解不等式典型例题答案

合集下载

初中数学方程与不等式25道典型题(含答案和解析)

初中数学方程与不等式25道典型题(含答案和解析)

初中数学方程与不等式25道典型题(含答案和解析)1. 楠楠老师在解方程2x−13=x +a 2−1去分母时,因为手抖发作,将方程右侧的-1漏乘了,因而求得的方程的解为x =2,请帮助楠楠老师求出正确的解. 答案:x =-3. 解析:漏乘后方程为:2(2X -1)=3(x +a )-1. 4x -2=3x +3a -1. x =3a +1 .∵ x =2.∴ a =13.∴ 原方程去分母后得: 2(2X -1)=3(x +13)-6. 4x -2=3x +1-6. X =-3.考点:方程与不等式—一元一次方程—含字母参数的一元一次方程—错解方程.2. 已知关于x 的方程3[x −2(x −a2)]=4x 与3x +a 12−1−5x 8=1有相同的解,求 a 的值及方程的解.答案:a =2711,方程的解为x =8177.解析:把a 当作常数,方程3[x −2(x −a2)]=4x 的解为x =37a .方程3x +a 12−1−5x 8=1的解为x =27−2a 21.故37a =27−2a 21.解得a =2711,所以x =8177.考点:方程与不等式—一元一次方程—同解方程—同解方程求参数.3. 解方程组.(1){m +n3−n−m4=24m +n 3=14 (2){1−0.3(y −2)=x +15y−14=4x +920−1答案:(1){m =185n =−65.(2){x =4y =2.解析:(1)化简方程组得,{7m +n =2412m +n =42,加减消元可解得答案为{m =185n =−65.(2)化简方程组得,{2x +3y =144x −5y =6,加减消元可解得答案为{x =4y =2.考点:方程与不等式—二元一次方程组—解二元一次方程组.4. 回答下列小题.(1)当k = 时,方程组{4x +3y =1kx +(k −1)y =3的解中,x 与y 的值相等.(2)关于x ,y 的方程组{ax +by =2cx −7y =8,甲正确的解得{x =3y =−2,乙因为把c 看错了,解得{x =−2y =2,求a ,b ,c 的值. (3)若方程组{2x +3y =7ax −by =4与方程组{ax +by =64x −5y =3有相同的解,则a ,b 的值为( ).A.{a =2b =1B. {a =2b =−3C. {a =2.5b =1D. {a =4b =−5 答案:(1)11.(2)a =4,b =5,c =-2. (3)C .解析:(1)因为x 和y 的值相等,所以x =y ,代入1式可得x =y =17,再代入2式可得k =11.(2)乙看错了c ,说明乙的解只满足1式;甲是正确的解,说明甲的解满足两个等式.将解代入方程可得{3a −2b =23c +14=8−2a +2b =2,解得a =4,b =5,c =-2.(3)由题中条件:有相同的解可知,这两个方程组可以联立,即{2x +3y =7ax−by =4ax +by =64x−5y =3,由1式和4式可以解得{x =2y =1,代入2式和3式可得{2a −b =42a +b =6. 解得{a =2.5b =1,故选C.考点:方程与不等式—二元一次方程组—同解方程组.5. 台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入,2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.答案:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 解析:设北京故宫博物院约有x 万件藏品,台北故宫博物院约有y 万件藏品.依题意,列方程组得:{x +y =245x =2y +50.解得{x =180y =65.答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 考点:方程与不等式—二元一次方程组—二元一次方程(组)的解.6.如图所示,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为 cm2.答案:400.解析:设一个小长方形的长为x,宽为y,则可列方程组{x+y=50x+4y=2x.解得{x=40y=10.则一个小长方形的面积=40cm×10cm=400cm2.考点:方程与不等式—二元一次方程组—二元一次方程(组)的应用.7.高新区某水果店购进800千克水果,进价每千克7元,售价每千克12元,售出总量一半后,发现剩下的水果己经有5﹪受损(受损部分不可出售),为尽快售完,余下的水果准备打折出售.(1)若余下的水果打6折出售,则这笔水果生意的利润为多少元?(2)为使总利润不低于2506元,在余下的水果的销售中,营业员最多能打几折优惠顾客(限整数折,例如:5折、6折等)?答案:(1)这笔水果生意的利润为1936元.(2)营业员最多能打8折优惠顾客.解析:(1)根据题意得:400×12+(400-400×5﹪)×0.6×12-800×7=1936(元).答:这笔水果生意的利润为1936元.(2)设余下的水果应按原出售价打x折出售,根据题意列方程:400×12+(400-400×5﹪)×0.1x×12-800×7=2506.解方程得:x=7.25.答:营业员最多能打8折优惠顾客.考点:方程与不等式—一元一次方程—一元一次方程的应用.打折销售问题—经济利润问题.8. 二轮自行车的后轮磨损比前轮要大,当轮胎的磨损度(﹪)达到100时,轮胎就报废了,当两个轮的中的一个报废后,自行车就不可以继续骑行了.过去的资料表明:把甲、乙两个同质、同型号的新轮胎分别安装在一个自行车的前、后轮上后,甲、乙轮胎的磨损度(﹪)y1、y2与自行车的骑行路程x (百万米)都成正比例关系,如图(1)所示.(1)线段OB 表示的是 (填“甲”或“乙”),它的表达式是 (不必写出自变量的取值范围).(2)求直线OA 的表达式,根据过去的资料,这辆自行车最多可骑行多少百万米. (3)爱动脑筋的小聪,想了一个增大自行车骑行路程的方案:如图(2),当自行车骑行a百万米后,我们可以交换自行车的前、后轮胎,使得甲、乙两个轮胎在b 百万米处,同时报废,请你确定方案中a 、b 的值. 答案:(1)1.甲.2.y =20x. (2)OA 的解析式是y =1003x ,这辆自行车最多可骑行3百万米.(3){a =158b =154.解析:(1)∵ 线段OB 表示的是甲,设OB 的解析式是y =kx.∴ 1.5k =30. ∴ 解得:k =20. ∴ OB 的表达式是y =20x. ∴ 答案是:甲,y =20x .(2)∵ 设直线OA 的表达式为y =mx.∴ 根据题意得:1.5m =50. ∴ 解得:m =1003.∴ 则OA 的解析式是y =1003x .∵ 当y =100时,100=1003x .∴ 解得:x =3.答:这辆自行车最多可骑行3百万米.(3)∵ 根据题意,得:{1003a +20(b −a )=10020a +1003(b −a )=100. ∴ 解这个方程组,得{a =158b =154.考点:方程与不等式—二元一次方程组—解二元一次方程组.函数—一次函数—待定系数法求正比例函数解析式—一次函数的应用—一次函数应用题.9. 若关于x 的一元二次方程(x +1)2=1-k 无实根,则k 的取值范围为 .答案:k >1.解析:若方程(x +1)2=1-k 无实根,则1-k >0.∴k >1.考点:方程与不等式—一元二次方程—一元二次方程的定义—一元二次方程的相关概念.10. 小明在探索一元二次方程2x2-x -2=0的近似解时作了如下列表计算.观察表中对应的数据,可以估计方程的其中一个解的整数部分是( ).A.4B.3C.2D.1答案:D.解析:根据表格中的数据,可知:方程的一个解x的范围是:1<x<2.所以方程的其中一个解的整数部分是1.考点:方程与不等式—一元二次方程—估算一元二次方程的近似解.11.已知m、n、p分别是Rt△ABC的三边长,且m≤n<p.(1)求证:关于x的一元二次方程mx2+√2px+n=0必有实数根.(2)若x=-1是一元二次方程mx2+√2px+n=0的一个根,且Rt△ABC的周长为√2+2,求Rt△ABC的面积.答案:(1)证明见解析.(2)1.解析:(1)∵ m、n、p分别是Rt△ABC的三边长,且m≤n<p.∴ p2=m2+n2.∴ b2-4ac=2p2-4mn=2(m2+n2)-4mn=2(m-n)2≥0.∴关于x的一元二次方程mx2+√2px+n=0必有实数根.(2)∵ x=-1是一元二次方程mx2+√2px+n=0的一个根.∴ m-√2p+n=0 ①.∵ Rt△ABC的周长为2√2+2.∴ m+n+p=2√2+2②.由①、②得:m+n=2√2,p=2.∴(m+n)2=8.∴ m2+2mn+n2=8.又∵ m2+n2=p2=4.∴ 2mn=4.∴1=mn=1.2∴ Rt△ABC的面积是1.考点:方程与不等式—一元二次方程—根的判别式—判断一元二次方程根的情况.根与系数的关系—韦达定理应用.三角形—三角形基础—三角形面积及等积变换.12.关于x的方程(k-3)x2+2x+1=0有两个不等的实数根,则k的取值范围为.答案:k<4且k≠3.解析:∵关于x的方程(k-3)x2+2x+1=0有两个不等的实数根.∴ {k−3≠0△=4−4(k−3)>0.∴ k<4且k≠3.考点:方程与不等式—一元二次方程—一元二次方程的定义—根据一元二次方程求参数值.根的判别式—已知一元二次方程根的情况,求参数的取值范围.13.设a、b是方程x2+x-9=0的两个实数根,则a2+2a+b的值为.答案:8.解析:∵ a是方程x2+x-9=0的根.∴ a2+a==9.由根与系数的关系得:a+b=-1.∴ a2+2a+b=(a2+a)+(a+b)=9+(-1)=8.考点:方程与不等式—一元二次方程—根与系数的关系—韦达定理应用.14.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12cm的住房墙.另外三边用25cm长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门.(1)所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?(2)能否围成一个面积为100 m2的矩形猪舍?如能,说明了围法;如不能,请说明理由.答案:(1)矩形猪舍的长为10m,宽为8m.(2)不能围成一个面积为100 m2的矩形猪舍.解析:(1)设矩形猪舍垂直于房墙的一边长为xm,则矩形猪舍的另一边长为(26-2x)m.由题意得:x(26-2x)=80.解得:x1=5,x2=8,当x=5时,26-2x=16>12(舍去).当x=8时,26-2x=10<12.答:矩形猪舍的长为10m,宽为8m.(2)由题意得:x(26-2x)=100.整理得:x2-13x+50=0.∵△=(-13)2-4×1×50=-31<0.∴方程无解.故不能围成一个面积为100 m2的矩形猪舍.考点:方程与不等式—一元二次方程—根的判别式—判断一元二次方程根的情况.一元二次方程的应用.15.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为 120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售__________件,每件盈利__________元(用x的代数式表示).(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想每天赢利2000元,可能吗?请说明理由.答案:(1)(20+2x),(40-x).(2)20元或10元.(3)不可能,理由见解析.解析:(1)根据题意得:每天可销售(20+2x);每件盈利(40-x).(2)根据题意得:(40-x)(20+2x)=1200.解得:x1=20,x2=10.答:每件童装降价20元或10元时,平均每天赢利1200元.(3)(40-x)(20+2x)=2000.整理得:x2-30x+600=0.△=62-4ac=(-30)2-4×1×600=900-2400<0.∴方程无解.答:不可能做到平均每天赢利2000元.考点:式—整式—代数式.方程与不等式—一元二次方程—一元二次方程的解.根的判别式—判断一元二次方程根的情况—一元二次方程的应用.16.若a>b,则下列不等式中正确的是.(填序号)① a-2<b-2 ② 5a<5b ③-2a<-2b ④a3<b3答案:③.解析:不等式的两边同时乘以(或除以)同一个负数,不等号改变方向.考点:方程与不等式—不等式与不等式组—不等式的基础—不等式的性质.17.解不等式:2−x+23>x+x−12.答案:x<1.解析:12-2(x+2)>6x+3(x-1).12-2x-4>6x+3x-3.-11x>-11.X<1.考点:方程与不等式—不等式与不等式组—解一元一次不等式.18.解不等式组{2x+4≤5(x+2)x−1<23x,把它的解集在数轴上表示出来,并求它的整数解.答案:原不等式组的整数解为-2,-1,0,1,2.解析:由2x+4≤5(x+2)得x≥-2.由x−1<23x得x<3.不等式组的解集在数轴上表示如下.∴原不等式组的解集为-2≤x<3.∴原不等式组的整数解为-2,-1,0,1,2.考点:方程与不等式—不等式与不等式组—在数轴上表示不等式的解集—一元一次不等式组的整数解.19.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表.已知可供建造沼气池的占地面积不超过370m2,该村农户共有498户.(1)满足条件的方案共有哪几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱?造价最低是多少万元?答案:(1)方案共三种:分别是A型6个,B型14个.A型7个,B型13个.A型8个,B型12个.(2)A型建8个的方案最省,最低造价52万元.解析:(1)设A型的建造了x个,得不等式组:{15x+20(20−x)≤370 18x+30(20−x)≥498.解得:6≤x≤8.5.三方案:A型6个,B型14个.A型7个,B型13个.A型8个,B型12个.(2)当x=6时,造价2×6+3×14=54.当x=7时,造价2×7+3×13=53.当x=8时,造价2×8+3×12=52.故A型建8个的方案最省,最低造价52万元.考点:方程与不等式—不等式与不等式组—一元一次不等式组的应用—最优化方案.20.服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?答案:(1)甲种服装最多购进75件.(2)当0<a<10时,购进甲种服装75件,乙种服装25件.当a=10时,按哪种方案进货都可以.当10<a<20时,购进甲种服装65件,乙种服装35件.解析:(1)设购进甲种服装x件,由题意可知.80x+60(100-x)≤7500,解得:x≤75.答:甲种服装最多购进75件.(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75.W=(40-a)x+30(100-x)=(10-a)x+3000.方案1:当0<a<10时,10-a>0,w随x的增大而增大.所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件.方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以.方案3:当10<a<20时,10-a<0,w随x的增大而减小.所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.考点:方程与不等式—不等式与不等式组—一元一次不等式的应用—一元一次不等式组的应用—最优化方案.21.解答下列问题:(1)计算:2xx+1−2x+6x2−1÷x+3x2−2x+1.(2)解分式方程:3x+1+1x−1=6x2−1.答案:(1)2x+1.(2)x=2.解析:(1)原式=2xx+1−2(x+3)(x+1)(x−1)÷(x−1)2x+3.=2xx+1−2(x−1)x+1=2x+1.(2)3(x-1)+x+1=6.3x-3+x+1=6.4x=8.x=2.检验:当x=2时,x2+1≠0.故x=2是该分式方程的解.考点:式—分式—分式的加减法—简单异分母分式的加减.方程与不等式—分式方程—解分式方程—常规法解分式方程.22.解下列方程:(1)5x−4x−2=4x+103x−6−1.(2)x−2x+2−x+2x−2=8x2−4.答案:(1)x=2是方程的增根,原方程无解.(2)x=-1.解析:(1)等式两边同乘以3(x-2)得,3(5x-4)=4x+10.解得x=2.检验x=2时,2(x-2)=0.∴ x=2是方程的增根,原方程无解.(2)两边同乘x2-4.得:-8x=8.X=-1.经检验x=-1是原方程的解.考点:方程与不等式—分式方程—解分式方程—常规法解分式方程.分式方程解的情况—分式方程有解—分式方程有增根.23.若分式方程2xx+1−m+1x2+x=x+1x产生增根,则m的值为.答案:-2或1.解析:方程两边都乘x(x+1).得x2-(m+1)=(x+1)2.∵原方程有增根.∴最简公分母x(x+1)=0.解得x=0或-1.当x=0时,m=-2.当x=-1时,m=0.故m的值可能是-2或0.考点:方程与不等式—分式方程—分式方程解的情况—根据增根求参数.24.在“春节”前夕,某花店用13000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的12,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?答案:第二批鲜花每盒的进价是 120元.解析:设第二批鲜花每盒的进价是x元.依题意有:6000x =12×13000x+10.解得x=120.经检验:x=120是原方程的解,且符合题意.答:第二批鲜花每盒的进价是120元.考点:方程与不等式—分式方程—分式方程的应用.25.甲、乙两个工程队共同承担一项筑路任务,甲队单独完成此项任务比乙队单独完成此项任务多用10天,且乙队每天的工作效率是甲队每天工作效率的1.5倍.(1)甲、乙两队单独完成此项任务各需要多少天?(2)若甲、乙两队共同工作4天后,乙队因工作需要停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,如果要完成任务,那么甲队再单独施工多少天?答案:(1)甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天.(2)甲队再单独施工10天.解析:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天.由题意可得:1x = 1.5x+10.解得:x=20.经检验,x=20是原方程的解.∴x+10=30(天).答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天.(2)设甲队再单独施工a天,由题意可得:(130+120)×4+230×a=1.解得:a=10.答:甲队再单独施工10天.考点:方程与不等式—一元一次方程—一元一次方程的应用—工程问题.分式方程—分式方程的应用.。

解不等式组计算专项练习60题(有答案)

解不等式组计算专项练习60题(有答案)

七年级下册第九章解不等式组专项练习60题(有答案)杨永华1.2..3..4.,5..6..7.8..9.10.11.12.,13..14.,15.16.17..18.19.20..21..22..23.24.25.,.26.27.,28.29..30.已知:2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值范围.31..32..33.已知:a=,b=,并且2b ≤<a.请求出x的取值范围.34.35.,36.,并将其解集在数轴上表示出来.37..38.,并把解集在数轴上表示出来.39.已知关于x、y 的方程组的解满足x>y >0,化简|a|+|3﹣a|.40.,并把它的解集在数轴上表示出来.41.42.43..44..45..46..47.关于x、y 的二元一次方程组,当m为何值时,x>0,y≤0.48.并将解集表示在数轴上.49.已知关于x、y 的方程组的解是一对正数,求m的取值范围.50.已知方程组的解满足,化简.51..52.53..54..55..56.57.58.59.60.解不等式组60题参考答案:1、解:,由①得2x≥2,即x≥1;由②得x<3;故不等式组的解集为:1≤x<3.2.解:,由①得:x≤5,由②得:x>﹣2,不等式组的解集为﹣2<x≤53.解:解不等式①,得x>1.解不等式②,得x<2.故不等式组的解集为:1<x<2.4.解:,解不等式①得,x>1,解不等式②得,x<3,故不等式的解集为:1<x<3,5.解不等式①,得x≤﹣2,解不等式②,得x>﹣3,故原不等式组的解集为﹣3<x≤﹣2,6.解:,解不等式①得:x>﹣1,解不等式②得:x≤2,不等式组的解集为:﹣1<x≤2,7.解:,由①得x>﹣3;由②得x≤1故此不等式组的解集为:﹣3<x≤1,8.解:解不等式①,得x<3,解不等式②,得x≥﹣1.所以原不等式的解集为﹣1≤x<3.9.解:∵由①得,x>﹣1;由②得,x≤4,∴此不等式组的解集为:﹣1<x≤4,10.解:,解不等式①得:x<3,解不等式②得:x≥1,不等式组的解集是1≤x<3 11.解:,由①得,x≥﹣;由②得,x<1,故此不等式组的解集为:﹣<x<1,12.解:∵由①得,x≤3,由②得x>0,∴此不等式组的解集为:0<x≤3,13.解:解不等式①,得x≥1;解不等式②,得x<4.∴1≤x<4.14.解:原不等式组可化为,解不等式①得x>﹣3;解不等式②得x≤3.所以-3<x≤3 15.解:由(1)得:x+4<4,x<0由(2)得:x﹣3x+3>5,x<﹣1∴不等式组解集是:x<﹣116.解:,解不等式(1),得x<5,解不等式(2),得x≥﹣2,因此,原不等式组的解集为﹣2≤x<5.17.解:由①得:去括号得,x﹣3x+6≤4,移项、合并同类项得,﹣2x≤﹣2,化系数为1得,x≥1.由②得:去分母得,1+2x>3x﹣3,移项、合并同类项得,﹣x>﹣4,化系数为1得,x<4 ∴原不等式组的解集为:1≤x<4.18.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解集为﹣1≤x<3.19.解:解不等式(1)得x<1解不等式(2)得x≥﹣2所以不等式组的解集为﹣2≤x<1.20.解:解不等式①,得x>﹣.解不等式②,得x≤4.所以,不等式组的解集是﹣<x≤4.21.解:①的解集为x≥1②的解集为x<4原不等式的解集为1≤x<4.22.解:解不等式(1),得2x+4<x+4,x<0,不等式(2),得4x≥3x+3,x≥3.∴原不等式无解.23.解:解不等式2x+5≤3(x+2),得x≥﹣1解不等式x﹣1<x,得x<3.所以,原不等式组的解集是﹣1≤x<3.24.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解是﹣1≤x<3.25.解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.26.:由不等式①得:x≥0由不等式②得:x<4原不等式组的解集为0≤x<427.解:由不等式①得:2x≤8,x≤4.由不等式②得:5x﹣2+2>2x,3x>0,x>0.∴原不等式组的解集为:0<x≤4.28.解:解不等式①,得x≤﹣1,解不等式②,得x>﹣2,所以不等式组的解集为﹣2<x≤﹣1.29.解:解不等式①,得x≤2.解不等式②,得x>﹣3.所以原不等式组的解集为x≤2.30. 解:由2a﹣3x+1=0,3b﹣2x﹣16=0,可得a=,b=,∵a≤4<b,∴,由(1),得x≤3.由(2),得x>﹣2.∴x的取值范围是﹣2<x≤3.31.解:由①得:x≤2.由②得:x>﹣1.∴不等式组的解集为﹣1<x≤2.32.解:解不等式①,得x>;解不等式②,得x≤4.∴不等式的解集是<x≤4.33.解:把a,b代入得:2×.化简得:6x﹣21≤15<2x+8.解集为:3.5<x≤6.34.解:解不等式①,得x≤2.5,解不等式②,得x>﹣1,解不等式③,得x≤2,所以这个不等式组的解集是﹣1<x≤2.35.解:解不等式①,得x≥﹣1.解不等式②,得x<2.所以不等式组的解集是﹣1≤x<2.36.解:由①,得x<2.由②,得x≥﹣1.∴这个不等式组的解集为﹣1≤x<2.37.解:由①得:x>﹣1由②得:x所以解集为﹣1<x.38.解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:39.解:由方程组,解得.由x>y>0,得.解得a>2当2<a≤3时,|a|+|3﹣a|=a+3﹣a=3;当a>3时,|a|+|3﹣a|=a+a﹣3=2a﹣3.40.解:由(1)得x<8由(2)得,x≥4故原不等式组的解集为4≤x<8.41.解:由①得2x<6,即x<3,由②得x+8>﹣3x,即x>﹣2,所以解集为﹣2<x<3.42.解:(1)去括号得,10﹣4x+12≥2x﹣2,移项、合并同类项得,﹣6x≥﹣24,解得,x≤4;(2)去分母得,3(x﹣1)>1﹣2x,去括号得,3x﹣3>1﹣2x,移项、合并同类项得,5x>4,化系数为1得,x>.∴不等式组的解集为:<x≤4.43.解:解第一个不等式得:x <;解第二个不等式得:x≥﹣12.故不等式组的解集是:﹣12≤x <.44.解:原方程组可化为:,由(1)得,x<﹣3由(2)得,x≥﹣4根据“小大大小中间找”原则,不等式组的解集为﹣4≤x<﹣3.45.由①得:x<2,由②得:x≥﹣1∴﹣1≤x<2.46.整理不等式组得解之得,x>﹣2,x≤1∴﹣2<x≤147.解:①+②×2得,7x=13m﹣3,即x=③,把③代入②得,2×+y=5m﹣3,解得,y=78-m9,因为x>0,y≤0,所以,解得<m≤9848. 解不等式①,得x ≤,解不等式②,得x≥﹣8.把不等式的解集在数轴上表示出来,如图:所以这个不等式组的解集为﹣8≤x ≤.49.解:由题意可解得,解得,故<m<1350.解:由2x﹣2=5得x=,代入第一个方程得+2y=5a;则y=a ﹣,由于y<0,则a <(1)当a<﹣2时,原式=﹣(a+2)﹣[﹣(a ﹣)]=﹣2;(2)当﹣2<a <时,原式=a+2﹣[﹣(a ﹣)]=2a+;(3)当<a <时,原式=a+2﹣(a ﹣)=2;851.解不等式(1)得:2﹣x﹣1≤2x+4 ﹣3x≤3 x≥﹣1解不等式(2),得:x2+x>x2+3x ﹣2x>0 x<0 ∴原不等式组的解集为:﹣1≤x<0.52.解不等式(1)得:x≥-1 解不等式(2),得:x<2 ∴原不等式组的解集为:﹣1≤x<2.53.解①得x<解②得x≥3,∴不等式组的解集为无解.54.解第一个不等式得x<8解第二个不等式得x≥2∴原不等式组的解集为:2≤x<8.55.解:由①得:1﹣2x+2≤5∴2x≥﹣2即x≥﹣1由②得:3x﹣2<2x+1∴x<3.∴原不等式组的解集为:﹣1≤x<3.56.解:原不等式可化为:即在数轴上可表示为:∴不等式的解集为:1≤x<357.解:,解不等式①,得x<3,解不等式②,得x≥﹣1,把不等式的解集在数轴上表示出来,如图所示.不等式组的解集是﹣1≤x<358.解:由题意,解不等式①得x>2,不等式②×2得x﹣2≤14﹣3x解得x≤4,∴原不等式组的解集为2<x≤4.59.解:解不等式①,得x<2.(2分)解不等式②,得x≥﹣1.(4分)所以,不等式组的解集是﹣1≤x<2.(5分)解集在数轴上表示为:60.解:由①,得x≥﹣,由②,得x<3,所以不等式组的解集为﹣≤x<3.。

完整版)解不等式组计算专项练习60题(有答案)

完整版)解不等式组计算专项练习60题(有答案)

完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。

解不等式组计算专项练习60题(有答案)

解不等式组计算专项练习60题(有答案)

1.2.3.4. *解不等式组专项练习60题(有答案)2 (x+1) - 1>34+x<72K- 1>3 (x- 2)-2x<43x+l>x+3二一—.鼻+3>42F<6,X.12.13.14.15.16. x<2x+l:二-二■ :.. 1 .7.x+3>02 (x- 1) +3>3xf3xH<2 (x+2)_劭< 号十29.10.2x+3<x+G"-①:…二.一,,…②-3 (x- 2)<4-7*_ 1 3r4x- 3<5K汀x+2.^1,LrPT冷(计4) <2X- 3(K- 1) >516. 417.19.汨>-3Si - 12<2 (4x - 3)K - 3 (K- 2) <4蝶>_r l - 2 (x- 1) <5_ 2L2^>0 ①2 (s+5) >6 &-1)9<3 (x- 1)11. *2 (x - 3)盂5疋+54x<3x+lX.20.f5x+2>3 (x- 1),①73 -1.②22.3(K- 2) <41+2区、=[—>X - 1[2 (r+2) <x+413⑵30. 已知:2a -3x+ 仁0, 3b -2x - 16=0,且 a 詔< b ,求 爷〉斗⑴40. • 2 3,并把它的解集在5-2 (x- 3) <x- 1 (2)数轴上表示出来.sr+42x " 7号33.已知:a= , b=,并且2b < v a .请求出342x 的取值范围.2<3 (x+1)23. 24. 25. 26. 27. 28. 29. r 2x+5<3 (x+2) r3 (x+2) >x+4© r 2- x>0 5^十1」-」1 ,. ■f - 3Z <4(K +5) 6 b 2 (x+19)- 9x>5[x- 2 (x- 3)] - 2<x+6 Rv - 9 r 2x+2>3x+3®宁诗―② 忌+3 (x- 2) <10 号〉小35.5x - 1<3 (x+1)(3(X- 2) +4<5K37. if - 1—-—_ 耳>3計]fx - 3 (x- 2) >438. 2s- 1 ^.K +i,并把解集在数轴上表示出.5来.一 一: __ •一 -39.已知关于x 、y 的方程组 广 尸亘"的解满足x > yL2x+y=5a> 0,化简 |a|+|3- a|.1 _ 3 (y _ 2) <9- x ②f5K-2>3 (i+l),① 32. r5i - 2<3i+441. x+8\ K >_sflO-4 (x- 3) >2 (x- 1)©- 10<0 34. ' 5x+2>3虽 11 - 2x>l+3x43. ” X - 2~2~^2x+331.x 的取值范围.45.3 (1 - x) A2 (x+9)x- 314I 0.5f2- x>05s±l• 21 .3~-3 (x+l) - (x- 3)<846. ' 2 泄1I 347.关于x、y的二元一次方程组:'-"■,当^2x+y=5ir- 2m为何值时,x> 0, yO.2<3 (x+1)53.54.55.56.48.并将解集表示在数轴上. 57.49.已知关于y的方程组x+y=m+24蜀+5y=6m -3的解是58.对正数,求m的取值范围.x+2y=5a50.已知方程组n cl2x~ 2=5的解满足-x>0y<0化简59.I(x+1) >x (x+3)②- 1 _ 5^+j.52.- 1<3 (x+1)f5x+4<3 (x+1)x - 1 - 1A 52x+7>3x - 1x- 2.br>0r l-2 (x-1) <53x- 2「2r2 (K+2)<3X+3r3x- 1<2 (x+1)x+3、r3x- 2>x+2>-1<743x- l<2x+l1 - 2(K- 1) <3 (K+1)+5解不等式组60题参考答案:fx+3>0®由①得x >- 3;由②得x <1故此不等式组的解集为:2 (x- 1) +3>3x@- 3<5x ①6 _医+ +口<4②,解不等式 ①得x >- 3;解不等式 ②得x <3.所以-3<x <315. 解:由(1)得:x+4 v 4, x v 0 由(2)得:x - 3x+3 > 5, x v - 1「.不等式组解集是: x v - 1x —臂>「3 (1)16.解:'2 ,解不等式(1),得x v 5,解不等式(2),得x 》-2 ,12<2(4K - 3)(2)因此,原不等式组的解集为- 2<v 5.17. 解:由① 得:去括号得,x - 3x+6詔,移项、合并同类项得,- 2x <- 2,化系数为1得,X 》.由② 得:去分母得,1+2x > 3x - 3,移项、合并同类项得,- x >- 4, 化系数为1得,x v 4•••原不等式组的解集为:1<cv 4.1、 解:2 (x+1) - ①4+x<7 ② ,由①得2x 支,即x 昌;由②得x v 3;故不等式组的解集为:1強v 3.2. 解:11^3 (x _ 2) I -2i<4 ②…,由①得:x <5,由②得:x >- 2,不等式组的解集为-2v x <3. 解:触解不等式①,得x > 1.解不等式②,得x v 2.故不等式组的解集为:1v x v 2. 2x- l<x+l ②4. 解:x+f>:D ,解不等式 ①得,x > 1,解不等式 ②得,x v 3,故不等式的解集为:1v x v 3, 曲<6②5. 6. 解不等式 ①,得x<- 2,解不等式 ②,得x >- 3,故原不等式组的解集为- 3v x<- 2,x<2x+l ①,解不等式 ①得:x >- 1,解不等式②得:x <2,不等式组的解集为:-1v x 电, 3x- 2 (s-1) <4@解:7. 8. 解:9. 解: 10•解:r3i+l<2 (a+2;••由①得,x >- 1 ;由②得,x <4,•此不等式组的解集为:(- 9<3 (x- 1)①—V ,(1'解不等式①,得x v 3,解不等式 ②,得x1 .所以原不等式的解集为-1<<v 3. ②解不等式 ① 得:x v 3,解不等式 ② 得:X 》,不等式组的解集是1 < v 311 .解: 12.解: XA 「;由②得,x V 1,故此不等式组的解集为: ■丿• ••此不等式组的解集为: 0 v x <3,13.解:2心-引5+5①,由①得, \^<3i+l ②•••由①得,x <,由②得x >0,(-3 (y- 2) <4- x ①]1+2》:、_ 1②解不等式①,得X 》;解不等式 ②,得x v 4. • 1« v 4.解:14.解: 原不等式组可化为18•解:解不等式 ①,得x>- 1,解不等式 ②,得x v 3 ,•••原不等式组的解集为-1 <x < 3.23•解:解不等式2x+5 <3 (x+2 ),得xA 1解不等式x - 1 <- x ,得x < 3.所以,原不等式组的解集是-324.解:解不等式 ①,得x>- 1,解不等式 ②,得x < 3,•原不等式组的解是-1強< 3. [2- …①,.解不等式①,得x <2,解不等式②,得x I,•不等式组的解集是-1 $ < 2.26. :由不等式 ①得:X%由不等式②得:x < 4原不等式组的解集为 0纟< 427. 解:由不等式①得:2x<8, x<4 .由不等式②得:5x - 2+2 > 2x , 3x > 0, x > 0. •••原不等式组的解集为:0< x <4.31. 解:由① 得:x 电.由② 得:x >- 1.A 不等式组的解集为-1< X 电.5532.解:解不等式 ①,得x >「解不等式②,得x 詔.•••不等式的解集是,< x 詔.33. 解:把a , b 代入得:2严「匕|<¥.化简得:6x - 21<15< 2x+8 .解集为:3.5< x 詬.42 334. 解:解不等式①,得x<2.5,解不等式②,得x >- 1,解不等式③,得x <所以这个不等式组的解集是-1<x 电.35 .解:解不等式①,得x>- 1.解不等式②,得x < 2 .所以不等式组的解集是-1 «< 2.36 .解:由①,得x < 2 .由②,得x A 1 .-•这个不等式组的解集为-1 <« 2. 37.解:由①得:x >- 1由②得:x G -所以解集为-1<x ;'.38. 解:由① 得:-2x>- 2,即 x <,由② 得:4x - 2 < 5x+5,即 x >- 7,所以-7 < x < .19. 解: 解不等式 20. 解: 解不等式 21 . 解:(1)得x < 1解不等式(2)得x A 2所以不等式组的解集为-2纟< 1 . ①,得x >-'.解不等式②,得.所以,不等式组的解集是-2(x- 2) <4®①的解集为X 》②的解集为x < 4原不等式的解集为22. 解: \-3'孚S - 1®解不等式(1),得2x+4 < x+4 , x < 0,不等式(2),得4x 绍x+3 , x 為.•••原不等式无解.1$< 4.25.解:由题意,28. 29. 解: 解: 解不等式①,得 解不等式①,得30. 解: 2< x <- 1. 所以原不等式组的解集为x€.-2/+16b=,x<- 1,解不等式②,得x >- 2,所以不等式组的解集为- x 电.解不等式②,由 2a - 3x+仁0, 3b - 2x - 16=0,可得得 x >-3. 3x - 1a=,•/ a <4< b , /3x - 1 .<4 ,由(1),得 x <3.3 >42 2x+16 由(2),得 x >- 2 .•x 的取值范围是-2< x W .x - y=a+3 ” + x=2a+l,/口39.解:由方程组‘ ,解得- .由 x >y > 0,得,y=a- 2在数轴上表示为:2a+l>a - 2a _ 戈〉0 •解得a >2当 2v a<3 时,|a|+|3- a|=a+3 - a=3; 当 a > 3 时,|a|+|3- a|=a+a - 3=2a - 3. 40.解:由(1 )得x V 8由(2)得,x 羽故原不等式组的解集为 4纟V & 41 •解:由①得2x V 6,即X V 3,由② 得x+8 >- 3x ,即x >- 2,所以解集为-2 V x V 3. 42. 解:(1)去括号得,10 -4x+12丝x -2,移项、合并同类项得,- 6x A 24,解得,x 詔; (2)去分母得,3 (x - 1)> 1 - 2x ,去括号得,3x - 3> 1 - 2x ,移项、合并同类项得, 5x > 4, 化系数为1得,x >'.•••不等式组的解集为: V x 詔.5 5 5 5 43. 解:解第一个不等式得: x V —;解第二个不等式得:xA 12.故不等式组的解集是:-12纟V — 2 244.解:原方程组可化为: 3 - 3xZ>2x+18 -5 (xK) <-14,由("得,x V-3 由(2)得,x » 4根据 小大大小中间找”原则,不等式组的解集为-4$V- 3. 45 •由①得:x V 2,由②得: '-4K <846.整理不等式组得* x A 1 •- 1 纟V 2 . 解之得,x >- 2, x <1 2V x <1 47.解:①+②X 2得,7x=13m - 3,即x=一: --------- ③,把 ③代入②得,2X ; +y=5m - 3, 解得, 9m - 8尸丁 ,48. 49. 50. '13^-379m- 8因为x > 0, y 切,所以,解得 ②,得 -8-7-6-5-4-3-2-10 1 2 3 4 5 解不等式①,得x <:,解不等式 解: 解: (1)当(3)当XA 8.把不等式的解集在数轴上表示出来,如图:所以这个不等式组的解集为-8«< :.nri 13朗〉丄丄,故号V mV 13由2x - 2=5得x=£,代入第一个方程得 4+2y=5a ;贝卩y=T a -「,由于y V 0,贝U a v —: a v- 2 时,原式=-(a+2)- [ -( a - ) ]= - 2 ; (2)当-2V a v 时,原式=a+2 - [ -( a- ) ]=2a+ '; 2 2 2 2 2 1 7 1 1< a v —时,原式=a+2-( a - [) =2 ,;由题意可解得 -时13>0 I 一,解得51.解不等式(1)得:2 - x - 1€x+4- 3x<3 xA 1 2 2解不等式(2),得:x +x > x +3x - 2x > 0x v 0二原不等式组的解集为:-1 <x < 0.52•解不等式(1)得:x > -1解不等式(2),得:x<2 •••原不等式组的解集为:-1 << 2.53. 解①得x < •解②得x 绍,•不等式组的解集为无解.254. 解第一个不等式得 x < 8解第二个不等式得 x 呈■ ! r .: .••原不等式组的解集为:2$< 8.55•解:由 ①得:1 - 2x+2<5「. 2x>- 2 即 x A 1 由②得:3x - 2< 2x+1 • x < 3. •原不等式组的解集为:-1$ < 3.r2K+4<3x+3£59 .解:解不等式 ①,得x < 2 . (2分)解不等式②,得x >- 1. (4 分) 所以,不等式组的解集是-1纟< 2 . ( 5分),一----------- 4 ------- A 11 1>解集在数轴上表示为::5560.解:由①,得x A ,由②,得x < 3,所以不等式组的解集为-強< 3.57•解: r3x- 1<2 (x+1)①弯②,解不等式 ①,得x < 3,解不等式②,得x A 1 ,把不等式的解集在数轴上表示出来, 不等式组的解集是 如图所示. 58.解:由题意,I 2K•原不等式组的解集为1纟< 3〔如-2〉x+2…① 、小 3 金解不等式①得x >2,不等式②X 2得x -2胡4-3X 解得x 詔, —1=S*T -尹■② 56•解:原不等式可化为:即< 4X. _在数轴上可表示为:门•不等式的解集为:1$< 34 4。

不等式解法15种典型例题

不等式解法15种典型例题

不等式解法15种典型例题典型例题一例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f ) 可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于 0)2()5)(4(32>-++x x x⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔2450)2)(4(05x x x x x x 或 ∴原不等式解集为 {}2455>-<<--<x x x x 或或 说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如图.典型例题二例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x 分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ① 0)()(0)()(<⋅⇔<x g x f x g x f ; ② ⎩⎨⎧≠≤⋅⇔≤0)(0)()(0)()(x g x g x f x g x f (1)解:原不等式等价于0223223≤+--⇔+≤-x x x x x x 0)2)(2(650)2)(2()2()2(32≤+-++-⇔≤+---+⇔x x x x x x x x x⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(x x x x x x x x x x 用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

不等式解法(全部)

不等式解法(全部)

1.(x-1)x-2)>0 ; (
( x-3)< 0; 4. x2-2x-3 < 0 . 3.(x+1)
x2-3x+2 <0. 解不等式 2 x -2x-3
解: 原不等式可化为 (x-1)x-2) ( <0. ( (x+1) x-3)
即 (x-1) (x-2) (x+1) (x-3)<0. 根据数轴标根法,
所以,当a>1时,原不等式的解集为{x|a≤x<a2};
当0<a<1时,原不等式的解集为{x|a2<x ≤a}.
logx 2 (x 2) 1
A {x | logx (5x 8x 3) 2}
2
底 数 不 型 logx0.8<1


B {x | x 2x 1 k 0}
M loga N = logaM-logaN
logaMn= nlogaM
1 log a M loga n M = n log b N (b 0且b 1) 3、换底公式:logaN= log b a 4、定义域: (0,+∞) 值域:R
5、单调性:(1)a>1时,为 增
(2)0<a<1时,为 减
例题分析:
例题1. 解不等式
例题2.
| x – 500 | ≤5 解不等式 | 2x+5 | > 7 | 5x-6 | < 5 - x
例题3. 解不等式4 〈 | 1-3 x | ≤ 7 例题4. 解不等式 例题5. 例题
| 2x+1 |> | x+2 |
| 5x-6| > 5-x
课堂练习:
(2)0<a<1时,有 4+3x-x2>0 4+3x-x2<2 (2x-1) 2<x<4

解不等式组计算专项练习60题(有答案)

解不等式组计算专项练习60题(有答案)

解不等式组计算专项练习60题(有答案)1.解不等式组专项练60题(附答案)2.解:2x+1≤3x,得x≥1;3x-16≥2x,得x≥16,综合得1≤x<16,即x∈[1,16)。

3.解:|a-1|<1,即-1<a-1<1,解得0<a<2;|a+2|<2,即-2<a+2<2,解得-4<a<-0.5.综合得-4<a<-0.5,0<a<2,即a∈(-4,-0.5)∪(0,2)。

4.解:x+1>0,即x>-1;x-3<0,即x<3,综合得-1<x<3,即x∈(-1,3)。

5.解:x-2≥0,即x≥2;2x+1≤3x-2,得x≥3,综合得x≥3,即x∈[3,∞)。

6.解:x+1>0,即x>-1;2x-3≤x+2,得x≤5,综合得-1<x≤5,即x∈(-1,5]。

7.解:x-3≥0,即x≥3;2x-1≤3x-4,得x≤3,综合得x=3.8.解:x+3>0,即x>-3;x-1≤0,即x≤1,综合得-3<x≤1,即x∈(-3,1]。

9.解:x+1>0,即x>-1;3x-2≤2x+8,得x≤10,综合得-1<x≤10,即x∈(-1,10]。

10.解:x-1≥0,即x≥1;x+2≥0,即x≥-2,综合得x≥1,即x∈[1,∞)。

11.解:x-3<0,即x<3;x-1≥0,即x≥1,综合得x∈(-∞,3)∩[1,∞),即x∈[1,3)。

12.删除此段。

13.解:x-2>0,即x>2;x+1≤0,即x≤-1,综合得x∈(2.-1]。

14.解:x+3≥0,即x≥-3;3x-2≤2x+5,得x≤7,综合得-3≤x≤7,即x∈[-3,7]。

15.解:x+1>0,即x>-1;2x-5≥0,即x≥2.5,综合得x>2.5,即x∈(2.5,∞)。

不等式解法

不等式解法
例1. 解不等式 | x – 500 | ≤5 例2. 解不等式 | 2x+5 | > 7 例3. 解不等式 4 < | 1-3 x | ≤ 7
x | 495 x 505
x | x 1或x 6
提高题型:
例4. 解不等式 | 5x-6 | <
例5. | 5x-6| > 5-x
(3)若b=2,则原不等式即 0x<3+a ①当a>-3 时,解集为R; ②当a≤-3 时,解集为Ø.
2、一元二次不等式
一般式:ax2+bx+c>0或ax2+bx+c<0 (a>0) 注意:如果二次项系数小于零,两边乘以-1,并把 不等号改变方向即可。 画出y=x2- x-6的图象,根据图象求出满足下列 各式的未知数x的值的集合:
2 2
x | 1 x 2或3 x 4
解法三:原不等式等价于
x 2 5x 5 0 x 2 5x 5 0 (1) 2 或(2) 2 x 5x 5 1 x 5 x 5 1
由(1)得
由(2)得 ∴原不等式的解集为
1、等价转化法: 2、平方法:
f ( x ) a ( a 0 ) f ( x ) a或 f ( x ) a
2 2
f ( x ) g( x ) f ( x ) g ( x )
ax b cx d k
3、零点分段法:如 4、几何意义法:如
x 2 x 1 k的解集为R, 求k的取值范围.
例7、解不等式:
x 2 x1 4
【思维点拨】 本题也有多种解法: (1)零点分段法;(通性通法) (2)几何意义法; (3)函数图象法.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解不等式典型例题答案例1 解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.例2(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

(2)解法一:原不等式等价于 027313222>+-+-x x x x21213102730132027301320)273)(132(222222><<<⇔⎪⎩⎪⎨⎧<+-<+-⎪⎩⎪⎨⎧>+->+-⇔>+-+-⇔x x x x x x x x x x x x x x x 或或或 ∴原不等式解集为),2()1,21()31,(+∞⋃⋃-∞。

解法二:原不等式等价于0)2)(13()1)(12(>----x x x x0)2()13)(1)(12(>-⋅---⇔x x x x用“穿根法”∴原不等式解集为),2()1,21()31,(+∞⋂⋃-∞例3解法一:原不等式⎪⎩⎪⎨⎧+<-<-⎪⎩⎪⎨⎧+<-≥-⇔240424042222x x x x x x 或 即⎩⎨⎧>-<<<-⎩⎨⎧<<--≤≥1222222x x x x x x x 或或或∴32<≤x 或21<<x故原不等式的解集为{}31<<x x .解法二:原不等式等价于 24)2(2+<-<+-x x x即⎪⎩⎪⎨⎧+->-+<-)2(42422x x x x ∴312132<<⎩⎨⎧-<><<-x x x x 故或. 例4解法一:原不等式等价下面两个不等式级的并集:⎪⎩⎪⎨⎧>-+<+-0412,05622x x x x 或⎪⎩⎪⎨⎧<-+>+-0412,05622x x x x ⎩⎨⎧<-+<--⇔;0)6)(2(,0)5)(1(x x x x 或⎩⎨⎧>-+>--;0)6)(2(,0)5)(1(x x x x;⎩⎨⎧<<-<<⇔62,51x x 或⎩⎨⎧>-<><6,2,5,1x x x x 或或 ,51<<⇔x 或2-<x 或6>x .∴原不等式解集是}6512{><<-<x x x x ,或,或.解法二:原不等式化为0)6)(2()5)(1(>-+--x x x x .画数轴,找因式根,分区间,定符号.)6)(2()5)(1(-+--x x x x 符号∴原不等式解集是}6512{><<-<x x x x ,或,或.说明:解法一要注意求两个等价不等式组的解集是求每组两个不等式的交集,再求两组的解的并集,否则会产生误解. 解法二中,“定符号”是关键.当每个因式x 的系数为正值时,最右边区间一定是正值,其他各区间正负相间;也可以先决定含0的区间符号,其他各区间正负相间.在解题时要正确运用.例5 解:移项整理,将原不等式化为0)1)(3()1)(2(2>+-++-x x x x x . 由012>++x x 恒成立,知原不等式等价于0)1)(3()2(>+--x x x .解之,得原不等式的解集为}321{><<-x x x 或.说明:此题易出现去分母得)23(2222x x x x x -+<-+的错误解法.避免误解的方法是移项使一边为0再解.另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从而使求解过程科学合理.例6解:当0=m 时,因03<-一定成立,故原不等式的解集为R . 当0≠m 时,原不等式化为0)1)(3(<-+mx mx ;当0>m 时,解得m x m 13<<-; 当0<m 时,解得mx m 31-<<.∴当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-m x m x 13;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<m x mx31.说明:解不等式时,由于R m ∈,因此不能完全按一元二次不等式的解法求解.因为当0=m 时,原不等式化为03<-,此时不等式的解集为R ,所以解题时应分0=m 与0≠m 两种情况来讨论.在解出03222=-+mx x m 的两根为m x 31-=,m x 12=后,认为m m 13<-,这也是易出现的错误之处.这时也应分情况来讨论:当0>m 时,mm 13<-;当0<m 时,m m 13>-.例7解:原不等式⎪⎩⎪⎨⎧->-≥->-⇔;)1(2,01,02)1(222x a ax x a ax 或⎩⎨⎧<-≥-.01,02)2(2x a x由0>a ,得:⎪⎪⎩⎪⎪⎨⎧<+++-≤>⇔;01)1(2,1,2)1(22a x a x x a x ⎪⎩⎪⎨⎧>≥⇔.1,2)2(x a x由判别式08)1(4)1(422>=+-+=∆a a a ,故不等式01)1(222<+++-a x a x 的解是a a x a a 2121++<<-+.当20≤<a 时,1212≤-+≤a a a,121>++a a ,不等式组(1)的解是121≤<-+x a a ,不等式组(2)的解是1>x .当2>a 时,不等式组(1)无解,(2)的解是2a x ≥. 综上可知,当20≤<a 时,原不等式的解集是[)+∞-+,21a a ;当2>a 时,原不等式的解集是⎪⎭⎫⎢⎣⎡+∞,2a .说明:本题分类讨论标准“20≤<a ,2>a ”是依据“已知0>a 及(1)中‘2ax >,1≤x ’,(2)中‘2ax ≥,1>x ’”确定的.解含有参数的不等式是不等式问题中的难点,也是近几年高考的热点.一般地,分类讨论标准(解不等式)大多数情况下依“不等式组中的各不等式的解所对应的区间的端点”去确定.本题易误把原不等式等价于不等式)1(22x a ax ->-.纠正错误的办法是熟练掌握无理不等式基本类型的解法.例8解答:去掉绝对值号得3310432<--<-x x ,∴原不等式等价于不等式组⇒⎪⎩⎪⎨⎧<-->-⇒⎪⎩⎪⎨⎧<----<-06104010433104310432222x x x x x x x x ⎪⎪⎩⎪⎪⎨⎧<<-><⇒⎩⎨⎧<+->-.321,2500)12)(3(20)52(2x x x x x x x 或 ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<<<-325021x x x 或.说明:解含绝对值的不等式,关键是要把它化为不含绝对值的不等式,然后把不等式等价转化为不等式组,变成求不等式组的解. 例9解:原不等式可化为0))((2>--a x a x .(1)当2a a <(即1>a 或0<a )时,不等式的解集为:{}2a x a x x ><或;(2)当2a a >(即10<<a )时,不等式的解集为:{}a x a x x><或2;(3)当2a a =(即0=a 或1)时,不等式的解集为:{}a x R x x≠∈且.说明:对参数进行的讨论,是根据解题的需要而自然引出的,并非一开始就对参数加以分类、讨论.比如本题,为求不等式的解,需先求出方程的根a x =1,22a x =,因此不等式的解就是x 小于小根或x 大于大根.但a 与2a 两根的大小不能确定,因此需要讨论2a a <,2a a >,2a a =三种情况.例10解:(解法1)由题可判断出α,β是方程02=++c bx ax 的两根,∴a b -=β+α,ac=β⋅α. 又02>++c bx ax 的解集是{}β<<αx x ,说明0<a .而0>α,0>β000<⇒>⇒>αβ⇒c a c, ∴0022<++⇔>++cax c b x a bx cx .⎪⎪⎩⎪⎪⎨⎧--==--=+-=⇒⎪⎪⎩⎪⎪⎨⎧=⋅-=+),1)(1(1,11βααββααββαβαβαa c c b a c ab ∴02<++cax c b x ,即0)1)(1()11(2<β-α-+β-α-+x x ,即0)1)(1(<β-α-x x .又β<α<0,∴β>α11,∴0)1)(1(<β-α-x x 的解集为⎭⎬⎫⎩⎨⎧α<<β11x x . (解法2)由题意可判断出α,β是方程02=++c bx ax 的两根,∴ac=β⋅α. 又02>++c bx ax 的解集是{}β<<αx x ,说明0<a . 而0>α,0>β000<⇒>⇒>αβ⇒c ac. 对方程02=++a bx cx 两边同除以2x 得0)1()1(2=+⋅+⋅c x b x a .令xt 1=,该方程即为02=++c t b t a ,它的两根为α=1t ,β=2t ,∴α=11x ,β=21x .∴α=11x ,β=12x ,∴方程02=++a bx cx 的两根为α1,β1. ∵β<α<0,∴β>α11. ∴不等式02>++a bx cx 的解集是⎭⎬⎫⎩⎨⎧α<<β11x x. 说明:(1)万变不离其宗,解不等式的核心即是确定首项系数的正负,求出相应的方程的根;(2)结合使用韦达定理,本题中只有α,β是已知量,故所求不等式解集也用α,β表示,不等式系数a ,b ,c 的关系也用α,β表示出来;(3)注意解法2中用“变换”的方法求方程的根.例12解:∵043)21(122>++=++x x x , 043)21(122>+-=+-x x x ,∴原不等式化为0)()2(2>-++--+b a x b a x b a .依题意⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++=-+->-+34231202b a b a b a ba b a , ∴⎪⎪⎩⎪⎪⎨⎧==2325b a . 说明:解有关一元二次方程的不等式,要注意判断二次项系数的符号,结合韦达定理来解.例13解法一:设022=-+bx ax 的两根为1x ,2x ,由韦达定理得:⎪⎪⎩⎪⎪⎨⎧-=⋅-=+a x x ab x x 22121 由题意:⎪⎪⎩⎪⎪⎨⎧⨯-=-+-=-21221aa b∴1=a ,1-=b ,此时满足0>a ,0)2(42>-⨯-=∆a b . 解法二:构造解集为{}21<<-x x 的一元二次不等式:0)2)(1(<-+x x ,即022<--x x ,此不等式与原不等式022<-+bx ax 应为同解不等式,故需满足:2211--=-=b a ∴1=a ,1-=b . 说明:本题考查一元二次方程、一元二次不等式解集的关系,同时还考查逆向思维的能力.对有关字母抽象问题,同学往往掌握得不好. 例14解:分以下情况讨论(1)当0=a 时,原不等式变为:01<+-x ,∴1>x (2)当0≠a 时,原不等式变为:0)1)(1(<--x ax ①①当0<a 时,①式变为0)1)(1(>--x a x ,∴不等式的解为1>x 或a x 1<.②当0>a 时,①式变为0)1)(1(<--x ax . ②∵a a a -=-111,∴当10<<a 时,11>a ,此时②的解为ax 11<<.当1=a 时,11=a ,此时②的解为11<<x a. 说明:解本题要注意分类讨论思想的运用,关键是要找到分类的标准,就本题来说有三级分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧>=<<><≠=∈11100000a a a a a a a R a 分类应做到使所给参数a 的集合的并集为全集,交集为空集,要做到不重不漏.另外,解本题还要注意在讨论0<a 时,解一元二次不等式01)1(2<++-x a ax 应首选做到将二次项系数变为正数再求解.例15解:原不等式等价于下面两个不等式组:①⎩⎨⎧≥--<-0103082x x x ②⎪⎩⎪⎨⎧->--≥--≥-222)8(103010308x x x x x x由①得⎩⎨⎧-≤≥>258x x x 或,∴8>x 由②得∴⎪⎪⎩⎪⎪⎨⎧>-≤≥≤.1374258x x x x 或 81374≤<x ,所以原不等式的解集为⎭⎬⎫⎩⎨⎧>≤<881374x x x 或,即为⎭⎬⎫⎩⎨⎧>1374x x . 说明:本题也可以转化为)()(x g x f ≤型的不等式求解,注意:⎪⎩⎪⎨⎧≤≥≥⇔≤2)]([)(0)(0)()()(x g x f x g x f x g x f , 这里,设全集}52{}0103{2≥-≤=≥--=x x x x x x U 或,⎭⎬⎫⎩⎨⎧-≤--=x x x x A 81032,则所求不等式的解集为A 的补集A ,由2)8(10301030881032222-≤⇒⎪⎩⎪⎨⎧-≤--≥--≥-⇔-≤--x x x x x x x x x x 或13745≤≤x .即⎭⎬⎫⎩⎨⎧≤≤≤=137452x x x A 或,∴原不等式的解集是⎭⎬⎫⎩⎨⎧>=1374x x A .。

相关文档
最新文档