数学规划模型
第四章 数学规划模型 数学建模(姜启源第四版)ppt课件
12小时
3公斤A1
4公斤A2
获利24元/公斤
获利16元/公斤
8小时 每天 50桶牛奶 时间480小时 至多加工100公斤A1 x1桶牛奶生产A1 x2桶牛奶生产A2
决策变量
目标函数
获利 24×3x1 获利 16×4 x2 每天获利 Max z 72x1 64x2 原料供应
x1 x2 50
基本模型
变量
目标 函数 约束 条件
x5 kg A1加工B1, x6 kg A2加工B2 利润
Max z 24x1 16x2 44x3 32x4 3x5 3x6
x1 x5 x 2 x6 加工能力 50 3 4 附加约束 4( x1 x5 ) 2( x2 x6 )
4公斤A2
获利16元/公斤
每天: 50桶牛奶
时间480小时 至多加工100公斤A1
制订生产计划,使每天获利最大 • 35元可买到1桶牛奶,买吗?若买,每天最多买多少? • 可聘用临时工人,付出的工资最多是每小时几元? • A1的获利增加到 30元/公斤,应否改变生产计划?
基本 1桶 模型 牛奶 或
线性规划模型
A1,A2每公斤的获利是与各自 产量无关的常数
每桶牛奶加工A1,A2的数量, 时 间是与各自产量无关的常数 A1,A2每公斤的获利是与相互 产量无关的常数 每桶牛奶加工A1,A2的数量,时 间是与相互产量无关的常数 加工A1,A2的牛奶桶数是实数
可 加 性
连续性
模型求解
x1 x2 50
20桶牛奶生产A1, 30桶生产A2,利润3360元。
结果解释
Global optimal solution found. Objective value: 3360.000 Total solver iterations: 2 Variable Value Reduced Cost X1 20.00000 0.000000 X2 30.00000 0.000000 Row Slack or Surplus Dual Price 1 3360.000 1.000000 原料无剩余 MILK 0.000000 48.00000 三 TIME 0.000000 2.000000 时间无剩余 种 CPCT 40.00000 0.000000 加工能力剩余40
线性规划的数学模型
线性规划的数学模型引言线性规划(Linear Programming, LP)是数学规划的一种方法,用于解决一类特殊的优化问题。
线性规划的数学模型可以表示为一个线性的目标函数和一系列线性约束条件。
本文将介绍线性规划的数学模型及其应用。
数学模型线性规划的数学模型可以用以下形式表示:最大化:$$ \\max_{x_1,x_2,...,x_n} Z=c_1x_1+c_2x_2+...+c_nx_n $$约束条件:$$ \\begin{align*} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n&\\leq b_1 \\\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n &\\leq b_2 \\\\ &\\vdots \\\\ a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n&\\leq b_m \\\\ x_1,x_2,...,x_n &\\geq 0 \\end{align*} $$其中,Z为目标函数的值,Z1,Z2,...,Z Z为目标函数的系数,Z1,Z2,...,Z Z为决策变量,Z ZZ为约束条件的系数,Z1,Z2,...,Z Z为约束条件的右侧常数。
线性规划的应用线性规划在实际问题中有广泛的应用,其应用领域包括但不限于以下几个方面:生产计划线性规划在生产计划中的应用是最为常见的。
通过建立适当的数学模型,可以最大化生产线的产能,同时满足客户需求和资源限制。
例如,一个工厂需要决定每个月生产的产品数量,以最大化利润。
这个问题可以通过线性规划来解决。
运输问题线性规划在运输问题中的应用也非常广泛。
运输问题涉及到将特定产品从供应地点运送到需求地点,以满足需求并尽量降低运输成本。
线性规划可以用来决定每个供应地点到每个需求地点的运输量,以最小化总运输成本。
资源分配在资源有限的情况下,线性规划可以用于优化资源的分配。
常见数学建模模型
常见数学建模模型一、线性规划模型线性规划是一种常用的数学建模方法,它通过建立线性函数和约束条件,寻找最优解。
线性规划可以应用于各种实际问题,如生产调度、资源分配、运输问题等。
通过确定决策变量、目标函数和约束条件,可以建立数学模型,并利用线性规划算法求解最优解。
二、整数规划模型整数规划是线性规划的一种扩展形式,它要求决策变量为整数。
整数规划模型常用于一些离散决策问题,如旅行商问题、装箱问题等。
通过引入整数变量和相应的约束条件,可以将问题转化为整数规划模型,并利用整数规划算法求解最优解。
三、非线性规划模型非线性规划是一类目标函数或约束条件中存在非线性项的优化问题。
非线性规划模型常见于工程设计、经济优化等领域。
通过建立非线性函数和约束条件,可以将问题转化为非线性规划模型,并利用非线性规划算法求解最优解。
四、动态规划模型动态规划是一种通过将问题分解为子问题并以递归方式求解的数学建模方法。
动态规划常用于求解具有最优子结构性质的问题,如背包问题、最短路径问题等。
通过定义状态变量、状态转移方程和边界条件,可以建立动态规划模型,并利用动态规划算法求解最优解。
五、排队论模型排队论是一种研究队列系统的数学理论,可以用于描述和优化各种排队系统,如交通流、生产线、客户服务等。
排队论模型通常包括到达过程、服务过程、队列长度等要素,并通过概率和统计方法分析系统性能,如平均等待时间、系统利用率等。
六、图论模型图论是一种研究图结构和图算法的数学理论,可以用于描述和优化各种实际问题,如网络优化、路径规划、社交网络等。
图论模型通过定义节点、边和权重,以及相应的约束条件,可以建立图论模型,并利用图算法求解最优解。
七、随机模型随机模型是一种考虑不确定性因素的数学建模方法,常用于风险评估、金融建模等领域。
随机模型通过引入随机变量和概率分布,描述不确定性因素,并利用概率和统计方法分析系统行为和性能。
八、模糊模型模糊模型是一种用于处理模糊信息的数学建模方法,常用于模糊推理、模糊控制等领域。
数学规划模型
数学规划模型
数学规划模型是一种数学建模方法,它使用数学方法来解决决策问题。
数学规划模型可以用来优化资源的利用,最大化或最小化某个目标函数。
首先,数学规划模型需要明确目标函数和约束条件。
目标函数是我们希望优化的指标,约束条件则是限制我们优化的条件。
例如,如果我们要找到一种最佳的生产计划,那么目标函数可以是产量的最大化,约束条件可以是原料的限制、生产设备的限制等。
接下来,数学规划模型需要定义决策变量。
决策变量是我们可以调整的变量,通过调整决策变量的值,我们可以达到最优解。
例如,对于生产计划问题,决策变量可以是每种产品的生产数量。
然后,将目标函数和约束条件用数学公式表示出来。
例如,如果我们的目标是最大化产量,那么目标函数可以表示为一个关于决策变量的函数。
同时,约束条件也可以用一组不等式来表示。
接下来,我们需要使用数学方法来求解这个数学规划模型。
常用的数学方法包括线性规划、整数规划、非线性规划等。
具体的求解方法取决于模型的特点和目标函数的形式。
最后,我们需要把数学模型的结果解释给决策者,帮助他们做出更明智的决策。
这个过程通常包括分析和解释模型的结果,
以及提供关于如何操作和调整决策变量的建议。
总结来说,数学规划模型是一种解决决策问题的数学方法。
通过明确目标函数和约束条件,定义决策变量,使用数学方法求解,并将结果解释给决策者,我们可以通过数学规划模型得到最优的决策方案。
这种方法在供应链管理、生产计划、资源分配等领域有着广泛的应用。
第一节 目标规划的数学模型
kl , kl 为分别赋予第l个目 式中:Pk为第k级优先因子,k=1,…,K; 标约束的正负偏差变量的权系数;gl为目标的预期目标值, l=1,…L。
建立目标规划数学模型的步骤
(1)按照实际问题所提出的各个目标与条件,列出目标的 优先级。 (2)写出绝对约束和目标约束 (3)给各个目标赋予相应的优先因子Pk,对同一优先级中 各偏差变量,按不同的重要程度赋予不同的权系数。 (4)对要求恰好达到目标值的目标,则取正负偏差变量之 和,即 min(d d ) ;对要求超过目标值的,只取负偏差变量, min d 即 ;对要求不超过目标值的,只取正偏差变量, 即 min d ,构造一个极小化的关于偏差变量的目标函数。
又包含偏差变量;
6. 目标规划模型中的优先级 pi 较之 pi 1的重
要性一般为数倍至数十倍之间; 7. 目标规划模型中的目标函数按照问题的性 质要求可表示为求min或max; 8. 下列表达式能否表达目标规划模型中的 目标函数:
(1)max z p1d1 p2 d 2 (2)min z p1d1 p2 d 2 (3)min z p1d1 p2 ( d 2 d 2 )
6.1.2关于目标规划的几个概念
1.偏差变量
用d+表示超过目标值的差值,称为正偏差变量;
d-表示未达到目标值的差值,称为负偏差变量.
第一目标:尽量完成本周期的利润指标24000元 如果实际利润是23500元,则 d 0, d 500 如果实际利润是24080元,则 d 80, d 0
min d1 300 x1 120 x2 d1 d1 24000 x d d 60 , x d d 100 min( d d 2 2 3 3 1 2 3 ) 2 20 x 10 x d d 1400 4 min d 1 2 4 4
数学建模 四大模型总结
四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
数学规划模型——整数规划问题
数学规划模型——整数规划问题title: 数学规划模型——整数规划问题date: 2020-02-27 00:37:35categories: 数学建模tags: [MATLAB, 数学规划模型]整数规划整数规划:线性整数规划 - Matlab可进⾏求解(线性的意思在线性规划的基础上 , 加⼊决策变量取整数的条件)⾮线性整数规划→⽆特定算法, 只能⽤近似算法 , 如蒙特卡罗模拟、智能算法 ( 后续会讲到)特例: 特殊的整数规划 , Matlab中也只能求解线性01规划, 对于⾮线性 0-1规划也只能近似求解 。
(数模⽐赛中常出现)Matlab整数规划求解线性整数规划求解[x ,fval] = linprog [ c, A, b, Aeq, beq, lb, ub, X0] -> 线性规划的函数[x ,fval] = intlinprog [ c, intconA, b, Aeq, beq, lb, ub]→ 线性整数规划的求解注 :intlinpng 不能指定初始值 ;加⼊了 inton 参数可以指定哪些决策变量是整数。
例如决策变量有三个 : x1,x2,x3 ; 若x1和x3,是整数 , 则 intcon= [1 , 3] 。
线性 0-1规划求解仍然使⽤intlinprog 函数 , 只不过在 lb和ub上作⽂章 。
例如决策变量有三个 : x1,x2,x3 ; 若x1和x3是0-1变量,x2不限制, 则 intcon= [1 , 3] ,lb=[0 -inf 0]',ub=[1,+inf,1]。
⼩例题%% 线性整数规划问题%% 例1c=[-20,-10]';intcon=[1,2]; % x1和x2限定为整数A=[5,4;2,5];b=[24;13];lb=zeros(2,1);[x,fval]=intlinprog(c,intcon,A,b,[],[],lb)fval = -fval%% 例2c=[18,23,5]';intcon=3; % x3限定为整数A=[107,500,0;72,121,65;-107,-500,0;-72,-121,-65];b=[50000;2250;-500;-2000];lb=zeros(3,1);[x,fval]=intlinprog(c,intcon,A,b,[],[],lb)%% 例3c=[-3;-2;-1]; intcon=3; % x3限定为整数A=ones(1,3); b=7;Aeq=[4 2 1]; beq=12;lb=zeros(3,1); ub=[+inf;+inf;1]; %x(3)为0-1变量[x,fval]=intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)整数规划的典型例题背包问题%% 背包问题(货车运送货物的问题)c = -[540 200 180 350 60 150 280 450 320 120]; % ⽬标函数的系数矩阵(最⼤化问题记得加负号)intcon=[1:10]; % 整数变量的位置(⼀共10个决策变量,均为0-1整数变量)A = [6 3 4 5 1 2 3 5 4 2]; b = 30; % 线性不等式约束的系数矩阵和常数项向量(物品的重量不能超过30)Aeq = []; beq =[]; % 不存在线性等式约束lb = zeros(10,1); % 约束变量的范围下限ub = ones(10,1); % 约束变量的范围上限%最后调⽤intlinprog()函数[x,fval]=intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)fval = -fval指派问题%% 指派问题(选择队员去进⾏游泳接⼒⽐赛)clear;clcc = [66.8 75.6 87 58.6 57.2 66 66.4 53 78 67.8 84.6 59.4 70 74.2 69.6 57.2 67.4 71 83.8 62.4]'; % ⽬标函数的系数矩阵(先列后⾏的写法)intcon = [1:20]; % 整数变量的位置(⼀共20个决策变量,均为0-1整数变量)% 线性不等式约束的系数矩阵和常数项向量(每个⼈只能⼊选四种泳姿之⼀,⼀共五个约束)A = [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1];% A = zeros(5,20);% for i = 1:5% A(i, (4*i-3): 4*i) = 1;% endb = [1;1;1;1;1];% 线性等式约束的系数矩阵和常数项向量(每种泳姿有且仅有⼀⼈参加,⼀共四个约束)Aeq = [1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0;0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0;0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0;0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1];% Aeq = [eye(4),eye(4),eye(4),eye(4),eye(4)]; % 或者写成 repmat(eye(4),1,5)% Aeq=zeros(4,20);% for i = 1:4% for j =1:20% if mod(j,4)==i% Aeq(i,j)=1;% end% if i==4% if mod(j,4)==0% Aeq(i,j)=1;% end% end% end% endbeq = [1;1;1;1];lb = zeros(20,1); % 约束变量的范围下限ub = ones(20,1); % 约束变量的范围上限%最后调⽤intlinprog()函数[x,fval] = intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)% reshape(x,4,5)'% 0 0 0 1 甲⾃由泳% 1 0 0 0 ⼄蝶泳% 0 1 0 0 丙仰泳% 0 0 1 0 丁蛙泳% 0 0 0 0 戊不参加钢管切割问题%% 钢管切割问题%% (1)枚举法找出同⼀个原材料上所有的切割⽅法for i = 0: 2 % 2.9m长的圆钢的数量for j = 0: 3 % 2.1m长的圆钢的数量for k = 0:6 % 1m长的圆钢的数量if 2.9*i+2.1*j+1*k >= 6 & 2.9*i+2.1*j+1*k <= 6.9disp([i, j, k])endendendend%% (2) 线性整数规划问题的求解c = ones(7,1); % ⽬标函数的系数矩阵intcon=[1:7]; % 整数变量的位置(⼀共7个决策变量,均为整数变量)A = -[1 2 0 0 0 0 1;0 0 3 2 1 0 1;4 1 0 2 4 6 1]; % 线性不等式约束的系数矩阵b = -[100 100 100]'; % 线性不等式约束的常数项向量lb = zeros(7,1); % 约束变量的范围下限[x,fval]=intlinprog(c,intcon,A,b,[],[],lb)。
数学建模(线性规划).
1)模型建立。
①决策变量。决策变量为每年年初向四个项目的投资 额,设第i(i=1,2,3,4,5)年年初向A,B,C,D(j=1,2,3,4) 四个项目的投资额为xij(万元)。 ②目标函数。设第五年年末拥有的资金本利总额为z, 为了方便,将所有可能的投资列于下表1.2
表1.3 三个货舱装载货物的最大容许量和体积
前舱 重量限制/t 10
中舱 16
后舱 8
体积限制/m3
6800
8700
5300
现有四类货物供该货机本次飞行装运,其有关信息 如表1.4,最后一列指装运后获得的利润。
表1.4 四类装运货物的信息
货物1 货物2 货物3 货物4
质量/t 18 15 23 12
空间/(m3/t) 480 650 580 390
利润(元/t) 3100 3800 3500 2850
应如何安排装运,使该货机本次飞行利润最大?
1)模型假设。问题中没有对货物装运提出其他要 求,我们可做如下假设:
①每种货物可以分割到任意小; ②每种货物可以在一个或多个货舱中任意分布; ③多种货物可以混装,并保证不留空隙。 2)模型建立。 ①决策变量:用xij表示第i种货物装入第j个货舱的重 量(吨),货舱j=1,2,3分别表示前舱、中舱、后舱。
年份
1 x11
2 x21 x23 x24
3 x31 x32 x34
4 x41
5
项目
投资限额/万 元
A B C D
年年末回收的本利之和,于是, 目标函数为 ③约束条件 z 1.15x41 1.25x32 1.40 x23 1.06 x54
优化问题中的数学规划模型
优化问题中的数学规划模型优化问题中的数学规划模型1.优化问题及其一般模型优化问题是人们在工程技术、经济管理和科学研究等领域中最常遇到的问题之一。
例如:设计师要在满足强度要求等条件下选择材料的尺寸,使结构总重量最轻;公司经理要根据生产成本和市场需求确定产品价格,使所获利润最高;调度人员要在满足物质需求和装载条件下安排从各供应点到需求点的运量和路线,使运输总费用最低;投资者要选择一些股票、债券下注,使收益最大,而风险最小等等。
一般地,优化模型可以表述如下:minz?f(x)s.t.gi(x)?0,i=1,2,?,m (1.1)这是一个多元函数的条件极值问题,但是许多实际问题归结出的这种优化模型,其决策变量个数n和约束条件个数m一般较大,并且最优解往往在可行域的边界上取得,这样就不能简单地用微分法求解,数学规划就是解决这类问题的有效方法。
2.数学规划模型分类“数学规划是运筹学和管理科学中应用及其广泛的分支。
在许多情况下,应用数学规划取得的如此成功,以致它的用途已超出了运筹学的范畴,成为人们日常的规划工具。
”[H.P.Williams.数学规划模型的建立]。
数学规划包括线性规划、非线性规划、整数规划、几何规划、多目标规划等,用数学规划方法解决实际问题,就要将实际问题经过抽象、简化、假设,确定变量与参数,建立适当层次上的数学模型,并求解。
3.建立数学规划模型的步骤当你打算用数学建模的方法来处理一个优化问题的时候,首先要确定寻求的决策是什么,优化的目标是什么,决策受到那些条件的限制(如果有限制的话),然后用数学工具(变量、常数、函数等)表示它们,最后用合适的方法求解它们并对结果作出一些定性、定量的分析和必要的检验。
Step 1. 寻求决策,即回答什么?必须清楚,无歧义。
阅读完题目的第一步不是寻找答案或者解法,而是…… Step 2. 确定决策变量第一来源:Step 1的结果,用变量固定需要回答的决策第二来源:由决策导出的变量(具有派生结构)其它来源:辅助变量(联合完成更清楚的回答) Step 3. 确定优化目标用决策变量表示的利润、成本等。
整数规划模型
整数规划模型整数规划模型是一种数学模型,用于解决优化问题。
在整数规划中,决策变量必须是整数。
这种模型广泛应用于工程、科学、运筹学和管理等领域。
整数规划模型的一般形式如下:\[\text{maximize} \quad c^Tx\]\[\text{subject to} \quad Ax \leq b\]\[x_j \text{整数} , j = 1,2,...,n\]其中,c是一个n维向量,表示目标函数的系数;x是n维向量,表示决策变量;A是m×n维矩阵,表示约束条件的系数矩阵;b是一个m维向量,表示约束条件的上界。
整数规划模型的目标是找到一个满足约束条件的决策变量向量x,使得目标函数值最大或最小。
由于决策变量必须是整数,所以整数规划模型要比普通的线性规划模型更复杂。
整数规划模型可以应用于许多实际问题。
例如,一个公司要决定生产哪种产品以最大化利润,但每种产品有一定的生产限制,需要整数规划模型来确定生产量;一个配送中心要决定如何分配物流资源以最小化成本,但每个分配决策都必须是整数,需要整数规划模型来求解。
求解整数规划模型可以使用多种算法。
例如,分支定界算法通过将问题分解为一个个子问题,并通过剪枝策略来减少搜索空间,最终找到最优解;约简与延迟约束算法通过线性松弛将整数规划转化为一个松弛线性规划问题,并通过迭代加入约束条件来逼近整数解。
整数规划模型的求解过程需要注意一些问题。
首先,由于整数规划是一个NP难问题,没有通用的多项式时间算法可以解决所有情况。
其次,整数规划模型可能有多个最优解,求解算法可能只能找到其中一个最优解。
最后,整数规划模型的求解过程可能需要大量的计算资源和时间。
总之,整数规划模型是一种重要的数学模型,可以用于解决各种实际优化问题。
但由于其复杂性和求解困难,需要合理选择算法和求解策略来获得满意的结果。
数学建模-数学规划模型
将决策变量、目标函数和约束条件用数学方程表示出来,形成线性规划模型。
线性规划的求解方法
单纯形法
单纯形法是线性规划最常用的求解方法,它通过不断迭代和调整决策 变量的值,逐步逼近最优解。
对偶法
对偶法是利用线性规划的对偶性质,通过求解对偶问题来得到原问题 的最优解。
分解法
分解法是将一个复杂的线性规划问题分解为若干个子问题,分别求解 子问题,最终得到原问题的最优解。
混合法
将优先级法和权重法结合起来,既考虑目标的优先级又考虑目标的 权重,以获得更全面的优化解。
多目标规划的求解方法
约束法
通过引入约束条件,将多目标问题转化为单目标问题求解。常用的约束法包括线性约束 、非线性约束等。
分解法
将多目标问题分解为若干个单目标问题,分别求解各个单目标问题,然后综合各个单目 标问题的解得到多目标问题的最优解。
特点
多目标规划问题通常具有多个冲突的目标, 需要权衡和折衷不同目标之间的矛盾,因此 求解难度较大。多目标规划广泛应用于经济 、管理、工程等领域。
多目标规划的建模方法
优先级法
根据各个目标的重要程度,给定不同的优先级,然后结合优先级 对目标进行优化。
权重法
给定各个目标的权重,将多目标问题转化为加权单目标问题,通过 求解加权单目标问题得到多目标问题的最优解。
数学建模-数学规划 模型
目录
• 数学规划模型概述 • 线性规划模型 • 非线性规划模型 • 整数规划模型 • 多目标规划模型
01
CATALOGUE
数学规划模型概述
定义与分类
定义
数学规划是数学建模的一种方法,通 过建立数学模型描述和解决优化问题 。
分类
目标规划的数学模型概述
3
通过权重调整,可以突出或降低某个目标在整体 优化中的地位,从而在满足其他目标的同时,更 好地实现关键目标。
约束处理策略
约束处理策略是目标规划中处理各种限制条件的关键 技术,包括等式约束、不等式约束和边界约束等。
约束处理策略的目标是在满足所有约束条件的前提下 ,实现目标的优化。
常见的约束处理方法包括消元法、增广拉格朗日乘子 法和罚函数法等,这些方法可以根据问题的特性和约
金融投资中的目标规划
总结词
金融投资中的目标规划旨在实现投资组合的优化配置,以最大化收益或最小化风险为目标。
详细描述
在金融投资中,目标规划用于确定最佳的投资组合配置,以最大化投资收益或最小化投资风险。通过 设定具体的目标函数和约束条件,金融投资中的目标规划可以找到平衡收益和风险的最佳解决方案, 帮助投资者实现投资目标。
最优解是指在满足约束条件的前 提下,使目标函数达到最优值的 解。
目标规划的解法
解析法
解析法是通过分析目标函数的性 质和约束条件的特点,采用数学 分析的方法来求解最优解的方法 。
梯度法
梯度法是通过计算目标函数的梯 度,采用迭代的方法来求解最优 解的方法。
遗传算法
遗传算法是一种基于生物进化原 理的优化算法,通过模拟自然选 择和遗传机制来求解最优解的方 法。
遗传算法在处理多目标优化、约束优化和大规模优化问题时具有较好的性 能表现,广泛应用于机器学习、数据挖掘、机器人等领域。
模拟退火算法
模拟退火算法是一种基于物理退火过程的随机 搜索算法,通过模拟固体退火过程来寻找最优 解。
模拟退火算法采用一定的概率接受劣质解,以 避免陷入局部最优解,并逐步寻找全局最优解 。
生产计划中的目标规划
第三章数学规划模型
第三章数学规划模型第三章数学规划模型数学规划论起始20世纪30年代末,50年代与60年代发展成为⼀个完整的分⽀并受到数学界和社会各界的重视。
七⼋⼗年代是数学规划飞速发展时期,⽆论是从理论上还是算法⽅⾯都得到了进⼀步完善。
时⾄今⽇数学规划仍然是运筹学领域中热点研究问题。
从国内外的数学建模竞赛的试题中看,有近1/4的问题可⽤数学规划进⾏求解。
数学规划模型的⼀般表达式:),,(..),,(min(max)≤βαβαx g t s x ff 为⽬标函数,g 为约束函数,x 为可控变量,α为已知参数,β为随机参数。
本章主要介绍线性规划、整数规划、⾮线性规划的基本概念与基本原理、⽆约束问题的最优化⽅法、约束问题的最优化⽅法、动态规划。
3.1线性规划线性规划模型是运筹学的重要分⽀,是20世纪三四⼗年代初兴起的⼀门学科。
1947年美国数学家丹齐格G.B.Dantzig 及其同事提出的求解线性规划的单纯形法及有关理论具有划时代的意义。
他们的⼯作为线性规划这⼀学科的建⽴奠定了理论基础。
随着1979年前苏联数学家哈奇扬的椭球算法和1984年美籍印度数学家卡玛卡尔H.Karmarkar 算法的相继问世,线性规划的理论更加完备成熟,实⽤领域更加宽⼴。
线性规划研究的实际问题多种多样,如⽣产计划问题、物资运输问题、合理下料问题、库存问题、劳动⼒问题、最优设计问题等。
就模型⽽⾔,线形规划模型类似于⾼等数学中的条件极值问题,只是其⽬标函数和约束条件都限定为线性函数。
线性规划模型的求解⽅法⽬前仍以单纯形法为主要⽅法。
本节介绍的主要内容有:线性规划模型的建⽴以及求解,线性规划的matlab 解法,线性规划问题的建模实例。
3.1.1 线性规划模型的建⽴以及求解⼀、线性规划模型的建⽴例1、某机床⼚⽣产甲、⼄两种机床,每台销售后的利润分别为4000元与3000元。
⽣产甲机床需⽤B A 、机器加⼯,加⼯时间分别为每台2⼩时和1⼩时;⽣产⼄机床需⽤C B A 、、三种机器加⼯,加⼯时间为每台各⼀⼩时。
数学建模作业数学规划模型----供应与选址的问题
再编写主程序liaochang2.m为:
clear
x0=[3 5 4 7 1 0 0 0 0 0 5 11 5 4 7 7];
A=[1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0];
B=[20;20];
Aeq=[1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0];
使用临时料场的情形:
使用两个临时料场A(5,1),B(2,7).求从料场j向工地 的运送量 .在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,这是线性规划问题。线性规划模型为:
其中 ,i=1,2,…,6,j=1,2,为常数
设X11=X1,X21=X 2,,X31=X 3,X41=X 4,X51=X 5,,X61=X 6
程序截图如下:
程序的运行结果为:
xx =
3.0000
5.0000
0.0000
7.0000
0.0000
1.0000
0.0000
0.0000
4.0000
0.0000
6.0000
10.0000
fval =
136.2275
运行结果截图如下:
即由料场A、B向6个工地运料方案为:
二、线性规划模型实例
Current Allowable Variable Coefficient Increase X1 72.00000 24.00000 X2 64.00000 8.000000 %利润增加到30元,无需改变生产计划。 Righthand Side Ranges Row
(72-8,72+24)
约束条件右端变化范围
Current Allowable Allowable RHS Increase Decrease MILK 50.00000 10.00000 6.666667 TIME 480.0000 53.33333 80.00000 CPCT 100.0000 INFINITY 40.00000 %用35元购买1桶牛奶的投资最多10桶。注:敏感性分析只是充分条件,增加10桶牛奶 一定是有利可图的,超过10桶也不一定无利。
max=72*x1+64*x2; [milk] x1+x2<50; [time] 12*x1+8*x2<480; [cpct] 3*x1<100;
end
最优解
1 MILK TIME CPCT
(4)分析结果。
资源增加1个单位时, “效益”的增量。“效益”的增量 可看作资源的潜在价值,该价值 称为影子价格。
Variable X1 X2
Current Coefficient 72.00000 64.00000
(72-8,72+24)
Ranges in which the basis is unchanged:
系数在如下范围内变动时, 最优解保持不变 Objective Coefficient Ranges 目标函数系数的变化范围 Allowable Decrease 8.000000 16.00000
数学建模——规划模型
假设:料 场和工地 之间有直 线道路
1)现有 2 料场,位于 A (5, 1), B (2, 7),记为 (xj,yj),j=1,2, 日储量 ej 各有 20 吨。
i 1 i
n
i
a ik x k bi , i 1, 2 ,..., n. s.t . k 1 x 0 , i 1, 2 ,..., n. i
(3)二次规划问题
目标函数为二次函数,约束条件为线性约束
1 n min u f ( x ) ci xi bij xi x j 2 i , j 1 i 1 n a ij x j bi , i 1, 2,..., n. s.t . j 1 x 0 .i 1, 2,..., n. i
改写为: S.t.
min z 13 9 10 11 12 8X
0 0 800 0.4 1.1 1 0 X 0 0 0 0 . 5 1 . 2 1 . 3 900
x1 x2 x 3 ,X 0 x4 x 5 x 6
编写M文件xxgh4.m如下: c = [40 36]; A=[-5 -3]; b=[-45]; Aeq=[]; beq=[]; vlb = zeros(2,1); vub=[9;15]; %调用linprog函数: [x,fval] = linprog(c,A,b,Aeq,beq,vlb,vub)
(一)规划模型的数学描述
u f ( x)
线性规划模型
线性规划模型线性规划(Linear Programming,LP)是一种用于求解线性优化问题的数学建模方法。
线性规划模型是在一组线性约束条件下,通过线性目标函数来寻找最优解的数学模型。
其基本形式如下:最大化或最小化:Z = c₁x₁ + c₂x₂ + … + cₙxₙ(目标函数)约束条件为:a₁₁x₁ + a₁₂x₂ + … + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + … + a₂ₙxₙ ≤ b₂…aₙ₁x₁ + aₙ₂x₂ + … + aₙₙxₙ ≤ bₙx₁, x₂, …, xₙ ≥ 0其中,c₁, c₂, …, cₙ为目标函数中各项的系数;a₁₁,a₁₂, …, aₙₙ为约束条件中各项的系数;b₁, b₂, …, bₙ为约束条件中的常数项;x₁, x₂, …, xₙ为决策变量。
线性规划模型的求解过程分为以下几个步骤:1. 建立数学模型:根据问题的描述,确定决策变量,确定最优化目标,建立目标函数和约束条件。
2. 确定可行解区域:根据约束条件,画出约束条件所确定的可行解区域。
3. 求解最优解:在可行解区域内寻找目标函数最大化或最小化的解。
常用的求解方法有单纯形法和对偶单纯形法。
4. 解释结果:根据最优解,给出对决策变量和目标函数的解释,进一步分析结果的意义。
线性规划模型适用于许多实际问题的求解,如生产计划、资源分配、物流调度等。
通过构建适当的数学模型,可以帮助管理者做出理性决策,最大化或最小化目标函数。
然而,线性规划模型也有其局限性。
首先,线性规划只能处理线性约束条件和线性目标函数,对于非线性问题无法求解。
其次,线性规划假设决策变量是连续的,对于离散的决策问题,线性规划无法适用。
此外,线性规划模型还需要求解算法的支持,对于复杂问题需要较高的计算资源。
总之,线性规划模型是一种常用的数学建模方法,通过线性约束条件和线性目标函数,求解最优解,帮助解决实际问题。
但线性规划模型也有其适用范围和局限性,需要根据具体问题来选择合适的求解方法。
数学建模作业5数学规划模型----供应与选址的问题
三、模型假设
1、假设料场和建筑工地之间都可以由直线到达;
2、运输费用由“吨千米数”来衡量;
3、两料场的日存储量够向各建筑工地供应;
f1=0;
fori=1:6
s(i)=sqrt((x(13)-a(i))^2+(x(14)-b(i))^2);
f1=s(i)*x(i)+f1;
end
f2=0;
fori=7:12
s(i)=sqrt((x(15)-a(i-6))^2+(x(16)-b(i-6))^2);
f2=s(i)*x(i)+f2;
end
一、问题提出
某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系(a,b)表示,距离单位:km)及水泥日用量d(吨)由下表给出。目前有两个料场位于A(5,1),B(2,7),日储量各有20吨。
(1)试制定每天的供应计划,即从A,B两料场分别向各工地运送多少水泥,可使运输费用(总的吨千米数)最小,并求出吨千米数。
d=[3 5 4 7 6 11];
x=[5 2];
y=[1 7];
e=[20 20];
fori=1:6
forj=1:2
aa(i,j)=sqrt((x(j)-a(i))^2+(y(j)-b(i))^2);
end
end
CC=[aa(:,1); aa(:,2)]'
A=[1 1 1 1 1 1 0 0 0 0 0 0
(注:先画图,在坐标上标出各工地位置(用蓝色*标示)和料场位置(用红色o标示))
数学模型之数学规划模型
多目标规划模型的应用案例
资源分配问题
投资组合优化
在有限的资源条件下,如何分配资源 以达到多个目标的优化,如成本、质 量、时间等。
在风险和收益的权衡下,如何选择投 资组合以达到多个目标的优化,如回 报率、风险分散等。
生产计划问题
在满足市场需求和生产能力限制的条件 下,如何制定生产计划以达到多个目标 的优化,如利润、成本、交货期等。
整数规划模型的应用案例
总结词
整数规划模型在生产计划、资源分配、物流优化等领域有广泛应用。
详细描述
在生产计划领域,整数规划模型可以用于安排生产计划、优化资源配置和提高生产效率。在资源分配 领域,整数规划模型可以用于解决资源分配问题,例如人员分配、物资调度等。在物流优化领域,整 数规划模型可以用于车辆路径规划、货物配载等问题,提高物流效率和降低运输成本。
数学规划模型可以分为线性规划、非线性规划、整数规划、动态 规划等类型,根据问题的特性选择合适的数学规划模型进行建模 。
数学规划模型的应用领域
01
02
03
04
生产计划
数学规划模型可以用于制定生 产计划,优化资源配置,提高 生产效率。
物流运输
通过建立数学规划模型,可以 优化物流运输路线和运输方式 ,降低运输成本。
80%
金融投资组合优化
通过建立线性规划模型,可以优 化投资组合,实现风险和收益的 平衡。
03
非线性规划模型
非线性规划模型的定义
非线性规划模型是一种数学优化模型 ,用于解决目标函数和约束条件均为 非线性函数的问题。
它通过寻找一组变量的最优解,使得 目标函数达到最小或最大值,同时满 足一系列约束条件。
• 整数规划与混合整数规划的拓展:整数规划模型解决了离散变量的优化问题,混合整数规划则进一步扩展了整数规划的适 用范围。
数学建模非线性规划模型
0 0.216 0.009 5
0 0.23 0.40 0.108 0.22 0.202 0.006
表1
售价(元)
2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00
表2
预期销售量(桶)
41000 38000 34000 32000 29000 28000 25000 22000 20000
广告费(元) 销售增长因子
0
1.00
10000
1.40
20000
1.70
干种资产时,总体风险可用所投资的Si中最大的一 个风险来度量。购买Si要付交易费,费率为pi,并且 当购买额不超过给定值ui时,交易费按购买ui计算 (不买当然无须付费)。另外,假定同期银行存款
利率是r0,且既无交易费又无风险(r0=5%)。 (1)已知n=4时的相关数据如下:
Si
ri(%) qi(%) pi(%) ui(元)
6.4.3 问题的分析
设购买Si的金额为xi,所付的交易费为ci(xi);c0(x0)=0
0 xi 0
ci
(
xi
)
pi
ui
0 xi ui
(i 1 ~ n) (1)
pi
xi
xi ui
因为投资额M相当大,所以总可以假定对每个Si的投
资 xi ≥ ui,这时(1)式可简化为
ci (xi ) pi xi (i 0 ~ n)
n
R(x) Ri (xi )
i0
整体风险:
(6)
Q(x)
max
1i n
Qi
(
xi
)
资金约束:
n
F(x) fi (xi ) M
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对称地, 对销地而言, 有关系
x11 x21 1700, x12 x22 1100, x13 x23 200, x14 x41 100.
max 4.5* x1 5* x2 7 * x3; 2 * x1 2 * x2 4x3 800; 1* x1 2 * x2 3x3 650; 4 * x1 2 * x2 4x3 850; 2 * x1 4 * x2 2x3 700;
End
保存完之后执行Lingo菜单下的Solve命令,得到相应的解.
min 0.1* x2 0.2* x3 0.3* x4 0.8* x5; x1 2* x2 x4 100; 2* x3 2* x4 x5 100; 3* x1 x2 2* x3 3* x5 100;
End
运行后得到该问题的解为
X2 25.00000 X3 0.000000 X4 25.00000 X5 0.000000 X1 25.00000
分析
该问题的关键所在是确定每种产品的产量, 为此以 x1, x2 , x3 表示三种产品的产量, 则目标为
Max z 4.5x1 5x2 7x3.
在一个生产周期中, 每种设备所提供的工时为有限的, 故对四种设备而言还应该满足下列条件:
Max z 4.5x1 5x2 7x3.
假设在切割过程中, 我们不考虑钢筋的损耗, 并考虑各 种切割方案:
方案
2.9
2.1
1.5
余料
1
1
0
3
0
2
2
0
1
0.1
3
0
2
2
0.2
4
1
2
0
0.3
5
0
1
3
0.8
s.t.
2x1x3 2
x2 x4 100, 2x4 x5 100,
3x1 x2 2x3 3x5 100.
s.t. 2x1 2x2 4x3 800,
4x1x122x2x233x3x368550,0, 2x1 4x2 2x3 700. 非负性 xi 0,i 1, 2,3.
用Lingo软件可以得到相应问题的解. 启动Lingo, 在窗 口下中输入下列程序:
第四章 数学规划模型
一、数学规划模型
1.模型的建立
问题1 某厂利用甲,乙,丙,丁四种设备生产A,B,C三种 产品, 相关数据如表所示. 已知这三种产品的单件利润 分别是4.5, 5, 7(百元),试问该厂应如何安排生产可获 得最大利润?
A
B
C 总工时
甲
2
2
4
800
乙
1
2
3
650
丙
4
2
3
850
丁
2
0.000000 0.3666667 0.000000 1.283333 0.000000
线性规划的模型一般可表示为
max z c1x1 c2 x2 L cn xn.
s.t. a11x1 a12 x2 L a1n xn b1,
La21Lx1L
a22 x2 L LLLL
min z 0.1x2 0.2x3 0.3x4 0.8x5.
s.t. x1 2x2 x4 100,
2x3 2x4 x5 100, 3x1 x2 2x3 3x5 100.
非负性 xi 0,i 1, 2,L ,5.
在Lingo下得到该问题的解为
1100吨, 分别供给 A地1700吨, B 地11吨, C 地200吨和 D
100吨, 已知每吨运费如表所示, 试建立一个使运费达到 最小的调拨计划.
销地
产地
A
B
C
D
甲
21
25
7பைடு நூலகம்
15
乙
51
51
37
15
单位路程运费表
分析 设从第 i个产地到第 j个销地的运输量为 xij , 运
输成本为cij ,则问题的目标函数为
4
2
700
甲 2x1 2x2 4x3 800. 乙 x1 2x2 3x3 650. 丙 4x1 2x2 3x3 850. 丁 2x1 4x2 2x3 700. 注意到变量 x1, x2 , x3 代表的是产品的产量, 故有xi 0.
抽去所给问题的具体意义, 我们得到原问题的数学关系 为
Variable X1 X2 X3
Value 85.71429 71.42857 121.4286
Reduced Cost 0.000000 0.000000 0.000000
Row Slack or Surplus 1 1592.857 2 0.000000 3 57.14286 4 0.000000 5 0.000000
z 21x11 25x12 7x13 15x14 51x21 51x22 37x23 15x24 ,
由于从第一个产地调出的物质的总和为第一个产地的产
量, 即有
x11 x12 x13 x14 2000,
同理, 有
x21 x22 x23 x24 1100.
Dual Price 1.000000 1.357143 0.000000 0.2142857 0.4642857
问题2 某车间要制造100套钢筋架, 每套需要长为2.9
2.1 m, 1.5m 的钢筋各一根. 已知原料钢筋长度为7.4m.
问如何切割钢筋, 使得钢筋的利用率为最高?
分析 该问题的要点是如何切割钢筋, 使得每次切割之 后, 剩下的余料为最少?
非负性 xi 0,i 1, 2,L ,5.
从分析中可以看出, 此问题的关键是确定每种方案下 的余料数.
设 xi i 1, 2,L ,5 表示第i 种方案中使用的原料钢
筋数, 则余料数为
z 0.1x2 0.2x3 0.3x4 0.8x5.
而相应的限制条件为
故原问题的数学关系式为
L
a2n xn b2 LLLL
,
am1x1 am2 x2 L amn xn bm .
非负性 xi 0,i 1, 2,L , n.
注 线性规划的目标函数还可以用min来表示, 表示
追求目标函数的最小值. 而s.t.表示约束条件:
(Subject to).
问题3 要从甲地调出物质2000吨, 从乙地调出物质