实数的开方与二次根式(总复习)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学总复习

1.3数的开方和二次根式

一:【知识梳理】

1.平方根与立方根

(1)如果x 2=a ,那么x 叫做a 的 。一个正数有 个平方根,它们互为 ; 零的平方根是 ; 没有平方根。 (2)如果x 3=a ,那么x 叫做a 的 。一个正数有一个 的立方根;一个负数有一个 的立方根;零的立方根是 ;

2.二次根式

(1)

①20,a ≥=若则(a) ;③ab = (0,0)a b ≥≥

②2(

)()a a a a ⎧==⎨-⎩;④(0,0)a a a b b b =≥

(2)二次根式的运算

①加减法:先化为 ,在合并同类二次根式;

②乘法:应用公式(0,0)a b ab a b ⋅=≥≥;

③除法:应用公式(0,0)a a a b b b =≥

④二次根式的运算仍满足运算律,也可以用多项式的乘法公式来简化运算。 二:【课前练习】

1.填空题

2. 判断题

3. 如果2(x-2)=2-x 那么x 取值范围是() A 、x ≤2 B. x <2 C. x ≥2 D. x >2

4. 下列各式属于最简二次根式的是( )

A .225x +1 B.x y C.12 D.0.5

5. 在二次根式:①12, ②32③23

;④273和是同类二次根式的是( ) A .①和③ B .②和③ C .①和④ D .③和④

二:【经典考题剖析】

1. 已知△ABC 的三边长分别为a 、b 、c, 且a 、b 、c 满足a 2 -6a+9+4|5|0b c -+-=,试判断△ABC 的形状.

2. x 为何值时,下列各式在实数范围内有意义

(1)23x -+; (2)

211x x -+; (3)14x -

3. 当x ≤2时,下列等式一定成立的是( )

A 、

()222x x -=- B 、()233x x -=- C 、 ()()2323x x x x --=-⋅- D 、3322x x x x --=-- 4. 如果2(x-2)=2-x 那么x 取值范围是()

A 、x ≤2 B. x <2 C. x ≥2 D. x >2

5. 当a 则实数a 在数轴上的对应点在( )

A .原点的右侧

B .原点的左侧

C .原点或原点的右侧

D .原点或原点的左侧

6. 有下列说法:①有理数和数轴上的点—一对应;②不带根号的数一定是有理数;

是17的平方根,其中正确的有( )

A .0个

B .1个

C .2个

D .3个

7. 所得结果是______.

8. 当a ≥0=

9.计算

(1) (2)、))2003200422

(3)、(2; (4)

10. 已知:x y 、为实数,3x+4y 的值。

相关文档
最新文档