第五章_经典电磁学-2
《新概念物理教程 电磁学》
0
j = j0 e
−
d dS
0
d
式中: d —— 从导线表面向轴线方向的深度; j0 —— 导线表面(d=0)处的电流密度; js —— 趋肤深度,j 减小到j0 的e 分之一 (37%)的深度 2 503 = 理论计算可得: d S = ωμr μ0σ f μ rσ
(d) Φ < 0 ,dΦ > 0 ε < 0 , ε 与L 反向
图5.5 电动势方向的确定
【结论】: 1. 对任意选定的环路方向, ε 与 2.
dΦ d t 的符号恒相反; dΦ d t 决定;
Φ2
ε 的大小和方向与 Φ无关,只由
q=
dΦ dt
t2 t1
∫ Id t
1 dΦ I = R dt
1 q= R
d ΦB dt
的正负;
ε > 0 , ε 的方向与L 绕行方向相同; ε < 0 , ε 的方向与L 绕行方向相反。
n
L
B
L
n
B
ε
(a) Φ > 0 ,dΦ > 0 ε < 0 , ε 与L 反向
ε
(b) Φ > 0 ,dΦ < 0 ε > 0 , ε 与L 同向
n
L L
n
ε
B
ε
B
(c) Φ < 0 ,dΦ < 0 ε > 0 , ε 与L 同向
×
×
× × ×
l × B×
×
v
ε = Blυ
ε = (υ × B ) ⋅ l
大学物理学 第五章 真空中的静电场
q
l 2
O
l 2
q
E
r
E
r
q
l 2
1
O
l 2
q
E
r
P
E
r
q E 2 4 0 ( r l / 2)
E E E
q E 2 4 0 ( r l / 2)
1
E E E
r l
q 2rl 4 0 ( r 2 l 2 / 4)2 1 2ql 1 2p E E 3 3 4 0 r 4 0 r
与 r2 成反比,r , E 0
思考: r 0
E ?
二、点电荷系的电场
E Ei
i i
1 qi e 2 ri 4 π 0 ri
dE
er q0
三、连续带电体的电场
E dE 1 dq e 2 r q 4 π 0 r
电荷密度
二.恒定电流与稳恒磁场的基本性质及规律
(第七章)
三.电磁感应现象及规律(第八章)
第五章
主要内容
§ 1 库仑定律 § 2 静电场 § 3 高斯定律 § 4 电势 电场强度
教学基本要求
一 了解电荷及性质;掌握库仑定律. 二 理解电场的概念;明确电场的矢量性和可 叠加性;会利用电场叠加原理求解简单带电体的电 场分布. 三 理解高斯定理的物理意义;能够利用高斯 定理求解特殊场分布.
q1q2 F12 k 2 e12 F21 r12
1 令 k ( 0 为真空电容率) 4 π0 1 0 8.8542 1012 C2 N 1 m 2 4πk 12 1 8.8542 10 F m
初中九年级(初三)物理 第五章 恒定电流的磁场 上一章说明了磁力是运动电荷之间的一种相互作用,这种相互作
第五章恒定电流的磁场上一章说明了磁力是运动电荷之间的一种相互作用,这种相互作用是通过磁场进行的。
此外还讲述了磁场对运动电荷(包括电流)的作用。
本章将介绍这种相互作用的另一个侧面,即磁场的源,如运动电荷(包括电流)产生磁场的规律。
先介绍这一规律的宏观基本形式,即描述电流元磁场的毕奥-萨伐尔定律(相当于静电场中的库仑定律),由这一定律原则上可以利用积分运算求出任意电流分布的磁场。
再在毕-萨定律的基础上导出关于恒定磁场的两条基本定理:磁通连续定理和安培环路定理,然后利用这两个定理求出有一定对称性的电流分布的磁场(类似于利用静电场黄栌定理和高斯定律来求有一定对称性的电荷分布的静电场分布)。
本章还介绍变化的电场产生磁场方面的规律。
静止电荷的周围存在着电场,电场的特征是对引入电场的电荷施加作用力。
如果电荷在运动,则在其周围不仅产生电场,而且还会产生磁场。
磁场也是物质的一种形态,它只对运动电荷施加作用,对静止电荷则毫无影响。
因此通过实验分别测定电荷静止时和运动时所受到的力,就可以把磁场从电磁场中区分出来。
由于运动和静止的相对性,本章最后还简单介绍电场和磁场有相对论性联系的内容。
Thankful good luck§1 磁现象及其与电现象的联系磁现象的研究与应用(即磁学)是一门古老而又年轻的学科,说她古老是因为关于磁现象的发现和应用的历史悠久,说她年轻是因为磁的应用目前越来越广泛已形成了许多与磁学有关的边缘学科。
磁现象是一种普遍现象即一切物质都具有磁性。
任何空间都存在磁场,所以我们可以毫不夸张地说磁学犹如一棵根深叶茂的参天大树。
尽管人们对物质磁性的认识已有两千多年,但直至19世纪20年代才出现采用经典电磁理论解释物质磁性的代表――安培分子环流假说,而真正符合实际的物质磁性理论却是在19世纪末发现电子、20世纪初有了正确的原子结构模型和建立了量子力学以后才出现。
因此在经典电磁学范围研究物质的磁性时,我们虽然采用传统的观念即安培分子环流假说和等效磁荷两种观点,但必须强调我们要在原子结构模型和量子力学的基础上建立一个正确的概念即物质的磁性来源于电子的轨道磁矩和自旋磁矩。
赵凯华-电磁学-第三版-第五章-电磁感应与暂态过程-(2)-42-pages
L2
L1
, L2匝数、形状、尺寸
L1
L1
,
L2相
对
位
置
当这些确定后,
周围介质(非铁磁质)
由i此1 增引大入多1互少2倍感i,1系数12 亦:原增1因大2多:M 少1i倍21,B 1 即 1两2 ( L 者)d 成B S B 正1• 比d 4 S 0 i1 位不置变(L 、时)尺为dl r 寸常 2 固数r ˆ定
K
速度。
表明:载流变化时,线圈具有 “电磁惯性”
二、互感系数 M 1、互感 M
两线圈L1 、L2 ,如右图。现考虑一个线圈载流 i( t ) ,而
另一不载流,分析互感磁通及电动势。
i1 ( t )
(1) L1 中载流 i1( t ) 线圈1 在线圈2产生的磁通由以下因素决定: N1
N2
B(t)
L1中 电 流i1 (t )
§4 暂态过程 作业P364 5,8,13,15
在RL、RC等电路中,施加阶跃电压时时 , 电路中流过电感的电流或电容上的电压,从一 个稳态值到另一个稳态值的变化不是阶跃的, 而是需要一个过程,该过程被称为暂态过程 。
U
t
I,q
t
1、接通电源 一、RL电路
K→1,RL两端电压: ,电流?
eL
(a)回路方程:
(2) L2 中载流 i2 ( t )
21 M 2i1 2
可以证明: M 12 M 21 M ,称互感系数,简称互感。
2、互感电动势 e 互
e1 2dd1t 2 ddMt1iMddi1t
e2
1dd2t
1dM1iMdi2
dt
dt
di
M e
3、有关互感的一些问题
经典电磁学
意大利科学家伽伐尼 (Luigi Galvani,1737 ~1798)
在一次解剖青蛙时有一个偶然的发现, 一只已解剖的青蛙放在一个潮湿的铁 案上,当解剖刀无意中触及蛙腿上外 露的神经时,死蛙的腿猛烈地抽搐了 一下。
3
库仑定律
库 仑 像
库仑(1736-1806): 法国人,当过法 国部队的技术军 官,后被选为法 国科学院院士。
2)发明避雷针 富兰克林并不满足,将他的发现转化为了 新的发明。避雷针诞生了。 3)科学兴趣广泛
命名了正电,负电,发现了电荷守恒定律, 研究了火炉的改良,植物的移植,传染病的防 治。 写出了《电学的实验和研究》的著作。
独立宣言和美国宪法的起草人之一,为祖国的独 立和解放作出了贡献的政治活动家。
生物电现象
法拉第如此至爱的这个“婴儿”,的确有着 惊人之举。1867年西门子根据这一原理创造了发 电机,从此人类有了“电”,它至今仍为我们带 来光明和幸福。当我们在尽情享受电灯、电视、 电影……这一切现代文明的时候,我们怎能不感 谢这位铁匠的儿子呢?
7
洛伦兹与洛伦兹力
(洛伦兹Hendrik Antoon Lorentz,1853—1928)是荷兰 物理学家、数学家。1853年7 月18日生于阿纳姆。1870年入 莱顿大学学习数学、物理学, 1875年获博士学位。25岁起任 莱顿大学理论物理学教授,达 35年。
洛伦兹是经典电子论的创立者。当光 源放在磁场中时,光源的原子内电子的振 动将发生改变,使电子的振动频率增大或 减小,导致光谱线的增宽或分裂。 1896年10月,洛伦兹的学生塞曼发现, 在强磁场中钠光谱的D线有明显的增宽, 即产生塞曼效应,证实了洛伦兹的预言。 塞曼和洛伦兹共同获得1902年诺贝尔物 理学奖。
梁彬灿电磁学第五章习题解答
///5.1.1 解答:(1) 质子所受洛伦兹力的方向向东(2) 质子的电荷量191.610q C -=⨯,质子所受洛伦兹力大小为163.210F qvB N -==⨯质子的质量271.6710m kg -=⨯,质子所受洛伦兹力与受到的地球引力相比较:101.9510F qvB F mg==⨯洛重 5.2.1 解答:O 点的磁场B 可看作两条半无限长直载流导线产生的磁场1B 、2B 和MN 部分阶段1/4圆周载流导线产生的磁场3B 的合成。
由于磁场方向均垂直纸面向外,所以直接求出它们大小并相加即可0012cos0cos 424I IB B R Rμμπππ⎛⎫==-=⎪⎝⎭ 40032448I IB Rd R Rππμμαπ-==⎰0123124I B B B B R μππ⎛⎫=++=+ ⎪⎝⎭方向垂直纸面向外 5.2.2 解答:(a )延长线通过圆心的直长载流导线在O 点产生磁场为1B ,其大小为0;另一直长载流导线在O 点产生的磁场为2B ,方向垂直纸面向里;圆弧部分载流导线在O 点产生的磁场为3B ,方向垂直纸面向里。
故O 点的合磁场大小为0001233314842I I I B B B B R R R μμμπππ⎛⎫=++=+=+ ⎪⎝⎭方向垂直纸面向里(b )两半直长载流导线在O 点产生的磁场分别为1B 、2B ,方向均垂直纸面向里;圆弧部分载流导线在O 点产生的磁场为3B ,方向垂直纸面向里。
故O 点的合磁场大小为()000012324444I I I IB B B B R R R Rμμμμππππ=++=++=+ 方向垂直纸面向里 5.2.3 解答:(a )因为两直长载流导线延长线均通过圆心,所以对O 点的磁场没有贡献,故只需要考虑两个圆弧载流导线在O 点产生的磁场,它们所激发的磁场分别为1B 、2B ,方向均垂直纸面向里,故O 点的合磁场大小为00123312248I I B B B a b a b ππμμπ⎛⎫⎪⎛⎫=+=+=+ ⎪ ⎪⎝⎭ ⎪⎝⎭方向均垂直纸面向里(b )两延长线的直长载流导线对O 点的磁场没有贡献,只需要考虑两长度为b 的直长载流导线对O 点的磁场1B 、2B 和圆弧载流导线对O 点的磁场3B ,方向均垂直纸面向里,其合磁场大小为()0001232332cos90cos13524442a I I I B B B B b a b a πμμμππππ⎛⎫⎛⎫⎪=++=-⨯+=+ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭方向均垂直纸面向里。
电磁场与电磁波 第五章时变电磁场
D H J t 位移电流是电流概念的扩充,它不是带电粒子的定向运动 形成的,而是人为定义的,不能直接由实验测出。
l
H dl (J Jd ) dS
S
D J dS dS S S t
年中发生的美国内战 (1861-1865)将会降低为一个地区性琐事而
黯然失色”。
陕西科技大学编写
电磁场与电磁波
第5章 时变电磁场
14
评价
处于信息时代的今天,从婴儿监控器到各种遥控设备、从雷达到
微波炉、从地面广播电视到太空卫星广播电视、从地面移动通信到 宇宙星际通信、从室外无线局域网到室内蓝牙技术、以及全球卫星 定位导航系统等,无不利用电磁波作为传播媒体。 无线信息高速公路更使人们能在任何地点、任何时间同任何人取 得联系,发送所需的文本、声音或图象信息。电磁波的传播还能制 造一种身在远方的感觉,形成无线虚拟现实。 电磁波获得如此广泛的应用,更使我们深刻地体会到19世纪的麦 克斯韦和赫兹对于人类文明和进步的伟大贡献。
D (J )0 t
全电流连续 位移电流
D Jd 陕西科技大学编写 t
电磁场与电磁波
第5章 时变电磁场
7
流进曲面S1的传导电流 S1 S2 等于流出S2的位移电流 ② 位移电流与传导电流、运流电流一样具有磁的效应;
J dS Jd dS
令 l2 0
H 2t H1t J s
磁场: ( H - H ) J 即 en 1 2 S
B1n B2n 电场:H 2t H1t J s
陕西科技大学编写
电磁场与电磁波
第5章 时变电磁场
电磁学 全套课件
2、计算
S
均匀电场中,平面 S 的电通量
S与电场强度垂直 e E S
S的法向与电场强度成 角
e E S E S cos E S
S
n
S
非均匀电场中,任意曲面 S 的电通量
在S上任取一小面元dS
de
E
dS
e
S de
当 qi 0 ,e>0,多数电场线从正电荷发出并穿出高斯面,
反之则多数电场线穿入高斯面并终止于负电荷
电场线是不闭合的曲线
----静电场是“有源场 ”
穿过高斯面的电通量只与高斯面内的电荷有关
高斯面上的电场强度与高斯面内外电荷都有关
高斯定理也适用于变化的电场
四、高斯定理应用举例
高斯定理可以用于求解具有高度对称性的带电体系所产生的电 场的场强。
超距的观点: 电荷
电荷
电场的观点: 电荷
场
电荷
近代物理的观点认为:凡是有电荷存在的地方,其周围空间便存 在电场
q1
q2
静电场的主要表现: 力:放入电场中的任何带电体都要受到电场所作用的力---电场力 功:带电体在电场中移动时,电场力对它做功 感应和极化:电场中的导体或介质将分别产生静电感应现象或极化
dx θ1= π -θ2
L q
E
j
j
4 0a 2 4 0a 2
例2、半径为R的均匀带电细圆环,电量为q。求圆环轴线上任 一点的场强。
dE dE
0
R
x
P
r
dEx x
讨论: x>>R时
x =0时
dl
电磁学_5.讲义
L
B' dl
L
B dl 0 I 0 0 I' 0 I 0 0 M dl
L
§5.2 有磁介质时磁场的基本规律 移项整理后得
L
(
B
0
M ) dl I 0
电介质
S
( 0 E P) dS q0
定义磁场强度
H
则有
B
0
M
电介质 D 0 E P
I
r
v
L 一个分子的各种磁矩的矢量和,称为分子的固有磁矩,简称分
§5.1 磁介质的磁化
无矩分子
在无外磁场时,分子固有磁矩矢量和为零(抗磁质) 有矩分子
在无外磁场时,分子固有磁矩不为零(顺磁质)
无外磁场时,宏观上仍然不显示磁性!
§5.1 磁介质的磁化 磁化强度 为了定性描述介质的宏观磁性或磁化的程度,定义介质的磁化强
v v v M sin , M en
§5.1 磁介质的磁化
介质外为真空时,介质表面磁化电流线密度等于该处磁化强度与介质表
面外法线单位矢量的叉乘。 对于两种磁介质的分界面
en (M 2 M1 )
en 为 由介质 1 指向介质 2 的单位矢量。 可与电介质情形对比记忆
S
B dS 0
§5.2 有磁介质时磁场的基本规律
三、线性磁介质
各向同性磁介质 M m H 各向同性电介质 P 0 E
H
B
0
M B 0 (1 m ) H
D 0 (1 ) E
0 r E
E
0 r H H
在磁介质表面处各点:分子环流未被抵消,形成沿表面的面电流
大学物理第五版(马文蔚)电磁学习题问题详解
第五章 静 电 场5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A)放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B)中的( )分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B).5 -2 下列说确的是( )(A)闭合曲面上各点电场强度都为零时,曲面一定没有电荷(B)闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零,但不能肯定曲面一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).5 -3下列说确的是( )(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域为常量,则电场强度在该区域必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*5 -4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).5 -5精密实验表明,电子与质子电量差值的最大围不会超过±10-21e,而中子电量与零差值的最大围也不会超过±10-21e,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析 考虑到极限情况, 假设电子与质子电量差值的最大围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 围时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 5 -6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律()r r r r e εr q q εe e e F N 78.3π41π412202210=== F 与径向单位矢量e r 方向相同表明它们之间为斥力.5 -7 质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k .证明电子的旋转频率满足4320232me E εk =v 其中ε0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 根据题意将电子作为经典粒子处理.电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷.点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有 2202π41r e εr m =v 由此出发命题可证.证 由上述分析可得电子的动能为re εm E K 202π8121==v 电子旋转角速度为3022π4mr εe ω= 由上述两式消去r ,得432022232π4me E εωK ==v 5 -8 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为N 1092.1π3π4920220212⨯===aεe r εq q F F 2 方向如图所示.5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1L r Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21Lr r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度 ⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=LE i E d (2) 若点P 在棒的垂直平分线上,如图(A)所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==Ly E αE j j E d sin d 证 (1) 延长线上一点P 的电场强度⎰'=L r πεq E 202d ,利用几何关系 r ′=r-x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度rελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(B)].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.5 -10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθR δS δq d sin π2d d 2⋅==,在点O 激发的电场强度为()i E 3/2220d π41d r x qx ε+=由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+= 积分得 02/004d cos sin 2εδθθθεδE π⎰== 5 -11 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θer P cos 20=,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41xp εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1 水分子的电偶极矩θer θP P cos 2cos 200==在电偶极矩延长线上30030030cos π1cos 4π412π41xθer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得 ()⎥⎥⎦⎤⎢⎢⎣⎡--+-=23/20202001cos 2cos π42x θxr r x θr x εe E 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x θr x x θr x θxr r x cos 2231cos 21cos 2033/2033/20202,将上式化简并略去微小量后,得300cos π1x θe r εE = 5 -12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有()i i E E E x r x r ελx r x ελ-=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2 (2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 i E F 00π2r ελλ==-+iEF2π2rελλ-=-=+-显然有F+=F-,相互作用力大小相等,方向相反,两导线相互吸引.5 -13如图为电四极子,电四极子是由两个大小相等、方向相反的电偶极子组成.试求在两个电偶极子延长线上距中心为z的一点P的电场强度(假设z>>d).分析根据点电荷电场的叠加求P点的电场强度.解由点电荷电场公式,得()()kkkE222π41π412π41dzqεdzqεzqε++-+=考虑到z>>d,简化上式得()()kkkE42222222226π4...321...32112π4/11/1112π4zqdεqzdzdzdzdzzεqzdzdzzεq=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-=通常将Q=2qd2称作电四极矩,代入得P 点的电场强度kE43π41zQε=5 -14设匀强电场的电场强度E与半径为R的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=SS d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面无电荷,由高斯定理∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 解1 由于闭合曲面无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R πR E 22πcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为①()r θθθE e e e E sin sin cos sin cos ++=r θθR e S d d sin d 2=E RθθERθθERSS2ππ2222πdsindsinddsinsind===⋅=⎰⎰⎰⎰SEΦ5 -15边长为a的立方体如图所示,其表面分别平行于Oxy、Oyz和Ozx 平面,立方体的一个顶点为坐标原点.现将立方体置于电场强度()12E kx E+E=i+j(k,E1,E2为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量.解如图所示,由题意E与Oxy面平行,所以任何相对Oxy面平行的立方体表面,电场强度的通量为零,即0==DEFGOABCΦΦ.而()[]()2221ABGFd aEdSEkxE=⋅++=⋅=⎰⎰jjiSEΦ考虑到面CDEO与面ABGF的外法线方向相反,且该两面的电场分布相同,故有22aEABGFCDEO-=-=ΦΦ同理()[]()2121AOEFd aEdSEE-=-⋅+=⋅=⎰⎰ijiSEΦ()[]()()2121BCDGd akaEdSEkaEΦ+=⋅++=⋅=⎰⎰ijiSE因此,整个立方体表面的电场强度通量3ka==∑ΦΦ5 -16 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理 ∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⨯-=-≈=2902cm 1006.1π4/E εR q σE单位面积额外电子数25cm 1063.6/-⨯=-=e σn5 -17 设在半径为R 的球体,其电荷为球对称分布,电荷体密度为()()R r ρkr ρ>=≤≤= 0R r 0k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2S π4d r E ⋅=⋅⎰S E 根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳激发的电场0d =E ,而在球壳外激发的电场r r εq e E 20π4d d = 由电场叠加可解得带电球体外的电场分布()()()()R r r r R r>=≤≤=⎰⎰ d R r 0 d 00E E E E解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体(0≤r ≤R ) ()400202πd π41π4r εk r r kr εr r E r ==⎰ ()r εkr r e E 024= 球体外(r >R )()400202πd π41π4r εk r r kr εr r E R ==⎰()r εkR r eE 024= 解2 将带电球分割成球壳,球壳带电r r r k V ρq '''==d π4d d 2由上述分析,球体(0≤r ≤R )()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰ 球体外(r >R )()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰ 5 -18 一无限大均匀带电薄平板,电荷面密度为σ,在平板中部有一半径为r 的小圆孔.求圆孔中心轴线上与平板相距为x 的一点P 的电场强度.分析 用补偿法求解利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场.本题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限大带电平面和带电圆盘的电场叠加,求出电场的分布.若把小圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度σ′=-σ)的小圆盘.这样中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和. 解 由教材中第5 -4 节例4 可知,在无限大带电平面附近n εσe E 012= n e 为沿平面外法线的单位矢量;圆盘激发的电场n r x x εσe E ⎪⎪⎭⎫ ⎝⎛+--=220212 它们的合电场强度为 n r x x εσe E E E 220212+=+=在圆孔中心处x =0,则 E =0在距离圆孔较远时x >>r ,则n n εσx r εσe e E 02202/112≈+= 上述结果表明,在x >>r 时,带电平板上小圆孔对电场分布的影响可以忽略不计. 5 -19 在电荷体密度为ρ 的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O ′的矢量用a 表示(如图所示).试证明球形空腔中任一点的电场强度为a E 03ερ=分析 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ 的均匀带电球和一个电荷体密度为-ρ、球心在O ′的带电小球体(半径等于空腔球体的半径).大小球体在空腔P 点产生的电场强度分别为E 1 、E 2 ,则P 点的电场强度 E =E 1 +E 2 .证 带电球体部一点的电场强度为r E 03ερ= 所以 r E 013ερ=,2023r E ερ-= ()210213r r E E E -=+=ερ 根据几何关系a r r =-21,上式可改写为a E 03ερ= 5 -20 一个外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而24d r πE ⋅=⎰S E .在确定高斯面的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的分布.解 取半径为r 的同心球面为高斯面,由上述分析∑=⋅02/π4εq r Er <R 1 ,该高斯面无电荷,0=∑q ,故01=ER 1 <r <R 2 ,高斯面电荷()31323131R R R r Q q --=∑ 故 ()()23132031312π4rR R εR r Q E --= R 2 <r <R 3 ,高斯面电荷为Q 1 ,故 2013π4rεQ E = r >R 3 ,高斯面电荷为Q 1 +Q 2 ,故20214π4rεQ Q E +=电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B)所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量0230234π4ΔεσR εQ E E E ==-= 这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层外的电场强度也是连续变化的,本题中带电球壳外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 ,0=∑q01=E在带电面附近,电场强度大小不连续,电场强度有一跃变R 1 <r <R 2 ,L λq =∑rελE 02π2=r >R 2,0=∑q03=E在带电面附近,电场强度大小不连续,电场强度有一跃变00π2π2ΔεσrL εL λr ελE ===这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W其中E 是点电荷Q 1 、Q 3 产生的合电场强度. (2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2yd εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/322002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势 的叠加得Q 1 、Q 3 在点O 的电势dεQd εQ d εQ V 003010π2π4π4=+=将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 5 -23 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2=为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r rελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等. 5 -24 水分子的电偶极矩p 的大小为6.20 ×10-30 C · m.求在下述情况下,距离分子为r =5.00 ×10-9 m 处的电势.(1) 0θ=︒;(2) 45θ=︒;(3) 90θ=︒,θ 为r 与p 之间的夹角. 解 由点电荷电势的叠加2000P π4cos π4π4rεθp r εq r εq V V V =-+=+=-+-+ (1) 若o0=θ V 1023.2π4320P -⨯==rεpV (2) 若o45=θ V 1058.1π445cos 320oP -⨯==rεp V (3) 若o90=θ 0π490cos 20oP ==rεp V 5 -25 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为RqεV 0π41=当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1 =0.40 mm ,带有电量q 1 =1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量q 2 =2q 1 ,雨滴表面电势V 5722π4113102==R q εV5 -26 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a)放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布,()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a εσa x2 00i E 电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x <<--=⋅=⎰ d 0l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 0a-axl E l E ()a x a εσV >-=⋅+⋅=⎰⎰ d d 0a-axl E l E 电势变化曲线如图(b)所示.5 -27 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?分析 通常可采用两种方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=pp V lE d 可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQV 0π4=在球面电场强度为零,电势处处相等,等于球面的电势RεQV 0π4=其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布. 解1 (1) 由高斯定理可求得电场分布()()()22021321201211π4π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=rV l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ RεQ Q R R εQ V R R R R r+=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞lE l E l E当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r+=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞lE l E当r ≥R 2 时,有rεQ Q V r02133π4d +=⋅=⎰∞l E(2) 两个球面间的电势差⎪⎪⎭⎫⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则202012π4π4R εQ r εQ V +=若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差()2011012112π4π42R εQ R εQ V V U R r -=-==5 -28 一半径为R 的无限长带电细棒,其部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅V V εd 1d 0S E 可求得电场分布E (r ),再根据电势差的定义()l E d ⋅=-⎰bab a r V V并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E = 当r ≥R 时02/ππ2ερl R rl E =⋅得 ()rεR ρr E 022=取棒表面为零电势,空间电势的分布有 当r ≤R 时()()22004d 2r R ερr εr ρr V Rr-==⎰当r ≥R 时()rRεR ρr r εR ρr V Rrln 2d 20202==⎰如图所示是电势V 随空间位置r 的分布曲线.5 -29 一圆盘半径R =3.00 ×10-2 m.圆盘均匀带电,电荷面密度σ=2.00×10-5 C ·m -2 .(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布. 解 (1) 带电圆环激发的电势220d π2π41d x r rr σεV +=由电势叠加,轴线上任一点P 的电势的()x x Rεσxr r r εσV R-+=+=⎰22222d 2 (1)(2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R xεσx V (2) 电场强度方向沿x 轴方向.(3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 1691=V -1m V 5607⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεqV 1-20m V 5649π4⋅==xεq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3%和0.8%,这已足以满足一般的测量精度.5 -30 两个很长的共轴圆柱面(R 1 =3.0×10-2 m ,R 2 =0.10 m),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题5 -21 的结果,可得两圆柱面之间的电场强度为rελE 0π2=根据电势差的定义有120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln/π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 7475π2-⋅==rελE 5 -31 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的。
大学物理习题答案解析第五章
第二篇 电磁学求解电磁学问题的基本思路和方法本书电磁学部分涉及真空中和介质中的静电场和恒定磁场、电磁感应和麦克斯韦电磁场的基本概念等内容,涵盖了大学物理课程电磁学的核心内容.通过求解电磁学方面的习题,不仅可以使我们增强对有关电磁学基本概念的理解,还可在处理电磁学问题的方法上得到训练,从而感悟到麦克斯韦电磁场理论所体现出来的和谐与美.求解电磁学习题既包括求解一般物理习题的常用方法,也包含一些求解电磁学习题的特殊方法.下面就求解电磁学方面的方法择要介绍如下.1.微元法在求解电场强度、电势、磁感强度等物理量时,微元法是常用的方法之一.使用微元法的基础是电场和磁场的叠加原理.依照叠加原理,任意带电体激发的电场可以视作电荷元d q 单独存在时激发电场的叠加,根据电荷的不同分布方式,电荷元可分别为体电荷元ρd V 、面电荷元σd S 和线电荷元λd l .同理电流激发的磁场可以视作为线电流元激发磁场的叠加.例如求均匀带电直线中垂线上的电场强度分布.我们可取带电线元λd l 为电荷元,每个电荷元可视作为点电荷,建立坐标,利用点电荷电场强度公式将电荷元激发的电场强度矢量沿坐标轴分解后叠加统一积分变量后积分,就可以求得空间的电场分布.类似的方法同样可用于求电势、磁感应强度的分布. 此外值得注意的是物理中的微元并非为数学意义上真正的无穷小,而是测量意义上的高阶小量.从形式上微元也不仅仅局限于体元、面元、线元,在物理问题中常常根据对称性适当地选取微元.例如,求一个均匀带电圆盘轴线上的电场强度分布,我们可以取宽度为d r 的同心带电圆环为电荷元,再利用带电圆环轴线上的电场强度分布公式,用叠加的方法求得均匀带电圆盘轴线上的电场强度分布.2.对称性分析对称性分析在求解电磁场问题时是十分重要的.通过分析场的对称性,可以帮助我们了解电磁场的分布,从而对求解电磁学问题带来极大方便.而电磁场的对称性有轴对称、面对称、球对称等.下面举两个例子.在利用高斯定律求电场强度的分布时,需要根据电荷分布的对称性选择适当的高斯面,使得电场强度在高斯面上为常量或者电场强度通量为零,就能够借助高斯定律求得电场强度的分布.相类似在利用安培环路定律求磁感强度的分布时,依照电流分布的对称性,选择适当的环路使得磁感强度在环路上为常量或者磁场环流为零,借助安培环路定律就可以求出磁感强度的分布.3.补偿法补偿法是利用等量异号的电荷激发的电场强度,具有大小相等方向相反的特性;或强度相同方向相反的电流元激发的磁感强度,具有大小相等方向相反这一特性,将原来对称程度较低的场源分解为若干个对称程度较高的场源,再利用场的叠加求得电场、磁场的分布.例如在一个均匀带电球体内部挖去一个球形空腔,显然它的电场分布不再呈现球对称.为了求这一均匀带电体的电场分布,我们可将空腔带电体激发的电场视为一个外半径相同的球形带电体与一个电荷密度相同且异号、半径等于空腔半径的小球体所激发电场的矢量和.利用均匀带电球体内外的电场分布,即可求出电场分布.4.类比法 在电磁学中,许多物理量遵循着相类似的规律,例如电场强度与磁场强度、电位移矢量与磁感强度矢量、电偶αr l λεE l l cos d π4122/2/0⎰-=极子与磁偶极子、电场能量密度与磁场能量密度等等.他们尽管物理实质不同,但是所遵循的规律形式相类似.在分析这类物理问题时借助类比的方法,我们可以通过一个已知物理量的规律去推测对应的另外一个物理量的规律.例如我们在研究L C 振荡电路时,我们得到回路电流满足的方程显然这个方程是典型的简谐振动的动力学方程,只不过它所表述的是含有电容和自感的电路中,电流以简谐振动的方式变化罢了.5.物理近似与物理模型几乎所有的物理模型都是理想化模型,这就意味着可以忽略影响研究对象运动的次要因素,抓住影响研究对象运动的主要因素,将其抽象成理想化的数学模型.既然如此,我们在应用这些物理模型时不能脱离建立理想化模型的条件与背景.例如当带电体的线度远小于距所考察电场这一点的距离时,一个带电体的大小形状可以忽略,带电体就可以抽象为点电荷.但是一旦去研究带电体临近周围的电场分布时,将带电体当作点电荷的模型就失效了.在讨论物理问题时一定要注意物理模型的适用条件.同时在适用近似条件的情况下,灵活应用理想化模型可大大简化求解问题的难度.电磁学的解题方法还有很多,我们希望同学们通过练习自己去分析、归纳、创新和总结.我们反对在学习过程中不深入理解题意、不分析物理过程、简单教条地将物理问题分类而“套”公式的解题方法.我们企盼同学们把灵活运用物理基本理论求解物理问题当成是一项研究课题,通过求解问题在学习过程中自己去领悟、体会,通过解题来感悟到用所学的物理知识解决问题后的愉悦和快乐,进一步加深理解物理学基本定律,增强学习新知识和新方法的积极性.01d d 22=+i LCt i第五章 静 电 场5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )分析与解 “无限大”均匀带电平板激发的电场强度为,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).5 -2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).5 -3 下列说法正确的是( )(A ) 电场强度为零的点,电势也一定为零(B ) 电场强度不为零的点,电势也一定不为零(C ) 电势为零的点,电场强度也一定为零(D ) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D ).*5 -4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A ) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止(B ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D ) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动2εσ分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B ).5 -5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21 e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为二个氧原子间的库仑力与万有引力之比为显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 5 -6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带 的上夸克和两个带的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律F 与径向单位矢量e r 方向相同表明它们之间为斥力.5 -7 质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k .证明电子的旋转频率满足其中ε0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 根据题意将电子作为经典粒子处理.电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷.点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有由此出发命题可证.()e q 21max 10821-⨯⨯+=1108.2π46202max <<⨯==-Gmεq F F g e e 32e 31-()r r r r e εr q q εe e e F N 78.3π41π412202210===4320232me E εk =v 2202π41r e εr m =v证 由上述分析可得电子的动能为电子旋转角速度为由上述两式消去r ,得5 -8 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为F 2 方向如图所示.5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为(2) 在棒的垂直平分线上,离棒为r 处的电场强度为 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.re εm E K 202π8121==v 3022π4mr εe ω=432022232π4me E εωK ==v N 1092.1π3π4920220212⨯===aεe r εq q F 2204π1Lr Q εE -=2204π21L r r Q εE +=分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为整个带电体在点P 的电场强度接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,(2) 若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是证 (1) 延长线上一点P 的电场强度,利用几何关系 r ′=r -x 统一积分变量,则电场强度的方向沿x 轴. (2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为利用几何关系 sin α=r /r ′, 统一积分变量,则当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r r q εe E 20d π41d '=⎰=E E d ⎰=LE i E d ⎰⎰==Ly E αE j j E d sin d ⎰'=L r πεq E 202d ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰E r εq αE L d π4d sin 2⎰'=22x r r +='()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线. 5 -10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元,在点O 激发的电场强度为由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系,统一积分变量,有积分得 5 -11 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.rελL r L Q r εE l 0220π2 /41/π21lim =+=∞→θθR δS δq d sin π2d d 2⋅==()i E 3/2220d π41d r x qx ε+=θR x cos =θR r sin =()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+=02/004d cos sin 2εδθθθεδE π⎰==分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为,而夹角为2θ.叠加后水分子的电偶极矩大小为,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1 水分子的电偶极矩在电偶极矩延长线上解2 在对称轴线上任取一点A ,则该点的电场强度由于 代入得 测量分子的电场时, 总有x >>r 0 , 因此, 式中,将上式化简并略去微小量后,得 5 -12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.00er P =θer P cos 20=302π41x p εE =θer θP P cos 2cos 200==30030030cos π1cos 4π412π41x θer εx θer εx p εE ===+-+=E E E 2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+θxr r x r cos 202022-+=rθr x βcos cos 0-=()⎥⎥⎦⎤⎢⎢⎣⎡--+-=23/20202001cos 2cos π42x θxr r x θr x εe E ()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x θr x x θr x θxr r x cos 2231cos 21cos 2033/2033/20202300cos π1x θe r εE =分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力. 解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有(2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.5 -13 如图为电四极子,电四极子是由两个大小相等、方向相反的电偶极子组成.试求在两个电偶极子延长线上距中心为z 的一点P 的电场强度(假设z >>d ).分析 根据点电荷电场的叠加求P 点的电场强度.解 由点电荷电场公式,得()i i E E E x r x r ελx r x ελ-=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2i E F 00π2r ελλ==-+i E F 002π2r ελλ-=-=+-考虑到z >>d ,简化上式得 通常将Q =2qd 2 称作电四极矩,代入得P 点的电场强度5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而解1 由于闭合曲面内无电荷分布,根据高斯定理,有依照约定取闭合曲面的外法线方向为面元d S 的方向,解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为① ()()k k k E 202020π41π412π41d z q εd z q εz q ε++-+=()()k k k E 42022220222206π4...321...32112π4/11/1112π4z qd εq z d z d z d z d z z εq z d z d z z εq =⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-=k E 403π41zQ ε=⎰⋅=S S d s E Φ∑⎰==⋅01d 0q εS S E ⎰⎰'⋅-=⋅=S S S E S E Φd d ⎰⎰'⋅-=⋅=S S S E S E Φd d E R πR E 22πcos π=⋅⋅-=Φ()r θθθE e e e E sin sin cos sin cos ++=5 -15 边长为a 的立方体如图所示,其表面分别平行于Oxy 、Oyz 和Ozx 平面,立方体的一个顶点为坐标原点.现将立方体置于电场强度 (k ,E 1 ,E 2 为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量.解 如图所示,由题意E 与Oxy 面平行,所以任何相对Oxy 面平行的立方体表面,电场强度的通量为零,即.而考虑到面CDEO 与面ABGF 的外法线方向相反,且该两面的电场分布相同,故有同理因此,整个立方体表面的电场强度通量5 -16 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径(为地球平均半径).由高斯定理r θθR e S d d sin d 2=ER θθER θθER SS2π0π2222πdsin d sin dd sin sin d ===⋅=⎰⎰⎰⎰S E Φ()12E kx E +E =i +j 0==DEFG OABC ΦΦ()[]()2221ABGF d a E dS E kx E =⋅++=⋅=⎰⎰j j i S E Φ22a E ABGF CDEO -=-=ΦΦ()[]()2121AOEF d a E dS E E -=-⋅+=⋅=⎰⎰i j i S E Φ()[]()()2121BCDG d a ka E dS E ka E Φ+=⋅++=⋅=⎰⎰i j i S E 3ka ==∑ΦΦ1m V 120-⋅E R R ≈E R ∑⎰=-=⋅q εR E E 021π4d S E地球表面电荷面密度单位面积额外电子数5 -17 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有根据高斯定理,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为,每个带电球壳在壳内激发的电场,而在球壳外激发的电场由电场叠加可解得带电球体内外的电场分布解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理得球体内(0≤r ≤R )∑--⨯-=-≈=2902cm 1006.1π4/E εR q σE 25cm 1063.6/-⨯=-=e σn ()()R r ρkr ρ>=≤≤= 0R r 02Sπ4d r E ⋅=⋅⎰S E ⎰⎰=⋅V ρεd 1d 0S E r r ρq ''⋅=d π4d 20d =E rrεqe E 20π4d d =()()()()R r r r Rr>=≤≤=⎰⎰d R r 0d 0E E E E ⎰⎰=⋅V ρεd 1d 0S E ()4202πd π41π4r εk r r kr εr r E r==⎰球体外(r >R )解2 将带电球分割成球壳,球壳带电由上述分析,球体内(0≤r ≤R )球体外(r >R )5 -18 一无限大均匀带电薄平板,电荷面密度为σ,在平板中部有一半径为r 的小圆孔.求圆孔中心轴线上与平板相距为x 的一点P 的电场强度.分析 用补偿法求解利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场.本题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限大带电平面和带电圆盘的电场叠加,求出电场的分布.若把小圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度σ′=-σ)的小圆盘.这样中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和. 解 由教材中第5 -4 节例4 可知,在无限大带电平面附近为沿平面外法线的单位矢量;圆盘激发的电场它们的合电场强度为()r εkr r e E 024=()4202πd π41π4r εk r r kr εr r E R==⎰()r εkR r e E 024=r r r k V ρq '''==d π4d d 2()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰n εσe E 012=n e n r x x εσe E ⎪⎪⎭⎫⎝⎛+--=220212在圆孔中心处x =0,则E =0在距离圆孔较远时x >>r ,则上述结果表明,在x >>r 时,带电平板上小圆孔对电场分布的影响可以忽略不计.5 -19 在电荷体密度为ρ 的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O ′的矢量用a 表示(如图所示).试证明球形空腔中任一点的电场强度为分析 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ 的均匀带电球和一个电荷体密度为-ρ、球心在O ′的带电小球体(半径等于空腔球体的半径).大小球体在空腔内P 点产生的电场强度分别为E 1 、E 2 ,则P 点的电场强度 E =E 1 +E 2 . 证 带电球体内部一点的电场强度为所以 , 根据几何关系,上式可改写为n rx x εσe E E E 22212+=+=n nεσx r εσe e E 02202/112≈+=a E 03ερ=r E 03ερ=r E 013ερ=2023r E ερ-=()210213r r E E E -=+=ερa r r =-21a E 03ερ=5 -20 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而 .在确定高斯面内的电荷后,利用高斯定理即可求出电场强度的分布.解 取半径为r 的同心球面为高斯面,由上述分析r <R 1 ,该高斯面内无电荷,,故 R 1 <r <R 2 ,高斯面内电荷 故 R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B )所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .24d r πE ⋅=⎰S E ∑q ∑⎰=/d εq S E ∑=⋅02/π4εq r E 0=∑q 01=E ()31323131R R R r Q q --=∑()()23132031312π4r R R εR r Q E --=2013π4r εQ E =20214π4r εQ Q E +=230234π4ΔεσR εQ E E E ==-=分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且,求出不同半径高斯面内的电荷.即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理r <R 1 ,在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1 <r <R 2 ,r >R 2,在带电面附近,电场强度大小不连续,电场强度有一跃变这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.⎰⋅=rL E d π2S E ∑q ∑=⋅0/π2εq rL E 0=∑q 01=E L λq =∑rελE 02π2=0=∑q 03=E 000π2π2ΔεσrL εL λr ελE ===分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为其中E 是点电荷Q 1 、Q 3 产生的合电场强度. (2) 根据电场力作功与电势能差的关系,有其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零解得由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为解2 与解1相同,在任一点电荷所受合力均为零时,并由电势 的叠加得Q 1 、Q 3 在点O 的电势将Q 2 从点O 推到无穷远处的过程中,外力作功比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.5 -23 已知均匀带电长直线附近的电场强度近似为l E d 02⎰∞=Q W ()0202V Q V V Q W =-=∞()02π4π420312021=+d εQ Q d εQ Q Q Q Q 414132-=-=()2/322031π2yd εQ E E E yy y +=+=()dεQ y y d εQ Q Q W y 022/322002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E Q Q 412-=dεQd εQ d εQ V 003010π2π4π4=+=dεQ V Q W 0202π8=-='。
(完整版)电磁学(梁灿彬)第五章稳恒电流的磁场
§1 基本磁现象概述 (summary of basic magnetic phenomenon)
一、磁的基本现象
对磁现象的认识很早 最早发现的磁现象:天然磁石吸铁, 我国远在春秋战国时期(公元前六、七世 纪)的古书中已有记载
电磁学讲义
Electromagnetism Teaching materials
CH5 稳恒电流的磁场
2010级物理学专业
前言(Preface)
一、本章的基本内容及研究思路
静止电荷的周围存在着电场 运动电荷周围,不仅有电场,而且还有磁场。 不随时间变化的磁场称为稳恒磁场,有时也 称为“静磁场”。 稳恒电流激发的磁场就是一种稳恒磁场。 运动的电荷(或电流)要产生磁场,磁场又 会对其他的运动电荷(或电流)有作用力。 本章就是从这两个方面来研究磁场的。
大量实验证明,电现象和磁现象存在相互联系。 我们知道,电的作用是“近距”的,磁极或电 流之间的相互作用也是这样的,不过它通过另 外一种场—磁场来传递的。
用磁场的观点,可以把上述关于磁铁和磁铁, 磁铁和电流,以及电流和电流之间相互作用的各 个实验统一起来,概括成这样一个图示:
磁铁 电流
磁场
磁铁 电流
安培认为,任何物质的分子都存在环形电流, 称为分子电流,分子电流产生的磁场在轴线上的 方向可以用右手定则来判断,每一个分子电流相 当于一个小磁体。当物质中的分子电流排列得毫 无规则时,他们的磁场互相抵消,整个物体不显 磁性,但是,在一定条件下,这些分子电流比较 有规则的定向排列起来,他们的磁场互相加强, 整个物体就会显示出磁性。
安培的分子电流的想法基本上是正确的,近 代物理学证实,分子电流是由原子中的各个电子 自旋和电子的轨道运动合成的结果。
大学电磁学课件5.2毕奥—萨伐尔定律
µ
0
B
nI 2
A1
O
A2
例题1 一个半径R为的塑料薄圆盘 电量+q均匀 为的塑料薄圆盘, 例题 1. 一个半径 为的塑料薄圆盘 , 电量 均匀 分布其上, 分布其上 , 圆盘以角速度 ω绕通过盘心并与盘面垂直 的轴匀速转动。求圆盘中心处的磁感应强度。 的轴匀速转动。求圆盘中心处的磁感应强度。 解 : 带电圆盘转动形成圆电流, 带电圆盘转动形成圆电流 , 处宽度为d 的圆环作圆电 取距盘心 r 处宽度为dr的圆环作圆电 流,电流强度 + + + + + + + + +o + + + + + ω
毕奥—萨伐尔定律是一个实验定律,它是由一些简 单的、典型的载流导体所产生的磁场为基础,经分 析、归纳出的定律,而不是由电流元直接得出的, 事实上,也不可能得到单独的电流元。 实验表明,磁场和电场一样,遵从叠加原理,即任 v 意载流导线在空间某点的磁感应强度 B等于所有电 流元在该点的磁感应强度矢量和
v v ˆ µ 0 Id l × e r dB = 4π r2
I
r Idl θ
r r
•P
r dB
r r 式中dB 是电流元Idl在场中任一点P产生的磁感应强度, r µ0 ˆ 为由er 指向P点的单位矢量, 称为真空磁导率,是 Idl µ 0 = 4π × 10 −7 T ⋅ m ⋅ A −1 一个有量纲的常数,
本节讲授
第五章
恒定电流的磁场
§5.2 毕奥—萨伐尔定律 毕奥—
主讲: 主讲:物电学院副教授 尹绍全
一.毕奥-萨伐尔定律 毕奥-
电流周围有磁场,稳恒电流的磁场是稳恒磁场。 电流周围有磁场,稳恒电流的磁场是稳恒磁场。由 于稳恒电流总是闭合的,且形状各异, 于稳恒电流总是闭合的,且形状各异,所以要想求得总 磁场分布,必须先研究一小段电流的磁场。 磁场分布,必须先研究一小段电流的磁场。沿电流方向 r 称作电流元 电流元。 取一小段电流 Idl ,称作电流元。 1820年 法国科学家毕奥、 1820年,法国科学家毕奥、萨伐尔和拉普拉斯在实 验基础上,分析总结出电流元产生磁场的规律: 验基础上,分析总结出电流元产生磁场的规律:毕 萨伐尔定律( 以下简称毕—萨定律),其内容如 萨定律), 奥—萨伐尔定律( 以下简称毕 萨定律),其内容如 萨伐尔定律 下: r 产生的磁感强度为: 电流元 Idl 在场点 P产生的磁感强度为: 产生的磁感强度为
电磁学 (王楚 李椿 周乐柱 著) 北京大学出版社 课后答案 第五章 课后答案【khdaw_lxywyl】
电动势做功
W (Q Q0 )U (
r 0 S
d
U
0S
d
U )U ( r 1)
0S
d
电动势做功是电场能增加量的两倍,多余的能量哪里去了? 我们不能简单地把本题看作一个恒压源
导线必然有电阻, 搬运 电源必然有内阻, 电荷形成电流,必然有伴随磁场,则必
后 答
w.
图一 R
案 网
1 2
平行导体板之间的电位移矢量: D c
无电介质填充的时候,平行导体板之间的电场为:
则此时电(场)能密度为:
填充介质后电场为:
w.
电能密度为:
we
kh
we
ww
则有:
we' we r
即系统的电能在填充介质后变为原来的 1 r 。
da
E D
后 答
课
1 D2 DE 2 2 0
(2)束缚电荷在球内产生方向与 P 相反的均匀电场 束缚电荷在球外的场,可视为电偶极矩的电场
kh
p sin 96.3sin Vm 1 3 4 0 r 1
1 2 p cos 2 1.07 1011 cos 9 Er 9.0 10 192 cos Vm 1 3 3 4 0 r 0.1
P ,电动势对束缚电流做功,并储存成电场 t
与束缚力场的性互作用能,增加电能。
da
A
课
后 答
w.
案 网
co
m
设两板间距离为 d
1 U2 w (We ' We ) Sd ( r 1) 0 S 2 d
(3) 电动势做功为搬运电荷 Q Q0 升高电势 U 所做的功,Q0 为充
电工基础知识 (4)
三、理解要点
第一节 电磁学槪论
11
〔三〕电场和磁场的根本定律 1.电荷守恒和电流连续性原理 电荷是守恒的,它既不能产生也不能消灭。 2.库仑力定律 两个点电荷之间作用力的大小与两电荷量乘
积成正比,与距离的平方成反比。 3.安培力定律 有关两个电流回路之间磁场力的定律,安培
力定律是研究磁场力的根底。
对单于位纯:电瓦P阻〔性WAt 〕负 U或载I (,kWP) AUII2RU2
t
R
四、掌握重点
第一节 电磁学槪论
14
〔三〕电流的热效应
电流通过导体时产生热的现象。 焦耳定律, Q I 2 Rt QI2Rt W
对于纯电阻性负载,产生的热量与电流做 的功相等, QI2RtUItU2tA
R
单位:焦耳〔J〕。
电压与相电压相等。
四、掌握重点
第一节 电磁学槪论
26 6.三相负载有功功率、无功功率和视在功率
P3U PIPcos3U lIlcos Q3U PIPsin3U lIlsin
S3UPIP 3UlIl
S P2 Q2
一、知识结构
第二节 电力基础知识
27
电力系统
电力系ห้องสมุดไป่ตู้ 与电力网
电力网
电力系统的基本参量和结线图
Em 。
〔四〕电子技术根底
1.PN结的单向导电性
二、了解内容
第一节 电磁学槪论
5
2.二极管 二极管的主要特性是单向导电性。可把交流 电整流为直流电。
3.三极管: 结构:三极管三个电极,三个区、两个PN结。 功能:能起放大、振荡或开关等作用。 三极管有PNP型和NPN型两种。
三、理解要点
第一节 电磁学槪论
电磁学答案第二版习题答案第五章
J G
J G
J G
J G
J G
J G
B1 = B3 =
uI 3u0 I B2 = 0 (cos 900 − cos1350 ) 4π b 4 × 2a , u0 I (cos 450 − cos 900 ) B = B5 = 0 4π b , 4
解得: 5.2.4
B0 = B1 + B2 + B3 =
5.3.2 二无限长载流直导线与一长方形架共面(如图) ,已知a=b=c=10cm, l =10m,I=100A,求框架 的磁通量。 解 : 建 立 坐 标 如 图 , 取 dS = ldx , ds 所 在 处 的 磁 场 : ∵
B=
u0 I u0 I + 2π x 2π (a + b + c − x)
u0 I u dI Q dI = 2nπ rdr 2 dB = 0 2 R ,此处 2R , 2a
∴
B = ∫ dB = ∫
a
0
u0 nQ u nQR dr = 0 2 a a
5.2.17 半径为R的非倒替球面均匀带电,电荷面密度为 σ ,球心的直线为轴旋转,角速率为 ω ,求球 心的磁场大小B。
3 u0 I 1 u0 I B3 = 4 2R , 2 2π R u0 I 3π (1 + .2 电流I沿附图(a) (b)所示的导线流过(图中直线部分伸向无限远) ,求O点的磁场B。
解: (a)∵B1=0,
B2 =
解得:
B0 = B1 + B2 =
l
B=
u0 ΔI 2π R , B= u0 h πR
∵ ΔI = 2 h ∴
5.2.13 将上题的导体管沿轴向割去一半(横截面为半圆) ,令所余的半个沿轴向均匀地流过电流I,求 轴线上的磁场(大小)B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1820年7月21日,发 表了《电流对磁针的 作用的实验》,引起 了学术界的轰动。
5)电冲突和螺旋线:奥斯特把导体周围空间发生的这种效 应称为“电冲突”。他指出:“这种冲突呈现为圆形,否则 就不可能解释这种现象:当磁极放在导线下面时,磁极被 推向东方;当磁极被置于导线上方时,磁极被推向西方。 其原因是,只有圆才具有这样的性质,其相反部分的运具 有相反的方向。此外,沿着导线长度方向连续前进的圆形 运动必然形成蜗线或螺旋线。” 6)旋转力与中心力:奥斯特的发现和牛顿力学的基本原理 是相互矛盾的。在牛顿力学中,自然界的力只能是作用于物 体连线上的吸引或排斥力,即直接推拉性质的“中心力”。 而奥斯特发现的却是一种“旋转力”。他所说的“螺旋线”, 实际上就是关于磁的横向效应或电流所引起的涡流磁场的直 观描述。是“场”的思想的开端。
电
磁
学
的
新
时
期
4)1819冬--1820年4月,奥斯特在给学生上“电学、伽伐尼 电流和磁学”课程时,在一次讲课中,他将磁针放在了导线 的下面。当他接通电源时,发现磁针轻微的晃动了一下! 正 是这一轻微的晃动,奥斯特马上意识到他多年孜孜以求的东 西就要实现了。奥斯特紧抓不放,经过反复实验,查明了电 流具有磁效应。
变 第
磁
生
电
的
发
现
者 —— 法
拉
1830至1839年是法拉第成就最大的时期,是对现代电学 发现作出贡献的第一流科学家。1821年他对奥斯特发现的电 流磁作用的研究,导致他十年后的重大发现。 1824年,当选为英国皇家学会会员;1825年任皇家学 院实验室主任。法拉第一生发明极多,他发现了电磁感应现 象,建立了电磁感应定律;发明了第一台电动机和发电机; 发现了电流的化学作用的规律,即法拉第电解定律;提出了 电场和磁场等重要概念;1845年,他发现了抗磁性;他的巨 著《电学的实验研究》中有三千多个条目,成功与失败的实 验16041个。 法拉第一生热衷科学事业,不好功名利禄。英国女王 曾多次想对他封爵,都被他谢绝;晚年,英国首相想给他每 年300英镑的退休金时,被他推辞;1858年英国史学家廷德 尔提议让他担任皇家学会会长,他也坚决推辞。
(1)实验一:对折导线电流的作用
安培用对折的导线进行探测,在其两端通入大小相等、 方向相反的电流,把它移近无定向秤附近的不同部位,观察 无定向秤的反映,以检验它对无定向秤的作用。
下方为对折导线
实验证明,这种作用不存 在,无定向秤丝毫不动。 这表明:强度相等、方向 相反的两个靠的很近的电 流产生的作用力也是大小 相等、方向相反的。
I 1 I 2 dL2 (dL1 r12 ) dF K 12 3 r12
可以看出,电流元之间的相互作用的数学形式类似于 电荷之间相互作用的库仑定律。
3.分子电流假说
安培接受了法国数学家菲涅尔的意见,从微观去考虑分 子电流来认识物质磁性的起因。经过反复分析和思考,于 1821年,提出了著名的“分子电流假说”,成功的解释了物 质宏观磁性形成的内在原因。安培假设:磁性物质内存在 无数微小的“分子电流”,它们用不衰竭地沿着闭合的路 径流动,从而形成一个个小磁体。
通电后,安培 用各种载流线圈检测 对这个装置的作用, 结果发现:都不能使 圆弧导体运动。这表 明:作用在电流元上 的力与它垂直。
(4)实验四:圆形导线电流作用力与距离的关系。
1、2、3是三个几何形状相似的线圈,其半径之比分别 等于其距离之比。1、3线圈固定并串联在一起,通入相同电 流I1;线圈2通入电流I2并可以左右移动;由于线圈1和3在 线圈2的两侧,它们对线圈2的作用力的方向是相反的。安培 用这一装置检验1、3对2的作用。
法 拉 第
当上了戴维的助手后,不久他就成为皇家学院的一员。 1813年戴维夫妇决定去欧洲大陆游历,他们带着法拉第作为 秘书。这次旅游进行了18个月,这对法拉第的教育起了重大 作用。他见到了许多著名的科学家,象安培、伏特、阿尔戈 和盖•吕萨克等,其中几位学者立即发现了这位陪伴戴维的朴 实年青人的才华。 从欧洲大陆旅游回来后,他几年内都致力于化学分析, 并在皇家学院担任助手工作。他在1816年发表了第一篇论 文,论述了托斯卡纳生石灰的性质。1860年前后,法拉第 的研究活动结束时,他的实验笔记已达到一万六千多条, 他仔细地依次编号,分订成许多卷。
“顿牟缀芥,磁石引针”说明电现象和磁现象的相似 性;电力与磁力都遵守平方反比定律,说明它们有类似的规 律。但电与磁有没有联系呢? 17世纪初,吉尔伯特断言,他们之间没有因果关系;库仑 也持相同观点。但: 1731年一名英国商人的一箱新刀在闪电过后带上了磁性; 1751年,富兰克林发现缝纫针经过莱顿瓶放电后磁化了。 1774年,德国一家研究机构悬奖征解,题目是:“电力和 磁力是否存在实际和物理的相似性?”
§5.电流的磁效应与安培定律
自吉尔伯特开始以来的二百多年,电和 磁一直是毫无关系的两门学科,围绕电与磁寻 找自然现象之间的联系,成为一种潮流。 1820年,奥斯特发现了电流的磁效应, 从而建立了电与磁的联系。
一.发现电流磁效应
二.安培和安培定律
电
磁
学
的
新
时
期
一.发现电流磁效应
1.电和磁有没有联系?
电
磁
学
的
新
时
期
1)1803年他曾说:“我们的物理学将不再是关于运动、热、空 气、光、电、磁以及我们所知道的任何其他现象的零散的罗 列,我们将把整个宇宙容纳在一个体系中。”他认为“自然 力之统一”。 2)1812年发表《关于化学力和电力的同一性研究》,表明他 已经将自然力的统一思想运用到物理学和化学的研究中去了。 他从电流流经直径较小的导线时导线会生热的现象推测,如 果导线直径再小,就可能发光,直径再继续减小,就会产生 磁。并指出:“我们应该检验的是,究竟电是否以其最隐蔽的 方式对磁体有所影响。” 3)但是他认为电流对磁体的作用是纵向的,所以他的猜测 一直未能实现。他在通电的导线前(侧)面放一根磁针,企 图用通电的导线去吸引磁针。然而,导线灼热了,甚至烧 红发光了,磁针毫无动静。但奥斯特深信,电和磁有某种 联系,就像迪那和发热发光的现象一样。
结果通电后,中间线圈丝毫 不动,说明线圈1和3对线圈 2的作用相互抵消。由此得 出结论:载流导线的长度与 作用距离增加相同倍数时, 作用不变。
一个假设
两个电流元之间的相互作用力沿它们的连线方向。
安培定律的建立:
在上述四个实验和这个假设的基础上,安培推出了 电流元之间相互作用力的公式:
上式表示电流元dL1施加给电流元dL2的作用力df12, dL1和dL2之间的距离为r12。
法拉第所研究的课题广泛多样,按编年顺序排列,有如 下各方面:铁合金研究(1818-1824);氯和碳的化合物 (1820);电磁转动(1821);气体液化(1823,1845); 光学玻璃(1825-1831);苯的发明(1825);电磁感应现 象(1831);不同来源的电的同一性(1832);电化学分解 (1832年起);静电学,电介质(1835年起);气体放电 (1835年);光、电和磁(1845年起);抗磁性(1845年 起);"射线振动思想"(1846年起);重力和电(1849年 起);时间和磁性(1857年起)。 在大约1830年以前,法拉第主要是一位化学家。1827 年出版了六百多页的巨著《化学操作》。那时他已成为很 有成就的专业分析化学家和实际顾问,已赢得了国际声誉。
电
磁
学
的
新
时
期
3.意义
1)第一个揭示出了电与磁之间的内在联系。 2)为电流计、电报和电机的发明制造开辟了道路。 3)为电磁场理论的发展奠定了基础。
在观察的领域内,机遇只偏爱那种有 准备的头脑。 ——巴斯德
二.安培和安培定律
1.安培简介 2.安培的四个实验和一个假设 3 分子电流假说 4.安培环路定理的提出 5.安培的科学研究方法
电
磁
学
的
新
时
期
1.安培 (A.M.Ampè ,1775~1836 年) :法国物理学家,对数学
和化学也有贡献。生于里昂一 个富商家庭。安培在法国长大 时,正是法国社会变革时期, 他几乎没受过正规教育,他的 父亲信奉J.J.卢梭(植物学家) 的教育思想,供给他大量图书, 令其走自学道路,于是他博览 群书,吸取营养;
背景:
奥斯特发现电流磁效应的消息传到世界各地,在瑞士参 加日内瓦科学会议的法国物理学家阿拉果得知此消息后,随 即回国。于同年9月11日向法国科学院报告并重复了奥斯特的 实验。 这一效应引起了法国科学家安陪的极大兴趣。经过一周 的夜以继日的工作后,于9月18日发现了电流间也存在着相互 作用力;接着提出了一个完整的定量理论;并于1820年9月与 10月间,接连写了三篇论文;在1820年12月4日,又提出了著 名的安培定律;1827年发表了名著的《从实验导出的关于电 动力学现象的数学理论》。为电动力学的产生奠定了基础。 人们为纪念他,将电流强度的单位定义为“安培”。
电
磁
学
的
新
时
期
5.安培的科学研究方法
(1)善于接受他人的成果和意见; (2)善于设计实验,以检验自己的设想; (3)擅长把实验研究的成果进行归纳和总结,并上升到 理论高度。
安培在《电动力学理论》书中,总结了他处理电磁现 象的方法是:沿着牛顿所走的道路,遵循法国物理学家拉 普拉斯的途径,将一切物理现象归结为粒子间吸引或排斥 现象,并将它们付诸数学形式加以表征。安培把牛顿力学 引入电学,从而创立了电动力学。迈克斯韦称其为“电学 中的牛顿”。
第五章 经典电磁学的建立与发展(2)
§1.对电磁现象的早期认识 §2.富兰克林对雷电现象的研究 §3.从定性到定量——库仑定律的发现 §4 .由静电到动电——电流的发现
§5.电流的磁效应与安培定律 §6.电磁感应现象的发现与研究