数的开方及二次根式

合集下载

第四讲:数的开方及二次根式

第四讲:数的开方及二次根式

数的开方与二次根式知识点:平方根、立方根、算术平方根、二次根式、二次根式性质、最简二次根式、 同类二次根式、二次根式运算、分母有理化教学目标:1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根;会求实数的平方根、算术平方根和立方根;2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式;掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。

教学重难点:1.平方根、算术平方根、立方根的概念(有关试题在试题中出现的频率很高,习题类型多为选择题或填空题);2.最简二次根式、同类二次根式概念(有关习题经常出现在选择题中);3.二次根式的计算或化简求值(有关问题在中考题中出现的频率非常高,在选择题和中档解答题中出现的较多)。

教学过程:1、知识要点:考点1 平方根、算术平方根与立方根:若)0(2≥=a a x ,则x 叫做a 的平方根,记作a ±;正数a 的正的平方根叫做a 的算术平方根,0的算术平方根是0。

当0≥a 时,a 的算术平方根记作a 。

注意:1、非负数是指正数或0,常见的非负数有:(1)绝对值:0≥a ;(2)实数的平方:02≥a ;(3) 算术平方根:)0(0≥≥a a 。

2、如果a 、b 、 c 是实数,且满足02=++c b a , 则有0=a,0=b ,0=c考点2 二次根式的有关概念:1、二次根式:式子)0(≥a a 叫做二次根式(注意被开方数只能是正数或0); 二次根式a 定义中的“a ≥0”是定义的一个重要组成部分,不可以省略,因为负数没有平方根,所以当a<0时,没有意义.在具体问题中,一旦出现了二次根式a ,就意味着a ≥0,这通常作为一个重要的隐含条件来应用;被开方数a 既可以是具体的数,也可以是单项式或多项式,如:3、ab (ab ≥0)、3+x (x ≥-3)都是二次根式.2、最简二次根式:被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式;最简二次根式,满足两个条件:①被开方数不含分母;②被开方数中不含开得尽方的因数或因式.3、同类二次根式:①化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式; ②二次根式的性质: )0()(2≥=a a a ⎩⎨⎧<-≥==)0()0(||2a a a a a a )0;0(≥≥⋅=b a b a ab )0;0(>≥=b a ba b a 考点3 二次根式的运算:1、二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并;2、二次根式的乘法: 二次根式相乘,等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a(二次根式的和相乘,可参照多项式的乘法进行;两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个二次根式互为有理化因式);3、二次根式的除法:二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分);把分母的根号化去,叫做分母有理化。

开方及二次根式知识点

开方及二次根式知识点

开方及二次根式知识点全文共四篇示例,供读者参考第一篇示例:开方是数学中常见的运算符号,表示一个数的平方根。

而二次根式则是指包含开方的代数式。

在学习数学过程中,掌握开方及二次根式的知识是非常重要的。

本文将就开方及二次根式的相关知识进行详细介绍。

我们来看看开方的定义。

对于一个非负实数a,如果实数b满足b 的平方等于a,即b²=a,那么b就是a的平方根,记作√a,其中√符号称为根号。

如果a是一个负数,那么它的平方根定义为复数,可以表示为±√(-a),其中±表示取正负号。

开方的运算可以用来求解方程、计算距离等实际问题,是数学中的重要工具。

在代数中,我们经常会遇到二次根式,即含有开方的代数式。

如√2、√3等都属于二次根式。

二次根式通常可以简化,使其形式更加简洁。

简化二次根式的方法是利用数的乘法性质,将开方中的被开方数进行因式分解,找到一个完全平方数因子,然后将其提出开方符号。

对于√12,可以找到一个完全平方数的因子4,即√12=√(4*3)=2√3。

这样就化简成了更加简洁的形式。

在进行运算时,需要注意开方及二次根式的运算规则。

首先是同底数相乘的运算法则,即√a*√b=√(a*b),这条规则适用于任意实数a、b。

其次是开方的乘法公式,即√a±√b=√(a±2√(a*b)±√b),这个公式在计算开方时经常会用到。

如果要进行开方的除法运算,可以采用类似的方法,将被开方数分解成较小的因子,然后进行化简。

运用这些运算规则,可以更加方便地进行开方及二次根式的运算。

除了基本的开方运算,还有一些特殊的开方,如立方根、四次根等。

立方根表示一个数的三次方根,记作³√a,其运算规则与平方根类似。

比如³√8=2,因为2³=8。

四次根则表示一个数的四次方根,记作⁴√a,其运算规则也可以类似的推出。

这些特殊的开方可以在数学问题中发挥重要作用,例如求解立方程等。

数的开方、二次根式复习

数的开方、二次根式复习

值范围常转化为不等式(组).
二 二次根式的非负性的应用
1.已知: x 4 + 2x y =0,求 x-y 的值.
解:由题意,得 x-4=0 且 2x+y=0 解得 x=4,y=-8
x-y=4-(-8)= 4+ 8 =12 2.已知x,y为实数,且 x 1 +3(y-2)2 =0,则x-y的值为( D )
方法:分母有理化
4.二次根式的运算 a b =___a_b__(a≥0,b≥0);
a b
a =__b__(a≥0,b>0).
二次根式加减时,可以先将二次根式化成_最__简__二__次__根__式__, 再将__被__开__方__数__相__同____的二次根式进行合并.
考点分类
一 确定二次根式中被开方数所含字母的取值范围
∵16﹤17﹤25
∴4﹤ 17 ﹤5
则 - 5﹤ 17 ﹤- 4 所以b = - 4
∴a – b = 5 - ( - 4 ) = 9 a – b的平方根为±3
知识梳理
二 次 根 式
二次根式
三个概念 最简二次根式
两个公式
两个性质 四种运算
同类二次根式
1. ab a ba 0,b 0
4、实数与数轴:
知 识
无限不循环小数叫做无理数。
如:2,3,5,,3 2,3 3 ,2.030030003……等。
要 5.有理数与无理数统 有理数有限小数或无限循环小数
实数
负有理数
无理数负正无无理理数数无限不循环小数
A.3
B.-3
C.1
D.-1
二 二次根式的非负性的应用
4. 若实数 x,y,m 满足等式 3x 5y 3 m +(2x+3y﹣m)2=

第2节 数的开方与二次根式

第2节 数的开方与二次根式

1.当 x 取何值时,二次根式有意义. (1) 3+x :__x_≥__-__3____;
x-1 (2) 3-x :__x_≥__1_且__x_≠__3_____;
2.(1)8 的立方根是__2__,3 -8 =___-__2__;
(2)若 x 的平方根是±8,则 x 的立方根是_4___;
(3)(易错题) 16 的平方根是__±__2__,
(8) 14 × 7 =_7___2____.
4.若|a-1|+(b+2)2+ c-3 =0,则 a=_1___,b=_-__2_,c=_3___.
二次根式及其性质(北部湾5年3考)
例 1 (2024 南宁模拟)如果二次根式 a 有意义,那么 a 的值可以是( D ) A.-3 B.-2.5 C.-1 D.1
例 6 (2024 南宁模拟)计算:9+(-3)+ 4 ×(5-2). 解:原式=9-3+2×3=9-3+6=12.
二次根式的估值(2024.14)
例 7 估算 7 的值是在( B ) A.1 到 2 之间 B.2 到 3 之间 C.3 到 4 之间 D.4 到 5 之间
例8
(2024 广西)写出一个比 3 大的整数,可以是
__2_(_答__案__不__唯__一__)_____.
(2020 桂林)若 x-1 =0,则 x 的值是( C ) A.-1 B.0 C.1 D.2
例 2 (2021 桂林)下列根式中,是最简二次根式的是( D )
A.
1 9
B. 4
C. a2
D. a+b
(2024 钦州一模)下列二次根式中,化简后能与 2 进行合并的二次根式 是( C )
A. 4 B. 6 C. 8 D. 12 例 3 (2023 广西) 9 =__3__.

数的开方与二次根式

数的开方与二次根式

数的开方及二次根式
哎,说起数的开方跟二次根式,这事儿咱们得扯扯清楚。

在数学里头,数的开方,就好比是把一个数儿,咔嚓一下,劈成好多相等的部分,看能劈成几份儿,每份儿是多少。

比如说,9的开方,那就是3嘛,因为3乘3等于9,简单得很。

二次根式呢,听起来有点儿玄乎,其实也不难。

就是把个平方根摆在那儿,再跟其他数儿一起搅和搅和,搞出些新花样来。

比如说,根号下面有个4,再加上个5,写成式子就是√4+5,结果就是2+5,等于7。

当然,这只是个简单的例子,实际运用起来,可能要复杂得多。

在计算二次根式的时候,咱们得注意点儿,根号下面的数儿得是非负的,要不然就没得解了。

还有啊,根号跟根号之间不能直接相加,得想办法把它们变成同类项,才能相加或者相减。

比如说,√2跟√8,看着不一样,其实√8可以变成2√2,这样一来,它们就能相加了。

总的来说,数的开方跟二次根式,都是数学里头挺重要的东西。

虽然刚开始接触的时候,可能会觉得有点儿难,但是只要多练练,多琢磨琢磨,慢慢地就能掌握其中的窍门了。

毕竟,数学这东西,还是得靠多练,才能熟能生巧嘛。

所以,大家伙儿,要是遇到了数的开方或者二次根式的问题,别怕,大胆地去做,相信你们一定能行的!。

第4节 数的开方与二次根式

第4节 数的开方与二次根式
2
1.( a )2=a(a② ≥0

返回
运 算
二次根式 ab a 乘法: 除法: a ⑤
b
加减:先将二次根式化成最简二次根式,再合并同类
b
(a≥0,b≥0)
a b (a≥0,b>0)
返回
2.找出与平方后所得数字相邻的两个开得尽方的整数,如4<7<9 估 值 3.对以上两个整数开方,如 4 =2, 9 =3 4.确定这个根式的值在这两个整数之间,如2< 7 <3
2.被开方数中不含能开得尽方的因数或因式
同类二次根式:几个二次根式化为最简二次根式后,如果它们 的被开方数相同,则把这几个二次根式叫做同类二次根式. 如 8 2 2 ,所以 8 与 2 是同类二次根式 未完继续
a (a≥0) a | a | 2. -a a≤0) ③ _____( 性 3. ab a b (a≥0,b≥0) 质 a a(a≥0,b④ >0 ) 4. b b 5.双重非负性:
1.先对根式平方,如( 7 )2=7
返回
第一章
数与式
第4节 数的开方运算 二次根式 估值
定 义 及 其 性 质

定义:形如 a (a≥0)的式子,其中a叫被开方数
有意义的条件:被开方数大于或等于零 最简二次根式同时满足两个“不含”条件 : 1.被开方数不含① 分母 ,分母中也不含二次根式

2020中考复习第02课时数的开方与二次根式

2020中考复习第02课时数的开方与二次根式
数③ 相同
,立方根等于本身的数为±1,0.
考点聚焦
考点二 二次根式的相关概念和性质
1.二次根式:形如 (a≥0)的式子叫做二次根式.
2.二次根式有意义的条件:被开方数大于或等于④
0
.
3.最简二次根式
必须同时满足以下两个条件:
(1)被开方数不含分母;
(2)被开方数中不含能开得尽方的因数或因式.
如: 5, 2 + 1是最简二次根式,而 8,
[解析]∵9<13<16,3.52=12.25,
∴3.5< 13<4,
A.4
B.5
C.6
D.7
∴与 13最接近的整数是 4,
∴与 10- 13最接近的整数是 6,故选 C.
考点聚焦
考向五 二次根式的性质
例 7 若在数轴上表示实数 a 的点如图 2-1 所示, [答案] 3
2
则化简 (-5) + -2 的结果为
考点聚焦
例 4 下列根式中,与 3是同类二次根式的是 ( B )
A. 24
C.
3
2
B. 12
D. 18
考点聚焦
| 考向精练 |
下列各式中,哪些是同类二次根式?
0.5,2
1
7
2 3 (a≥0,x≥0), 50 2 (x≥0,y≥0).
,
12,
75,1
,
2
3
25
1
解:∵ 0.5=
2
2,2
1 2
,
12,
75是同类二次根式,
2
3
考点聚焦
考向三 二次根式的化简与计算
例 5 (1) [2019·扬州]计算:

2016初中数学基础知识讲义06—数的开方及二次根式

2016初中数学基础知识讲义06—数的开方及二次根式

数的开方及二次根式1、(2015黄冈)9 的平方根是( ) A.±3 B.±31C.3D.-3 2、(2014东营( ) A.±3 B.3 C.±9 D.93、(2015=_____ 4、(2015=_____1、(2015黄冈)9 的平方根是( ) A.±3 B.±31C.3D.-3 2、(2015的值是( )A .±5 B.5 C .–5 D . 6253、(2014菏泽)下列计算中,正确的是( )A .a 3•a 2=a 6 B .(π﹣3.14)0=1 C .133-=- D 3?4、(2015南京)4的平方根是 ;4的算术平方根是 (2015山东潍坊模拟)4 的算术平方根是5、(2015(20156、(2015(2015甘肃武威)64的立方根是_____7、(2015随州)4的算术平方根是 ,9的平方根是 ,﹣27的立方根是8、(2015= 9、(201401)+=初中数学基础知识讲义—数的开方及二次根式考点2:二次根式概念:式子a ( )叫做二次根式。

称为二次根号,二次根号下的a 叫做被开方数.由算术平方根和二次根式的意义,只有当a≥0...,当a <0①二次根式a 必须注意a_ __o 这一条件,其结果也是一个非负数即:a _ __o , ②二次根式a (a≥o)中,a 可以表示数,也可以是一切符合条件的代数式考点一:二次根式有意义的条件1、(2015四川甘孜)使二次根式的有意义的x 的取值范围是( ) A .x >0 B .x >1 C .x ≥1 D . x ≠12、(2015武汉)若代数式2-x 在实数范围内有意义,则x 的取值范为是( )A .x ≥-2B .x >-2C .x ≥2D .x ≤21、(2015南京)x 的取值范围是 ______2、(2015x 的取值范围是3、(2015四川乐山)函数y =x 的取值范围是4、(2015湖南衡阳)函数y =x 的取值范围为( )A .x ≥0 B .x ≥-1 C .x >-1 D .x >1考点3:二次根式的性质 : ⑴; ⑵ ()=2a (a ≥0) ⑶ =2a ;= (0,0a b吵);= (0,0a b?).a ===,一般情况下二次根式除法运算过程就要进行分母有理化。

数的开方与二次根式

数的开方与二次根式
第一单元
数与式
第 2 讲 数的开方与二次根式
内容 索引
备考基础 重点突破
温故知新,明确考向 分类讲练,以例求法
易错防范
辨析错因,提升考能
备考基础
返回
考点梳理
平方根、算术平方根与立方根
1.平方根: 一个数 x 的 平方等于 a, 那么 x 叫做 a 的平方根, 记做 x=± a. 2.算术平方根:如果一个正数 x 的平方 等于 a,那么 x 叫做 a 的算术平 方根,记做 x= a.0 的算术平方根是 0. 3.立方根:如果一个数 x 的 立方等于 a,那么 x 叫做 a 的立方根,记做 x= a.

答案
类型三
二次根式的计算
【例 3】 (1)(2017· 滨州)下列计算: ①( 2)2=2, ② -22=2, ③(-2 3)2 =12,④( 2+ 3)( 2- 3)=-1,其中结果正确的个数为( D )
A. 1
B. 2
C. 3
D. 4
点拨
根据二次根式的性质可得①、②、③正确;根据平方差公
式可得④正确.
点拨
答案
9 (2)(2017· 天津)计算(4+ 7)(4- 7)的结果等于________ . 点拨 根据平方差公式计算即可.

答案
【变式 3】
(1)(2017· 黄冈)计算: 27-6
1 3 . 的结果是 ________ 3

3 原式=3 3-6× =3 3-2 3= 3. 3
3
特别提醒
(1)± a表示 a 的平方根, a表示 a 的算术平方根,- a表示 a 的算术 平方根的相反数, a表示 a 的立方根. 3
(2)开平方运算与平方运算是互为逆运算的关系.常用平方运算来检

数的开方与二次根式

数的开方与二次根式

知识梳理要点回顾一、平方根、算术平方根、立方根1.若x 2=a (a 0),则x 叫做a 的 ,记作±a ; 叫做算数平方根,记作 。

2.平方根有以下性质:①正数有两个平方根,他们互为 ;②0的平方根是0;③负数没有平方根。

3.如果x 3=a ,那么x 叫做a 的立方根,记作3a 。

二、二次根式1.二次根式的有关概念⑴ 式子)0(≥a a 叫做二次根式.注意被开方数a 只能是 .并且根式.⑵ 最简二次根式被开方数所含因数是 ,因式是 ,不含能 的二次根式,叫做最简二次根式.(3) 同类二次根式化成最简二次根式后,被开方数 几个二次根式,叫做同类二次根式.2.二次根式的性质⑴ a 0(a ≥0);⑵ ()=2a (a ≥0) ⑶ =2a ;⑷ =ab (a ≥0, b ≥0); ⑸=b a (a ≥0,b >0). 3.二次根式的运算(1) 二次根式的加减:①先把各个二次根式化成 ;②再把 分别合并,合并时,仅合并 , 不变.(2) 二次根式的乘除法二次根式的运算结果一定要化成 。

考点归类 过关检测考点1 二次根式的有关概念例题1(2011年广东省)使2-x 在实数范围内有意义的x 的取值范围是______ _______.【变式测试】1. (2010湖北襄樊)下列说法错误的是( )A .的平方根是±2B .是无理数C .是有理数D .是分数2. 下列二次根式中属于最简二次根式的是( )A. B. C. D.3.(2010山东济宁) 4的算术平方根是( )A . 2B . -2C . ±2D . 44. (2011年黄冈市)要使式子2a +有意义,则a 的取值范围为_____________________. 考点2 二次根式的化简例题2 (2011年茂名市)化简)212(8-⨯ 【变式测试】1.(2010山东聊城)化简:42712____________3++=. 2.化简:(1); (2); (3).3.化简:a (a +2)- a 2b b;考点3 二次根式的运算例题3 (2011年浙江杭州市)下列运算正确的是( )()233-=- B.233-=- C. ()233±=± 233=±【变式测试】1.(2010四川眉山)2(3)-A .3B .3-C .3±D . 92.(2010广西河池)82 】A .6B 6C .2D 2中考测试 全面提升基础测试1.(2010江苏南通)9的算术平方根是A .3B .-3C .81D .-812.(2010江苏南通) 36x -x 的取值范围是A .2x -≥B .2x ≠-C .2x ≥D .2x ≠3.(2010浙江嘉兴)设0>a 、0>b ,则下列运算中错误..的是( ) A.b a ab ⋅= B.b a b a +=+ C.a a =2)( D.b a b a =4.(2010 福建德化)下列计算正确的是( )A.20=102B.632=⋅C.224=- 3=-5.(2010广东湛江)下列二次根式是最简二次根式的是( )A.21B.4C. 3D. 8综合提升6.(2010 四川绵阳)要使1213-+-x x 有意义,则x 应满足( ). A .21≤x ≤3 B .x ≤3且x ≠21 C .21<x <3 D .21<x ≤3 7.(2010广东茂名)若代数式有意义,则x 的取值范围是A .21≠>x x 且B .1≥xC .2≠xD .21≠≥x x 且8.(2010四川广安)若|2|0x y -=,则xy 的值为A .8B . 2C .5D .6-9.(2010湖北荆门)化简x x -+-11 _______.新题看台10.(2011成都市)在函数y =x 的取值范围是( )A.12x ≤ B. x <12 C. x ≥ 12 D. x >1211. (2011年芜湖市)函数y =x 的取值范围是( ) A 6x ≤ B 6x ≥ C. 6x ≤- D. 6x ≥-12. (2011年威海市)计算________。

第一单元 数与式 第5课时 数的开方及二次根式

第一单元  数与式  第5课时  数的开方及二次根式

第一单元 数与式第5课时 数的开方及二次根式考点知识清单考点一 数的开方1.算术平方根:非负数x 满足x 2=a(a ≥0),则x 叫做a 的算术平方根,记作①____________。

2.平方根:若x 2=a(a ≥0),则x 叫做a 的平方根,记作②_____________。

3.立方根:如果x 3=a ,那么x 叫做a 的立方根(或三次方根),记作③_____________。

【温馨提示】1.一个正数有两个平方根,它们互为相反数,0的平方根与算术平方根都是0本身,负数没有平方根。

2.一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0.考点二 二次根式的有关概念1.二次根式:式子a (④__________)叫做二次根式。

【温馨提示】a (a ≥0)其实就是a 的算术平方根。

2.最简二次根式:同时满足以下两个条件:被开方数都不含⑤___________,也不能含能开得尽方的因数或因式。

【温馨提示】分母中含有根式的不是最简二次根式。

如21的最简形式应为22。

考点三 二次根式的性质三个重要性质(1)a (a ≥0)是⑥_______________;(2)=2)(a ⑦______________(a ≥0);(3)=2a ⑧________________。

积的算术平方根 )0,0(≥≥⋅=b a b a ab商的算术平方根 ).0,0(≥>=b a ab a b【温馨提示】2)(a 与2a 的被开方数的取值范围是不相同的,前者a ≥0,后者a 为任意实数。

考点四 二次根式的运算【温馨提示】二次根式运算的结果必须是最简二次根式,若含有分母,则分母中不能含有根号。

题型归类探究类型一 数的开方与估算(易错点)【典例1】(1)(2018·安顺)4的算术平方根是( ) A.2±B.2C.±2D.2(2)(2018·昆明)黄金分割数215-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面。

数的开方与二次根式

数的开方与二次根式

数的开方与二次根式1、平方根(1)平方根的定义:如果一个数的平方等于a ,这个数就叫做a 的平方根。

用数学语言表达即为:若a x =2,则x 叫做a 的平方根。

a 的平方根记作: ,读作“根号a ”(2)平方根的性质: ①一个正数有两个平方根,它们互为相反数。

②0有一个平方根,它是0本身。

③负数没有平方根。

(3)求一个数a 的平方根的运算,叫做开平方的运算。

+3与-3的平方是9,9的平方根是+3和-3,可见平方运算与开平方运算互为逆运算。

(4)平方根的表示方法:a 表示正数a 的正的平方根-a 表示正数a 的负的平方根 练习:求169的平方根 将1.44开平方2、算术平方根(1)算术平方根的定义:正数a 有两个平方根,其中正数a 的正的平方根,也叫做a 的算术平方根, 记作 “a ”,读作:“根号a ”,其中a 叫做被开方数。

(2)算术平方根的性质:①正数a 的算术平方根是一个正数。

②0的算术平方根是0。

③负数没有算术平方根 。

(3)重要性质: 练习:求25的算术平方根 求的算术平方根 a 2±±或a ())0(2≥=a a a a a =2a ±⎭⎬⎫记作3、立方根(1)立方根的定义:如果一个数的立方等于a ,那这个数叫做a 的立方根(也叫三次方根)。

用数学语言表达即为:若a x =3,则x 叫做a 的立方根。

记作: ,读作“三次根号a ” 。

(2)立方根的性质:①一个正数有一个正的立方根;②一个负数有一个负的立方根;③0的立方根是0。

(3)重要性质:(4)求一个数的立方根的运算,叫做开立方运算。

立方运算与开立方运算互为逆运算。

练习:求81-的立方根 求64的立方根4.二次根式的有关概念(1) a (a ≥0)表示非负数a 的算术平方根,也就是说,a (a ≥0)是一个非负数,它的平方等于a .即有: (1)a ≥0(a ≥0);(2)2)(a =a (a ≥0).形如a (a ≥0)的式子叫做二次根式.注意: 在二次根式a 中,字母a 的取值范围,必须满足a ≥0,即被开方数必须是非负数。

第5讲数的开方与二次根式

第5讲数的开方与二次根式

(1)[2012· 雅安] 9的平方根是( C ) A.3 B.-3 C.±3 D.6 2 (2)[2011· 日照] (-2) 的算术平方根是( A A.2 B. ±2 C.-2 D. 2
)
第5讲┃ 归类示例
(1)一个正数的平方根有两个,它们互为相反数;(2)平 方根等于本身的数是0,算术平方根等于本身的数是1和 0,立方根等于本身的数是1、-1和0;(3)一个数的立方根 与它同号;(4)对一个式子进行开方运算时,要先将式子化 简再进行开方运算.

2


(
C
)
2.[2011· 菏泽] 实数a在数轴上的位置如图5-3所示, 则 (a-4) + (a-11) 化简后为 图5-3 A. 7 B. -7 C. 2a-15 D. 无法确定
2 2
(
A)
3.[2012· 呼和浩特] 实数a、b在数轴上的位置如图5- 4所示,则 (a+b) +a 的化简结果为________.
类型之二
二次根式的有关概念
命题角度: 1.二次根式的概念; 2.最简二次根式的概念.
x [2012· 德阳] 使代数式 有意义的 x 的取 2x-1 值范围是 (C ) 1 A.x≥0 B.x≠ 2 1 C.x≥0 且 x≠ D.一切实数 2
第5讲┃ 归类示例
此类有意义的条件问题主要是根据:①二次根式 的被开方数大于或等于零;②分式的分母不为零等列不 等式组,转化为求不等式组的解集.
B

)
第5讲┃ 归类示例
(1)常见的非负数有三种形式:|a|, a,a . (2)若几个非负数的和等于零,则这几个数都为零.
2
第5讲 回归教材

第5讲 数的开方及二次根式

第5讲 数的开方及二次根式

ab(a≥0,b≥0) a· b(a≥0,b≥0)
; ; ;
a b(a≥0,b>0)
a b=
a (a≥0,b>0) b

5.最简二次根式 运算结果中的二次根式,一般都要化成最简二次根式.最简二次根式, 需满足两个条件: (1)被开方数不含分母; (2)被开方数中不含开得尽方的因数或因式. 6.二次根式的估值 根式估值时,一般先对根式平方,找出与平方后所得数字相邻的两个开 得尽方的整数, 并对其进行开方, 就可以确定这个根式在哪两个整数之间. 例 如,估算 17在哪两个整数之间时,先对 17平方,找出与 17 相邻的两个开 得尽方的整数 16 和 25,因为 16<17<25,所以 16< 17< 25,即 4< 17<5.
[对应训练] 5 -1 2 介于( C ) A.0.4 与 0.5 之间 B.0.5 与 0.6 之间 C.0.6 与 0.7 之间 D.0.7 与 0.8 之间 5.(1)(2015· 南京)估计 (2)(2015· 新疆)估算 27-2 的值( C ) A.在 1 到 2 之间 B.在 2 到 3 之间 C.在 3 到 4 之间 D.在 4 到 5 之间 (3)已知 10的整数部分为 a,小数部分为 b,求 a2-b2 的值.
【点评】 (1)一个正数的算术平方根是正数; (2)一个正数的平方根有两个,它们互为相反数.
[对应训练] 1.(1)(2016· 杭州) 9=( B ) A.2 B.3 C.4 D.5
3 . (2)(2016· 宁波)实数-27 的立方根是- ____ 2 (3)已知一个正数的两个平方根分别是 2a-2 和 a-4,则 a 的值是____ .
解:原式=|a+b+c|+|a-b-c|+|b-c-a|+|c-a-b|= (a+b+c)+(b+c-a)+(c+a-b)+(a+b-c)=2a+2b+2c

2、数的开方与二次根式PPT课件

2、数的开方与二次根式PPT课件
· 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
8
三年中考 ·讲练
平方根、算术平方根、立方根
【例 1】 (2016 泰州)4 的平方根是( A )
A.±2
B.-2
C.2
D.±12
【思路点拨】 本题考查平方根.直接利用平方根的定义分析得出答案.
【解答】 4 的平方根是± 4=±2.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
9
1.(2014 江西)计算: 9=__3__. 【考查内容】算术平方根. 【解析】∵32=9,∴ 9=3.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
10
二次根式的运算
【例 2】 (2016 桂林)计算 3 5-2 5的结果是( A )
A. 5
B.2 5
C.3 5
D.6
【思路点拨】 本题考查二次根式的加减运算. 直接利用二次根式的加减运算法 则求出答案.
【解答】 原式=(3-2) 5= 5.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
12
2.(2016 黄冈)计算:|1- 3|- 12=__-__1_-____3____.
【考查内容】二次根式的运算. 【解析】|1- 3|- 12 = 3-1-2 3 =-1- 3.
中考新突破 · 数学(江西)

2024年中考第一轮复习 数的开方与二次根式 课件

2024年中考第一轮复习 数的开方与二次根式  课件
A. 16=±4
3
B. -8=2
( D )
C.-a
1

=
-
D.- 64=-8
■ 知识梳理
正数 a
平方根
0
负数 b
等于其本身的数
0
没有
0

0
没有
0,1
0± (一正一来自)算术平方根立方根
3
3

0,1,-1
考点二
二次根式的相关概念及性质
4.[2020·济宁]下列各式是最简二次根式的是 ( A )
个数据应是 -3 (结果需化简).
7.[2020·湖州]计算: 8+| 2-1|.
解:原式=2 2 + 2-1=3 2-1.
最简二
(1)被开方数中的因数是整数,因式是整式;
次根式
(2)被开方数中不含开得尽方的因数或因式
(1) ≥0,a≥0(双重非负性);
二次根式
(3)
2 =|a|=
的性质
② a ( ≥ 0),
(4) =④
③ -a ( < 0);

(5)

=⑤

(2)( )2=① a

(a≥0,b>0)
(a≥0);
求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根.
4.能用有理数估计一个无理数的大致范围.
考点一
平方根与立方根
1.[2020·南京]3 的平方根是
A.9
( D )
B. 3
2.[2020·常州]8 的立方根是
C.- 3
D.± 3
( C )
A.2 2
B.±2 2
C.2
D.±2

数的开方及二次根式

数的开方及二次根式

开平方运算的运算

开平方运算遵循一些基本的运算 律,如结合律、交换律等。这些 运算律可以帮助我们简化复杂的 开平方运算。
开平方运算的性质
非负性
正数的平方根是正数或零,负数没有 实数平方根。这是因为正数的平方是 正数,而负数的平方也是正数,所以 负数没有实数范围内的平方根。
互反性
一个数的平方根与它的相反数的平方 互为相反数。例如,4的平方根是±2, 而-4的平方根是±(-2),它们的值互为 相反数。
详细描述
二次根式的被开方数是非负数,这是二次根式的基本性质。此外,算术平方根具有非负性,即√a≥0。同时,乘 方运算也有其特定的性质,如√(ab)=√a×√b(a≥0,b≥0)和√(a/b)=√a/√b(a≥0,b>0)。
二次根式的简化
总结词
通过因式分解、配方法等手段,可以简化二次根式。
详细描述
简化二次根式的方法有多种,如因式分解法、配方法等。通过因式分解,可以将复杂的二次根式化简 为简单的形式。配方法则是将二次根式转化为完全平方的形式,从而简化计算。这些方法在数学中有 着广泛的应用,有助于简化计算过程和提高解题效率。
数的开方及二次根式
目录
• 数的开方 • 二次根式 • 二次根式的运算 • 二次根式的应用
01
数的开方
平方根的定义
1 2
平方根
如果一个数的平方等于给定的数,则这个数被称 为给定数的平方根。例如,4的平方根是±2,因 为2^2=4和(-2)^2=4。
非负平方根
正数和0的平方根都是非负的。例如,9的平方根 是3,因为3^2=9。
使其具有最简形式。
二次根式的化简求值
要点一
总结词
掌握二次根式的化简求值方法,能够将复杂的二次根式化 简为最简形式,并求出其值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数的开方及二次根式(复习)》教学设计
宜良县第六中学 袁志刚
教学内容:人教版义务教育实验教科书“数与代数”(八上)第十三章、(九 上)第二十一章。

课型:复习课 课时:1课时
教学目标:
1、 能够比较熟练应用二次根式的性质进行化简.
2、 能够比较熟练进行二次根式的运算.
3、 进一步渗透化归思想、分类讨论思想及进行逆向思维训练。

教学重点:二次根式的性质的应用,二次根式的运算。

教学难点:二次根式的化简及灵活应用公式
教具:多媒体课件、《导学案》
教法:互动式教学法
教学过程
(教师寄语:一千个愿望,一千个计划,一千个决心,不如一个行动!)
、小试牛刀:
1. 当X _ <3__时,J 3—X 有意义。

2. 3 -8 二-2 ;
3.化简:二 _2j5 ___
5. 计算屈乂弱-屈二 _屈_ .
6. 把分母中的根号化去(分母有理化):
丄二 迺 丄二 週 価二 迈
(1) 匸 ________ . _________ ; ( 2 、、「「 _____ . _________ ; ( 3)二」- ____ - _________ 4 •比较大小:(1) 13— 3 2 ⑵ _2命 __ 〉 __ —3^/2
7.若:r.有意义,则,'L的取值范围是x>6
匚的结果是(
&化简
D •以上答案都不对
(A
a>0—>0
D .丄■一
10.一一「的值为(B
C
l
冷-2
11.若代数式「丨有意义,则.[的取值范围是
2
A. 一且
B.
12.计算2* (3—1)2+ 1 +
解:原式= 匕注+ . 2+ 1+ 3 —2
=2—,3+ 2 + 1+ 3— 2 = 3.
5 - 8= 0则以x, y的值为两边长的等腰三角13.[2012攀枝花]已知实数x, y满
形的周长是(B
A. 20 或16 B .20 C. 16 D .以上答案均不对
二、考点聚焦:
考点1 平方根、算术平方根与立方根一个数x的平方—等于a,那么x叫做a的平方根,记作
一个正数x的平方.等于a,则x叫做a的算术平方根,记作.a , 0的算术平方根是0
一个数x的_立方等于a,那么x叫做a的立方根
考点6 二次根式的大小比较
考点2 二次根式的有关概念
⑴ 式子,a(a - 0)叫做二次根式•注意被开方数
a 只能是 非负数 .
⑵最简二次根式
同时满足下列两个条件的二次根式叫做最简二次根式: (1)被开方数中不含能开得尽方的因数或因式;
(2)被开方数不含分母 (3) 同类二次根式
化成最简二次根式后,被开方数 相同的 几个二次根式,叫做同类二次根式.
考点3 二次根式的性质
⑴ a 0 ;
⑵■. a = _________ ( a > 0)⑶■■ a 2 = ______________
⑶...ab = ( a _ 0,b _ 0 );
⑷ J ? = ____________ ( a X 0,b a 0 )
(1)二次根式的加减:
需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方 数不变。

(2) 二次根式的乘法: J.■: 小「Ik - -'Hi
(3) 二次根式的除法:
(4) 二次根式的混合运算:
先乘方(或开方),再乘除,最后加减,有括号的先算括号里面的;能利用运算律或乘法公式进行运 算的,可适当改变运算顺序进行简便运算.
考点5
把分母中的根号化去(分母有理化) 一般常见的互为有理化因式有如下几类:
考点4
二次根式的运算[…科,网]
=(a >0, i > 0)
(1) 若 J '■ II ,则有-/-■ - ; ( 2 )若 心- / ,则有;-.;.
说明:一般情况下,可将根号外的因式都移到根号里面去以后再比较大小•注意:
(1)负号不能移到根号内;(2)根号外的正因数要平方后才能从根号外移到根号内.
三、爱拼才会赢:
(2012 .云南)12.函数的自变量x 的取值范围是 ________________________________________________________________ (2011 .昆明)6、列各式运算中,正确的是( )
A 、3a?2a=6a
B 、忑-2 =2-亞
C 、V32 —晶=2
D 、(2a+b ) (2a -b ) =2a 2— b 2
(2011.昆明)10、当x ____________ 时,二次根式、、X - 5有意义.
(2011.昆明)16、计算:..12 •(丄)」-(.,2-1)0 (-1)2011.
(2010.昆明)7.下列各式运算中,正确的是 ( )
A . (a b)^a 2 b 2
B . (3)2 =3
3 2 6
D . (—) r(a=0) a a
(2010.昆明)16.计算:(-1 )' - -3 -2010° ( 一2)2
4
四、认识自我: 3 4 12 a a a (2010.昆明)13.计算:
二次根式化简中的整体思想
教材母题:人教版九上P18第6题
已知加=何+1』=疗一I,求下列各式的值:
(1 )x + 2xy+y2;(2).v3- y.
解:因为x= /T+ l,y= /T-l, 所以x + y = 2/T,r -y =2.
则(I )x2+ 2xy + y2二(x+y)2二(2$)' = 12* (2)x2-/ = (x+y)(x-v) =4/T. 中考变式
(2012.云南)&若a2「b2= - , a —b =丄,则a + b 的值为( )
4 2
1 1
A B . C . 1 D . 2
2 2
五、课后作业:《迎考精练》。

相关文档
最新文档