高速电气化铁路概述

合集下载

电气化铁路基础知识

电气化铁路基础知识

电气化铁路基础知识制作人:林彬彬一.电气化铁路概述在铁路运输中,主要有三种牵引形式:蒸汽牵引、内燃牵引和电力牵引。

蒸汽牵引是铁路上最早采用的一种牵引形式,至今已有170余年的历史。

因为它热效率低、燃料消耗大、污染环境重,严重影响铁路技术经济效能和铁路运输能力的提高,从20世纪60年代开始,已经逐渐被淘汰。

而内燃牵引和电力牵引,在技术上比较先进,是2 0世纪40年代以后才发展起来的,它们功率大、热效率高、过载能力强,能更好地实现多拉快跑,提高铁路的运输能力,所以发展很快。

特别是电力牵引,它除了具有上述优点外,还能综合利用资源和不污染环境,是今后发展的主要一种牵引形式。

二.世界电气化铁路的发展史世界上第一条电气化铁路和第一台电力机车是1879年5月31日德国西门子和哈尔斯克公司研制和制造的,这条电气化铁路全长只有300M。

1881年西门子和哈尔斯克公司又修建了一条2.45千M 长的电力线路.1895年美国在5.6千M长的隧道区段内修建了一条675V的直流电气化铁路。

同年,日本在京都的下京区修建了一条6.7千M长的550V的直流电气化铁路。

1902年意大利在瓦尔切里纳线上修建了一条三相交流电气化铁路。

在最初,电气化铁路修建在工矿线路和一些大城市近郊线路上。

后来,随着工业的发展,逐渐发展到城市之间和运输繁忙的铁路干线上来了。

到了20世纪50年代,一些工业发达的国家,为了完成急剧增长的运输任务,以及与其他运输业的竞争的需要,开始大规模地进行铁路运输业的现代化建设,主要是牵引动力现代化的建设。

因此,电气化铁路的建设速度不断加快,修建的国家逐渐增多。

电气化铁路发展最快的时期是60年代,平均每年修建达5000多km。

到70年代末,在工业发达的西欧、日本、前苏联,以及东欧等国家,运输繁忙的主要铁路干线就已经实现了电气化,而且基本上已经成网。

现在,这些国家正在集中力量修建时速200km以上的高速电气化铁路。

从70年以后,一些发展中的国家,如印度、朝鲜、土尔其、巴西、智利、摩洛哥等电气化铁路发展也很快,特别是我国的电气化铁路更有了飞速的发展。

电气化铁路基本知识

电气化铁路基本知识

用以支持接触悬挂,并将其负荷传给支柱或其它建筑物 要求:尽量轻巧耐用,有足够的机械强度,方便施工和检修。
定位装置:括定位管、定位器、支持器及其连接零件。
作用:是固定接触线的位置,在受电弓滑板运行轨迹范围内,
保证接触线与受电弓不离,使接触线磨耗均匀,同时将接触 线的水平负荷传给支柱。 要求:同支持装置。 支柱与基础:承受接触悬挂、支持和定位装置的全部负荷, 并将接触悬挂固定在规定的位置和高度上。
接触网的组成
接触网:接触网是沿铁路上空架设的一条特殊形式的输电线



路。 组成:接触悬挂、支持装置、定位装置、支柱与基础。 接触悬挂:接触线,吊弦,承力索和补偿器及连接零件。 要求:的弹性应尽量均匀、接触线对轨面的高度应尽量相等、 有良好的稳定性、结构及零部件应力求轻巧简单,做到标准 化,以便检修和互换,缩短施工及运行维护时间(抗腐蚀能 力和耐磨性,以延长使用年限)。 作用:将从牵引变电所获得的电能输送给电力机车 支持装置:腕臂、水平拉杆(或压管)、悬式绝缘子串、棒 式绝缘子及吊挂接触悬挂的全部设备。
电气化铁路基础知识
电气化铁路的组成:电力机车、牵引接触网、
牵引变电所 。又称为电气化铁道的“三大元 件 ”。 电力机车(了解)碳滑板长度(最大工作范 围)1250mm,允许工作范围950mm,受电 弓接触压力70±10N。(68.6±9.8N)。 我国电气化铁道牵引网是采用工频单相25KV 交流制。
跨步电压一定会触电,发现有跨步电压危险
时,应单足或并足(即蛙跳)跳离危险区。 以下工作禁止在带电的接触网上进行:攀登 机车,客车,保温车,罐车的车顶,站在高 手闸制动台上拧闸,使用软管冲洗机车车辆 上部。
铁路的安全系统由行车安全、劳动安全、设

电气化铁道概述PPT课件

电气化铁道概述PPT课件
第一章 接触网设备与结构
第一节 电气化铁道概述
项目一 电气化铁道组成及受电弓基本参数 项目二 供电方式 项目三 接触网组成 项目四 接触悬挂的类型
1 2024/1/6
第一节 电气化铁道概述
项目一 电气化铁道组成及受电弓基本参数
1.火车的发明
1825年9月27日,世界上第一条行驶蒸汽机车的永久性公用 运输设施,英国斯托克顿——达灵顿的铁路正式通车了。在盛况 空前的通车典礼上,由机车、煤水车、32辆货车和1辆客车组成 的载重量约90吨的“旅行”号列车,由设计者斯蒂芬森亲自驾驶, 上午9点从伊库拉因车站出发,下午3点47分到达斯托克顿,共运 行了31.8公里。
应用范围: 在我国很
少采用。
15 2024/1/6
3.越区供电 当某一牵引变电所因故障不能正常供电时,故障变电所担 负的供电臂,经分区亭开关设备与相邻供电臂接通,由相邻牵 引变电所进行临时供电 措施。
ቤተ መጻሕፍቲ ባይዱ
应用范围:
越区供电增大了该变电所主变压器的负荷,对电器设备安
全和供电质量影响较大,因此,只能在较短时间内实行越区供
17 2024/1/6
二、牵引供电系统的供电方式
牵引供电系统可能对临近线路的影响 静电感应电压影响 处于电场内的架空通讯线路将产生静电感应电位 电磁感应影响 观音坝实验:接触网与架空线相距100m,平行长度18.3m, 接触网短路电流 I k=1140A,实测纵电动势787~824V 杂音干扰 谐波成分在通信中产生感应电压,形成通信中的杂音。
器,其中心抽头与钢轨联结。
23 2024/1/6
自耦变压器供电方式具有良好的防干扰性能 ,但是 也存在半段效应。
图中,AT1 AT2间可以有效消除干扰,但是,AT2和 机车间的干扰不能消除。

电气化铁路概述

电气化铁路概述

第一章电气化铁路第一节电气化铁路的优越性我国铁路运输的牵引动力,目前主要有蒸汽牵引、内燃牵引和电力牵引三种形式。

以电力牵引作为主要牵引方式的干线铁路称为电气化铁路。

我国第一条电气化铁路始建于1958年,1961年8月15日宝鸡——风州段91km建成通车,采用了较先进的单相工频交流供电方式。

到2005年底,我国已建成电气化铁路两万公里,成为继俄罗斯、德国之后世界第三电气化铁路大国。

目前,世界高速电气化铁路最高已达330km/h(德国汉诺威——柏林),最高试验速度已达515km/h(法国巴黎——勒芒——图尔)。

我国于1998年已建成广深为200km/h的高速电气化铁路,秦沈试验为321.5km/h。

到2020年,我国将达到电气化铁路总里程5万公里,是铁路建设的高潮。

电气化铁路的优越性,主要表现在以下几个方面:一、能多拉快跑,提高运输能力。

由于电力机车功率大、速度快,因而能多拉快跑,提高牵引吨数,缩短在区间运行时间,从而可以大幅度提高运输能力。

二、能综合利用资源,降低燃料消耗。

由于电力机车的能源可以来自多方面,因而可以综合利用资源,即是在纯火力发电的情况下,电力机车总效率也可达25%左右,为蒸汽机车的四倍多。

三、能降低运输成本,提高劳动生产率。

由于电力机车构造简单,牵引电动机和电气设备工作稳定可靠,因而机车检修周期长,维修量少,可以减少维修费用和维修人员。

电力机车不需要添煤、加水和加油,整备作业少,宜长交路行驶,因而可以少设机务段,乘务人员和运用机车台数相应减少。

这样就降低了运输成本,提高了劳动生产率。

四、能改善劳动条件,不污染环境。

由于电力机车没有煤烟,使机车乘务员不受有害气体侵害,同时也对沿线的环境不产生污染。

第二节电气化铁路的组成电气化铁路是由电力机车、牵引变电所和接触网组成的。

一、电力机车——用电力驱动的机车。

电力机车由机械、电气和空气管路系统组成。

机械部分,主要包括车体和走行部分。

电气部分,主要包括受电弓、主断路器、牵引变压器、转换硅机组、调压开关、整流硅机组、平波电抗器、牵引电动机和制动电阻柜等。

高速电气化铁路概述

高速电气化铁路概述
主要内容
• 1 高速铁路的概念 • 2 国外高速铁路发展现状 • 3 我国高速铁路建设规划 • 4 我国高速铁路技术体系 • 5 高速铁路牵引供电系统关键技术 • 6 第六次大提速的基本框架
1 高速铁路的概念
1.1 高速铁路的定义 1.2 高速铁路的优点
1.1高速铁路的定义
世界公认:最高运行速度达到200公 里/ 小时及以上的铁路为高速铁路。
1067.2km的行程。均旅行速度达到了
306.36km/h,从而创造了全世界轨道列车
1000km以上连续行驶和1000km运行最快的
两个记录。
此次试验,该列车在技术上完美无缺,
未出现变压器、牵引电机、甚至减速齿轮传动 过热现象,受电弓及转向架也未出现任何问题。
2.3日本高速铁路网
2.4法国高速铁路网
• 外部运输成本低:比飞机、汽车等运输便宜。 • 运行准时:如:日本列车晚点率为0.3%,且晚点1分
钟即统计晚点;西班牙承诺晚点5分钟即退回全部票 款。
高速铁路的优点
• 安全可靠:高速铁路自投入运营以来, 除1998年6月3日德国因车轮发生一起事 故外,从未发生旅客伤亡事故。
• 不受气候的影响:先进的列控系统作保 证
2.1世界高速铁路的营业里程(2005年 止)
2.2 世界高速铁路最高试验速度纪录
406.9 380 331
515.3
世界高速铁路最高试验速度纪录

另外: 2001年5月26日,法国TGV
531高速列车,从法国北部城市加来--法国南
部城市马赛的圣·夏尔车站, 全程用时3小时
29分47秒,完成了从北到南纵贯法国本土
• 社会经济效益好:方便、快捷、便宜、 环保、安全。

高速发展的中国电气化铁路

高速发展的中国电气化铁路

高速发展的中国电气化铁路引言中国的电气化铁路系统是全球最庞大、最先进的铁路网络之一。

自改革开放以来,中国的电气化铁路系统取得了巨大的进展,成为国家现代化交通基础设施的重要组成部分。

本文将探讨中国电气化铁路的发展历程、技术特点以及对中国经济社会发展的重要影响。

发展历程中国的电气化铁路建设始于20世纪50年代,当时铁路系统仍然主要依赖蒸汽机车牵引。

随着工业化进程的加快,对铁路运输能力的需求不断增长,电气化铁路作为一种现代化的运输方式迅速崛起。

在1970年代,中国开始采用直流电气化技术,首先在京沪铁路上进行试验并逐渐推广。

这一技术的成功应用为中国的电气化铁路发展奠定了基础。

接下来,中国相继开展了北京铁路局、上海铁路局、广州铁路局等电气化铁路项目的建设,逐步形成了较为完善的电气化铁路网。

到了1990年代,中国开始引进交流电气化技术。

交流电气化技术相比直流电气化技术具有更高的运行效率和更大的输电距离,因此被广泛应用于中国的高速铁路建设。

2008年,中国推出了首条时速达到350公里的高速电气化铁路——京沪高铁,标志着中国高速电气化铁路时代的到来。

技术特点中国电气化铁路系统具有以下几个技术特点:高速化中国的电气化铁路系统拥有世界上最快的高速列车。

目前,中国的高速铁路列车时速已经超过350公里,部分线路甚至可以达到时速400公里。

高速化的电气化铁路系统极大地提高了运输效率,缩短了城市之间的交通时间,提升了人民的出行便利性。

线路密度高中国电气化铁路系统的线路密度也是全球最高之一。

该系统覆盖了全国大部分城市,连接了中国的东西南北各大区域。

这种高密度的铁路线路网络为中国的经济发展、人口流动提供了重要的支撑。

先进的信号控制技术中国电气化铁路系统采用了先进的信号控制技术,实现了列车运行的精确控制和安全保障。

通过智能信号系统,列车可以实现精确定位、自动控制和调度。

这种先进的信号控制技术有助于提高列车的安全性和运行效率。

环保可持续中国电气化铁路系统采用了绿色、环保的能源供应方式。

电气化铁路基础知识

电气化铁路基础知识

1958~ 动力来源:
电 代表机型:SS
2021/7/17
5
2021/7/17
6
城市轨道交通牵引系统
2021/7/17
7
城市轨道交通牵引系统
2021/7/17
8
城市轨道交通牵引系统
2021/7/17
9
2021/7/17
10
城市轨道交通牵引系统
2021/7/17
11
2021/7/17
12
5)架空式接触网的组成和结构
✓ 支持装置
2021/7/17
47
电气化铁路牵引系统
5)架空式接触网的组成和结构
✓ 支持装置
2021/7/17
48
电气化铁路牵引系统
5)架空式接触网的组成和结构
✓ 支持装置
在隧道内由于空间受限 支持装置进行了简化。
2021/7/17
49
电气化铁路牵引系统
5)架空式接触网的组成和结构
电气化铁路基础知识
主要内容
1、电气化铁路的发展 2、电气化铁路的组成
2021/7/17
2
2021/7/17
3
2021/7/17
4
绪论
2.电气化铁道的出现 电力牵引在现实生活中最好的体现就是电力机车。
蒸汽机车
内燃机车
电力机车
1952~2007 动力来源:
煤、水
1958~ 动力来源:
柴油 代表机型:DF
二、接触网检修的修程 接触网的检修分为小修和大修两种修程。
三、接触网检修的作业方式 接触网检修的方式根据在作业过程中,接触网是否带电的情况分为停电作业 和带电作业。
2021/7/17
97

(完整版)电气化铁道概论

(完整版)电气化铁道概论

高速铁路是指由新一代列车提供的时速在200~350km甚 至更高的铁路快速运营服务。
1983年开通第一条现
1964年开始,新 代化高速铁路,高速
干线总长度达
列车TGV运行速度为
1835公里,高速 300~350km/h,
列车客运量为世 最高试验速度为
界之最。
515.3km/h
日本
法国
1985年开始研究 ICE高速列车, 1991年投入运营, 有高速铁路700 多公里,高速列 车最高运行速度 达330km/h
目录
Ⅰ、电气化铁路概述 Ⅱ、电气化铁路牵引供电系统原理 Ⅲ、牵引供电系统的负荷特性 Ⅳ、电气化铁路对电力系统的影响及对策 Ⅴ、对电力系统供电方案的建议 Ⅵ、接触网关键技术
Ⅰ、电气化铁路概述
一、电气化铁路发展历史
1825年英国人修建了世界上第一条铁路,开创了人类轨 道交通新纪元。我国于1881年修建第一条铁路——唐山至胥 各庄煤矿铁路,1909年由詹天佑工程师主持的我国第一条自 主设计修建的铁路——京张铁路通车,拉开了我国铁路发展 的序幕。
世界第一条高速电气化铁路——日本东海道新干线 (东京-新大阪)于1964年10月建成通车,最高时速 210km/h,开创了高速铁路的先河。随着1983年9月,法国 东南高速线(巴黎-里昂)建成通车,掀起了世界高速铁 路建设的高潮。随后德国、西班牙等国家也开始大力发展 高速铁路,到目前为止全世界已建成高速铁路约6050km。
“十一五”铁路规划
将建成新线19,800公里,其中客运专线9,800公里,既有 线复线8,000公里,既有线电气化15,000公里。
2010年,全国铁路营业里程将达到95,000公里,其中复线 里程42,750公里,电气化里程42,750公里。

电气化铁道基本知识

电气化铁道基本知识

一、电气化铁道概述
各型机车的轮周功率、计算速度、 各型机车的轮周功率、计算速度、在不同限制坡度上的牵引重量
一、电气化铁道概述
(三)电气化铁道的组成 • “三大元件”:牵引供电系统(牵引变电 所和接触网 )、电力机车。 • 牵引变电所:沿铁路线建设的、专供电力 机车牵引电能的变电所。 • 接触网:一种悬挂在电气化铁道线路上方, 并和铁路轨顶保持一定距离特殊形式的输 电网 。
六、牵引供电系统的供电方式
• “长回路影响” 长回路影响” 长回路影响
– 吸流变压器励磁电流的影响 – 由于接触网和回流线对通信线的相对位置不同而产 生的环路影响 – 钢轨的感应电流对通信线产生的二次感应影响等。
• “半段效应” 半段效应”
– 当电力机车的运行位置和吸上线不相重合时,整个 馈电回路的一小部分仍按“接触网一钢轨”的不对 称方式供电,造成对通信线的一定影响,使“吸一 回装置”在半段长度里失去防护效用 。
支柱
接触网的地线
一端接支柱
火花间隙 一端接钢轨
地线
1 一承力索; 2 一吊弦; 3 一接触线; 4 一弹性吊弦 5 一定位管; 6 一定位 器; 7 一腕臂; 8 一棒式绝缘子 9 一水平拉杆; 10 一悬式绝缘子; 11 一支柱 12 一地线; 13 一钢轨。
支持装置
承力索座 平腕臂 棒式绝缘子
一、电气化铁道概述
(二)电气化铁路运输的优越性 1 .电力牵引可节约能源,综合利用能源 2 .电力牵引可提高列车的牵引重量,提高列车的 运行速度 3 .电力牵引制动功率大,运行时安全性强 4 .电气化铁路运输的成本费用低 5 .电力牵引易于实现自动化,利于采用先进科学 技术,利于改善劳动条件,利于环境保护。
四、供变电装置

电气化铁路概述

电气化铁路概述

目前,我国铁路建设在跨跃式发展新思路的指引下,全国路网整体规划的战略部署正在稳步实施。

电气化铁路以其高速、重载、环保的优势已成为铁路发展的必然。

本文意在对新建电气化铁路牵引站的供用电相关技术及经济问题进行探讨。

1 电气化铁路概述用电力机车作为牵引动力的铁路。

世界上第一条电气化铁路于1 879年在德国柏林建成。

中国于l961年建成第一条电气化铁路一一宝成铁路的宝鸡至凤州段。

电气化机车上不设原动机,其电力由铁路电力供应系统提供。

该系统由牵引变电所和接触网构成。

来自高压输电线路的高压电经牵引变电所降压整流后,送至铁路架空接触网,电气机车通过滑线弓受电,牵引机车行驶。

供电制式分为直流制。

电气化铁路与现有其他动力牵引的铁路相比,具有的优越性是能源节省,其热效率可达20%~26%,运输能力大,功率大,可使牵引总重提高;运输成本低,维修少,机车车辆周转快,整备作业少、耗能少、污染少,粉尘与噪声小,劳动条件也较好等。

(1)电气化高速铁路牵引供电原理。

电气化铁路的供电是在铁路沿线建设若干个牵引变电站,由电力系统双电源供电,经牵引变压器降压为27.5kV后通过牵引网向机车供电,电力机车采用25kV单相工频交流电压,在架空接触导线和钢轨之间行驶。

电气化高速铁路一般采用单相牵引变压器,从电网两相受电,对三相对称的电力系统来说,电铁牵引负荷具有非线性、不对称和波动性的特点,将产生负序电流和谐波电流注入电力系统。

(2)电气化铁路的心脏一~牵引变电所。

牵引变电所是牵引供电系统的心脏,它的主要任务是将国家电力系统送来的三相高压电变换成适合电力机车使用的单相交流电。

牵引变电所从国家电网引入千伏或l10千伏三相交流电源将三相电转换为适合电气列车使用的单相交流.5千伏电源并送上接触网.除此而外,它还起着供电保护测量控制电气设备,提高供电质量。

降低电力牵引负荷对公共电网影响的作用。

为确保牵引供电万无一失牵引供电系统都采用“双备份”模式,两套设备通过切换装置可以互为备用,并随时处于”战备状态,以备不时之需。

高铁科普知识提纲

高铁科普知识提纲

高铁科普知识概述1)高速铁路的定义1.根据UIC(国际铁路联盟)的定义,高速铁路是指通过改造原有线路(直线化、轨距标准化),使营运速率达到每小时200公里以上,或者专门修建新的高速新线,使营运速率达到每小时250公里以上的铁路系统。

2.早在20世初前期,当时火车最高速率超过时速200公里者比比皆是。

直到1964年日本的东海道新干线系统开通,是史上第一个实现营运速率高于时速200公里的高速铁路系统。

高速铁路除了在列车营运速度达到一定标准外,车辆、路轨、操作都需要配合提升。

3.广义的高速铁路包含使用磁悬浮技术的高速轨道运输系统。

4.在中国,时速高达200或以上,并使用CRH和谐号列车称为动车组,时速160-200公里的城际列车称为准高速及长途列车称为特快,120-160称为快速,120以下的称为普快,80或以下为普客列车。

5.客运专线是以客运为主的快速铁路。

目前在我国,铁路等级除Ⅰ、Ⅱ、Ⅲ级外又增加了“客运专线”等级,时速200至350km/h的铁路统称为客运专线,曲线半径一般在2200m以上。

2)高速铁路的一般结构、速度的描述;1. 高速铁路一般采用铁路桥形势,铁路桥是为让线路跨越河流、低地、深谷、公路或另一条铁路线而修建的建筑物。

就高速铁路桥梁而言,可分为高架桥、谷架桥和跨越河流的一般桥梁。

其中,高架桥用以穿越既有交通路网、人口稠密地区及地质不良地段,通常墩身不高,跨度较小,桥梁往往长达十余公里;谷架桥用以跨越山谷,跨度较大,墩身较高。

结合国外高速铁路无碴轨道的发展与应用情况,我国在高速铁路轨道设计时提出并设计了3种结构型式无碴轨道:长枕埋入式、弹性支承块式与板式轨道。

2.设计速度:1964年日本建成世界上第一条时速210公里的高速客运专线后,法、德、西、意、韩、中国台湾等国家和地区纷纷修建高速客运专线,设计速度从210km/h到270、300、350km/h。

1985年5月欧洲经济委员会(ECE)对铁路最高运行速度的观点是:高速客运专线为300km/h,既有线提速改造为160~200km/h。

我国高速铁路概述

我国高速铁路概述
2014年11月25日,装载“中国创造”牵引电传动系统和列车网络控制系统的中国北车CRH5A 型动车组进入“5 000 km正线试验”的最后阶段。这是国内首列实现牵引电传动系统和列车网络 控制系统完全自主创新的高速动车组,标志着我国高铁列车核心技术正实现由“国产化”向“自主 化”转变,我国高铁列车实现由“中国制造”向“中国创造”跨越。这将大力提升我国高铁列车的 核心创造能力,夯实我国高铁“走出去”的底气。
2008年2月26日,铁道部和科技部签署计划,共同研发运营时速为380 km的新一代高速列车。 2008年8月1日,我国第一条具有完全自主知识产权并达到世界先进水平的时速为350 km的高 速铁路京津城际铁路通车运营。 2009年12月26日,世界上一次建成里程最长、工程类型最复杂的时速为350 km的武广高铁 开通运营。
截至2012年年底,我国高速铁路总里程达9 356 km。 2013年以来,随着宁杭、杭甬、盘营高铁及向莆铁路的相继开通,我国高铁新增运营里程 1 107 km,高铁总里程达到12 000 km,“四纵”干线基本成型。 2014年4月3日,完全自主化的中国北车CRH5型动车组牵引电传动系统通过了中国铁路总公 司组织的行业专家评审。
2004年1月,国务院批准我国第一个《中长期铁路网规划》,正式宣布规划建设里程超过 1.2×104 km的客运专线(客车速度目标值达到200 km/h及以上),以及三个地区(环渤海地区、 长江三角洲地区和珠江三角洲地区)的城际客运系统。自规划实施后,大批高速铁路相继开工建设, 包括温福铁路、合宁铁路、武广客运专线、京津城际铁路等。
1.1 我国高速铁路的发展历程
2014年,我国铁路新线投产规模创历史最高纪录,铁路营业里程突破11.2×104 km。高速铁 路营业里程超过1.6×104 km,稳居世界第一。中西部铁路建设掀起高潮,营业里程达到8×104 km,占全国铁路营业总里程的62.3%。

电气化铁道的认识

电气化铁道的认识

电气化铁道的认识一、电气化铁道概述电气化铁道,简称电气化铁路,是指经由电力机车或动车组等电力牵引的铁路。

电气化铁道的功能由其牵引供电系统、电力机车和信号控制系统三者共同完成。

电气化铁道包括两个主要组成部分:一个是牵引供电系统,另一个是电气机车。

牵引供电系统由牵引变电所和馈电线组成,负责将电能转化为适用于机车的能源。

电力机车是实际应用电能牵引运行的机车,包括地铁、轻轨、有轨电车等。

二、牵引供电系统牵引供电系统是电气化铁道的能源部分,负责将电能供给电力机车。

它主要包括牵引变电所和馈电线,牵引变电所将电力系统的高电压转换成适合机车运行的低电压,馈电线则将电能传送到电力机车的电机上。

三、电力机车电力机车是一种使用电能作为牵引动力的机车,通常通过接触网或第三轨获取电能。

电力机车具有功率大、运行速度快、运行平稳、环保等优点,是现代铁路运输的重要组成部分。

四、信号与控制系统信号与控制系统是电气化铁道的指挥系统,负责列车的运行控制和信号传递。

它主要由信号设备、联锁设备和集中控制系统组成,保障列车安全、有序的运行。

五、线路与桥梁电气化铁道的线路与桥梁是其基础结构,需要承受列车的重量和运行时的振动。

线路与桥梁的设计和建设必须满足安全、稳定、耐久等要求。

六、通信与调度通信与调度系统是电气化铁道的神经中枢,负责列车运行的控制和协调。

它主要由通信设备和调度设备组成,保障列车运行过程中的信息传递和调度指令的准确执行。

七、环境保护与安全防护电气化铁道在建设和运营过程中,必须重视环境保护和安全防护工作。

对于产生的噪音、振动、电磁辐射等影响,需要进行有效的控制和处理。

同时,需要加强安全防护措施,确保乘客和工作人员的安全。

高速铁路的牵引供电系统

高速铁路的牵引供电系统
12
四、接触网
接触网是在电气化铁道中,沿 钢轨上空“之”字形架设的, 供受电弓取流的高压输电线。 接触网是铁路电气化工程的主 构架,是沿铁路线上空架设的 向电力机车供电的特殊形式的 输电线路。 其由接触悬挂、支持装置、定 位装置、支柱与基础几部分组 成。 接触悬挂的种类较多,一般根 据其结构的不同分成简单接触 悬挂和链形接触悬挂两大类。
6
牵引供电系统
将电能从电力系统传送到电力机车的电力设备总称为 牵引供电系统。 P153
7
一、牵引供电方式
1.直接供电方式: 牵引变电所通过 接触网直接向动 车组供电,回流 经钢轨及大地直 接返回牵引变电 所
2.BT供电方式
在牵引供电 系统中加 装吸流变 压器和回 流线。
优点:电路简单、 设备少,施工方 便
缺点:空中产生强 大磁场,对邻近 的广播、信号造 成较大干扰
优点:增加回流 线减少了干扰
缺点:阻抗较大 ,造成很大的 能力浪费。
目前已很少使用
3.AT供电方 式
在牵引供电 系统中并 联自耦变 压器
优点:有效减弱 接触网的电磁 干扰;又能适 应高速、大功 率的电力机车 运行
AT供电方式与BT 供电方式相比 较
16.7Hz,
2.工频单相交流制: 50Hz,60Hz---单相 ,主要用于大运量、 重载的铁路运输,额定电压为27.5kV,被广泛采用
3.三相交流制: 淘汰
4
现代电力牵引都以公用电网配电,实质上是取用经变换的单 相电。 在我国,矿山电力牵引、城市轨道交通都采用直流制,北京地 铁750V直流供电电压,上海地铁1500V直流电压; 干线电气化铁路都采用工频(50Hz),额定电压为27.5kV或 2×27.5kV的单相交流制。

电气化概况

电气化概况
早期技术准备 用电磁铁制作了旋转电动机。 (1)1834年,Jacobi(俄)用电磁铁制作了旋转电动机。 ) 年 ( 制作了小电动车辆模型, ( 2) 1837年, Davenport(美 ) 制作了小电动车辆模型 , 在轨道上行驶 ) 年 ( 供参观。 ,供参观。 获得利用轨道传输机车电流的发明专利。 (3)1840年,Pincus(英)获得利用轨道传输机车电流的发明专利。 ) 年 ( 进行了电动车辆在公路上行驶的试验。 (4)1847年,Farmer(美)进行了电动车辆在公路上行驶的试验。 ) 年 ( (5)1860年前后,Siemens(德)等对直流发电机、电动机持续进行了技 ) 年前后, ( 等对直流发电机、 年前后 术改进,逐步实用化。 术改进,逐步实用化。
二、世界及我国电气化铁路概况
(4)1950年以后 ) 年以后 1950年法国在埃克斯 累.班—里亚罗什休尔伏龙区 年法国在埃克斯.累 班 里亚罗什休尔伏龙区 年法国在埃克斯 段试建了25kV工频单相交流电气化铁道,获得成功; 工频单相交流电气化铁道, 段试建了 工频单相交流电气化铁道 获得成功; 1954年日本在仙山 松岛间试建了一条 年日本在仙山—松岛间试建了一条 年日本在仙山 松岛间试建了一条20kV工频 工频 单相交流电气化铁道; 单相交流电气化铁道; 1955年前苏联在奥热列利耶 巴维列兹修建了一条 年前苏联在奥热列利耶—巴维列兹修建了一条 年前苏联在奥热列利耶 20kV工频单相交流电气化铁道。 工频单相交流电气化铁道。 工频单相交流电气化铁道 1972年日本山阳新干线引入 ×25kV自耦变压器( 年日本山阳新干线引入2× 自耦变压器( 年日本山阳新干线引入 自耦变压器 AT)供电方式。 )供电方式。
电气化铁路发展概况
电气化铁路发展概况
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的的飞机、汽车相比,更显示出节约资源的优势。
高速铁路的优点
• 对环境污染小:高速电气化铁路,被称为“绿色交通 工具”,对大气环境几乎没有污染。 如:飞机、汽车一氧化碳排放量分别是常规铁路的158 倍和130倍。氮氧化碳分别是4.9倍和11.4倍。一氧化 碳分别是4.3倍和2.6倍。
• 外部运输成本低:比飞机、汽车等运输便宜。 • 运行准时:如:日本列车晚点率为0.3%,且晚点1分
高速铁路的优点
• 旅行时间短:比飞机慢,但节省去回飞机场时间;比其他 运输工具都快。
• 客货运量大:如:客运列车最大载客量可达1300人/列。货 运重载可达5000-5500吨、2万吨列车,且密度大。
• 土地占用面积小:一条双线铁路运输能力,相当于一条双 向八车道高速公路的运输能力。
• 能源消耗低:高速列车的每人·公里能耗约为汽车、飞机 能耗的1/5。由于高速铁路采用电力机车牵引,与消耗石油
1067.2km的行程。均旅行速度达到了
306.36km/h,从而创造了全世界轨道列车
1000km以上连续行驶和1000km运行最快的
两个记录。
此次试验,该列车在技术上完美无缺,
未出现变压器、牵引电机、甚至减速齿轮传动 过热现象,受电弓及转向架也未出现任何问题。
2.3日本高速铁路网
2.4法国高速铁路网
高速电气化铁路概述
1.1高速铁路的定义
世界公认:最高运行速度达到200公 里/ 小时及以上的铁路为高速铁路。
我国规定:新建铁路列车最高运行
时速
≮250km,改建铁路列车最高运行时速 ≮200km,可称之为高速铁路;
时速160~200km铁路称为快速铁 路(准高速铁路)。
1.2 高速铁路的优点
钟即统计晚点;西班牙承诺晚点5分钟即退回全部票 款。
高速铁路的优点
• 安全可靠:高速铁路自投入运营以来, 除1998年6月3日德国因车轮发生一起事 故外,从未发生旅客伤亡事故。
• 不受气候的影响:先进的列控系统作保 证
• 社会经济效益好:方便、快捷、便宜、 环保、安全。
2 国外高速铁路发展现状
• 2.1 世界高速铁路的营业里程(2005年止) • 2.2 世界高速铁路最高试验速度纪录 • 2.3 日本高速铁路网 • 2.4 法国高速铁路网 • 2.5 德国高速铁路网 • 2.6 轨道运输的发展趋势 • 2.7 日本高速铁路运营
2.5德国高速路网
2.6 轨道运输的发展趋势
2.1世界高速铁路的营业里程(2005年 止)
2.2 世界高速铁路最高试验速度纪录
406.9 380 331
515.3
世界高速铁路最高试验速度纪录

另外: 2001年5月26日,法国TGV
531高速列 全程用时3小时
29分47秒,完成了从北到南纵贯法国本土
相关文档
最新文档