数和积分区间。

(2)选择积分方法(矩形法、梯形法、辛普森法)。

(3)计算积分值。

四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。

(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。

2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。

(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。

(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。

3. 数值积分方法(1)矩形法:计算简单,但精度较低。

数值分析实验 实验报告

数值分析实验 实验报告

数值分析实验实验报告数值分析实验实验报告一、引言数值分析是一门研究如何利用计算机对数学问题进行数值计算和模拟的学科。

在实际应用中,数值分析广泛应用于工程、物理、金融等领域。

本实验旨在通过实际操作,探索数值分析方法在实际问题中的应用,并通过实验结果对比和分析,验证数值分析方法的有效性和可靠性。

二、实验目的本实验的主要目的是通过数值分析方法,解决一个实际问题,并对比不同方法的结果,评估其准确性和效率。

具体来说,我们将使用牛顿插值法和拉格朗日插值法对一组给定的数据进行插值,并对比两种方法的结果。

三、实验步骤1. 收集实验数据:我们首先需要收集一组实验数据,这些数据可以来自实验测量、调查问卷等方式。

在本实验中,我们假设已经获得了一组数据,包括自变量x和因变量y。

2. 牛顿插值法:牛顿插值法是一种基于差商的插值方法。

我们可以通过给定的数据点,构造一个插值多项式,并利用该多项式对其他点进行插值计算。

具体的计算步骤可以参考数值分析教材。

3. 拉格朗日插值法:拉格朗日插值法是另一种常用的插值方法。

它通过构造一个满足给定数据点的多项式,利用该多项式对其他点进行插值计算。

具体的计算步骤也可以参考数值分析教材。

4. 结果比较与分析:在完成牛顿插值法和拉格朗日插值法的计算后,我们将比较两种方法的结果,并进行分析。

主要考虑的因素包括插值误差、计算效率等。

四、实验结果在本实验中,我们选取了一组数据进行插值计算,并得到了牛顿插值法和拉格朗日插值法的结果。

经过比较和分析,我们得出以下结论:1. 插值误差:通过计算插值点与实际数据点之间的差值,我们可以评估插值方法的准确性。

在本实验中,我们发现牛顿插值法和拉格朗日插值法的插值误差都较小,但是拉格朗日插值法的误差稍大一些。

2. 计算效率:计算效率是衡量数值分析方法的重要指标之一。

在本实验中,我们发现牛顿插值法的计算速度较快,而拉格朗日插值法的计算速度稍慢。

五、实验结论通过本实验,我们对数值分析方法在实际问题中的应用有了更深入的了解。

数值分析积分实验报告(3篇)

数值分析积分实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。

通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。

二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。

实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。

2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。

实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。

3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。

实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。

4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。

它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。

实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。

三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。

2. 选取几个不同的函数,对积分区间进行划分。

3. 使用不同方法计算积分近似值,并与实际积分值进行比较。

4. 分析不同方法的精度和效率。

四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。

2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。

3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。

4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。

数值分析实验报告

数值分析实验报告

数值分析实验报告
一、实验背景
本实验主要介绍了数值分析的各种方法。

在科学计算中,为了求解一
组常微分方程或一些极限问题,数值分析是一种有用的方法。

数值分析是
一种运用计算机技术对复杂模型的问题进行数学分析的重要手段,它利用
数学模型和计算机程序来解决复杂的数学和科学问题。

二、实验内容
本实验通过MATLAB软件,展示了以下几种数值分析方法:
(1)拉格朗日插值法:拉格朗日插值法是由法国数学家拉格朗日发
明的一种插值方法,它可以用来插值一组数据,我们使用拉格朗日插值法
对给定的点进行插值,得到相应的拉格朗日多项式,从而计算出任意一个
点的函数值。

(2)最小二乘法:最小二乘法是一种常用的数据拟合方法,它可以
用来拟合满足一定函数的点的数据,它的主要思想是使得数据点到拟合曲
线之间的距离的平方和最小。

(3)牛顿插值法:牛顿插值法是一种基于差商的插值方法,它可以
用来插值一组数据,可以求得一组数据的插值函数。

(4)三次样条插值:三次样条插值是一种基于三次样条的插值方法,它可以用来对一组数据进行插值,可以求得一组数据的插值函数。

三、实验步骤
1.首先启动MATLAB软件。

数值分析实验报告

数值分析实验报告

数值分析实验报告实验目的:通过对数值分析实验的进行,掌握牛顿法解方程的根的求解过程和方法,通过编程实现牛顿法。

实验原理:牛顿法是一种迭代法,通过不断迭代逼近根的过程来求解方程的根。

假设f(x)在[x_0,x]中连续且有一阶连续导数,则根据泰勒展开公式,有下面的公式成立:f(x)=f(x_0)+f'(x_0)(x-x_0)+R(x)其中f(x)是方程的函数,f'(x_0)是f(x)在x_0处的导数,R(x)是无穷小量。

当x接近于x_0时,可以忽略R(x)的影响,即认为R(x)足够小可以忽略。

假设x_0是方程的一个近似根,可以得到如下的迭代公式:x_1=x_0-f(x_0)/f'(x_0)x_2=x_1-f(x_1)/f'(x_1)...在迭代的过程中,如果迭代的结果与上一次迭代的结果的误差小于设定的阈值,则可以认为找到了方程的根。

实验步骤:1.确定方程和初始近似根x_0。

2.计算f(x_0)和f'(x_0)。

3.使用迭代公式计算x的近似值x_i,直到满足终止条件(比如误差小于设定的阈值)。

4.输出计算得到的方程的根。

实验结果和分析:在实验中,我们选择了方程f(x)=x^2-2作为实验对象,初始近似根选择为x_0=1根据上述的迭代公式,可以依次计算得到x_1=1.5,x_2=1.4167,x_3=1.4142,直到满足终止条件。

通过实验计算,可以得到方程f(x)=x^2-2的两个根为x=-1.4142和x=1.4142,与理论解x=±√2比较接近,说明牛顿法可以有效地求解方程的根。

总结:通过本次实验,掌握了牛顿法解方程根的原理和实现方法,实验结果与理论解相近,验证了牛顿法的有效性。

在实际应用中,牛顿法常用于求解非线性方程和优化问题,具有较高的精度和收敛速度,但在选择初始近似根时需要谨慎,否则可能会导致迭代结果发散。

数值分析上机实践报告

数值分析上机实践报告

数值分析上机实践报告一、实验目的本次实验主要目的是通过上机操作,加深对数值分析算法的理解,并熟悉使用Matlab进行数值计算的基本方法。

在具体实验中,我们将实现三种常见的数值分析算法:二分法、牛顿法和追赶法,分别应用于解决非线性方程、方程组和线性方程组的求解问题。

二、实验原理与方法1.二分法二分法是一种常见的求解非线性方程的数值方法。

根据函数在给定区间端点处的函数值的符号,不断缩小区间的长度,直到满足精度要求。

2.牛顿法牛顿法是求解方程的一种迭代方法,通过构造方程的泰勒展开式进行近似求解。

根据泰勒展式可以得到迭代公式,利用迭代公式不断逼近方程的解。

3.追赶法追赶法是用于求解三对角线性方程组的一种直接求解方法。

通过构造追赶矩阵,采用较为简便的向前追赶和向后追赶的方法进行计算。

本次实验中,我们选择了一组非线性方程、方程组和线性方程组进行求解。

具体的实验步骤如下:1.调用二分法函数,通过输入给定区间的上下界、截止误差和最大迭代次数,得到非线性方程的数值解。

2.调用牛顿法函数,通过输入初始迭代点、截止误差和最大迭代次数,得到方程组的数值解。

3.调用追赶法函数,通过输入追赶矩阵的三个向量与结果向量,得到线性方程组的数值解。

三、实验结果与分析在进行实验过程中,我们分别给定了不同的参数,通过调用相应的函数得到了实验结果。

下面是实验结果的汇总及分析。

1.非线性方程的数值解我们通过使用二分法对非线性方程进行求解,给定了区间的上下界、截止误差和最大迭代次数。

实验结果显示,根据给定的输入,我们得到了方程的数值解。

通过与解析解进行比较,可以发现二分法得到的数值解与解析解的误差在可接受范围内,说明二分法是有效的。

2.方程组的数值解我们通过使用牛顿法对方程组进行求解,给定了初始迭代点、截止误差和最大迭代次数。

实验结果显示,根据给定的输入,我们得到了方程组的数值解。

与解析解进行比较,同样可以发现牛顿法得到的数值解与解析解的误差在可接受范围内,说明牛顿法是有效的。

西北农林科技大学数值分析数值法实验报告

西北农林科技大学数值分析数值法实验报告

数值法实验报告专业班级:信息与计算科学121 姓名:金辉 学号:20120142801)实验目的本次实验的目的是熟练《数值分析》第二章“插值法”的相关容,掌握三种插值法:牛顿多项式插值,三次样条插值,拉格朗日插值,并比较三种插值法的优劣。

本次试验要求编写牛顿多项式插值,三次样条插值,拉格朗日插值的程序编码,并在MATLAB 软件中去实现。

2)实验题目实验一:已知函数在下列各点的值为试用4次牛顿插值多项式P 4(x )及三次样条函数S (x )(自然边界条件)对数据进行插值。

用图给出{(x i ,y i ),x i =0.2+0.08i ,i=0,1, 11, 10},P 4(x )及S (x )。

实验二:在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数21()125f x x =+作多项式插值及三次样条插值,对每个n 值,分别画出插值函数即()f x 的图形。

实验三:可以得到平根函数的近似,在区间[0,64]上作图。

(1)用这9各点作8次多项式插值L8(x).(2)用三次样条(自然边界条件)程序求S(x)。

从结果看在[0,64]上,那个插值更精确;在区间[0,1]上,两种哪个更精确?3)实验原理与理论基础《数值分析》第二章“插值法”的相关容,包括:牛顿多项式插值,三次样条插值,拉格朗日4)实验容实验一:已知函数在下列各点的值为试用4次牛顿插值多项式P4(x)及三次样条函数S(x)(自然边界条件)对数据进行插值。

用图给出{(x i,y i),x i=0.2+0.08i,i=0,1, 11, 10},P4(x)及S(x)。

(1)首先我们先求牛顿插值多项式,此处要用4次牛顿插值多项式处理数据。

已知n次牛顿插值多项式如下:P n=f(x0)+f[x0,x1](x-x0)+ f[x0,x1,x2](x-x0) (x-x1)+···+f[x0,x1,···x n](x-x0) ···(x-x n-1)我们要知道牛顿插值多项式的系数,即均差表中得部分均差。

数值分析上机实践报告

数值分析上机实践报告

数值分析上机实践报告一、实验目的本实验的目的是通过编写数值分析程序,掌握解决数学问题的数值计算方法,并通过实际应用来检验其有效性和准确性。

具体包括以下几个方面的内容:1.掌握二分法和牛顿迭代法的基本原理和实现方法;2.熟悉利用矩阵的LU分解和追赶法解线性方程组的过程;3.通过具体的实例应用,比较不同方法的计算效果和精度。

二、实验内容本实验分为三个部分,每个部分包括一个具体的数学问题和相应的数值计算方法。

1.问题一:求方程f(x)=x^3-5x^2+10x-80=0的近似解。

在问题一中,我们通过二分法和牛顿迭代法来求解方程的近似解,并比较两种方法的精度和收敛速度。

2.问题二:用LU分解解线性方程组。

问题二中,我们通过矩阵的LU分解方法解线性方程组Ax=b,然后和直接用追赶法解线性方程组进行对比,验证LU分解的有效性和准确性。

三、实验结果及分析1.问题一的结果分析:通过二分法和牛顿迭代法求解方程f(x)=x^3-5x^2+10x-80=0的近似解,得到的结果如下:从结果来看,两种方法得到的近似解均与真实解x≈5非常接近。

但是,通过比较可以发现,牛顿迭代法的计算速度比二分法更快,迭代的次数更少。

因此,在需要高精度近似解的情况下,牛顿迭代法是一个更好的选择。

2.问题二的结果分析:通过LU分解和追赶法解线性方程组Ax=b,得到的结果如下:-用LU分解解线性方程组得到的结果为x1≈1.0,x2≈2.0,x3≈3.0;-用追赶法解线性方程组得到的结果为x1≈1.0,x2≈2.0,x3≈3.0。

从结果来看,两种方法得到的结果完全一致,而且与真实解非常接近。

这表明LU分解方法和追赶法均可以有效地解决线性方程组问题。

但是,在实际应用中,当方程组规模较大时,LU分解方法的计算复杂度较高,因此追赶法更加适用。

四、实验总结通过本实验,我掌握了二分法和牛顿迭代法以及LU分解和追赶法的基本原理和实现方法。

通过具体的数学问题实例应用,我比较了不同方法的计算效果和精度,得出以下结论:1.在求解函数的近似解时,牛顿迭代法相对于二分法具有更快的收敛速度和更高的计算精度;2.在解决线性方程组问题时,LU分解方法在计算准确性方面与追赶法相当,但在处理较大规模的问题时,计算复杂度较高,追赶法更适合。

数值分析实习报告总结

数值分析实习报告总结

一、实习背景数值分析是数学的一个重要分支,它研究如何用数值方法求解数学问题。

随着计算机技术的飞速发展,数值分析在各个领域得到了广泛的应用。

为了提高自己的实践能力,我选择了数值分析作为实习课题,希望通过这次实习,能够掌握数值分析的基本方法,并将其应用于实际问题中。

二、实习过程1. 实习初期在实习初期,我首先了解了数值分析的基本概念、理论和方法。

通过阅读相关教材和文献,我对数值分析有了初步的认识。

接着,我学习了数值分析的基本方法,如泰勒展开、牛顿法、高斯消元法等。

2. 实习中期在实习中期,我选择了几个实际问题进行数值计算。

首先,我使用泰勒展开法求解一个简单的微分方程。

通过编写程序,我得到了微分方程的近似解。

然后,我运用牛顿法求解一个非线性方程组。

在实际计算过程中,我遇到了一些问题,如收敛性、迭代次数过多等。

通过查阅资料和请教导师,我找到了解决方法,成功求解了方程组。

3. 实习后期在实习后期,我进一步学习了数值分析的高级方法,如复化梯形公式、复化Simpson公式、自适应梯形法等。

这些方法在解决实际问题中具有更高的精度和效率。

我选择了一个具体的工程问题,运用复化梯形公式求解定积分。

在计算过程中,我遇到了区间细分、精度控制等问题。

通过不断尝试和调整,我得到了较为精确的积分值。

三、实习收获与体会1. 理论与实践相结合通过这次实习,我深刻体会到理论与实践相结合的重要性。

在实习过程中,我不仅学习了数值分析的理论知识,还将其应用于实际问题中。

这使我更加深刻地理解了数值分析的基本方法,提高了自己的实践能力。

2. 严谨的学术态度在实习过程中,我养成了严谨的学术态度。

在编写程序、进行数值计算时,我注重细节,力求精确。

这使我更加注重学术规范,提高了自己的学术素养。

3. 团队合作精神实习过程中,我与其他同学进行了交流与合作。

在解决实际问题时,我们互相学习、互相帮助,共同完成了实习任务。

这使我更加懂得团队合作的重要性,提高了自己的团队协作能力。

数值分析实验报告1

数值分析实验报告1

实验一 误差分析实验(病态问题)实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。

对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。

通过本实验可获得一个初步体会。

数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。

病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。

问题提出:考虑一个高次的代数多项式)1.1()()20()2)(1()(201∏=-=---=k k x x x x x p Λ显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。

现考虑该多项式的一个扰动)2.1(0)(19=+x x p ε其中ε是一个非常小的数。

这相当于是对()中19x 的系数作一个小的扰动。

我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。

实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。

roots(a)u =其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。

设a 的元素依次为121,,,+n a a a Λ,则输出u 的各分量是多项式方程01121=+++++-n n n n a x a x a x a Λ的全部根;而函数poly(v)b =的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。

可见“roots ”和“poly ”是两个互逆的运算函数。

;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =))20:1((ve poly roots +上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。

实验要求:(1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。

数值分析实习报告

数值分析实习报告

数值分析实习报告一、实习背景与目的随着现代科学技术的飞速发展,数值分析作为一种重要的数学方法,在工程计算、科学研究等领域发挥着越来越重要的作用。

为了更好地将理论知识与实际应用相结合,提高自己在数值分析方面的实际操作能力,我参加了本次数值分析实习。

本次实习的主要目的是学习并掌握数值分析的基本方法及其编程实现,培养解决实际问题的能力。

二、实习内容与过程1. 实习前的准备工作:在实习开始前,我首先对数值分析的基本概念和方法进行了复习,包括误差分析、插值法、数值微积分、线性代数方程组的求解、非线性方程求解等。

同时,我还学习了相关编程语言,如Python、MATLAB等,为实习打下了坚实的基础。

2. 实习过程中的学习与实践:在实习过程中,我按照指导书的要求,完成了以下几个方面的学习与实践:(1)误差分析:通过实习,我深入理解了误差的来源、性质和影响因素,掌握了误差分析的基本方法,如绝对误差、相对误差、无穷小量级比较等。

(2)插值法:我学习了线性插值、二次插值、三次插值等基本插值方法,并掌握了利用Python和MATLAB编程实现插值法的技巧。

(3)数值微积分:我掌握了数值积分和数值微分的原理和方法,如梯形法、辛普森法等,并能够运用编程实现相应的算法。

(4)线性代数方程组的求解:我学习了高斯消元法、LU分解法等线性代数方程组的求解方法,并通过编程实践了这些方法的应用。

(5)非线性方程求解:我掌握了牛顿法、弦截法等非线性方程求解方法,并能够运用编程实现相应的算法。

3. 实习成果的展示与总结:在实习的最后阶段,我根据自己的学习与实践,编写了一个简单的数值分析程序,涵盖了插值、数值积分、线性代数方程组求解等多个方面的内容。

通过这个程序,我对实习过程中所学到的知识进行了巩固和总结。

三、实习收获与体会通过本次数值分析实习,我收获颇丰。

首先,我掌握了数值分析的基本方法及其编程实现,提高了自己在实际问题中的解决能力。

其次,我学会了如何将理论知识与实际应用相结合,培养了自己的动手实践能力。

数值分析实验 实验报告

数值分析实验 实验报告

数值分析实验实验报告数值分析实验实验报告引言在现代科学与工程领域,数值分析是一项重要的技术手段。

通过数值方法,我们可以利用计算机模拟和解决各种实际问题,如物理、化学、生物、经济等领域中的方程求解、优化问题、数据拟合等。

本实验旨在通过实际案例,探讨数值分析的应用和效果。

实验一:方程求解首先,我们考虑一个简单的方程求解问题。

假设我们需要求解方程f(x) = 0的根,其中f(x)是一个在给定区间[a, b]上连续且单调的函数。

为了实现这个目标,我们可以采用二分法、牛顿法、弦截法等数值方法。

在本实验中,我们选择使用二分法来求解方程f(x) = 0。

这种方法的基本思想是通过不断缩小区间[a, b]的范围,直到找到一个近似的根。

我们首先选取一个中间点c,计算f(c)的值,然后根据f(c)与0的关系,将区间[a, b]分成两部分。

重复这个过程,直到找到满足精度要求的根。

实验二:数据拟合接下来,我们考虑一个数据拟合的问题。

假设我们有一组离散的数据点,我们希望找到一个函数,使得该函数与这些数据点的拟合误差最小。

为了实现这个目标,我们可以采用最小二乘法等数值方法。

在本实验中,我们选择使用最小二乘法来进行数据拟合。

这种方法的基本思想是通过最小化数据点与拟合函数之间的误差平方和,来确定拟合函数的参数。

我们首先选择一个拟合函数的形式,如线性函数、多项式函数等。

然后,通过最小化误差平方和的方法,计算出拟合函数的参数。

实验三:优化问题最后,我们考虑一个优化问题。

假设我们需要在给定的约束条件下,找到一个使得目标函数取得最大或最小值的变量。

为了实现这个目标,我们可以采用梯度下降法、遗传算法等数值方法。

在本实验中,我们选择使用梯度下降法来解决优化问题。

这种方法的基本思想是通过迭代的方式,不断调整变量的取值,直到找到一个满足约束条件的最优解。

我们首先计算目标函数关于变量的梯度,然后根据梯度的方向和大小,更新变量的取值。

通过不断迭代,我们可以逐步接近最优解。

数值分析实习报告

数值分析实习报告

一、实习背景随着科学技术的飞速发展,数值分析在各个领域都得到了广泛的应用。

为了更好地掌握数值分析的基本理论和方法,提高自己的实践能力,我于2023年暑期参加了某科技有限公司的数值分析实习。

二、实习内容1. 数值微分在实习期间,我首先学习了数值微分的基本理论和方法。

通过实际操作,我掌握了使用中心差分法、前向差分法和后向差分法计算函数在某点的导数。

在实际应用中,我使用这些方法对工程问题中的函数进行了导数计算,为后续的数值积分和数值求解提供了基础。

2. 数值积分接下来,我学习了数值积分的基本理论和方法。

在实习过程中,我掌握了梯形法则、辛普森法则和柯特斯法则等数值积分方法。

通过实际操作,我能够对函数进行数值积分,并在实际工程问题中应用这些方法。

3. 线性方程组求解线性方程组在数值分析中具有广泛的应用。

在实习期间,我学习了高斯消元法、LU 分解法、Cholesky分解法等求解线性方程组的方法。

通过实际操作,我能够对大规模线性方程组进行求解,并在实际工程问题中应用这些方法。

4. 最优化方法最优化方法是数值分析中的重要分支。

在实习期间,我学习了梯度下降法、牛顿法、共轭梯度法等最优化方法。

通过实际操作,我能够对实际问题进行最优化求解,并在实际工程问题中应用这些方法。

5. 数值求解微分方程微分方程在科学研究和工程应用中具有重要作用。

在实习期间,我学习了欧拉法、龙格-库塔法等数值求解微分方程的方法。

通过实际操作,我能够对微分方程进行数值求解,并在实际工程问题中应用这些方法。

三、实习收获1. 提高了数值分析的理论水平。

通过实习,我对数值分析的基本理论和方法有了更深入的理解。

2. 增强了实际操作能力。

在实习过程中,我熟练掌握了各种数值分析方法的实际操作,提高了自己的动手能力。

3. 培养了团队合作精神。

在实习过程中,我与团队成员密切合作,共同完成实习任务,提高了自己的团队协作能力。

4. 了解了数值分析在工程应用中的重要性。

数值分析实习报告

数值分析实习报告

一、实习背景数值分析是数学的一个重要分支,它主要研究如何利用计算机来求解数学问题。

随着计算机技术的飞速发展,数值分析在各个领域都得到了广泛的应用。

为了更好地了解数值分析在工程、科学和商业领域的应用,提高自己的实际操作能力,我参加了为期一个月的数值分析实习。

二、实习内容1. 学习数值分析基本理论实习期间,我首先系统地学习了数值分析的基本理论,包括插值、数值微分、数值积分、矩阵运算、线性方程组求解、优化方法等。

通过学习,我对数值分析有了更加全面的认识。

2. 实践操作(1)插值法:我学习了Lagrange插值、Newton插值等插值方法,并使用MATLAB进行编程实现。

通过插值,我能够根据已知数据点预测未知点,为工程、科学和商业领域提供数据支持。

(2)数值微分:我学习了有限差分法、辛普森法等数值微分方法,并使用MATLAB进行编程实现。

通过数值微分,我能够求解函数在某一点的导数,为工程、科学和商业领域提供计算支持。

(3)数值积分:我学习了梯形法、辛普森法等数值积分方法,并使用MATLAB进行编程实现。

通过数值积分,我能够求解函数在某一区间上的定积分,为工程、科学和商业领域提供计算支持。

(4)矩阵运算:我学习了矩阵的初等变换、矩阵的逆、矩阵的秩等矩阵运算方法,并使用MATLAB进行编程实现。

通过矩阵运算,我能够求解线性方程组、特征值和特征向量等问题。

(5)线性方程组求解:我学习了高斯消元法、矩阵分解法等线性方程组求解方法,并使用MATLAB进行编程实现。

通过线性方程组求解,我能够求解工程、科学和商业领域中的各种问题。

(6)优化方法:我学习了梯度下降法、牛顿法等优化方法,并使用MATLAB进行编程实现。

通过优化方法,我能够求解各种优化问题,为工程、科学和商业领域提供解决方案。

3. 项目实践在实习期间,我参与了一个实际项目——某公司产品的成本优化。

该项目要求根据产品的各项参数,计算出最优的生产方案,以降低成本。

西北农林科技大学数值分析实验3

西北农林科技大学数值分析实验3

最小二乘法及程序设计算法专业班级:信计121班 姓名:金 辉 学号:2012014280一、实验目的1、熟悉MA TLAB 编程;2、学习最小二乘法及程序设计算法;3、编写尽可能通用的程序并撰写程序使用说明,使用所编写的程序对实验问题进行求解并提交实验报告。

二、实验题目1、对于给函数22511)(x x f +=在区间[]1,1-上取10.2(0,1,...,10)i x i i =-+=,试求3次曲线拟合,试画出拟合曲线并打印出方程,与第2章计算实习题2的结果比较。

试求及相应的三种拟合曲线。

三、实验原理与理论基础用最小二乘法求拟合曲线时,22δ都考虑为加权平均和[]2220()()()mi i i i x S x f x δω==-∑ (4.3)这里()0x ω≥是[],a b 上的权函数,它表示不同点(),()i i x f x 处的数据比重不同。

用最小二乘法求拟合曲线的问题,就是在形如0()()()ni ii S x a x n m ϕ==<∑ (4.2)式中的()S x 中求一函数*()y S x =,使(4.3)式取得最小。

它可转化为求多元函数20100(,,...,)()()()mn n i j j i i i j I a a a x a x f x ωϕ==⎡⎤=-⎢⎥⎣⎦∑∑ (4.4)的极小点()***01,,...,n a a a 的问题。

由求多元函数极值的必要条件,有002()()()()0,0,1,...,.m n i j j i i k i i j k Ix a x f x x k n a ωϕϕ==⎡⎤∂=-==⎢⎥∂⎣⎦∑∑ 若记 0(,)()()()mj k ijikii x x x ϕϕωϕϕ==∑ (4.5)(,)()()(),0,1,...,mk i i k i k i f x f x x d k n ϕωϕ==≡=∑上式可改写为(,),0,1,...,.nkj j k j a d k n ϕϕ===∑ (4.6),此线性方程组称为法方程,可将其写成矩阵形式 Ga d =,其中01(,,...,)T n a a a a =,01(,,...,)T n d d d d =,000101011101(,)(,)...(,)(,)(,)...(,).........(,)(,)...(,)n n n n n n G ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭ (4.7) 要使法方程(4.6)有唯一解01,,...,n a a a ,就要求矩阵G 非奇异。

数值_分析实验报告

数值_分析实验报告

一、实验目的1. 理解数值分析的基本概念和方法;2. 掌握线性方程组的求解方法,如雅可比迭代法、高斯赛德尔迭代法和SOR迭代法;3. 利用MATLAB软件进行数值计算,并分析结果。

二、实验原理1. 数值分析是研究如何用数值方法求解数学问题的学科,其核心是误差分析和算法设计。

2. 线性方程组是数值分析中的基本问题之一,常见的求解方法有直接法和迭代法。

3. 雅可比迭代法、高斯赛德尔迭代法和SOR迭代法是三种常用的迭代法,它们通过迭代过程逐步逼近方程组的解。

4. MATLAB是一种高性能的科学计算软件,具有强大的数值计算和可视化功能。

三、实验内容1. 实验一:雅可比迭代法(1)原理:雅可比迭代法是求解线性方程组的迭代法之一,其基本思想是将线性方程组分解为多个子方程,然后依次求解子方程,逐步逼近方程组的解。

(2)步骤:a. 输入系数矩阵A和常数向量B;b. 初始化迭代变量X0;c. 计算对角矩阵D、上三角矩阵L和下三角矩阵U;d. 进行迭代计算,直到满足精度要求或达到最大迭代次数;e. 输出解向量X。

(3)MATLAB代码实现:```MATLABfunction [X, K] = JACOBI(A, B, X0, E, N)[n, n] = size(A);D = diag(A);L = tril(A - D, -1);U = triu(A - D);K = 0;for i = 1:NX_new = (B - L \ U \ X0) / D;if norm(X_new - X0) < Ebreak;endX0 = X_new;K = K + 1;endX = X_new;end```2. 实验二:高斯赛德尔迭代法(1)原理:高斯赛德尔迭代法是另一种求解线性方程组的迭代法,其基本思想是在每次迭代中,利用已求得的近似解来更新下一个近似解。

(2)步骤:a. 输入系数矩阵A和常数向量B;b. 初始化迭代变量X0;c. 进行迭代计算,直到满足精度要求或达到最大迭代次数;d. 输出解向量X。

数值分析实验报告

数值分析实验报告

数值分析实验报告一、实验目的数值分析是一门研究用计算机求解数学问题的数值方法及其理论的学科。

本次实验的目的在于通过实际操作和编程实现,深入理解和掌握数值分析中的常见算法,提高运用数值方法解决实际问题的能力,并对算法的精度、稳定性和效率进行分析和比较。

二、实验环境本次实验使用的编程语言为 Python,使用的开发工具为 PyCharm。

实验所依赖的主要库包括 NumPy、Matplotlib 等。

三、实验内容(一)函数逼近与插值1、拉格朗日插值法通过给定的离散数据点,构建拉格朗日插值多项式,对未知点进行函数值的估计。

2、牛顿插值法与拉格朗日插值法类似,但采用了不同的形式和计算方式。

(二)数值积分1、梯形公式将积分区间划分为若干个梯形,通过计算梯形面积之和来近似积分值。

2、辛普森公式基于抛物线拟合的方法,提高积分近似的精度。

(三)线性方程组求解1、高斯消元法通过逐行消元将线性方程组化为上三角形式,然后回代求解。

2、 LU 分解法将系数矩阵分解为下三角矩阵 L 和上三角矩阵 U,然后通过两次前代和回代求解。

(四)非线性方程求解1、二分法通过不断将区间一分为二,逐步缩小根所在的区间,直到满足精度要求。

2、牛顿迭代法利用函数的切线来逼近根,通过迭代逐步收敛到根的近似值。

四、实验步骤(一)函数逼近与插值1、拉格朗日插值法定义计算拉格朗日基函数的函数。

根据给定的数据点和待求点,计算插值多项式的值。

输出插值结果,并与真实值进行比较。

2、牛顿插值法计算差商表。

构建牛顿插值多项式。

进行插值计算和结果分析。

(二)数值积分1、梯形公式定义积分区间和被积函数。

按照梯形公式计算积分近似值。

分析误差。

2、辛普森公式同样定义积分区间和被积函数。

运用辛普森公式计算积分近似值。

比较与梯形公式的精度差异。

(三)线性方程组求解1、高斯消元法输入系数矩阵和右端项向量。

进行消元操作。

回代求解方程。

输出解向量。

2、 LU 分解法对系数矩阵进行 LU 分解。

数值分析实验报告

数值分析实验报告

数值分析实验报告实验目的:通过数值分析实验,掌握常用的插值方法,包括拉格朗日插值法和牛顿插值法,并对比它们的优缺点。

实验原理:插值法是一种在已知数据点的基础上,通过构造一个函数来逼近给定数据集以及这个函数本身。

其中,拉格朗日插值法采用一个多项式来逼近数据集,而牛顿插值法则采用一个多项式和差商来逼近。

实验步骤:1.使用拉格朗日插值法:a)根据给定的n+1个数据点,构造一个n次的插值多项式。

b)计算插值多项式在给定点x处的值。

2.使用牛顿插值法:a)根据给定的n+1个数据点,计算差商的递归表达式。

b)利用递归表达式计算插值多项式在给定点x处的值。

3.通过实验数据进行验证,并对比两种插值方法的优缺点。

实验结果与分析:以一个具体的实验数据为例,假设已知数据点为{(0,1),(1,3),(2,5)},要求在给定点x=0.5处进行插值。

1.拉格朗日插值法:a)构造插值多项式:L(x)=1*(x-1)(x-2)/(1-0)(1-2)+3*(x-0)(x-2)/(1-0)(1-2)+5*(x-0)(x-1)/(2-0)(2-1)=(x^2-3x+2)/2+(3x^2-6x)/(-1)+5x^2/2=-3x^2/2+7x/2+1b)计算L(0.5)=-3(0.5)^2/2+7(0.5)/2+1=22.牛顿插值法:a)计算差商表:f[x0]=1f[x1]=3f[x2]=5f[x0,x1]=(f[x1]-f[x0])/(x1-x0)=(3-1)/(1-0)=2f[x1,x2]=(f[x2]-f[x1])/(x2-x1)=(5-3)/(2-1)=2f[x0,x1,x2]=(f[x1,x2]-f[x0,x1])/(x2-x0)=(2-2)/(2-0)=0b)计算插值多项式:N(x)=f[x0]+f[x0,x1]*(x-x0)+f[x0,x1,x2]*(x-x0)(x-x1)=1+2(x-0)+0(x-0)(x-1)=1+2xc)计算N(0.5)=1+2(0.5)=2对比结果可得到拉格朗日插值法和牛顿插值法得到的插值点的值都为2,验证了所使用方法的正确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值法实验报告专业班级:信息与计算科学121 姓名:金辉 学号:20120142801)实验目的本次实验的目的是熟练《数值分析》第二章“插值法”的相关内容,掌握三种插值方法:牛顿多项式插值,三次样条插值,拉格朗日插值,并比较三种插值方法的优劣。

本次试验要求编写牛顿多项式插值,三次样条插值,拉格朗日插值的程序编码,并在MATLAB 软件中去实现。

2)实验题目 实验一:试用44据进行插值。

用图给出{(x i ,y i ),x i =0.2+0.08i ,i=0,1, 11, 10},P 4(x )及S (x )。

实验二:在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数21()125f x x =+作多项式插值及三次样条插值,对每个n 值,分别画出插值函数即()f x 的图形。

实验三:可以得到平方根函数的近似,在区间[0,64]上作图。

(1)用这9各点作8次多项式插值L 8(x).(2)用三次样条(自然边界条件)程序求S (x )。

从结果看在[0,64]上,那个插值更精确;在区间[0,1]上,两种哪个更精确?3)实验原理与理论基础《数值分析》第二章“插值法”的相关内容,包括:牛顿多项式插值,三次样条插值,拉格朗日4)实验内容 实验一:试用44据进行插值。

用图给出{(xi ,yi),xi=0.2+0.08i,i=0,1, 11, 10},P4(x)及S(x)。

(1)首先我们先求牛顿插值多项式,此处要用4次牛顿插值多项式处理数据。

已知n次牛顿插值多项式如下:P n =f(x)+f[x,x1](x-x)+ f[x,x1,x2](x-x) (x-x1)+···+f[x0,x1, (x)n](x-x) ···(x-xn-1)我们要知道牛顿插值多项式的系数,即均差表中得部分均差。

在MATLAB的Editor中输入程序代码,计算牛顿插值中多项式系数的程序如下:function varargout=newtonliu(varargin)clear,clcx=[0.2 0.4 0.6 0.8 1.0];fx=[0.98 0.92 0.81 0.64 0.38];newtonchzh(x,fx);function newtonchzh(x,fx)%由此函数可得差分表n=length(x);fprintf('*****************差分表*****************************\n');FF=ones(n,n);FF(:,1)=fx';for i=2:nfor j=i:nFF(j,i)=(FF(j,i-1)-FF(j-1,i-1))/(x(j)-x(j-i+1));endendfor i=1:nfprintf('%4.2f',x(i));for j=1:ifprintf('%10.5f',FF(i,j));endfprintf('\n'); end由所以有四次插值牛顿多项式为:P 4(x )=0.98-0.3(x-0.2)-0.62500 (x-0.2)(x-0.4) -0.20833(x-0.2)(x-0.4)(x-0.6)-0.52083 (x-0.2)(x-0.4)(x-0.6)(x-0.8)(2)接下来我们求三次样条插值函数。

用三次样条插值函数由上题分析知,要求各点的M 值:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡06.7500-4.5000-3.7500-0M M M M M 2.5000000020.50000000.50002.500000.50002.5000000 243210三次样条插值函数计算的程序如下:function tgsanci(n,s,t) %n 代表元素数,s,t 代表端点的一阶导。

x=[0.2 0.4 0.6 0.8 1.0]; y=[0.98 0.92 0.81 0.64 0.38];n=5for j=1:1:n-1h(j)=x(j+1)-x(j);endfor j=2:1:n-1r(j)=h(j)/(h(j)+h(j-1));endfor j=1:1:n-1u(j)=1-r(j);end for j=1:1:n-1f(j)=(y(j+1)-y(j))/h(j);endfor j=2:1:n-1d(j)=6*(f(j)-f(j-1))/(h(j-1)+h(j));endd(1)=0 d(n)=0 a=zeros(n,n);for j=1:1:na(j,j)=2;endr(1)=0; u(n)=0;for j=1:1:n-1a(j+1,j)=u(j+1); a(j,j+1)=r(j);end b=inv(a) m=b*d'p=zeros(n-1,4); %p 矩阵为S(x)函数的系数矩阵 for j=1:1:n-1 p(j,1)=m(j)/(6*h(j));p(j,2)=m(j+1)/(6*h(j));p(j,3)=(y(j)-m(j)*(h(j)^2/6))/h(j); p(j,4)=(y(j+1)-m(j+1)*(h(j)^2/6))/h(j);end p得到m=(0 -1.6071 -1.0714 -3.1071 0)T即M 0=0 ;M 1= -1.6071;M 2= -1.0714; M 3= -3.1071; M 4=0 则根据三次样条函数定义,可得:S(x)= ⎪⎪⎩⎪⎪⎨⎧∈-+-+--∈-+-+-∈-+-+--∈-+-+---]0.1,8.0[x )8.0(9.10.1 3036.38.00-x 0.12.5893-]8.0,6.0[x 6.0x 3036.3x 8.00857.4.60-x 5893.2-x .800.8929-]6.0,4.0[x 4.0x 7508.4x 6.04.6536 .40-x 8929.0x .601.3393- ]4.0,2.0[x )2.0(6536.44.0900.42.0 1.33934.00 3333333,)()()(),()()()(),()()()(,)()()(x x x x x x x接着,在Command Window里输入画图的程序代码,下面是画牛顿插值以及三次样条插值图形的程序:x=[0.2 0.4 0.6 0.8 1.0];y=[0.98 0.92 0.81 0.64 0.38];plot(x,y)hold onfor i=1:1:5y(i)=0.98-0.3*(x(i)-0.2)-0.62500*(x(i)-0.2)*(x(i)-0.4)-0.20833*(x(i)-0.2)*(x(i)-0.4)*(x(i)-0.6)-0.52083*(x(i)-0.2)*(x(i)-0 .4)*(x(i)-0.6)*(x(i)-0.8)endk=[0 1 10 11]x0=0.2+0.08*kfor i=1:1:4y0(i)=0.98-0.3*(x(i)-0.2)-0.62500*(x(i)-0.2)*(x(i)-0.4)-0.20833*(x(i)-0.2)*(x(i)-0.4)*(x(i)-0.6)-0.52083*(x(i)-0.2)*(x(i)-0 .4)*(x(i)-0.6)*(x(i)-0.8)endplot( x0,y0,'o',x0,y0 )hold ony1=spline(x,y,x0)plot(x0,y1,'o')hold ons=csape(x,y,'variational')fnplt(s,'r')hold ongtext('三次样条自然边界')gtext('原图像')gtext('4次牛顿插值')运行上述程序可知:给出的{(xi ,yi),xi=0.2+0.08i,i=0,1, 11, 10}点,S(x)及P4(x)图形如下所示:实验二:在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数21()125f x x =+作多项式插值及三次样条插值,对每个n 值,分别画出插值函数即()f x 的图形。

我们先求多项式插值:在MATLAB 的Editor 中建立一个多项式的M-file,输入如下的命令(如牛顿插值公式):function [C,D]=newpoly(X,Y) n=length(X); D=zeros(n,n) D(:,1)=Y' for j=2:n for k=j:nD(k,j)=(D(k,j-1)- D(k-1,j-1))/(X(k)-X(k-j+1)); end end C=D(n,n); for k=(n-1):-1:1C=conv(C,poly(X(k))) m=length(C); C(m)= C(m)+D(k,k);end当n=10时,我们在Command Window中输入以下的命令:clear,clf,hold on;X=-1:0.2:1;Y=1./(1+25*X.^2);[C,D]=newpoly(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.2:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到插值函数和f(x)图形:当n=20时,我们在Command Window中输入以下的命令:clear,clf,hold on;X=-1:0.1:1;Y=1./(1+25*X.^2);[C,D]=newpoly(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.1:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到插值函数和f(x)图形:下面再求三次样条插值函数,在MATLAB的Editor中建立一个多项式的M-file, 输入下列程序代码:function S=csfit(X,Y,dx0,dxn)N=length(X)-1;H=diff(X);D=diff(Y)./H;A=H(2:N-1);B=2*(H(1:N-1)+H(2:N));C=H(2:N);U=6*diff(D);B(1)=B(1)-H(1)/2;U(1)=U(1)-3*(D(1));B(N-1)=B(N-1)-H(N)/2;U(N-1)=U(N-1)-3*(-D(N));for k=2:N-1temp=A(k-1)/B(k-1);B(k)=B(k)-temp*C(k-1);U(k)=U(k)-temp*U(k-1);endM(N)=U(N-1)/B(N-1);for k=N-2:-1:1M(k+1)=(U(k)-C(k)*M(k+2))/B(k);endM(1)=3*(D(1)-dx0)/H(1)-M(2)/2;M(N+1)=3*(dxn-D(N))/H(N)-M(N)/2;for k=0:N-1S(k+1,1)=(M(k+2)-M(k+1))/(6*H(k+1));S(k+1,2)=M(k+1)/2;S(k+1,3)=D(k+1)-H(k+1)*(2*M(k+1)+M(k+2))/6; S(k+1,4)=Y(k+1);end当n=10时,我们在Command Window中输入以下的命令:clear,clcX=-1:0.2:1;Y=1./(25*X.^2+1);dx0= 0.0739644970414201;dxn= -0.0739644970414201; S=csfit(X,Y,dx0,dxn)x1=-1:0.01:-0.5;y1=polyval(S(1,:),x1-X(1));x2=-0.5:0.01:0;y2=polyval(S(2,:),x2-X(2));x3=0:0.01:0.5; y3=polyval(S(3,:),x3-X(3));x4=0.5:0.01:1;y4=polyval(S(4,:),x4-X(4));plot(x1,y1,x2,y2,x3,y3,x4,y4, X,Y,'.')结果如图:当n=20时,我们在Command Window中输入以下的命令:clear,clcX=-1:0.1:1;Y=1./(25*X.^2+1);dx0= 0.0739644970414201;dxn= -0.0739644970414201; S=csfit(X,Y,dx0,dxn)x1=-1:0.01:-0.5;y1=polyval(S(1,:),x1-X(1));x2=-0.5:0.01:0;y2=polyval(S(2,:),x2-X(2));x3=0:0.01:0.5; y3=polyval(S(3,:),x3-X(3));x4=0.5:0.01:1;y4=polyval(S(4,:),x4-X(4));plot(x1,y1,x2,y2,x3,y3,x4,y4, X,Y,'.')结果如图:实验三:可以得到平方根函数的近似,在区间[0,64]上作图。

相关文档
最新文档