浅议函数解析式的几种求法

合集下载

求函数解析式的五种方法及其例子

求函数解析式的五种方法及其例子

求函数解析式的五种方法及其例子在数学领域中,求解函数解析式是一项重要的任务。

本文将介绍五种常用的方法来求解函数解析式,并通过例子来展示其应用。

1. 数列法:该方法适用于已知函数的输出序列,并希望找到一个函数解析式来描述它。

通过观察函数输出值之间的规律,可以尝试找到相应的数学模式。

例如,若某函数的输出序列为1,4,9,16,25,...,我们可以观察到这是个平方数序列,因此函数解析式为f(x) = x^2。

2. 经验法:该方法适用于已知函数的输入和输出值,但不清楚具体的数学关系。

通过绘制出函数的散点图,可以尝试通过经验找到适合的函数类型。

例如,若某函数的输入和输出值如下表所示:| x | 1 | 2 | 3 | 4 | 5 ||-------|-------|-------|-------|-------|-------|| y | 3 | 5 | 7 | 9 | 11 |我们可以观察到y值递增2,因此猜测函数解析式为f(x) = 2x + 1。

3. 代数法:该方法适用于通过已知函数的性质和结构来推导函数解析式。

例如,若需要求解一个线性函数,已知它通过点(1, 3)和(2, 5),可以使用直线的斜率公式来得到函数解析式。

根据两点之间的斜率公式,我们可以得到函数解析式f(x) = 2x + 1。

4. 差分法:该方法适用于已知函数的差分序列,即函数输出值之间的差异。

通过观察差分序列之间的规律,可以尝试找到函数的解析式。

例如,若某函数的输出值差分序列为1, 3, 5, 7,我们可以观察到差分序列的差值为2,因此猜测函数解析式为f(x) = 2x。

5. 推理法:该方法适用于已知函数的一些特殊性质或限制条件。

通过寻找函数性质和限制条件的推理,可以得到函数解析式。

例如,若某函数是一个偶函数且通过原点(0, 0),我们知道偶函数具有对称性,并且f(0) = 0。

因此,猜测函数解析式为f(x) = ax^2。

通过以上五种方法中的一种或多种方法,我们可以在求解函数解析式时获得准确的结果。

函数解析式的求解及常用方法

函数解析式的求解及常用方法

函数解析式的求解及常用方法
1.直接法:当函数的表达式比较简单时,可以通过观察函数在一些特定点上的值来找到函数的解析式。

例如,给定函数的函数值和定义域,通过观察函数的值与自变量之间的关系来确定函数的解析式。

2. 反函数法:对于一些特殊函数,可以通过求解函数的反函数来得到函数的解析式。

例如,对于幂函数y=x^n,可以通过求解其反函数
y=\sqrt[n]{x}来得到幂函数的解析式。

3.已知条件法:对于一些已知条件,可以通过利用这些条件来求解函数的解析式。

例如,已知函数的导函数或者积分表达式,可以利用这些条件来求解函数的解析式。

4.递归法:有些函数可以通过递归的方式来定义,即函数的值依赖于前面的函数值。

例如,斐波那契数列就是通过递归来定义的,可以通过递归的方式来求解函数的解析式。

5.求导和积分法:对于一些函数,可以通过求导和积分的方式来求解函数的解析式。

特别是对于一些常见的函数,可以通过求导和积分的规则来求解函数的解析式。

以上是常用的函数解析式求解方法,不同函数的特点和已知条件可能需要采用不同的方法来求解函数的解析式。

在实际问题中,需要根据具体情况选择合适的方法来求解函数的解析式。

函数解析式的常用求解方法函数解析式的求解九种方式函数解析式有几种形式

函数解析式的常用求解方法函数解析式的求解九种方式函数解析式有几种形式

一、函数解析式的常用求解方法(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。

待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。

(2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得,然后代入f(g (x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。

(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f (x)的式子。

(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。

(5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。

二、函数解析式的求解九种方式:1.代入法:已知f(x)的解析式,求f[g(x)] 的解析式.[例1] 若f(x)=2x+1,g(x)=x-1, 求f[g(x)],g[f(x)].2. 换元法已知f[g(x)]=h(x), 求f(x)的解析式.令g(x)=tx=(t),则f(t)=h[(t)],再将t换成x即可.但要注意换元前后变量的等价性。

[例2] 已知f( +1)= x+2 ,求f(x),f(x+1).3.配凑法已知f[g(x)]=h(x), 求f(x)的解析式。

若能将h(x)用g(x)表示, 然后用x去代换g(x),则就可以得到f(x)的解析式。

[例3] 已知f(x+ )= x3 + , 求f(x),f(x+1).4.待定系数法根据已知函数的类型或者特征,求函数解析式。

浅谈函数解析式的几种求法

浅谈函数解析式的几种求法



已知对 一切 x , y∈ R, 关系式

f ( ) 一( 2 x — y + 1) y者 _ 成 立, gf ( 0 ) 1 ,
求/ ( ) .
解: ‘ . ’ — Y) , I ) 一 ( 2 x — y + 1) y对 一
切 , Y都 成 立 ,

( 4) 满足 某个等式 , 这个等式 除外 还
有其他 未知 量 , 需 构造 另一个等 式 ・ 解 方
程组法 :

从中解 出 , 代入 h ( x ) 进行换元来解. 例 已知/ ( 1 + 2 一) =2 x + ,
) + ) 联立①② , 消去
, ) 得
・ 。 .
若题 中给 出所 求 函数的类 型或 函数 的某 些特征 , 求 函数解析 式 , 可用待定 系 数 法. 方法 是先设 出 函数的解析 式 , 然后 根据题设条件求解 .
令 =O得
) 0 ) 一 ( 1 - y ) Y ,



一 y ) = y Z — y + l, 再令 : 得 )
应 关 系 的式 子 , 是 函 数 三 种 表 示 法 中最 重 要 的一种 , 对 某 些 函 数 问题 , 能 否 顺 利 解
对于已知函数f t g ( x ) ] = ( ) , 求 )
的问题 , 可先用 g ( x ) 表示 ^ ( ) , 然后再将
较 系 {
・ . .
解 得 ,
) = + 2.
g ( ) 用 代替, 即得/ 【 ) 的解析式.
例 已知_ 厂 ( 1 十 1) 1— 3 ・求/ ( )
的解 析 式 .

高一数学函数解析式的七种求法

高一数学函数解析式的七种求法

函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f解:设b ax x f +=)( )0(≠a ,则b ab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。

但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。

例2 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+xx x x f , 21≥+x x 2)(2-=∴x x f )2(≥x三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

与配凑法一样,要注意所换元的定义域的变化。

例3 已知x x x f 2)1(+=+,求)1(+x f解:令1+=x t ,则1≥t ,2)1(-=t xx x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点则⎪⎩⎪⎨⎧=+'-=+'3222y y x x ,解得:⎩⎨⎧-='--='y y x x 64 , 点),(y x M '''在)(x g y =上x x y '+'='∴2把⎩⎨⎧-='--='yy x x 64代入得: )4()4(62--+--=-x x y整理得672---=x x y ∴67)(2---=x x x g五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

求函数解析式的几种方法

求函数解析式的几种方法

求函数解析式的几种方法函数解析式是表示一个函数关系的代数表达式,可以用来描述函数的定义域、值域、图像等特征。

在数学领域,有多种方法来推导函数的解析式,下面将介绍几种常见的方法。

一、直接法直接法是最常见和最基础的方法,可以根据函数的定义以及给定的条件,通过逐步推导得到函数的解析式。

例如,要求解函数y=f(x)的解析式,可以根据问题给出的条件进行如下推导:1.将函数的定义形式转化为解析式的形式。

例如,如果函数给出了一些点的坐标,可以通过观察得到点的横坐标和纵坐标之间的关系,从而得到函数的解析式。

2.确定函数的定义域和值域。

函数的定义域是自变量x可以取的值的集合,值域是函数所有可能的输出值的集合。

根据问题给出的条件,可以确定函数的定义域和值域。

3.根据函数的定义和给定的条件,逐步推导出函数的解析式。

例如,可以根据函数的一些性质或特点,通过观察和分析来确定函数的解析式。

二、利用已知函数逐步构建利用已知函数逐步构建函数的方法是一种常见的推导函数解析式的方法。

如果在问题中给出了一些已知的函数,可以利用这些函数作为基础来构建新的函数。

根据函数的性质和基本运算,通过运用函数的组合、反函数、平移、缩放等操作,逐步构建出所需的函数解析式。

例如,已知两个函数f(x)和g(x)的解析式,要求构建新函数h(x)的解析式,可以通过以下步骤进行:1.利用已知函数f(x)和g(x)进行基本运算,如加、减、乘、除等,得到中间函数u(x)。

2.对中间函数u(x)进行平移、缩放等操作,得到最终要求的函数h(x)。

三、利用函数的性质和特点函数具有一些普遍的性质和特点,如奇偶性、周期性、对称性等,可以根据这些性质和特点来推导函数的解析式。

例如,已知函数f(x)是偶函数,可以根据偶函数的性质得到f(-x)=f(x),然后通过观察和分析,逐步推导出函数的解析式。

四、利用已知点的坐标如果在问题中给出了函数的一些点的坐标,可以通过观察这些坐标点之间的关系,从而推导出函数的解析式。

函数解析式的七种求法

函数解析式的七种求法

一)求函数的解析式1、函数的解析式表示函数与自变量之间的一种对应关系,就是函数与自变量建立联系的一座桥梁,其一般形式就是y =f(x),不能把它写成f(x,y)=0;2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形;3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y 。

(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f [g(x)]的表达式,求f(x)的表达式时可以令t =g(x),以换元法解之;(4)构造方程组法:若给出f(x)与f(-x),或f(x)与f(1/x)的一个方程,则可以x 代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y 的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。

(二)求函数定义域1、函数定义域就是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型就是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y =f [g(x)]的定义域的求解,应先由y =f(u)求出u 的范围,即g(x)的范围,再从中解出x 的范围I1;再由g(x)求出y =g(x)的定义域I2,I1与I2的交集即为复合函数的定义域;5、分段函数的定义域就是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(三)求函数的值域1、函数的值域即为函数值的集合,一般由定义域与对应法则确定,常用集合或区间来表示;2、在函数f:A→B 中,集合B 未必就就是该函数的值域,若记该函数的值域为C,则C 就是B 的子集;若C =B,那么该函数作为映射我们称为“满射”;3、分段函数的值域就是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。

函数解析式的七种求法

函数解析式的七种求法

函数解析式的七种求法一、通过给定的输入和输出求解析式。

这是最简单直接的方法,当给定了函数的输入和输出时,可以利用这些已知信息求解析式。

例如,如果一个函数在输入为1时输出为3,在输入为2时输出为5,我们可以直接写出函数解析式为f(x)=2x+1二、基于已知函数的变换求解析式。

对于已知的一些基本函数,例如线性函数、多项式函数、指数函数、对数函数等,我们可以通过对它们进行变换得到其他函数的解析式。

例如,如果已知函数f(x)=x^2,我们可以通过对f(x)进行变换得到f(x)=(x-1)^2+1三、利用函数的性质和特点求解析式。

对于一些特殊函数,例如奇函数、偶函数、周期函数等,可以利用它们的性质和特点来求解析式。

例如,如果一个函数是奇函数,那么它的解析式中只包含奇次幂项,可以利用这个特点来求解析式。

四、利用已知函数的级数展开求解析式。

对于一些复杂的函数,可以利用已知函数的级数展开进行逼近,从而得到函数的解析式。

例如,可以利用泰勒级数展开求得函数的解析式,只需要计算到足够高的阶数即可。

五、利用已知函数的导数和积分求解析式。

对于一些函数,可以通过对它们的导数和积分进行运算得到其他函数的解析式。

例如,如果已知一个函数的导数或积分,可以通过对这个导数或积分进行逆运算来求得函数的解析式。

六、基于已知函数的函数逼近求解析式。

对于一些复杂的函数,可以利用一些已知的简单函数进行逼近,从而得到函数的解析式。

例如,可以利用多项式函数对一个非多项式函数进行逼近,从而得到函数的解析式。

七、利用差分方程或微分方程求解析式。

对于一些具有差分方程或微分方程性质的函数,可以通过求解这些方程来得到函数的解析式。

例如,可以利用差分方程或微分方程求解线性递推函数的解析式。

以上是七种常用的求解函数解析式的方法。

不同方法适用于不同情况,根据具体的问题和已知信息选择合适的方法可以更高效地求解函数的解析式。

(完整版)函数解析式的七种求法

(完整版)函数解析式的七种求法

函数解析式的七种求法一、待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1设f (x )是一次函数,且f [f (x )]=4x +3,求f (x )解:设f (x )=ax +b (a ≠0),则f [f (x )]=af (x )+b =a (ax +b )+b =a 2x +ab +b⎧a =2⎧a 2=4⎧a =-2∴⎨∴⎨ 或 ⎨b =1b =3ab +b =3⎩⎩⎩∴f (x )=2x +1 或 f (x )=-2x +3二、配凑法:已知复合函数f [g (x )]的表达式,求f (x )的解析式,f [g (x )]的表达式容易配成g (x )的运算形式时,常用配凑法。

但要注意所求函数f (x )的定义域不是原复合函数的定义域,而是g (x )的值域。

例2已知f (x +11)=x 2+2(x >0),求f (x )的解析式x x 解:Θf (x +111)=(x +)2-2,x +≥2x x x∴f (x )=x 2-2(x ≥2)三、换元法:已知复合函数f [g (x )]的表达式时,还可以用换元法求f (x )的解析式。

与配凑法一样,要注意所换元的定义域的变化。

例3已知f (x +1)=x +2x ,求f (x +1)解:令t =x +1,则t ≥1,x =(t -1)2Q f (x +1)=x +2x∴f (t )=(t -1)2+2(t -1)=t 2-1,∴f (x )=x 2-1(x ≥1)∴f (x +1)=(x +1)2-1=x 2+2x (x ≥0)四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

例4已知:函数y =x +x 与y =g (x )的图象关于点(-2,3)对称,求g (x )的解析式2解:设M (x ,y )为y =g (x )上任一点,且M '(x ',y ')为M (x ,y )关于点(-2,3)的对称点⎧x '+x ⎪2=-2⎧x '=-x -4则⎨,解得:⎨,y '+y 'y =6-y ⎩⎪=3⎩2Θ点M '(x ',y ')在y =g (x )上∴y '=x '2+x '把⎨⎧x '=-x -4代入得:'⎩y =6-y6-y =(-x -4)2+(-x -4)整理得y =-x -7x -62∴g (x )=-x 2-7x -6五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

求函数解析式的六种常用方法

求函数解析式的六种常用方法

求函数解析式的六种常用方法函数解析式是用数学语言描述数学函数的一种方法。

它可以方便地表示函数的定义域、值域、性质等,并且能够通过函数图像和方程表达式等形式直观地展现函数的特征。

下面将介绍六种常用的方法来求函数的解析式。

1.常函数法:常函数法是求解常函数的一种简单方法。

常函数表示所有的输入值都对应着相同的输出值。

常函数的解析式通常形如"f(x)=c",其中c是常数。

常函数的定义域和值域都是全体实数值。

例如,函数f(x)=3就是一个常函数,它的输出始终为32.幂函数法:幂函数是一种具有形如y=x^a的解析式的函数。

幂函数法是通过给定了函数的一些特定点来推导出整个函数的解析式。

常见的幂函数包括正幂函数、负幂函数和倒数函数。

例如,给定函数f(x)通过点(1,2)和(2,4),我们可以通过观察得出f(x)=2^x。

3.分段函数法:分段函数是一种具有不同解析式在不同区间上的函数。

分段函数法是通过将函数的定义域按照不同的区间划分,然后在每个区间上分别确定函数的解析式来得到函数的解析式。

例如,函数f(x)=,x,在x<0时取值为-x,在x≥0时取值为x,这就是一个分段函数。

4.复合函数法:复合函数是通过使用一个函数的输出结果作为另一个函数的输入来得到的函数。

复合函数法是通过将两个或多个函数的定义域和值域相互组合,然后确定新函数的解析式来求解函数的解析式。

例如,给定函数f(x)=x+1和g(x)=2x,我们可以求得f(g(x))=2x+15.反函数法:反函数是指一个函数的自变量和因变量对换后得到的新函数。

反函数法是通过将一个函数的自变量和因变量交换位置,然后求解得到函数的解析式。

例如,给定函数f(x)=2x,我们通过交换x和y的位置,可以求得反函数f^(-1)(x)=x/26.曲线拟合法:曲线拟合法是通过已知函数的一些点来找到一个与这些点最接近的函数的解析式。

它可以应用于实验数据分析和模型建立等领域。

函数解析式的七种求法

函数解析式的七种求法

一)求函数的解析式1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y =f (x ),不能把它写成f (x ,y )=0;2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形;3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y 。

(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f [g (x )]的表达式,求f (x )的表达式时可以令t =g (x ),以换元法解之;(4)构造方程组法:若给出f (x )和f (-x ),或f (x )和f (1/x )的一个方程,则可以x 代换-x (或1/x ),构造出另一个方程,解此方程组,消去f (-x )(或f (1/x ))即可求出f (x )的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y 的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。

(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y =f [g (x )]的定义域的求解,应先由y =f (u )求出u 的范围,即g (x )的范围,再从中解出x 的范围I1;再由g (x )求出y =g (x )的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(三)求函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、在函数f :A→B 中,集合B 未必就是该函数的值域,若记该函数的值域为C ,则C 是B 的子集;若C =B ,那么该函数作为映射我们称为“满射”;3、分段函数的值域是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。

求函数解析式的四种常用方法

求函数解析式的四种常用方法

求函数解析式的四种常用方法求函数解析式的四种常用方法: 1、设法化成一元一次方程,再通过检验判断一元一次方程的解的存在性;2、利用函数图像和单调性求函数解析式; 3、利用函数奇偶性来求解;4、利用“韦达定理”来求解。

2、根据图像的变化,利用“特殊值”求解。

例题:求抛物线的方程。

(1)已知抛物线y=mx+c的图象过点(-5, 5),且过原点(0, 0)。

(2)求y的最大值和最小值(3)若将抛物线y=mx+c上的点代入y=mx+c=x+m中,可得y的值为7,求x的取值范围。

例题:求圆的方程(1)已知直线y=4/x+6/y的图象与直线y=-3/2在坐标平面内的截距相等,且图象过点(0, 3)。

(2)求y的最大值。

(3)若将y=4/x+6/y上的点代入y=-3/2-x-8/3中,可得y的值为9,求x的取值范围。

3、利用奇偶性求解。

例题:已知函数y=5/6+12/13,当x=1时, y=-2/13;当x=5/6时, y=-7/23;当x=9时, y=-11/22。

试求y的解析式,并说明奇偶性。

4、利用“韦达定理”来求解。

例题:已知f(x) = x**2-12x+30.(1)若f(x) =0,求x的值; (2)已知f(x)的图象与y=8/5有两个不同的交点,且图象在y轴的第一、二象限,试求x的取值范围。

解析:(1)由f(x) =x**2-12x+30,即f(x)的图象为双曲线。

可设y=8/5;解得-6/5<y<-3/5,即-4/5≤y≤-3/5,由题意得-6/5≤y≤-3/5;解得-6/5≤y≤-3/5,则0<y≤-3/5;(2)将f(x)的图象移到(0, -1)之间,得到双曲线y=-1/4-4/3;在(-1, 1)内画出y=-1/4-4/3的图象,从而得到函数y=-1/4+4/3的图象;解得x≤1/3。

七种求法求函数解析式

七种求法求函数解析式

七种求法求函数解析式七种求函数解析式的方法一、待定系数法:已知函数的解析式时,可以使用待定系数法构造函数。

例如,设$f(x)$是一次函数,且$f[f(x)]=4x+3$,求$f(x)$的解析式。

设$f(x)=ax+b(a\neq0)$,则$f[f(x)]=af(x)+b=a(ax+b)+b=a^2x+ab+b$。

根据题意,有$a^2=4$,解得$a=2$或$a=-2$。

再代入$f[f(x)]=4x+3$中,解得$b=1$或$b=3$。

因此,$f(x)=2x+1$或$f(x)=-2x+3$。

二、配凑法:已知复合函数$f[g(x)]$的表达式,求$f(x)$的解析式,可以使用配凑法。

但需要注意所求函数$f(x)$的定义域不是原复合函数的定义域,而是$g(x)$的值域。

例如,已知$f(x+1)=(x+1)^2-2$,求$f(x)$的解析式。

将$x$换成$x-1$,得$f(x)=(x-1)^2-2(x\geq2)$。

三、换元法:已知复合函数$f[g(x)]$的表达式时,可以使用换元法求$f(x)$的解析式。

与配凑法类似,需要注意所换元的定义域的变化。

例如,已知$f(x+1)=x+2x$,求$f(x)$的解析式。

令$t=x+1$,则$t\geq1$,$x=(t-1)$,$f(t)=(t-1)^2+2(t-1)=t^2-1$,因此$f(x)=x^2-1(x\geq1)$。

四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般使用代入法。

例如,已知函数$y=x+\sqrt{x}$与$y=g(x)$的图像关于点$(-2,3)$对称,求$g(x)$的解析式。

设$M(x,y)$为$y=g(x)$上任一点,且$M'(x',y')$为$M(x,y)$关于点$(-2,3)$的对称点,则$x'+x=-4$,$y'+y=6$,解得$y=-x-7+\sqrt{x+4}$,因此$g(x)=-x^2-7x-6$。

求函数解析式的四种常用方法

求函数解析式的四种常用方法

(4)定义在(-1,1)内的函数 f(x)满足 2f(x)-f(-x)=lg(x+1), 求函数 f(x)的解析式.
方程组法
[练一练]
1.设 g(x)=2x+3,g(x+2)=f(x),则 f(x)等于( A,-2x+1 B,2x-1 C,2x-3 D,2x+7 答案:D
2
2.若 f(x)=x +bx+c,且 f(1)=0,f(Biblioteka )=0, f(x)=________.
求函数解析式的四种常用方法
求函数解析式的四种常用方法
(1) 配凑法:由已知条件 f(g(x))=F(x), 可将 F(x)改写成关于 g(x)的表达式, 然后以 x 替代 g(x), 便得 f(x)的表达式;
变式 题
换元法
拼凑法
求函数解析式的四种常用方法
(2)待定系数法:若已知函数的类型 (如一次函数、 二次函数)可用待定系数法;
求函数解析式的四种常用方法
(3)换元法: 已知复合函数 f(g(x))的解析式,
可用换元法, 此时要注意新元的取值范围;
求函数解析式的四种常用方法
(4)解方程组法: 已知关于 f(x)与
1 fx或
f(-
x)的表达式,可根据已知条件再构造出另 外一个等式组成方程组,通过解方程求出 f(x).
答案:x -4x+3
2
3.设 y=f(x)是二次函数,方程 f(x)=0 有两个相等实根, 且 f′(x)=2x+2,求 f(x)的解析式.
解:设 f(x)=ax2+bx+c(a≠0), 则 f′(x)=2ax+b=2x+2, ∴a=1,b=2,f(x)=x +2x+c. 又∵方程 f(x)=0 有两个相等实根, ∴Δ=4-4c=0,c=1,故 f(x)=x2+2x+1.

求函数解析式的六种常用方法精编版

求函数解析式的六种常用方法精编版

求函数解析式的六种常用方法精编版一、直接构造法直接构造法适用于已知函数的性质和条件的情况下,可通过组合各种基本函数形式来构造出所需的函数形式。

例如,已知函数在区间[0,1]上的表达式为f(x)=x^2,并且我们想要构造一个在同一区间上的连续函数,且在x=0和x=1处与f(x)相等。

我们可以构造出一个函数解析式为:g(x)=(1-x)f(x)+x(x-1)f(1)这里,g(x)在[0,1]上连续,并且在x=0和x=1处分别等于f(x)。

二、数列法数列法适用于问题可以抽象为数列的情况下,可通过观察数列特点找到函数的解析式。

例如,已知数列{an}的前n项和为Sn = n(n + 1),我们希望求解出数列{an}的通项公式。

我们可以观察得到,Sn - Sn-1 = n,即{an}是一个等差数列,公差为1、因此,{an}的通项公式为an = an-1 + 1三、变量代换法变量代换法适用于已知函数的变量可以通过代换转化为已知函数形式的情况下,可通过变量代换求解出函数的解析式。

例如,已知函数的解析式为f(t) = sin(t),现在我们想要求解出函数的解析式f(x)。

我们可以通过将变量t用x表示,并使用三角函数的关系sin(t) = sin(x)来代换,得到f(x) = sin(x)。

四、变量插值法变量插值法适用于已知函数在离散点上的取值情况下,可通过连接各个离散点并找到插值函数的形式来求解函数的解析式。

例如,已知函数在离散点(0,1),(1,2),(2,3)上的取值,我们可以通过连接这三个点得到插值函数,形式为f(x)=x+1五、递推法递推法适用于问题可以通过递推关系来求解的情况下,可通过观察得到递推关系,从而求解出函数的解析式。

例如,已知递推关系为an = an-1 + n,其中a0 = 1、我们可以通过观察到an - an-1 = n,得到an = 1 + 1 + 2 + ... + n = n(n + 1)/2六、级数展开法级数展开法适用于问题可以通过级数展开来求解的情况下,可通过展开级数并进行合并化简,从而求解出函数的解析式。

求函数解析式的6种方法

求函数解析式的6种方法

求函数解析式的6种方法函数解析式是描述函数行为的一种数学表示方法,可以通过不同的方法得到。

以下是六种常见的方法:1.点斜式:如果已知函数通过一点(x1,y1)且斜率为m,则可以使用点斜式来表示函数解析式。

点斜式的一般形式为y-y1=m(x-x1)。

例如,如果已知函数通过点(2,3)且斜率为4,则函数解析式可以表示为y-3=4(x-2)。

2.两点式:如果已知函数通过两个点(x1,y1)和(x2,y2),则可以使用两点式来表示函数解析式。

两点式的一般形式为(y-y1)/(y2-y1)=(x-x1)/(x2-x1)。

例如,如果已知函数通过点(1,2)和(3,4),则函数解析式可以表示为(y-2)/(4-2)=(x-1)/(3-1)。

3. 斜截式:如果已知函数通过y轴截距b且斜率为m,则可以使用斜截式来表示函数解析式。

斜截式的一般形式为y = mx + b。

例如,如果已知函数通过y轴截距为2且斜率为3,则函数解析式可以表示为y =3x + 24.一般式:一般式是一种通用的函数解析式表示方法,用Ax+By+C=0的形式表示。

其中A、B、C为常数。

一般式的选择通常取决于特定问题或需要。

例如,已知函数为3x+2y-6=0,则可以将其表示为一般式。

5.法线式:如果已知函数通过一点(x1,y1),则可以使用法线式来表示函数解析式。

法线式与点斜式类似,但斜率的倒数与点斜式斜率相反。

法线式的一般形式为y-y1=(-1/m)(x-x1),其中m为函数的斜率。

例如,如果已知函数通过点(2,3)且斜率为4,则函数解析式可以表示为y-3=(-1/4)(x-2)。

6.函数图形:通过观察函数的图形,可以得到函数的一些特征和规律,从而推断出函数解析式。

例如,通过观察函数图形的对称性、零点、极值点等,可以得到函数解析式的一些重要信息。

这种方法通常适用于简单的函数图形,对于复杂的函数图形可能需要借助计算机软件进行分析。

这些方法不是互斥的,可以根据具体问题和已知条件选择合适的方法来得到函数解析式。

函数解析式的七种求法(讲解)

函数解析式的七种求法(讲解)

函 【2 】数解析式的七种求法一.待定系数法:在已知函数解析式的结构时,可用待定系数法.例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f解:设b ax x f +=)()0(≠a ,则bab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 二.配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式轻易配成()g x 的运算情势时,常用配凑法.但要留意所求函数()f x 的界说域不是原复合函数的界说域,而是()g x 的值域.例2已知221)1(x x x x f +=+)0(>x ,求()f x 的解析式. 解:2)1()1(2-+=+x x x x f , 21≥+x x2)(2-=∴x x f )2(≥x三.换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式.与配凑法一样,要留意所换元的界说域的变化. 例3已知x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2)1(-=t xx x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴)0(≥x四.代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法. 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式.解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点 则⎪⎩⎪⎨⎧=+'-=+'3222y y x x ,解得:⎩⎨⎧-='--='y y x x 64,点),(y x M '''在)(x g y =上x x y '+'='∴2把⎩⎨⎧-='--='y y x x 64代入得:)4()4(62--+--=-x x y整顿得672---=x x y∴67)(2---=x x x g五.结构方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法结构方程组,经由过程解方程组求得函数解析式.例5设,)1(2)()(x x f x f x f =-满足求)(x f解 x x f x f =-)1(2)(①显然,0≠x 将x 换成x 1,得:x x f x f 1)(2)1(=-②解①②联立的方程组,得:x x x f 323)(--=例6设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式 解 )(x f 为偶函数,)(x g 为奇函数,)()(),()(x g x g x f x f -=-=-∴又11)()(-=+x x g x f ① ,用x -调换x 得:11)()(+-=-+-x x g x f 即11)()(+-=-x x g x f ②解①②联立的方程组,得11)(2-=x x f , x x x g -=21)(六.赋值法:当题中所给变量较多,且含有“随意率性”等前提时,往往可以对具有“随意率性性”的变量进行赋值,使问题具体化.简略化,从而求得解析式.例7已知:1)0(=f ,对于随意率性实数x .y,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f 解对于随意率性实数x .y,等式)12()()(+--=-y x y x f y x f 恒成立,不妨令0x =,则有1)1(1)1()0()(2+-=-+=+--=-y y y y y y f y f 再令 x y =- 得函数解析式为:1)(2++=x x x f 七.递推法:若题中所给前提含有某种递进关系,则可以递推得出系列关系式,然后经由过程迭加.迭乘或者迭代等运算求得函数解析式.例8设)(x f 是界说在+N 上的函数,知足1)1(=f ,对随意率性的天然数b a ,都有ab b a f b f a f -+=+)()()(,求)(x f解 +∈-+=+N b a ab b a f b f a f ,)()()(,,∴不妨令1,==b x a ,得:x x f f x f -+=+)1()1()(,又1)()1(,1)1(+=-+=x x f x f f 故①分离令①式中的1,21x n =- 得:(2)(1)2,(3)(2)3,()(1),f f f f f n f n n -=-=--=将上述各式相加得:n f n f ++=-32)1()(,2)1(321)(+=+++=∴n n n n f+∈+=∴N x x x x f ,2121)(2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅议函数解析式的几种求法
一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f
解:设b ax x f +=)( )0(≠a ,则
b ab x a b b ax a b x af x f f ++=++=+=2)()()]([
∴⎩⎨⎧=+=342b ab a ∴⎩
⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或
二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。

但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。

例2 已知221)1(x
x x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x x x x f , 21≥+x
x 2)(2-=∴x x f )2(≥x
三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

与配凑法一样,要注意所换元的定义域的变化。

例3 已知x x x f 2)1(+=+,求)1(+x f
解:令1+=x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+
∴,1)1(2)1()(22-=-+-=t t t t f
1)(2-=∴x x f )1(≥x
x x x x f 21)1()1(22+=-+=+∴ )0(≥x
四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

例4已知:函数)(2
x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式
解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点
则⎪⎩⎪⎨⎧=+'-=+'32
22y y x x ,解得:⎩⎨⎧-='--='y y x x 64 , 点),(y x M '''在)(x g y =上
x x y '+'='∴2
把⎩⎨⎧-='--='y
y x x 64代入得: )4()4(62--+--=-x x y
整理得672
---=x x y ∴67)(2---=x x x g
五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

例5 设,)1
(2)()(x x
f x f x f =-满足求)(x f 解 x x
f x f =-)1
(2)( ① 显然,0≠x 将x 换成x
1,得: x
x f x f 1)(2)1(=- ② 解① ②联立的方程组,得:
x
x x f 323)(--= 例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=
+x x g x f 试求)()(x g x f 和的解析式 解 )(x f 为偶函数,)(x g 为奇函数,
)()(),()(x g x g x f x f -=-=-∴
又1
1)()(-=+x x g x f ① ,
用x -替换x 得:1
1)()(+-=-+-x x g x f 即1
1)()(+-=-x x g x f ② 解① ②联立的方程组,得
11)(2-=x x f , x
x x g -=21)( 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。

例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f
解 对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,
不妨令0x =,则有1)1(1)1()0()(2+-=-+=+--=-y y y y y y f y f
再令 x y =- 得函数解析式为:1)(2++=x x x f
七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代
等运算求得函数解析式。

例8 设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f
解 +∈-+=+N b a ab b a f b f a f ,)()()(,,
∴不妨令1,==b x a ,得:x x f f x f -+=+)1()1()(,
又1)()1(,1)1(+=-+=x x f x f f 故 ①
分别令①式中的1,21x n =- 得:
(2)(1)2,(3)(2)3,
()(1),f f f f f n f n n -=-=--=
将上述各式相加得:n f n f ++=-32)1()(,
2
)1(321)(+=+++=∴n n n n f +∈+=∴N x x x x f ,2121)(2。

相关文档
最新文档