高等数学中的基本图形

合集下载

高中数学必修三

高中数学必修三

高中数学必修三高中数学必修三高中数学必修三,是学生在高中数学教学中学习的第三个必修课程,主要涉及三角函数、向量、圆锥曲线、数列与数学归纳法、离散数学等知识内容。

这些知识内容在高中阶段尤为重要,对于深入学习高等数学和理论物理等学科也有一定的启示。

一、三角函数三角函数是高中数学中最基础的内容之一,是描述角度与线段间关系的一种函数。

主要有正弦函数、余弦函数、正切函数及其反函数。

在三角函数的学习中,需要掌握单位圆的相关知识,例如如何在单位圆上画出一个角度,并以此计算三角函数的值。

同时还需要学习三角函数的基本性质,例如周期性、对称性、奇偶性等,这些性质将在后续学习中被广泛运用。

二、向量向量也是高中数学中一个重要的知识点,它是数学中用来描述大小和方向的量。

向量的基本运算有向量加法、向量减法、数量积和向量积等,同时我们还需要学习向量的代数表示、几何表示、共线关系、垂直关系以及平行四边形定理等。

另外,在向量的学习中还有一个重要的应用,就是向量表示平面图形中的各种几何特征,例如周长、面积、垂直平分线、角平分线等。

三、圆锥曲线在必修三的学习中,学生还需要掌握圆锥曲线的相关知识内容。

圆锥曲线属于高等数学中的内容,但在必修三中,主要涉及椭圆、双曲线、抛物线三种常见的圆锥曲线,并需要学习圆锥曲线的基本定义、特征、方程和图形等知识。

此外,还需要学习圆锥曲线在生活中的应用,例如椭圆和双曲线在卫星轨道设计中的应用,抛物线在弹道问题中的应用等。

四、数列与数学归纳法数列和数学归纳法也是必修三中的内容之一,它在高中数学中有着重要的地位。

数列是一系列数的集合,其中的每个数都按照一定的规律排列。

学生需要学习数列的基本概念、递推公式、通项公式、等差数列和等比数列等知识内容。

同时,还需要掌握数学归纳法的基本方法和应用,例如如何利用数学归纳法证明数列递推公式和通项公式等。

五、离散数学离散数学是高中数学必修三中比较新的内容,它主要研究离散的结构和集合中的元素之间的关系。

高等数学公式大全及常见函数图像

高等数学公式大全及常见函数图像

高等数学公式大全及常见函数图像文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)高等数学公式导数公式: 基本积分表:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数的有理式积分:一些初等函数:两个重要极限:三角函数公式:·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式: ·半角公式: ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:定积分的近似计算: 定积分应用相关公式: 空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。

高等数学中的空间解析几何

高等数学中的空间解析几何

高等数学中的空间解析几何一、引言空间解析几何是高等数学中的重要分支之一,它研究的是空间中的点、直线、平面等几何对象的性质和相互关系。

在实际应用中,空间解析几何广泛应用于物理学、工程学、计算机图形学等领域。

本教案将从基本概念入手,逐步展开论述空间解析几何的相关内容。

二、点与向量1. 点的坐标表示- 在直角坐标系中,点的坐标表示为(x, y, z),其中x、y、z分别表示点在x轴、y轴、z轴上的投影。

- 点的坐标可以用向量表示,即P = x*i + y*j + z*k,其中i、j、k分别是x轴、y轴、z轴的单位向量。

2. 向量的基本性质- 向量的模:向量AB的模表示为|AB|,定义为AB的长度。

- 向量的方向角:向量AB的方向角表示为(α, β, γ),其中α、β、γ分别表示向量AB与x轴、y轴、z轴的夹角。

- 向量的共线性:若向量AB与向量CD平行或共线,则存在实数k,使得AB = kCD。

三、直线与平面1. 直线的方程- 点向式方程:直线L上一点P的坐标为(x0, y0, z0),且向量v = (a, b, c) 与直线L平行,则直线L的点向式方程为(x, y, z) = (x0, y0, z0) + t(a, b, c),其中t为实数。

- 参数方程:直线L上一点P的坐标为(x0, y0, z0),且向量v = (a, b, c) 与直线L平行,则直线L的参数方程为x = x0 + at,y = y0 + bt,z = z0 + ct,其中t为参数。

- 一般方程:直线L的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。

2. 平面的方程- 点法式方程:平面π上一点P的坐标为(x0, y0, z0),且法向量n = (A, B, C)垂直于平面π,则平面π的点法式方程为Ax + By + Cz + D = 0,其中D = -Ax0 -By0 - Cz0。

- 一般方程:平面π的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。

平面相关知识点总结高中

平面相关知识点总结高中

平面相关知识点总结高中一、平面的概念和特点1.1 平面的概念平面是指没有厚度、只有长度和宽度的二维几何图形。

在空间中,平面是一种没有厚度和边界的几何图形,它只有长度和宽度,可以用一个无限多边形的点集体来表示。

平面是一种基本的几何概念,也是几何学的一个重要分支。

1.2 平面的特点(1)平面上的点是没有厚度的,只有长度和宽度;(2)平面上的直线是没有宽度的,只有长度;(3)平面上的图形是由点和直线组成的,每个点和直线在平面上都有唯一的位置。

二、平面图形的基本性质2.1 平面图形的分类平面图形是指在平面上的几何图形,包括点、线段、直线、角、多边形等。

根据图形的特点,平面图形可以分为以下几类:(1)点:没有长度和宽度,只有位置;(2)线段:有两个端点,有长度,但没有宽度;(3)直线:无限延伸,没有宽度,只有长度;(4)角:由两条射线共同起点组成,可以分为锐角、直角、钝角等;(5)多边形:由多条线段组成,包括三角形、四边形、五边形等。

2.2 平面图形的性质(1)平行线的性质:平行线在同一平面上,不相交,且距离相等;(2)垂直线的性质:两条垂直线相交成直角;(3)角的性质:角的种类包括锐角、直角、钝角等,可根据角的度数进行分类;(4)多边形的性质:包括三角形的内角和为180°,四边形的内角和为360°等。

三、平面几何问题的解决方法3.1 轴测投影法轴测投影法是描述和分析物体形状和结构的一种有效方法,包括平行轴测投影、透视轴测投影和等轴测投影等。

在解决平面几何问题时,可以利用轴测投影法来进行图形的绘制和分析,以便更好地理解和解决问题。

3.2 图形的相似性图形的相似性是指两个或多个图形在形状上相似,但尺寸不同的一种关系。

在解决平面几何问题时,可以利用图形的相似性来推导和证明结论,从而解决问题。

3.3 平面几何的应用平面几何在生活中有着广泛的应用,包括地图制作、建筑设计、工程测量等领域。

在解决实际问题时,可以利用平面几何的知识和方法进行分析和计算,以满足实际需求。

大学高数空间解析几何

大学高数空间解析几何
培养逻辑思维
学习空间解析几何有助于培养人的逻辑思维和抽象 思维能力,提高解决问题的能力。
空间解析几何的历史与发展
早期发展
空间解析几何起源于17世纪,随着笛卡尔坐标系的建立和 解析几何方法的完善,开始形成独立的数学分支。
近代发展
随着计算机科学和数学的不断发展,空间解析几何在理论 和应用方面都取得了重要进展,如微分几何、线性代数和 微分方程等与空间解析几何的交叉融合。
详细描述
如果两个平面的法向量 $mathbf{a}$ 和 $mathbf{b}$ 是共线的,即存在一个非零实数 $lambda$ 使得 $mathbf{a} = lambda mathbf{b}$,那么这两个平面就是平行的。如果两个平面的法向量不共线,那么 这两个平面就是相交的。
04
空间几何的应用
空间几何在计算机图形学中的应用
01
02
03
三维建模
空间几何用于创建三维模 型,包括曲面建模、实体 建模和参数化建模等。
光照计算
空间几何用于计算物体表 面的光照效果,以实现逼 真的渲染效果。
动画制作
空间几何用于动画制作中 的骨骼绑定、运动轨迹规 划和角色动画等,以创建 动态的视觉效果。
05
空间几何的习题与解答
平面与平面的交线
总结词求平面与平面Fra bibliotek交线,需要消元法或参数方程法。
详细描述
平面与平面的交线可以通过消元法或参数方程法来求解。消元法是通过联立两个平面的方程组,然后消元得到一 个一元一次方程,这个一元一次方程就是两平面的交线。参数方程法则是设定一个参数,将两个平面的方程都表 示成参数的函数,然后令参数相等,解出交线的参数方程。
未来展望
随着科技的不断进步和应用领域的拓展,空间解析几何将 继续发挥重要作用,并有望在人工智能、机器学习等领域 取得新的突破和应用。

高等数学第一章

高等数学第一章

连续
桥梁
第一节 函数
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素. 通常用大写字母表示集合 用小写字母表示集合的元素.
没有任何元素的集合称为空集,记作
表示 M 中排除 0 与负数的集 . M
注: M 为数集
* 表示 M 中排除 0 的集 ; M
一、基本概念——集合的表示法
则称函数f ( x )在X上有界.否则称无界.
y M y=f(x) o -M x 有界 X y
M
o
-M
x0
X
无界
x
注:有界性和定义区间有关.
二、函数——性质 2.函数的单调性:
设函数 f ( x )的定义域为 D, 区间I D, x1 , x2 I , 当 x1 x2
若 f ( x1 ) f ( x2 ) , 称 f ( x) 为 I 上的 单调增函数 ; 若 f ( x1 ) f ( x2 ) , 称 f ( x) 为 I 上的 单调减函数 .
二、函数——举例
例 A,B两地间的汽车运输,旅客携带行李按下列标准支付 运费:不超过10公斤的不收行李费;超过10公斤而不超过30 公斤的,每公斤收运费0.50元;超过30公斤而不不超过100 公斤的,每公斤收运费0.80元。试列出运输行李的运费y与行 李的重量x之间的函数关系式,写出其定义域,并求出所带行 李分别为18公斤和60公斤的甲、乙两旅客各应支付多少运费?
)2 解: f ( 1 2
1 2

2
1 1 , 0 t 1 t 1 f (t ) 2 t 1 , t 定义域 D [0 , )
值 域 f ( D ) [0 , )

高等数学公式大全以及初等函数图像

高等数学公式大全以及初等函数图像

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹()公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

高等数学ppt课件

高等数学ppt课件

05
常微分方程初步
常微分方程基本概念
1 2
常微分方程定义
明确常微分方程的定义,包括独立变量、未知函 数、方程阶数等概念。
初始条件和边界条件
解释初始条件和边界条件在解常微分方程中的作 用和意义。
3
常微分方程的解
阐述通解、特解、隐式解、显式解等概念,并举 例说明。
一阶常微分方程解法
分离变量法
介绍分离变量法的原理、步骤和适用范围,通 过实例演示其应用。
向量积定义
两向量按照右手定则所构成的平行四边形的面积,结果为一向量,可用于计算法向量、判断三向量共 面等。
平面和直线方程求解方法
要点一
平面方程求解方法
包括点法式、一般式等,用于确定平面在空间中的位置。
要点二
直线方程求解方法
包括点向式、参数式等,用于确定直线在空间中的位置和 方向。
常见曲面方程及其图形特征
为未来职业生涯打基础
许多行业都需要具备一定的数学基础 ,学习高等数学有助于为未来职业生 涯打下坚实基础。
02
函数与极限
函数概念与性质
函数定义
详细解释函数的定义,包括函数值、定义域、值域等概念。
函数性质
介绍函数的单调性、奇偶性、周期性等基本性质,并举例说明。
初等函数及其图像
基本初等函数
详细讲解幂函数、指数函数、对数函数、三角函数等基本初等函数的定义、性质和图像。
隐函数求导法
阐述隐函数存在定理,介绍隐函数求导方法及应用实例。
二重积分定义和计算方法
二重积分定义
阐述二重积分概念、性质及实际意义,介绍 二重积分在物理、工程等领域的应用。
二重积分计算方法
分别介绍直角坐标系和极坐标系下二重积分 的计算方法,包括累次积分法、换元积分法

高等数学2 第一章

高等数学2 第一章

函数y f ( x )的图形.
几个特殊的函数举例
(1) 符号函数
1 y
1 当x 0 y sgn x 0 当x 0 1 当x 0
o
x
-1
x sgn x x
(2) 取整函数 y=[x]
[x]表示不超过 x 的最大整数 4 3 2 1 o
y
-4 -3 -2 -1
y log 1 x
a
4、三角函数 正弦函数 y sin x
y sin x
余弦函数 y cos x
y cos x
正切函数 y tan x
y tan x
余切函数 y cot x
y cot x
正割函数 y sec x
y sec x
x 1 2 3 4 5 -1 -2 -3 -4
阶梯曲线
(3) 狄利克雷函数
1 当x是有理数时 y D( x ) 0 当x是无理数时
y
1
• o 无理数点 有理数点
x
(4) 取最值函数
y max{ f ( x ), g( x )}
y
f ( x) g( x )
y min{ f ( x ), g( x )}
二、证明 y lg x 在( 0, ) 上的单调性. 三、证明任一定义在区间( a , a ) ( a 0 ) 上的函数可表 示成一个奇函数与一个偶函数之和. 四、设 f ( x ) 是以 2 为周期的函数, x 2 ,1 x 0 且 f ( x) ,试在( , ) 上绘出 0, 0 x 1 f ( x ) 的图形. 五、证明:两个偶函数的乘积是偶函数,两个奇函数的 乘积是偶函数,偶函数与奇函数的乘积是奇函数. ax b 六、证明函数 y 的反函数是其本身. cx a e x ex 七、求 f ( x ) x 的反函数,并指出其定义域. x e e

高数图形总结知识点

高数图形总结知识点

高数图形总结知识点一、平面几何平面几何是研究平面上的图形及其性质的一门数学学科,它是在高等数学中的一个重要分支,对于理解微积分和数学分析等课程有着重要的作用。

在平面几何中,我们将主要涉及到点、线、圆等基本图形以及它们的性质和相关定理。

1.1 点、线、面在平面几何中,点是最基本的图形,它是没有长度、宽度、厚度的,只有位置,通常用大写字母表示。

线是由一些点连成的集合,没有宽度,但有长度,通常用小写字母表示,如\(\overline{AB}\)表示由点A和点B构成的线段。

面是由点和线围成的区域,通常用大写字母表示,如\(ΔABC\)表示由点A、B、C构成的三角形。

1.2 图形的性质在平面几何中,常常需要研究图形的性质,这些性质可以通过观察和证明得出,其中一些性质是基础性的,对于之后的内容有着非常重要的作用。

比如,两条垂直平分线的交点恰好是所分割线段的中点,两条平行线上的对应角相等等。

1.3 直线与圆在平面几何中,直线和圆是两个最基本的图形。

直线是无数个点的集合,具有无限延伸的性质,而圆是由圆心和半径确定的一圈点的集合。

对于直线和圆,我们需要研究它们的性质,如直线的倾斜程度、圆的半径、直线与圆的相交性质等。

1.4 角与三角形在平面几何中,角和三角形是两个重要的图形。

角是由两条射线共同的端点组成的几何图形,我们可以通过角的度量来研究角的大小和性质;三角形是由三条线段组成的图形,有着许多重要的性质和定理,如三角形内角的和为180度、三角形的外心、内心、重心和垂心等。

1.5 多边形与圆在平面几何中,多边形和圆也是两个重要的图形。

多边形是由有限条线段组成的图形,通常我们研究三角形、四边形和多边形的性质,并推导出相关的定理和公式;圆是一个特殊的多边形,它有着许多独特的性质,如圆的周长和面积的计算等。

1.6 坐标表示在平面几何中,我们常常需要利用坐标系来表示图形和计算其性质,如直角坐标系和极坐标系。

直角坐标系是由x轴和y轴构成的平面直角坐标系,我们可以通过坐标来表示点、直线和图形,并计算它们的性质;极坐标系是第二种坐标系,用于表示平面上的点,通常是通过极坐标的极径和极角来表示。

《高等数学讲义》(上、下册)--目录 樊映川等编

《高等数学讲义》(上、下册)--目录   樊映川等编

第一篇解析几何《高等数学讲义》 (上、下册) -- 目录第五章极坐标樊映川等编12.平面束的方程第一章行列式及线性方程组1.二阶行列式和二元线性方程组2.三阶行列式3.三阶行列式的主要性质4.行列式的按行按列展开5.三元线性方程组6.齐次线性方程组7.高阶行列式概念第二章平面上的直角坐标曲线及其方程1.轴和轴上的线段2.直线上点的坐标数轴3.平面数的点的笛卡儿直角坐标4.坐标变换问题5.两点间的距离6.线段的定比分点7.平面上曲线方程的概念8.两曲线的交点第三章直线与二元一次方程1.过定点有定斜率的直线方程2.直线的斜截式方程3.直线的两点式方程4.直线的截距式方程5.直线的一般方程6.两直线的交角7.直线平息及两直线垂直的条件8.点到直线的距离9.直线束第四章圆锥曲线与二元一次方程1.圆的一般方程2.椭圆及其标准方程3.椭圆形状的讨论4.双曲线及其标准方程5.双曲线形状的讨论6.抛物线及其标准方程7.抛物线形状的讨论8.椭圆及双曲线的准线9.利用轴的平移简化二次方程10.利用轴的旋转简化二次方程11.一般二元二次方程的简化1.极坐标的概念2.极坐标与直角的关系3.曲线的极坐标方程4.圆锥曲线的极坐标方才第六章参数方程1.参数方程的概念2.曲线的参数方程3.参数方程的作图法第七章控件直角坐标与矢量代数1.间点的直角坐标2.基本问题3.矢量的概念矢径4.矢量的加减法5.矢量与数量的乘法6.矢量在轴上的投影投影定理7.矢量的分解与矢量的坐标8.矢量的模矢量的方向余弦与方向数9.两矢量的数量积10.两矢量的夹角11.两矢量的矢量积12.矢量的混合积第八章曲面方程与曲线方程1.曲面方程的概念2.球面方程3.母线平行于坐标的柱面方程二次柱面4.控件曲线作为两曲面的交线5.空间曲线的参数方程6.空间曲线在坐标面上的投影第九章空间的平面于曲线1.过一点并已知一法线矢量的平面方程2.平面的一般方程的研究3.平面的截距式方程4.点到平面的距离5.两平面的夹角6.直线作为两平面的交线7.直线的方程8.两直线的夹角9.直线与平面的夹角10.直线与平面的交点11.杂例第十章二次曲面1.旋转曲面2.椭秋面3.单叶双曲面4.双叶双曲面5.椭圆抛物面6.双曲抛物面7.二次锥面第二篇第一章函数及其图形1.实数与数轴2.区间3.实数的绝对值邻域4.常量与变量5.函数概念6.函数的表示法7.函数的几种特性8.反函数概念9.基本初等函数的图形10.复合函数初等函数第二章数列的极限及函数的极限1.数列及其简单性质2.数列的极限3.函数的极限4.无穷大无穷小5.关于无穷小的定理6.极限的四则运算7.极限存在的准则两个重要极限8.双曲函数9.无穷小的比较第三章函数的连续性1.函数连续性的定义2.函数的间断点3.闭区间上连续函数的基本性质4.连续函数的和积及商的连续性5.反函数与复合函数的连续性6.初等函数的连续性第四章导数及微分1.几个物力学上的概念2.导数概念3.导数的几何意义4.求导数的例题导数的基本公式表5.函数的和积商的导数6.反函数的导数7.复合函数的导数8.高阶导数9.参数方程所确定的函数的导数10.微分概念11.微分的求法微分形式不变性12.微分应用与近似计算及误差的估计第五章中值定理1.中值定理2.罗必塔法则3.泰勒公式第六章导数的应用1.函数的单调增减性的判定法2.函数的极值及其求法3.最大值及最小值的求法4.曲线的凹性及其判定法5.曲线的拐点及其求法6.曲线的渐进线7.函数图形的描绘方法8.弧微分曲率9.曲率半径曲率中心10.方程的近似解第七章不定积分1.原函数与不定积分的概念2.不定积分的性质3.基本积分表4.换元积分法5.分步积分法6.有理函数的分解7.有理函数的积分8.三角函数的有理式的积分9.简单无理函数的积分10.二项微分式的积分11.关于积分问题的一些补充说明第八章定积分1.曲边梯形的面积变力所作的功2.定积分的概念3.定积分的简单性质中值定理4.牛顿-莱布尼兹公式5.用换元法计算定积分6.用分部积分法计算定积分7.定积分的近似公式8.广义积分第九章定积分的应用1.平面图形的面积2.体积3.曲线的弧长4.定积分在物力力学上的应用第十章级数I. 常数项级数1.无穷级数概念2.无穷级数的基本性质收敛的必要条件3. 正项级数收敛性的充分判定法4.任意项级数绝对收敛5.广义积分的收敛性6.T- 函数II. 函数项级数7.函数项级数的一般概念8.一致收敛及一致收敛级数的基本性质III 幂级数9.幂级数的收敛半径10.幂级数的运算11.泰勒级数12.初等函数的展开式13.泰勒级数在近似计算上的应用14.复变量的指数函数欧拉公式第十一章傅立叶级数1.三角级数三角函数系的正交性2.欧拉-傅立叶公式3.傅立叶级数4.偶函数及奇函数的傅立叶级数5.函数展开为正弦和余弦级数6.任意区间上的傅立叶级数第十二章多元函数的微分法及其应用1.一般概念2.二元函数的极限及连续性3.偏导数4.全增量及全微分5.方向导数6.复合函数的微分法7.隐函数及其微分法8.空间曲线的切线及法平面9.曲面的切平面及法线10.高阶偏导数11.二元函数的泰勒公式12.多元函数的极值13.条件极值--拉格朗日乘数法则第十三章重积分1.体积问题二重积分2.二重积分的简单性质中值定理3.二重积分计算法4.利用极坐标计算二重积分5.三重积分及其计算法6.柱面坐标和球面坐标7.曲面的面积8.重积分在静力学中的应用第十四章曲线积分及曲面积分1.对坐标的曲线积分2.对弧长的曲线积分3.格林公式4.曲线积分与路线无关的条件5.曲面积分6.奥斯特罗格拉特斯公式第十五章微分方程1.一般概念2.变量可分离的微分方程3.齐次微分方程4.一阶线性方程5.全微分方程6.高阶微分方程的几个特殊类型7.线性微分方程解的结构8.常系数齐次线性方程9.常系数非齐次线性方程10.欧拉方程11.幂级数解法举例12.常系数线性微分方程组。

高等数学ppt课件

高等数学ppt课件

定积分的性质
定积分具有可加性、可积性、可微性等性质 。
定积分的应用
01
02
03
几何应用
定积分可以用于计算平面 图形和三维物体的面积和 体积,如矩形、圆形、球 体等。
物理应用
定积分可以用于计算变力 沿直线做功、液体压力等 物理问题。
经济应用
定积分可以用于计算经济 指标,如成本、收益、利 润等。
05
多重积分与向量分析
多重积分的概念与性质
多重积分的定义
多重积分是单变量积分概念的推广,它涉及多个变量 的积分。多重积分可以看作是对于每个变量进行积分 ,然后将结果相乘。
多重积分的性质
多重积分的性质包括积分的可加性、积分的可交换性、 积分的可结合性等。这些性质与单变量积分的性质类似 ,但需要考虑到多个变量的复杂性。
函数定义
函数是一种数学工具,它建立了数与数之间的对应关系,可以将一个数集中的每一个数唯一地映射到另一个数集中。 函数的性质包括定义域、值域、对应关系等。
函数的表示方法
函数的表示方法有表格法、图示法和解析法等,其中解析法是最常用的方法之一。解析法是通过数学表达式来表示函 数的关系。
函数的单调性
函数的单调性是指函数在某区间内的单调递增或单调递减的性质。单调函数具有连续性和可导性等性质 。
03
导数与微分
导数的定义与性质
总结词
导数是描述函数值随自变量改变速率的 方式,是函数局部性质的重要体现。
VS
详细描述
导数定义为函数在某一点的变化率,即函 数在这一点处切线的斜率。导数的基本性 质包括:(1)常数函数的导数为零;( 2)导函数在某点的极限就是原函数在该 点的导数值;(3)两个函数相加或相减 后的导数等于各自导数之和或之差;(4 )常数倍函数的导数等于该常数乘以原函 数的导数。

高数总结知识点

高数总结知识点

高数总结知识点一、函数与极限函数的概念、性质及其图像。

函数的极限定义、性质及其运算。

无穷小与无穷大的概念及关系。

极限存在准则(夹逼准则、单调有界准则等)。

二、导数与微分导数的定义、性质及几何意义。

导数的计算(包括基本初等函数的导数、复合函数求导法则、隐函数求导、参数方程求导等)。

高阶导数的概念及计算。

微分的定义、性质及运算。

三、微分中值定理与导数的应用微分中值定理(罗尔定理、拉格朗日中值定理、泰勒定理等)。

洛必达法则及其应用。

函数的单调性、极值、最值及凹凸性的判定。

曲线的渐近线、拐点及图形的描绘。

四、不定积分与定积分不定积分的概念、性质及基本积分公式。

不定积分的计算(包括凑微分法、换元积分法、分部积分法等)。

定积分的概念、性质及计算。

定积分的应用(如面积、体积、弧长、功、平均值等的计算)。

五、向量代数与空间解析几何向量的概念、性质及运算。

空间直角坐标系及点的坐标表示。

向量的坐标表示及运算。

平面与直线的方程及其位置关系。

六、多元函数微分学多元函数的概念、性质及极限与连续。

偏导数的定义、计算及几何意义。

全微分的概念及计算。

多元函数的极值与最值问题。

七、多元函数积分学二重积分的概念、性质及计算。

三重积分的概念及计算。

曲线积分与曲面积分的概念及计算。

八、无穷级数常数项级数的概念、性质及收敛判别法。

函数项级数的概念及一致收敛性。

幂级数的概念、性质及运算。

傅里叶级数及其应用。

九、微分方程微分方程的概念及分类。

一阶微分方程的解法(分离变量法、凑微分法等)。

高阶微分方程的解法(降阶法、幂级数解法等)。

微分方程的应用(如物理、化学、生物等领域中的实际问题)。

以上只是高等数学的一些主要知识点,实际上高等数学的内容非常丰富且深入,需要学习者不断地探索和实践。

高等数学基本图形

高等数学基本图形
高等数学中的基本图形
为了方便教与学,对于《高等数学》中经常 出现的基本图形,在此给出了它们的图像.
1
3 立方抛物线 y ax
o
2
2 3 y ax 半立方抛物线
o
3
概率曲线
ye
x2
o
4
1 常见曲线 y sin x
o
y= sin(1/x)
5
1 常见曲线 y x sin x
9
1 常见曲线 y 1 x
x
ye
o
y= (1+1/x)2
10
箕舌线
8a 3 y 2 x 4a 2
2a
a
o
11
蔓叶线 y 2 2a x x 3
o
a
2a
12
阿基米德螺线
r a
o
13
对数螺线
r e a
o
14
星形线 x y a
2 3
2 3
2 3
x a cos 3 , 3 y a sin .
o
15
三叶玫瑰线 r a sin 3
o
16
三叶玫瑰线 r a cos 3
o
17
四叶玫瑰线
r a sin 2
o
18
四叶玫瑰线 r a cos 2
o
19
心形线 r a(1 cos )
o
y=xsin(1/x)
6
1 常见曲线 y x sin x
2
y x2
1 y x sin x
2
o
y x2
y=x2 sin(1/x)
7
sin x 常见曲线 y x

高等数学知识结构框架

高等数学知识结构框架

高等数学知识结构框架高等数学是大学数学的一门基础课程,它主要包括微积分和数学分析两个部分。

微积分主要研究函数、极限、导数、积分、微分方程等概念和方法;数学分析主要研究实数集、极限、连续性、一致连续性、可导性、不定积分、定积分、级数等概念和问题。

以下是高等数学中比较重要的知识结构框架及相关参考内容:一、函数与极限1. 函数的概念、基本初等函数以及函数的性质:韦达定理、复合函数、反函数等。

2. 极限的概念和性质:数列极限、函数极限、极限存在准则等。

3. 极限的计算方法:夹逼准则、单调有界数列的极限、洛必达法则等。

4. 无穷小量与无穷大量的定义与比较:无穷小量的阶、无穷大量的比较等。

二、导数与微分1. 导数的定义、性质和计算方法:导数的定义、导数的四则运算、高阶导数、隐函数与参数方程的导数等。

2. 函数的几何意义与微分中值定理:函数的单调性与极值点、罗尔中值定理、拉格朗日中值定理、柯西中值定理等。

3. 函数的图形与曲率:函数的图形、曲率、凹凸性与拐点。

三、不定积分与定积分1. 不定积分的定义与性质:原函数与不定积分的概念、基本积分表、换元积分法、分部积分法等。

2. 定积分的概念与性质:黎曼和与定积分的定义、定积分的性质、牛顿-莱布尼茨公式等。

3. 定积分的计算方法:变上限积分法、变量替换法、分段函数积分法等。

四、微分方程1. 常微分方程的基本概念与解法:一阶微分方程的基本概念、可分离变量方程、齐次方程、一阶线性非齐次方程等。

2. 高阶线性常微分方程的解法:二阶常系数齐次线性方程、二阶常系数非齐次线性方程、欧拉方程等。

五、级数1. 数列与级数:数列的极限、数列极限收敛性的准则、常数项级数、幂级数等。

2. 一致收敛性与函数级数:一致收敛性的概念、一致收敛级数的性质、Weierstrass判别法、Abel判别法、幂级数的收敛半径等。

以上是高等数学中较为重要的知识结构框架及相关参考内容,希望能为学习者提供一定的参考和指导。

高等数学概述

高等数学概述

高等数学概述高等数学是一门研究数的性质和运算规律的学科,是现代科学和工程技术的基础。

它涉及微积分、线性代数、概率论等多个领域,具有广泛的应用价值。

本文将对高等数学的概念、历史、基本内容以及在实际应用中的作用进行概述。

一、概念高等数学是研究实数的集合及其上的运算、几何关系、变化规律以及各种量的变化趋势的一门学科。

它以微积分和线性代数为基础,通过符号、公式和图形等方式描述数学概念,并运用数学方法分析和解决实际问题。

二、历史高等数学的起源可以追溯到古希腊时期的几何学和数论。

随着人类对数学的研究深入,高等数学逐渐形成了完整的理论体系。

17世纪的微积分和18世纪的概率论为高等数学的发展奠定了坚实的基础。

在现代科学和工程技术的推动下,高等数学得到了广泛的应用和发展。

三、基本内容1.微积分:微积分是高等数学的核心内容,包括微分和积分两个方面。

微分研究函数的变化率和极限,积分研究函数的面积、曲线长度等概念。

微积分提供了分析和求解变化问题的工具。

2.线性代数:线性代数研究向量空间、线性方程组和线性变换等概念及其运算规律。

它在计算机图形学、量子力学等领域有广泛的应用。

3.概率论:概率论研究随机事件的概率和统计规律,用于描述和分析随机现象。

它在金融、工程、生物等领域的风险分析和决策中扮演重要角色。

4.常微分方程:常微分方程研究未知函数和其导数之间的关系,可以描述物理、化学、经济等领域的变化规律。

常微分方程在动力系统、控制论等领域具有重要应用。

5.偏微分方程:偏微分方程研究未知函数和其偏导数之间的关系,广泛应用于物理、工程、气象等领域的模型建立和求解。

四、应用价值高等数学作为一门基础学科,对于现代科学和工程技术的发展具有重要影响和应用价值。

它被广泛应用于物理学、工程学、经济学、计算机科学等多个领域。

在物理学中,高等数学的理论和方法被用于描述和解释自然界的现象,如物体运动、电磁场分布等。

在工程学中,高等数学在结构力学、流体力学等领域的模拟和优化中起着重要作用。

高等数学的理解

高等数学的理解

高等数学的理解
高等数学是一门研究基本数学概念与方法的学科,它包括的内容非常广泛,主要涵盖微积分、线性代数、解析几何、概率论等多个领域。

高等数学的研究对象是连续性、可微性、可积性等抽象的数学概念,同时也是现代科学研究中不可或缺的基础数学工具。

微积分是高等数学中的核心内容。

微积分可以用来描述变化率、斜率、面积、体积等各种变化规律。

微积分不仅是理论基础,还被广泛应用于工程、物理、经济等领域,成为现代科学研究不可或缺的工具。

线性代数则是高等数学中的另外一个重要的分支。

线性代数主要研究多维向量空间中的线性方程组、矩阵以及线性变换,并给出了系数矩阵与向量组解的关系。

线性代数在计算机科学、统计学、金融等领域有着广泛的应用,成为了现代科学研究不可或缺的工具。

解析几何是高等数学中的另外一门重要的分支,它主要研究多维空间中的点、直线、平面、曲面等几何对象的性质和变化规律。

解析几何在计算机图形学、机器人学、计算机辅助设计等领域有着广泛的应用。

概率论是高等数学中的另外一个重要的分支。

概率论是研究随机现象及其规律的数学分支,主要研究概率事件及其发生的概率、随机变量及其分布、概率密度等内容。

概率论在金融、保险、统计、信号处理等领域有着广泛的应用。

总的来说,高等数学是现代科学研究中不可或缺的基础数学工具
之一。

无论是理论研究还是应用实践,都需要高等数学的知识和技能。

因此,掌握高等数学的基本概念和方法,对于我们的学习和发展都有
着非常重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
常见曲线 y x2 sin 1
x
y x2 y x2 sin 1 x
o
y x2
y=x2 sin(1/x)
7
常见曲线 y sin x
x
o
y=sinx/x
8
常见曲线 y sin x, y x, y tan x
o
y=sinx, y=x, y=tanx
9
常见曲线
y
1
1 x
x
ye
o
y= (1+1/x)2
10
箕舌线
y
8a 3 x2 4a2
2a
a o
11
蔓叶线 y2 2a x x3
oa
2a
12
阿基米德螺线 r a
o
13
对数螺线 r ea
o
14
2
2
2
星形线 x 3 y 3 a 3
x a cos3 ,
y
a
sin3
.
o
15
三叶玫瑰线 r a sin 3
o
16
三叶玫瑰线 r a cos 3
o
17
四叶玫瑰线 r a sin 2
o
18
四叶玫瑰线 r a cos 2
o
19
心形线 r a(1 cos )
o
20
心形线 r a(1 cos )
o
21
伯努利双纽线 r2 a2 cos 2
o
22
伯努利双纽线 r 2 a2 sin 2
o
23

x2 y2 a2 b2 1
25
旋转抛物面 z x2 y2
26
圆锥面 z2 x2 y2
27
双曲抛物面 z x2 y2
28
柱面x2+y2=2x与球面x2+y2+z2=4
29
高等数学中的基本图形
为了方便教与学,对于《高等数学》中经常 出现的基本图形,在此给出了它们的图像.
1
立方抛物线 y ax3
o
2
半立方抛物线 y2 ax3
o
3
概率曲线 y e x2
o
4
常见曲线 y sin 1
x
o
y= sin(1/x)
5
常见曲线 y x sin 1
x
o
y=xsin(1/x)
相关文档
最新文档