(完整版)圆柱圆锥知识点总结
圆柱圆锥知识点总结
圆柱圆锥知识点总结一、圆柱的定义和性质圆柱是由一个矩形绕着一条平行于其中一边的直线移动而得到的几何体。
圆柱的底面是一个圆,上下底面平行且相等,侧面是一个矩形。
通常情况下,我们所说的圆柱指的是直圆柱,即底面和侧面直角相交的圆柱。
圆柱的性质:1. 圆柱的侧面是一个矩形,其面积等于底面周长乘以高度。
2. 圆柱的体积等于底面积乘以高度,即V=πr^2*h。
3. 圆柱的表面积等于两个底面积之和加上侧面积,即S=2πr^2+2πrh。
二、圆锥的定义和性质圆锥是由一个直角三角形绕着它的一个直角边旋转一周而得到的几何体。
圆锥的侧面是一个由母线和母线上一点到底面的连线组成的扇形。
通常情况下,我们所说的圆锥指的是直圆锥,即底面圆和侧面直角相交的圆锥。
圆锥的性质:1. 圆锥的侧面是一个扇形,其面积等于底面周长乘以母线的一半。
2. 圆锥的体积等于1/3底面积乘以高度,即V=1/3πr^2*h。
3. 圆锥的表面积等于底面积加上底面到顶点的母线所绕成的曲面积,即S=πr^2+πrl。
三、圆柱和圆锥的应用1. 圆柱和圆锥在日常生活中有着广泛的应用,比如有些容器的外形就是圆柱或者圆锥;例如筒形创可贴盒,花瓶,饮料瓶等。
2. 圆柱和圆锥的公式和计算方法可以用来解决一些实际问题,比如计算容器的容积和表面积,计算油桶的容量,设计工程建筑结构等。
3. 圆柱和圆锥的几何图形在工程实践中也有着广泛的应用,比如圆柱形的桥墩,圆锥形的喷水池等。
四、圆柱和圆锥知识点的考点在中学数学课本和考试中,圆柱和圆锥作为基础几何图形经常出现,特别是在解题和推导中经常需要用到它们的性质和公式。
掌握好圆柱和圆锥的知识对于初中数学的学习和考试成绩至关重要。
总结通过对圆柱和圆锥的定义、性质、公式和应用等方面的了解,我们可以更好地理解这两种几何图形的特点和作用,进而提高我们的数学运算能力和解决实际问题的能力。
在学习和应用过程中,我们要注重在不断的练习和实践中巩固这些知识,才能更好地应用它们解决实际问题,提高数学素养。
(完整版)圆柱圆锥知识点总结
两个底面之间的距离,有无数条。
顶点到底面圆心的距离,只有一条。
例2、求下面立体图形的底面周长和底面积。
半径3厘米直径10米
分析与解:根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。
圆柱:底面周长 3.14 × 3 × 2 = 18.84(厘米)
底面积 3.14 × 3²=28.26(平方厘米)
6、把一个棱长6分米的正方体木块,削成一个最大的一圆柱体,这个圆柱的体积是多少立方分米?
7、右图是一个圆柱体,如果把它的高截短3厘米,它的表面积减少94.2平方厘米。这个圆柱体积减少多少立方厘米?
二、圆锥体积
1、选择题。
(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是()
① a立方米②3a立方米③9立方米
(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是()立方米
①6立方米②3立方米③2立方米
2、判断对错。
(1)圆柱的体积相当于圆锥体积的3倍………( )
(2)将一个圆柱体木料加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2:1………( )
(3)一个圆柱和圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米………( )
模拟试题
下面( )图形旋转会形成圆柱。
3、在下图中,以直线为轴旋转,可以得出圆锥的是()。
4、求下列圆柱体的侧面积
(1)底面半径是3厘米,高是4厘米。(2)底面直径是4厘米,高是5厘米。
(3)底面周长是12.56厘米,高是4厘米。
5、求下列圆柱体的表面积
(1)底面半径是4厘米,高是6厘米。(2)底面直径是6厘米,高是12厘米。
分析与解:圆柱的侧面积展开是一个正方形,即圆柱的高和底面周长都是15.7厘米。根据圆柱的底面周长可以算出底面积。
圆柱体与圆锥体知识点
圆柱体与圆锥体知识点圆柱体与圆锥体是几何学中的重要概念,它们在日常生活和工程设计中都有广泛的应用。
本文将详细介绍圆柱体与圆锥体的定义、性质、公式及其应用。
一、圆柱体的定义和性质圆柱体是由两个平行且相等的圆面和它们之间的侧面组成的几何体。
圆柱体的侧面是一个矩形,其两条边分别与两个圆面的切线垂直相交。
以下是圆柱体的一些性质:1. 所有生成圆柱体的平行直线都与底面圆相切。
2. 圆柱体的两个底面圆半径相等。
3. 圆柱体的侧面积等于底面周长乘以高度。
4. 圆柱体的体积等于底面积乘以高度。
二、圆柱体的公式1. 底面积公式:圆柱体的底面积等于底面圆的半径平方乘以π。
公式表示为:底面积= πr^2,其中r为底面圆的半径。
2. 侧面积公式:圆柱体的侧面积等于底面周长乘以高度。
公式表示为:侧面积= 2πrh,其中r为底面圆的半径,h为圆柱体的高度。
3. 全面积公式:圆柱体的全面积等于底面积加上两倍的侧面积。
体的高度。
4. 体积公式:圆柱体的体积等于底面积乘以高度。
公式表示为:体积 = 底面积 × h,其中h为圆柱体的高度。
三、圆锥体的定义和性质圆锥体是由一个圆锥面和一个平面封闭的几何体。
圆锥体的底面是一个圆,其顶点与底面圆的中心相连。
以下是圆锥体的一些性质:1. 所有生成圆锥体的平行直线都与底面圆相交。
2. 圆锥体的侧面积等于底面周长乘以母线长。
3. 圆锥体的体积等于底面积乘以高度除以3。
四、圆锥体的公式1. 底面积公式:圆锥体的底面积等于底面圆的半径平方乘以π。
公式表示为:底面积= πr^2,其中r为底面圆的半径。
2. 侧面积公式:圆锥体的侧面积等于底面周长乘以母线长除以2。
公式表示为:侧面积= πrl/2,其中r为底面圆的半径,l为母线长。
3. 全面积公式:圆锥体的全面积等于底面积加上侧面积。
公式表示为:全面积= πr(r+l),其中r为底面圆的半径,l为母线长。
4. 体积公式:圆锥体的体积等于底面积乘以高度除以3。
(完整版)圆柱和圆锥知识点总结
长方体里削出最大的圆柱、圆锥:圆柱、圆锥底面直径等于宽(宽﹥高),圆柱、圆锥高等于长方体高。
4.浸物体积问题(排水法测不规则物体的体积):水面上升部分的体积就是浸
入水中物品的体积,等于盛水容器的底面积乘上升的高度。
也就是变化的水的体积。
主要类型:①盛满水,浸物溢水;②浸物水面上升;③取物水面下降。
5.等体积转换问题:圆锥体沙堆铺路;长方体钢材熔铸成圆柱或圆锥;橡皮泥
改变形状;圆柱中的溶液倒入圆锥……都是体积不变的问题。
解决此类问题,最好列出体积相等公式,再代入数据进行计算。
小学圆柱圆锥知识点总结
小学圆柱圆锥知识点总结
一、圆柱的定义和性质
1. 定义:圆柱是由两个平行并且等圆的底面以及连接这两个底面的侧面组成的几何体。
2. 性质:
- 圆柱的底面是两个相同的圆,其半径为r;
- 圆柱的侧面是一条沿着两个圆周运动的直线;
- 圆柱的高度为h;
- 圆柱的体积为V = πr²h;
- 圆柱的表面积为S = 2πr² + 2πrh。
二、圆锥的定义和性质
1. 定义:圆锥是由一个圆锥面和一个平面底面组成的几何体。
2. 性质:
- 圆锥的底面是一个圆,其半径为r;
- 圆锥的侧面是由底面到顶点的直线组成;
- 圆锥的高度为h;
- 圆锥的体积为V = (1/3)πr²h;
- 圆锥的表面积为S = πr² + πrl。
三、圆柱和圆锥的应用
1. 在日常生活中,圆柱和圆锥经常被用来制作容器和器皿。
例如,铅笔筒、花瓶、圆锥形的帽子等都是圆柱和圆锥的典型应用。
2. 在工程建筑中,圆柱和圆锥也有着广泛的应用。
例如,建筑物中的柱子和锥形的塔尖都是圆柱和圆锥结构。
4. 在数学问题中,圆柱和圆锥的概念也经常被用来解决问题。
例如,通过计算圆柱和圆锥的体积和表面积来求解实际问题。
小学生在学习圆柱和圆锥的过程中,可以通过观察实物和图形来加深对这两种几何体的理解。
老师可以通过示范和练习来帮助学生掌握圆柱和圆锥的相关知识,鼓励他们通过实际的应用来体会几何知识的重要性。
希望本文的介绍对小学生学习圆柱和圆锥有所帮助。
圆柱和圆锥知识点归纳总结
圆柱和圆锥知识点归纳总结一、圆柱1.定义及性质圆柱是由一个平行于底面的曲线(母线)围绕着一个平行于母线的轴旋转而成的立体图形。
圆柱具有以下性质:a.圆柱的底面是一个圆,轴与底面圆相交于圆心。
b.圆柱的侧面是一个长方形,其面积等于底面圆的周长乘以母线的长度。
c.圆柱的体积等于底面圆的面积乘以母线的长度。
2.圆柱的表面积和体积计算公式a. 表面积计算公式:S = 2πr² + 2πrh,其中r为底面圆半径,h为母线的长度。
b.体积计算公式:V=πr²h,其中r为底面圆半径,h为母线的长度。
3.圆柱的投影a.圆柱的平行截面是一个与底面圆相似的圆。
b.圆柱的垂直截面是一个矩形。
4.圆柱的应用a.圆柱广泛应用于日常生活中的容器,如杯子、筒子、桶等。
b.圆柱也是建筑中常用的结构形式,如圆柱形的支柱、柱子等。
二、圆锥1.定义及性质圆锥是由一个平行于底面的点(顶点)与一个与底面相交的曲线(母线)围成的立体图形。
圆锥具有以下性质:a.圆锥的底面是一个圆,顶点与底面圆的圆心相重。
b.圆锥的侧面是一个三角形,其面积等于底面圆的周长乘以母线的长度的一半。
c.圆锥的体积等于底面圆的面积乘以母线的长度的一半。
2.圆锥的表面积和体积计算公式a. 表面积计算公式:S = πr² + πrl,其中r为底面圆半径,l为母线的长度。
b.体积计算公式:V=1/3πr²h,其中r为底面圆半径,h为母线的长度。
3.圆锥的投影a.圆锥的平行截面是与底面圆相似的圆。
b.圆锥的垂直截面是一个等腰三角形。
4.圆锥的应用a.圆锥广泛应用于日常生活中的容器,如冰淇淋蛋筒。
b.圆锥也是建筑中常用的结构形式,如锥形的尖塔、圆锥形的钟楼等。
总结:圆柱和圆锥是几何学中重要的几何体,具有许多相似的性质和计算公式。
它们在日常生活和建筑中有着广泛的应用,对于理解立体几何形状和计算体积、表面积都具有重要意义。
深入学习和理解圆柱和圆锥的知识,有助于解决实际问题和提升数学能力。
圆柱和圆锥知识点总结
圆柱和圆锥知识点总结一、圆柱的定义和性质1.定义:圆柱是由一个圆沿着一个平行于圆所在平面的直线移动形成的,在移动过程中,圆始终垂直于移动线段。
2.元素:圆柱由两个平行的底面、两个底面之间的侧面和两个底面的圆所组成。
3.特点:(1)底面积相等:圆柱的两个底面积相等。
(2)高度:圆柱的高度是连接两个底面的垂直线段。
(3)侧面积:圆柱的侧面积等于底面周长乘以高度。
(4)体积:圆柱的体积等于底面积乘以高度。
(5)闭曲面:圆柱的底面和侧面构成闭合的曲面。
4.圆柱的投影:圆柱的投影形态为一个矩形。
二、圆锥的定义和性质1.定义:圆锥是由一个圆沿着一个平行于圆所在平面的直线移动形成的,在移动过程中,圆始终垂直于移动线段。
2.元素:圆锥由一个底面、一个尖顶和底面与尖顶之间的侧面组成。
3.特点:(1)底面:圆锥的底面是一个圆。
(2)高度:圆锥的高度是连接底面和尖顶的垂直线段。
(3)侧面:圆锥的侧面是由底面上任意一点到尖顶的直线构成。
(4)侧面积:圆锥的侧面积等于圆周长乘以半斜高。
(5)体积:圆锥的体积等于底面面积乘以高度再除以3(6)闭曲面:圆锥的底面和侧面构成闭合的曲面。
4.圆锥的投影:圆锥的投影形态为一个三角形。
三、圆柱和圆锥的应用1.圆柱的应用:圆柱广泛应用于各个领域,如:(1)建筑:柱子、立柱、柱圈等结构都是圆柱体的应用。
(2)机械:轴、销、滚筒等都是圆柱体的应用。
(3)制造:瓶子、罐子、圆筒形容器等都是圆柱体的应用。
(4)数学:柱体的几何性质是数学中的重要内容,如计算底面积、侧面积、体积等。
(5)其他:圆柱的轴对称性质也常用于解决几何问题。
2.圆锥的应用:圆锥也有广泛的应用,如:(1)建筑:塔、锥形屋顶、圆锥形尖塔等都是圆锥体的应用。
(2)环境工程:漏斗、喷泉、喷水池等都是圆锥体的应用。
(3)制造:圆锥形工件的制造是机械加工中常见的任务。
(4)数学:圆锥的几何性质也是数学中的重要内容,如计算底面积、侧面积、体积等。
(完整版)圆柱与圆锥知识点总结
圆柱与圆锥总结练习知识点一:关于圆柱展开图1、下面()图形是圆柱的展开图。
(单位:cm)2、一个圆柱体的侧面是一个正方形,直径是5dm,正方形面积是_________。
3、做一个底面直径是20厘米,高是50厘米的圆柱形通风管,至少需要_________平方厘米的铁皮。
知识点二:圆柱的侧面积,表面积以及应用侧面积C侧= 底面积S底=表面积S表=实际计算中很多时候计算表面积时,很多时候只要求计算侧面积或者底面积只算一个。
4、一个圆柱的展开图如图所示,求该圆柱的表面积。
5、旋转得到的圆柱。
如图长方形绕过中心的直线旋转一周得到一个圆柱体,已知长方形的长为20厘米,宽是10厘米,求圆柱体的表面积。
6、会议大厅里有10根底面直径0.6米,高6米的圆柱形柱子,现在要刷上油漆,每平方米用油漆0.5千克,刷这些柱子要用油漆多少千克?7、做十节长2米,直径8厘米的圆柱形铁皮烟囱,需要铁皮多少平方米?8、压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。
如果每分转动5周,每分可以压多大的路面?知识点三、圆柱的体积以及应用体积V柱=圆柱的体积与容积,以及根据体积求质量等问题9、(1)直角三角形的两条边分别是6cm和7cm。
(2)长方形的长是10厘米,宽是5厘米,绕过中点的直线旋转一圈。
知识点四、圆锥的体积以及应用体积V柱=圆锥的体积与容积,以及根据体积求质量等问题10、一个圆锥体的体积是15.7立方分米,底面积是3.14平方分米,它的高有多少分米?知识点五、圆柱圆锥体积之间的关系,底面积,体积比的问题①如果圆柱与圆锥等底等高,圆柱的体积是圆锥的②如果圆柱与圆锥体积相等,高相等,则圆锥的底面积是圆柱的③如果圆柱与圆锥体积相等,底面积相等,则圆锥的高是圆柱的11、一个圆柱体橡皮泥,底面积是12平方厘米,高4厘米,把它捏成:(1)底面积不变的圆锥,圆锥的高是多少?(2)高不变的圆锥,圆锥的底面积是多少?(3)底面积是8平方厘米的圆锥,高是多少?12、一个圆柱形容器的底面半径是4分米,高6分米,里面盛满水,把水倒在棱长是8分米的正方体容器内,水深是多少分米?13、有一段钢可做一个底面直径8厘米,高9厘米的圆锥形零件.如果把它改制成高是12厘米的圆柱形零件,零件的底面积是多少平方厘米?知识点六、体积单位,表面积单位之间的互换,以及常见立体图形的体积表面积问题表面积单位:平方厘米平方分米平方米(进率是10*10=100)体积单位:立方厘米立方分米立方米(进率是10*10*10=1000)表面积是所有表面的面积的总和,算出各个面的面积求和即可长方形面积= 正方形面积= 三角形面积=平行四边形面积= 梯形面积=体积:所有立体图形的体积都可以用底面积×高求解,各个立体图形也有自己的体积公式。
(完整版)圆柱和圆锥知识点整理
圆柱和圆锥知识点整理圆柱:(一)圆柱的特征:1.底面是两个大小相同的圆,且平行。
2.侧面是曲面,沿高展开后是一个长方形。
3.高是两个底面之间的距离,高有无数条且都相等。
(二)相关计算:1.圆柱的侧面积:(圆柱的侧面沿高展开是一个长方形,它的长等于圆柱的底面周长,宽等于圆柱的高;如果圆柱的侧面沿高展开是一个正方形,那么圆柱的底面周长等于圆柱的高,圆柱的侧面积可直接用这个正方形的“边长×边长”。
)1.已知圆柱的底面周长C和高h,求侧面积。
用公式S侧= C h ;圆柱的侧面积= 底面周长×高;( 高= 圆柱的侧面积÷底面周长;底面周长= 圆柱的侧面积÷高)2.已知圆柱的底面直径d和高h,求侧面积。
用公式S侧= πd h ;(记住C=πd) 圆柱的侧面积= 直径×3.14 ×高3.已知圆柱的底面半径r和高h,求侧面积。
用公式S侧= 2πr h。
(记住C=2πr )圆柱的侧面积= 半径×2 ×3.14 ×高2.圆柱的表面积:(解答与圆柱的表面积有关的问题时,可以通过画图或想象图形的方法,明确题意,再分步计算各部分的内容,最后完成解题)。
(1)S =S +2 S ;(2)S =2πr h +2πr = 2πr ( h +r ) 。
[由于求圆柱的表面积一定要知道底面半径r,如果半径r未知,可以用公式r = d÷2 或r = C÷π÷2 先求出半径 r ,再用公式S =2πr h + 2πr = 2πr ( h + r ) 计算圆柱表面积。
3.圆柱的体(容)积:V = Sh = πr 2 h (圆柱的体积一般要先求出底面半径r )。
圆柱的体(容)积 = 底面积 × 高 = 半径2 × 3.14 × 高高 = 圆柱的体(容)积 ÷ 底面积(半径2 × 3.14);底面积 = 圆柱的体(容)积 ÷ 高二、圆锥:(一)圆锥的特征:1.底面是一个圆形。
圆柱与圆锥知识点归纳
圆柱与圆锥知识点归纳(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除圆柱与圆锥知识点归纳一、面的旋转知识点1、圆柱各部分名称及特征1、圆柱有3个特征(1),圆柱有( 2 )个底面和(1 )个侧面;(2),底面是(完全相等)的两个圆;侧面是一个(曲)面(3),圆柱有(无数)高,所有的高都(相等)。
2、把圆柱平行于底面进行切割,切面是和底面大小完全一样的两个(圆),把圆柱沿底面直径进行切割,切面是两个完全相同的(长方形),长方形的长等于圆柱的高,长方形的宽等于圆柱的底面直径。
知识点2、圆锥的各部分名称以及特征1、圆锥的底面是一个(圆 ),侧面是一个(曲面),侧面展开是一个(扇形),圆锥只有(1)条高。
二、圆柱的表面积知识点1、圆柱侧面积的测量方法1、圆柱的侧面展开是一个(长方形),长方形的长等于圆柱的(底面周长),宽等于圆柱的(高),长方形的面积公式:(长)×(宽);所以圆柱侧面积=(底面周长)×(高),用字母表示:S=( Ch )2、侧面积公式的几个推导公式,由于圆柱的底面是一个圆,由圆的周长公式:C=πd、 C=2πr,可以推导出圆柱侧面积的公式还有:S=(πdh ),S=( 2πrh )。
3、圆柱的侧面展开可能是(长方形)、正方形或者(平行四边形)。
知识点2、圆柱侧面积公式的应用第一类,一只底面周长和高,求侧面积。
一个圆柱形纸筒,底面周长72cm,高8cm,它的侧面积是多少平方厘米第二类,已知底面直径和高,求测面积。
一个圆柱,底面直径是米,高米,求它的侧面积(得数保留两位小数)第三类,已知底面半径和高,求侧面积。
一个圆柱的高是15厘米,底面半径是5厘米,它的侧面积是多少知识点3、圆柱表面积的计算方法1、圆柱的组成部分:两个底面和一个侧面。
2、圆柱的表面积:S=侧面积+底面积×2.3、侧面积的公式有3个,相对应的圆柱的表面积公式有3个分别是:S=Ch+2πr²S=πdh+2πr²,S=2πrh+2πr²S=C(h+r)知识点4、圆柱表面积的应用(用分析法做题、用割补法做题)第一类、求一个底面积和侧面积(无盖的桶、茶杯、水池等)1、一个无盖的圆柱形铁桶,高24cm,底面直径是20cm,做这个铁桶大约要用铁皮多少平方厘米(得数保留整百平方数)2、做一个没有盖的铁皮水桶,它的底面周长是分米,高 4 分米。
(完整版)圆柱圆锥基本知识点。
班级: 姓名: 学好: 背诵签字:
1、圆柱:
(1)圆柱的面:圆柱的底面是面积相等的两个圆,侧面是个曲面;
侧面沿着高展开是一个长方形或正方形,长方形的长是底面圆的周长,宽是圆柱的高。
(2)圆柱的高:高是两底之间的距离,圆柱有无数条高
(3)圆柱的侧面积=底面周长×高 S 侧=Ch=πdh=2πrh
(4)圆柱的表面积=侧面积+2个底面积 S 表=S 侧+S 底×2
(5)圆柱的体积=底面积×高 V 柱=S 底h=πr ²h
2、圆锥:
(1)圆锥的面:圆锥的底面是一个圆,侧面是一个曲面,侧面展开是一个扇形。
(2)圆锥的高:高是圆锥顶点到底面圆心的距离,圆锥的高只有一条。
(3)圆锥的体积=底面积×高×13 V 锥=13 S 底h=13
πr ²h (4)h=V 锥×3÷S 底 S 底= V 锥×3÷h
3、圆柱和圆锥的关系:
(1)等底等高的圆锥的体积是圆柱体积的13
;等底等高的圆柱的体积是圆锥体积的3倍。
(2)圆柱、圆锥的体积和底面积相等时,圆锥的高是圆柱高的3倍,圆柱的高是圆锥高的13。
(3)圆柱、圆锥的体积和高相等时,圆锥的底面积是圆柱底面积的3倍,圆柱的底面积是圆锥底面积的13。
4、常用数据:
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7 6π=18.84 7π=21.98 8π=25.12 9π=28.26 12π=37.68 15π=47.1 16π=50.24 25π=78.5 36π=113.04 64π=200.96。
圆柱和圆锥的知识点总结
圆柱和圆锥的知识点总结1.定义:圆柱是由一个平行于底面的闭合曲面和两个底面组成的几何体。
底面是两个平行的圆,曲面由连接两个底面上所有点的线段旋转形成。
2.特点:-圆柱具有对称性,即底面大小和形状相同。
-圆柱的高度是连接两个底面上对应点的线段的长度。
-圆柱的体积等于底面积乘以高度,公式为V=πr²h,其中V表示体积,r表示底面半径,h表示高度。
- 圆柱的表面积由两个底面的面积和侧面的面积组成,公式为 S =2πrh + 2πr²,其中 S 表示表面积。
3.应用:-圆柱是现实生活中常见的几何体,如水杯、桶、柱子等都可以看作是圆柱的一种。
-圆柱的体积公式可以用于计算物体的容积,如计算液体的容量、柱形物体的体积等。
-圆柱的表面积公式可以用于计算涂油漆的用量、包装盒的表面积等。
1.定义:圆锥是一个底面为圆的几何体,它由一个顶点和连接顶点与底面上所有点的线段组成。
2.特点:-圆锥的高度是由顶点到底面中心的垂直距离。
-圆锥的侧面是由连接顶点和底面上所有点的线段旋转形成。
-圆锥的体积等于底面积乘以高度再除以三,公式为V=(1/3)πr²h,其中V表示体积,r表示底面半径,h表示高度。
-圆锥的表面积由底面的面积和侧面的面积组成,公式为S=πr(r+l),其中S表示表面积,l表示斜高。
3.应用:-圆锥是现实生活中常见的几何体,如冰淇淋蛋筒、圣诞树、圆锥形山峰等都是圆锥的一种。
-圆锥的体积公式可以用于计算物体的容积,如圆锥形容器的容量、圆锥形天文望远镜的容积等。
-圆锥的表面积公式可以用于计算喷涂物体的表面积、圆锥形建筑物的表面积等。
三、圆柱与圆锥的比较1.相同点:-圆柱和圆锥都是由底面和若干个连接底面和顶点的线段组成。
-圆柱和圆锥的底面都是圆形。
-圆柱和圆锥的体积和表面积都可以通过相关的公式计算。
2.不同点:-圆柱的底面是两个平行的圆,而圆锥的底面只有一个圆。
-圆柱的高度是连接底面上对应点的线段长度,而圆锥的高度是由顶点到底面中心的垂直距离。
圆柱 圆锥知识点总结
圆柱圆锥知识点总结一、圆柱的定义与性质圆柱是一种由一个圆柱面和两个平行的底面组成的立体图形。
圆柱的底面和母线所在的平面与底面垂直。
圆柱的母线是连接两个底面圆心的线段,其长度为圆柱的高度。
在圆柱中,有许多重要的性质:1. 圆柱的体积公式为V=πr^2h,其中r为底面圆的半径,h为圆柱的高度。
2. 圆柱的侧面积公式为S=2πrh,底面积公式为底面圆的面积为S=πr^2,因此圆柱的总表面积为S=2πrh+2πr^2。
3. 圆柱的底面积越大,体积也相对越大,而底面积相同的情况下,高度越高,圆柱的体积越大。
二、圆锥的定义与性质圆锥是一种由一个圆锥面和一个底面组成的立体图形。
圆锥的底面是一个圆,圆锥面是以底面上的每一点为端点,与一个定点O连线的所有线段所组成的曲面。
这个定点O称为圆锥的顶点。
圆锥也有一些重要的性质:1. 圆锥的体积公式为V=1/3πr^2h,其中r为底面圆的半径,h为圆锥的高度。
2. 圆锥的侧面积公式为S=πrl,底面积公式为S=πr^2,因此圆锥的总表面积为S=πrl+πr^2。
3. 圆锥的侧面积与底面积的比值与母线的长短无关,即侧面积与底面积的比例是固定的。
三、圆柱与圆锥的比较1. 形状:圆柱和圆锥都是由圆面和曲面组成的立体图形,但圆柱是由两个圆面和一个侧面组成,而圆锥只有一个圆面和一个侧面。
2. 体积和表面积:两者的体积和表面积公式有所不同,但都是由底面积和高度(或者母线)来计算的。
3. 应用:圆柱和圆锥在日常生活中有着广泛的应用,比如圆柱可以用来制作筒形容器,如筒状瓶子、桶子等,而圆锥则可以用来制作圆锥形容器,如漏斗等。
通过对圆柱与圆锥的定义、性质和公式的总结,我们可以更好地理解和应用这两种几何图形,在数学和实际生活中更加得心应手。
希望上述内容对大家有所帮助,如有错误或不足之处,欢迎指正补充。
圆柱圆锥知识点归纳
圆柱圆锥知识点归纳第一单元知识归纳与梳理一、面的旋转1、点、线、面、体之间的关系为:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:1) 圆柱的两个底面是完全相同的两个圆。
2) 两个底面间的距离称为圆柱的高。
3) 圆柱有无数条高,且高的长度都相等。
3、圆锥的特征:1) 圆锥的底面是一个圆。
2) 圆锥的侧面是一个曲面,侧面展开是一个扇形。
3) 圆锥的顶点到底面的距离叫圆锥的高,圆锥只有一条高。
二、圆柱的表面积1、表面积指物体露在外面的面的面积。
2、完整圆柱的表面积包括一个侧面和两个底面。
3、圆柱的表面积计算:1) 侧面积:沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。
(如果不是沿高剪开,有可能还会是平行四边形或其他不规则图形)2) 圆柱的侧面积=底面周长×高,用字母表示为:S侧=ch3) 圆柱的侧面积公式的应用:1) 已知底面周长和高,求侧面积,可运用公式:S侧=ch2) 已知底面直径和高,求侧面积,可运用公式:S侧=πdh3) 已知底面半径和高,求侧面积,可运用公式:S侧=2πrh4、圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:1) S表=S侧+2S底或 S表=S侧+S底或 S表=S侧5、圆柱表面积的计算方法的特殊应用:1) 圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
2) 圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
6、已知侧面积求c、h、s表1) h=s侧÷c2) 求s表三、圆柱的体积1、圆柱的体积是一个圆柱所占空间的大小。
2、圆柱体积的推导过程:把圆柱沿高切开,可以拼成一个近似的长方体,圆柱的底面积是长方体的底面积,圆柱的高是长方体的高,因为长方体的体积=底面积×高,所以圆柱的体积=底面积×高3、圆柱的体积=底面积×高。
圆柱和圆锥总结知识点
圆柱和圆锥总结知识点一、圆柱的知识点总结1. 定义及基本性质:圆柱是由一个底面和一个与其平行的顶面组成的立体图形。
圆柱的底面是一个圆,顶面与底面平行,且与圆柱側面垂直。
圆柱的侧面是一个圆柱曲面。
圆柱的高度是指基面到顶面的距离,圆柱的侧面积等于圆的周长乘以高,圆柱的体积等于底面积乘以高。
2. 圆柱的公式:圆柱的表面积和体积分别为:表面积= 2πr² + 2πrh体积= πr²h其中,r为底面圆的半径,h为圆柱的高度。
3. 圆柱的实际应用:圆柱在日常生活和工程中有着广泛的应用,例如筒形容器、钢管、水管等都可以看作是圆柱体。
在建筑领域中,一些柱状物体也可以看作是圆柱体。
圆柱体在数学中也有着重要的应用,例如在求体积、表面积等问题中。
二、圆锥的知识点总结1. 定义及基本性质:圆锥是由一个圆形底面和一个顶点在平面之上的尖顶组成的立体图形。
与圆锥侧面相交的圆锥曲面上的任意两点和尖顶构成的直线都位于圆锥的侧面上。
圆锥的高为从尖顶到底面的距离,圆锥的侧面积等于底面周长乘以斜高的一半,圆锥的体积等于底面积乘以高再除以3。
2. 圆锥的公式:圆锥的表面积和体积分别为:表面积= πr(l + r) (r为底面圆的半径,l为侧面母线的长度)体积= 1/3πr²h其中,r为底面圆的半径,h为圆锥的高度。
3. 圆锥的实际应用:圆锥在日常生活和工程中也有着广泛的应用,例如冰淇淋蛋筒、斜面、圆锥标准零件等都可以看作是圆锥体。
在建筑领域中,一些锥状物体也可以看作是圆锥体。
圆锥体在数学中也有着重要的应用,例如在锥体的体积与表面积等问题中。
总结:圆柱和圆锥是重要的立体图形,在几何学中有着重要的地位。
它们有着广泛的应用,涉及日常生活和工程领域,并且在数学的教学中也有着深远的意义。
通过了解其基本知识点以及实际应用,可以更好地理解和运用这两种图形。
圆柱圆锥所有知识点
圆柱圆锥所有知识点圆柱和圆锥是几何学中的两个基本形状,它们具有许多特点和性质。
下面将分别介绍圆柱和圆锥的相关知识点。
一、圆柱1. 定义:圆柱是由一个圆和与该圆平行的一个平面上的一条曲线所围成的立体图形。
2. 元素:圆柱有两个底面、一个侧面和两个底面的边缘。
底面是两个平行的圆,侧面是连接两个底面边缘的曲面。
3. 性质:- 圆柱的底面积为底面圆的面积,记为S底= πr²。
- 圆柱的侧面积为底面周长乘以高,记为S侧= 2πrh。
- 圆柱的表面积为底面积加上侧面积,记为S表= 2πr² + 2πrh。
- 圆柱的体积为底面积乘以高,记为V = S底× h = πr²h。
4. 应用:- 圆柱广泛应用于日常生活中,例如杯子、柱子、筒形容器等。
- 圆柱的性质在工程、建筑和物理学等领域中也有广泛的应用。
二、圆锥1. 定义:圆锥是由一个圆和一个连接圆上任意一点到与该圆在同一平面上的一条曲线所围成的立体图形。
2. 元素:圆锥有一个底面、一个侧面和一个顶点。
底面是一个圆,侧面是连接圆上任意一点到顶点的曲面。
3. 性质:- 圆锥的底面积为底面圆的面积,记为S底= πr²。
- 圆锥的侧面积为底面周长乘以斜高,记为S侧= πrl。
- 圆锥的表面积为底面积加上侧面积,记为S表= πr² + πrl。
- 圆锥的体积为底面积乘以高再除以3,记为V = (1/3)πr²h。
4. 应用:- 圆锥的形状常见于冰淇淋蛋筒、喇叭等物体中。
- 圆锥的性质在建筑、工程和物理学等领域中也有广泛的应用。
圆柱和圆锥是几何学中常见的形状,它们有着各自的定义、元素和性质。
圆柱和圆锥的性质在日常生活和科学研究中有广泛的应用,对于我们理解和解决实际问题具有重要意义。
通过深入了解圆柱和圆锥的知识,我们可以更好地应用它们,并在实际生活中发挥它们的作用。
圆柱圆锥综合知识点总结
圆柱圆锥综合知识点总结一、圆柱的定义和性质圆柱是一种表面上等距离于一条直线的圆柱侧面所围成的固体。
圆柱由两个相等的圆面和不同圆面间的曲面组成。
圆柱的轴线是连接两个圆心的直线。
圆柱有如下的性质:1. 圆柱的体积公式:V=πr^2h,其中r为底面半径,h为高。
2. 圆柱的侧面积公式:S=2πrh,其中r为底面半径,h为高。
3. 圆柱的母线:连接两个底圆上相对点的直线。
4. 圆柱的母线长度:L=2√(r^2+h^2),其中r为底面半径,h为高。
二、圆锥的定义和性质圆锥是由一个圆和一个点不在同一平面上的一条线所围成的图形。
圆锥的底面是一个圆,而侧面是从圆心到该点的直线段。
圆锥有如下的性质:1. 圆锥的体积公式:V=1/3πr^2h,其中r为底面半径,h为高。
2. 圆锥的母线:连接圆心与顶点的直线。
3. 圆锥的母线长度:L=√(r^2+h^2),其中r为底面半径,h为高。
4. 圆锥的侧面积公式:S=πrl,其中r为底面半径,l为母线长度。
三、圆柱和圆锥的应用1. 圆柱的应用:圆柱在日常生活中有着广泛的应用,比如饮用水杯、玻璃杯、筒形状的容器等都是圆柱的应用场景。
在工程领域,圆柱也常见于管道、柱子、筒仓等领域。
2. 圆锥的应用:圆锥在日常生活中也有着许多应用,比如冰淇淋蛋筒、喷泉、圣诞树等都是圆锥的应用场景。
在工程领域,喷嘴、漏斗、圆锥形的工件等都是圆锥的应用。
总结圆柱和圆锥是几何中的重要图形,它们有着自己的定义、特点和性质。
掌握圆柱和圆锥的相关知识,可以帮助我们更好地理解几何学,并且在日常生活和工程应用中应用这些知识。
希望本文能够对读者有所帮助,让大家对圆柱和圆锥有更加全面的了解。
圆柱与圆锥知识点总结
圆柱与圆锥知识点总结一.圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。
2、圆柱各部分的名称:圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条他们的数值是相等的)。
3、圆柱的侧面展开图:a 沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。
b. 不沿着高展开,展开图形是平行四边形或不规则图形。
C.无论如何展开都得不到梯形.侧面积=底面周长×高S侧=Ch=πd×h =2πr×h4、圆柱的表面积:圆柱表面的面积,叫做这个圆柱的表面积。
圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2 = 2πr×h + 2×πr2(实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,都要用进一法)圆柱的体积:圆柱所占空间的大小,叫做这个圆柱的体积。
圆柱切拼成近似的长方体,分的份数越多,拼成的图形越接近长方体。
长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
长方体的体积=底面积×高圆柱体积=底面积×高V柱=S h =πr2 hh =V柱÷S=V柱÷(πr2)S=V柱÷h5、.圆柱的切割:a.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2b.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh考试常见题型:a 已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长b已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积c已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积d已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积e已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。
(背诵)圆柱和圆锥知识点归纳总结
圆柱和圆锥有关知识点一、圆柱和圆锥各部分的名称以及特征1、圆柱(1)认识圆柱各部分的名称:上下两个圆面叫做底面,圆柱的周围叫侧面,圆柱两个底面之间的距离叫做高。
(2)圆柱的特征:圆柱的上下底面是两个圆,它们是完全相同的;圆柱的侧面是曲面;圆柱的高有无数条,高的长度都相等。
(3)沿高剪开:圆柱的侧面展开后是长方形(当圆柱底面周长与高相等时,展开后是正方形)。
这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。
2. 圆锥(1)认识圆锥各部分的名称:下面一个圆面叫做底面,它周围叫侧面,从圆锥的顶点到底面圆心的距离叫做高。
(2)圆锥的特征圆锥的底面都是一个圆。
圆锥的侧面是曲面。
一个圆锥只有一条高。
(3)圆锥的侧面沿着一条母线展开后是一个扇形,这个扇形的弧长等于圆锥的底面周长,半径等于圆锥的母线长。
(如下图所示)二、基本公式1、圆的知识圆的周长=直径×π=半径×2×πC=πd =2πr逆推公式有:直径=圆的周长÷πd = C÷π半径=圆的周长÷π÷2r = C÷π÷2圆的面积=半径的平方×π=(直径÷2)2×π=(圆的周长÷π÷2)2×πS=πr2=(d÷2)2×π=(C÷π÷2)2×π2、( 1 )圆柱的侧面积:把圆柱侧面沿高展开,得到一个长方形(或正方形),长方形的长是圆柱的底面周长,长方形的宽是圆柱的高。
ﻫ圆柱的侧面积=底面周长×高=直径×π×高=半径×2×π×高S 侧=C h=πd h=2πr h逆推公式有:圆柱的高=圆柱的侧面积÷底面周长=圆柱的侧面积÷(π×高) =圆柱的侧面积÷(半径×2×π) h =S 侧÷C圆柱的底面周长=圆柱的侧面积÷高C =S 侧÷h(2)圆柱的表面积=圆柱的侧面积+圆柱的底面积×2 S 表=S 侧+2S 底(3) 圆柱的体积=底面积×高V 柱=S h=πr 2h逆推公式有:圆柱的高=圆柱的体积÷底面积h=V柱÷S圆柱的底面积=圆柱的体积÷高h=V 柱÷S3 ( 1 )如果圆柱的侧面展开是一个正方形,那么这个圆柱的高和底面周长相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱圆锥知识点总结主要内容圆柱和圆锥的认识、圆柱的表面积考点分析1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。
形成圆柱的面还有一个曲面,叫做圆柱的侧面.圆柱两个底面之间的距离叫做圆柱的高.2、圆锥的底面是个圆,圆锥的侧面是一个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高.3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高.4、圆柱的侧面积 = 底面周长×高5、圆柱的表面积 = 侧面积 + 底面积× 2典型例题例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面是平面图例2、半径3厘米直径10米分析与解:根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。
圆柱:底面周长 3。
14 × 3 × 2 = 18。
84(厘米)底面积 3。
14 × 3 ²= 28.26(平方厘米)圆锥:底面周长 3.14 × 10 = 31。
4(米)底面积 3.14 ×(10÷2)²= 78。
5(平方米)点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算.例3、判断:圆柱和圆锥都有无数条高.错误解法:正确分析与解:圆柱有无数条高,圆锥只有一条高。
正确解答:错误点评:圆柱两个底面之间的距离叫做圆柱的高。
两个底面之间有无数个对应的点,圆柱有无数条高。
从圆锥的顶点到底面圆心的距离是圆锥的高。
顶点和底面圆心都是唯一的点,所以圆锥只有一条高.例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。
求它的侧面积。
分析与解:高沿着圆柱侧面的一条高剪开,将侧面展开,就得到一个长方形.这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
因此,用圆柱的底面周长乘圆柱的高就得到这个长方形的面积,即圆柱的侧面积。
解答: 3.14 × 5 × 12 = 188.4(平方厘米)答:它的侧面积是188。
4平方厘米.点评:圆柱的侧面是个曲面,不能直接求出它的面积.推导出侧面积的计算公式也用到了转化的思想。
把这个曲面沿高剪开,然后平展开来,就能得到一个长方形,这个长方形的面积就是这个圆柱的侧面积。
例5、(圆柱的表面积)做一个圆柱形油桶,底面直径是0。
6米,高是1米,至少需要多少平方米铁皮?(得数保留整数)分析与解:求铁皮的面积,就是求圆柱形油桶的表面积,即两个底面积和一个侧面积的和。
解答:底面积:3。
14 ×(0.6÷2)= 0。
2826(平方米)侧面积:3.14 × 0.6 × 1 = 1.884(平方米)表面积:0.2826 × 2 + 1。
884 = 2。
4492(平方米)≈ 3(平方米)答:至少需要铁皮3平方米。
点评:这里不能用四舍五入法取近似值.因为在实际生活中使用的材料要比计算得到的结果多一些。
因此这儿保留整数,十分位上虽然是4,但也要向个位进1。
例6、(辨析)一个无盖的圆柱铁皮水桶,底面直径是30厘米,高是50厘米。
做这样一个水桶,至少需用铁皮6123平方厘米。
分析与解:题目中是做一个无盖的圆柱铁皮水桶,只有一个底面。
在计算铁皮面积时只要用圆柱的侧面积加上一个底面的面积.解答:底面积:3。
14 ×(30÷2)²= 706.5(平方厘米)侧面积:3。
14 × 30 × 50 = 4710(平方厘米)表面积:706。
5 + 4710 = 5416。
5(平方厘米)答:做这样一个水桶,至少需用铁皮5416。
5平方厘米。
例7、(考点透视)一个圆柱的侧面积展开是一个边长15.7厘米的正方形。
这个圆柱的表面积是多少平方厘米?分析与解:圆柱的侧面积展开是一个正方形,即圆柱的高和底面周长都是15.7厘米。
根据圆柱的底面周长可以算出底面积。
解答:底面半径:15.7 ÷ 3。
14 ÷ 2 = 2.5(厘米)底面积:3。
14 × 2。
5 ²= 19。
625(平方厘米)侧面积:15.7 × 15。
7 = 246。
49(平方厘米)表面积:19。
625 × 2 + 246.49 = 285.74(平方厘米)答:这个圆柱的表面积是285.74平方厘米。
例8、(考点透视)一个圆柱形的游泳池,底面直径是10米,高是4米。
在它的四周和底部涂水泥,每千克水泥可涂5平方米,共需多少千克水泥?分析与解:要求水泥的质量,先要求水泥的面积.在圆柱形的游泳池的四周和底部涂水泥,涂水泥的面积是一个底面积加上侧面积。
解答:侧面积:3。
14 × 10 × 4 = 125.6(平方米)底面积:3。
14 ×(10 ÷ 2)²= 78.5(平方米)涂水泥的面积:125。
6 + 78.5 = 204。
1(平方米)水泥的质量:204.1 ÷ 5 = 40.82(千克)答:共需40。
82千克水泥。
例9、(考点透视)把一个底面半径是2分米,长是9分米的圆柱形木头锯成长短不同的三小段圆柱形木头,表面积增加了多少平方分米?分析与解:锯圆柱形木头,表面积增加的部分是若干个相同的底面积。
锯成三段,要锯两次,每锯一次增加两个面,锯了两次增加了四个面.3。
14 × 2 ²× 4= 50.24(平方分米)答:表面积增加了50.24平方分米。
点评:这是一道在实际生活中应用的题目,对于这一类题目,它的规律就是每切一次就增加两个面.但切的方式不同,增加的面也不同。
如果是沿着底面直径把圆柱切成相同的两个部分,增加的面就是以底面直径和高为两邻边的长方形。
模拟试题下面( )图形旋转会形成圆柱。
3、在下图中,以直线为轴旋转,可以得出圆锥的是().4、求下列圆柱体的侧面积(1)底面半径是3厘米,高是4厘米。
(2)底面直径是4厘米,高是5厘米.(3)底面周长是12。
56厘米,高是4厘米。
5、求下列圆柱体的表面积(1)底面半径是4厘米,高是6厘米。
(2)底面直径是6厘米,高是12厘米。
(3)底面周长是25。
12厘米,高是8厘米.6、用铁皮制作一个圆柱形烟囱,要求底面直径是3分米,高是15分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择.8、一个圆柱形蓄水池,底面周长是25.12米,高是4米,将这个蓄水池四周及底部抹上水泥。
如果每平方米要用水泥20千克,一共要用多少千克水泥?圆柱、圆锥的体积圆柱体积公式:圆锥体积公式:模拟试题一、圆柱体积1、求下面各圆柱的体积。
(1)底面积0.6平方米,高0。
5米(2)底面半径是3厘米,高是5厘米。
(3)底面直径是8米,高是10米. (4)底面周长是25。
12分米,高是2分米。
2、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的4/7。
第一个圆柱的体积是24立方厘米,第二个圆柱的的体积比第一个圆柱多多少立方厘米?3、在直径0。
8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米?4、牙膏出口处直径为5毫米,小红每次刷牙都挤出1厘米长的牙膏。
这支牙膏可用36次.该品牌牙膏推出的新包装只是将出口处直径改为6毫米,小红还是按习惯每次挤出1厘米长的牙膏。
这样,这一支牙膏只能用多少次?5、一根圆柱形钢材,截下1。
5米,量得它的横截面的直径是4厘米。
如果每立方厘米钢重7.8克,截下的这段钢材重多少千克?(得数保留整千克数。
)6、把一个棱长6分米的正方体木块,削成一个最大的一圆柱体,这个圆柱的体积是多少立方分米?7、右图是一个圆柱体,如果把它的高截短3厘米,它的表面积减少94.2平方厘米。
这个圆柱体积减少多少立方厘米?二、圆锥体积1、选择题.(1)一个圆锥体的体积是a 立方米,和它等底等高的圆柱体体积是( )① 31a 立方米 ② 3a 立方米 ③ 9立方米(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是( )立方米 ① 6立方米 ② 3立方米 ③ 2立方米 2、判断对错.(1)圆柱的体积相当于圆锥体积的3倍 ………( )(2)将一个圆柱体木料加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2:1 ………( )(3)一个圆柱和圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米 ………( )3、填空(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是( )立方厘米。
(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。
(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。
圆柱的体积是( )立方厘米,圆锥的体积是( )立方厘米.4、求下列圆锥体的体积。
(1)底面半径4厘米,高6厘米. (2)底面直径6分米,高8厘米.(3)底面周长31。
4厘米,高12厘米.5、一个圆锥形沙堆,高是1。
5米,底面半径是2米,每立方米沙重1.8吨。
这堆沙约重多少吨?6、一个近似圆锥形的麦堆,底面周长12。
56米,高1。
2米,如果每立方米小麦重750千克,这堆小麦重多少千克?7、一个长方体容器,长5厘米,宽4厘米,高3厘米,装满水后将水全部倒入一个高6厘米的圆锥形的容器内刚好装满。
这个圆锥形容器的底面积是多少平方厘米?。