第二章电磁学 PPT

合集下载

电磁学基本理论 ppt课件

电磁学基本理论  ppt课件
2
0

0 I
4a
ˆz a
ppt课件
O点产生的磁感应强度: 0 I
B B1 B2 B3
ppt课件 2
3. 库仑定律
F21
q1q2 ˆR21 a 2 4π 0 R21
其中: 0为真空中介电常数。
0
1 109 8.85 1012 36 π
q1
R21
q2
F/m
q1
4. 电场强度的计算 q1qt2 ˆR21 F21 a 2 4π 0 R21
R21
q 2t
E

q 1 1 q R2 R1 4π 0 R1 R2 4π 0 R R 1 2
R1 R l cos 2 l R2 R cos 2
因为: l R 则: R2 R1 l cos
2 l R2 R1 R 2 cos2 R 2 4
15
(三) 磁场
Fm
产生磁场的源: a.永久磁铁 b.变化的电场 c.电流周围,即运动的电荷
v
B
1. 什么是磁场?
Fm qv B
存在于载流回路或永久磁铁周围空间,能对运动电荷 施力的特殊物质称为磁场。 ˆv Fm a B lim qt 0 2. 磁感应强度 B的定义 qt v
ˆv 和磁感应强度 B 三者相互 可见: 磁场力 Fm 、运动速度 a 垂直,且满足右手螺旋法则。
ppt课件 16
3. 磁感应强度的计算
安培力实验定律:
dF21 ˆR ) 0 I 2dl2 ( I1dl1 a 4π R
2
电流元
I1
I 2dl2
I2
I1dl1

大学物理《电磁学》PPT课件

大学物理《电磁学》PPT课件

欧姆定律
描述导体中电流、电压和电阻之间关系的 定律。
电场强度
描述电场强弱的物理量,其大小与试探电 荷所受电场力成正比,与试探电荷的电荷 量成反比。
恒定电流
电流大小和方向均不随时间变化的电流。
电势与电势差
电势是描述电场中某点电势能的物理量, 电势差则是两点间电势的差值,反映了电 场在这两点间的做功能力。
电介质的极化现象
1 2
电介质的定义 电介质是指在外电场作用下能发生极化的物质。 极化是指电介质内部正负电荷中心发生相对位移, 形成电偶极子的现象。
极化类型 电介质的极化类型包括电子极化、原子极化和取 向极化等。
3
极化强度
极化强度是描述电介质极化程度的物理量,用矢 量P表示。极化强度与电场强度成正比,比例系 数称为电介质的电极化率。
磁场对载流线圈的作用
对于载流线圈,其受力可分解为沿线圈平面的法向力和切线方 向的力,分别用公式Fn=μ0I²S/2πa和Ft=μ0I²a/2π计算。
05
电磁感应原理及技 术应用
法拉第电磁感应定律
法拉第电磁感应定律的内容
01
变化的磁场会产生感应电动势,感应电动势的大小与磁通量的
变化率成正比。
法拉第电磁感应定律的数学表达式
安培环路定理及其推广形式
安培环路定理
磁场中B沿任何闭合路径L的线积分, 等于穿过这路径所围面积的电流代数 和的μ0倍,即∮B·dl=μ0∑I。
推广形式
对于非稳恒电流产生的磁场,安培环路 定理可推广为 ∮B·dl=μ0∑I+ε0μ0∂/∂t∮E·dl。
磁场对载流导线作用力计算
载流导线在磁场中受力
当载流导线与磁场方向不平行时,会受到安培力的作用,其大 小F=BILsinθ,方向用左手定则判断。

大学物理《电磁学》PPT课件

大学物理《电磁学》PPT课件

电场性质
对放入其中的电荷有力的作用 ,且力的方向与电荷的正负有 关。
磁场性质
对放入其中的磁体或电流有力 的作用,且力的方向与磁极或
电流的方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相互作用 力,与电荷量的乘积成正比,与距离的平方 成反比。
高斯定理
通过任意闭合曲面的电通量等于该曲面内所包围的 所有电荷的代数和除以真空中的介电常数。
当导体回路在变化的磁场中或导体回路在恒定的磁场中运动时
,导体回路中就会产生感应电动势。
法拉第电磁感应定律公式
02
E = -n(dΦ)/(dt)。
法拉第电磁感应定律的应用
03
用于解释电磁感应现象,计算感应电动势的大小,判断感应电
动势的方向。
自感和互感现象分析
自感现象
当一个线圈中的电流发生变化时 ,它所产生的磁通量也会随之变 化,从而在线圈自身中产生感应 电动势的现象。
程称为磁化。随着外磁场强度的增大,铁磁物质的磁感应强度也增大。
03
铁磁物质的饱和现象
当铁磁物质被磁化到一定程度后,其内部磁畴的排列达到极限状态,此
时即使再增加外磁场强度,铁磁物质的磁感应强度也不会再增加,这种
现象称为饱和现象。
04
电磁感应与暂态过程
法拉第电磁感应定律及应用
法拉第电磁感应定律内容
01
06
现代电磁技术应用与发展趋势
超导材料在电磁领域应用前景
超导材料的基本特性:零电阻、完全抗磁性
超导磁体在MRI、NMR等医疗设备中的应用
超导电缆在电力传输中的优势及挑战
高温超导材料的研究进展及潜在应用
光纤通信技术发展现状及趋势

电磁学PPT课件

电磁学PPT课件
电磁学PPT课件
目录
• 电磁学基本概念与原理 • 静电场分析与应用 • 恒定电流与稳恒磁场研究 • 电磁波传播与辐射特性探讨 • 电磁学在日常生活和工业生产中应用实例
01
电磁学基本概念与原理
Chapter
电场与磁场定义及性质
01
电场
由电荷产生的特殊物 理场,描述电荷间的 相互作用。
02
磁场
由运动电荷或电流产 生的特殊物理场,描 述磁极间的相互作用 。
3
方程组中各量的含义及相互关系
E(电场强度)、B(磁感应强度)、D(电位移 矢量)、H(磁场强度)、J(电流密度)、ρ( 电荷密度)等。
电磁波产生、传播和接收过程
电磁波的产生
变化的电场和磁场相互激发,形 成电磁波。
电磁波的传播
电磁波在真空或介质中传播,速度 取决于介质的性质。
电磁波的接收
通过天线等接收装置,将电磁波转 换为电信号进行处理。
描述稳恒磁场的方法
介绍描述稳恒磁场的物理量,如磁感应强度、磁通量等,并给出相 应的定义和计算公式。
稳恒磁场的性质
列举稳恒磁场的基本性质,如磁场的叠加性、磁场的无源性等。
洛伦兹力与霍尔效应原理
洛伦兹力的定义和公式
阐述洛伦兹力的概念,即运动电荷在磁场中所受到的力,并给出 相应的计算公式。
霍尔效应的原理
03
电场性质
对电荷有力的作用, 具有能量和动量。
04
磁场性质
对运动电荷或电流有 力的作用,也具有能 量和动量。
库仑定律与高斯定理
01
02
03
库仑定律
描述真空中两个静止点电 荷之间的相互作用力,与 电荷量的乘积成正比,与 距离的平方成反比。

第二章电磁学PPT课件

第二章电磁学PPT课件

E10 (rR3)
-q
q
E24πq0r2 (R3rR2)
R3
E 30 (R 1rR 2)
E4 4π2q0r2
.
(R1r)
R2 R1
3U 8 O4π q0(R 1 3-R 1 2R 2 1)2.3 1 130 V
第二章 静电场中的导体和电介质
§2-1 静电场中的导体 §2-2 电容和电容器 §2-3 电介质 §2-4 电场的能量和能量密度
外表面所带的电量由电荷守恒定律决定。
.
31
三 静电屏蔽
1 屏蔽外电场
E
E
外电场
空腔导体屏蔽外电场
空腔导体可以屏蔽外电场, 使空腔内物体不受外电 场影响.这时,整个空腔导体和腔内的电势也必处处相等.
.
32
2 屏蔽腔内电场
接地空腔导体 将使外部空间不受 空腔内的电场影响.
接地导体电势为零
+
+
+
q
别带上电荷量q和Q.试求:
(1)小球的电势UR,球壳内、外表面的电势; (2)两球的电势差; (3)若球壳接地,再求小球与球壳的电势差。
解:小球在球壳内外表面感应出电荷-q、q
球壳外总电荷为q+Q。
Q
R2
q
R R1
.
35
(1)小球的电势UR,球壳内、外表面的电势
UR410(R q-R q1qR 2Q)

-+
R2

-
-
+-
R
1
+ +
-

+-*P-
R2 ,
C4π .
R 450 1
孤立导体球电容
例3 两半径为 R的平行长直导线中心间距为d ,

中科大电磁学课件 第二章

中科大电磁学课件 第二章

图2.15 平行板电容器
图2.16 同心球面电容器
2、等离子体和超导体
? 部分或完全电离的气体,由大量自由电 子和正离子以及中性原子、分子组成的 电中性物质系统。
? 是有序态最差的聚集态。
? 是宇宙物质存在的主要形态,宇宙中 99.9%的物质是等离子体。
? 超导体 处于电阻为零(10-28 Ωm)的超 导状态的物体。
图2.1 北极光
图2.2太阳风
图2.11 范德格拉夫起电机示意图
图2.10 范德格拉夫 起电机展示图
§2.2.3 导体壳与唯一性定理
(1)腔内无带电体情形 ? 基本性质 ? 当导体腔内无带电体时,静电平衡下,
导体壳的内表面处处无电荷,电荷只分 布在外表面上; ? 空腔内没有电场,空腔内电势处处相等。 ? 法拉第圆筒 内表面无电荷的实验验证。 ? 库仑平方反比定律的精确验证
(2)腔内有带电体情形
? 基本性质
当导体壳腔内有其它带电体时,在静电平衡状 态下,导体壳的内表面所带电荷与腔内电荷的 代数和为0。
? 静电屏蔽
如前所述,导体壳的外表面保护了它所包围的 区域,使之不受导体壳外表面上的电荷或外界 电荷的影响,这个现象称为静电屏蔽。
图2.12 (a) 腔内无电荷
图2.12 (b)腔内有电荷
? 均匀导体的静电平衡条件 导体内的场强处处为零。 “均匀”是指质料均匀,温度均匀。
? 推断其电场分布特点
(1)导体是个等势体,导体表面是个等势面 (2)靠近导体表面外侧处的场强处处与表面垂直
§2.2.2 静电平衡导体上的电荷 分布特点
(1)体内无电荷,电荷只分布在导体表面; (2)导体表面的面电荷密度与该处表面外
附近的场强在数值上成比例:

大学物理电磁学PPT课件

大学物理电磁学PPT课件

磁场是电流周围存在的一种特殊物质,它 对放入其中的磁体或电流有力的作用。
磁场的描述
磁场对电流的作用
磁场可以用磁感线来描述,磁感线的疏密 表示磁场的强弱,磁感线的切线方向表示 磁场的方向。
磁场对放入其中的电流有力的作用,这个力 的大小与电流的大小、磁场的强弱以及电流 与磁场的夹角有关。
电磁感应定律
电磁感应现象
当闭合回路中的磁通量发生变化时,回路中就会 产生感应电流,这种现象称为电磁感应现象。
楞次定律
感应电流的方向总是要阻碍引起感应电流的磁通 量的变化,即“增反减同”。
法拉第电磁感应定律
感应电动势与磁通量变化率的负值成正比,即E=n(ΔΦ)/(Δt),其中E为感应电动势,n为线圈匝数 ,ΔΦ为磁通量的变化量,Δt为时间的变化量。
在各向同性介质中传播特性
在各向同性介质中,平面电磁波的传播速度、传播方向和电场、磁场分量之间的关系遵 循一定的规律,如折射定律、反射定律等。
反射、折射和衍射现象
反射现象
当电磁波遇到介质界面时,一部分能量被反射回原介质,形成反 射波。
折射现象Βιβλιοθήκη 当电磁波从一种介质传播到另一种介质时,传播方向会发生改变, 形成折射波。
互感现象
当两个线圈靠近并存在磁耦合时,一个线圈中的电流变化会在另一个线圈中产 生感应电动势。互感系数与两个线圈的形状、大小、匝数以及它们之间的相对 位置有关。
交流电路基本概念及分析方法
交流电路基本概念
交流电路是指电流、电压和电动势的大小和方向都随时间作周期性变化的电路。与交流电相对应的是直流电,其 电流、电压和电动势的大小和方向均不随时间变化。
06
电磁学实验方法与技巧
常见电磁学实验仪器介绍

电磁场与电磁波第2章1

电磁场与电磁波第2章1

如图所示,在电流回路 l '所产生的磁场中,任取一闭合回路
l , 设P是 l 回路上的一点,则电流回路 l ' 在P点处产生的
磁感应强度为
Ñ r
B
0
4
r Idl
'
erR
l ' r Rr2
Ñ 0I dl ' R
4 l ' R3
M
d
dl P
n
l
R
S
I l'
r
计算
B
在回路
蜒l Br
r dl
l
上的闭合线积分有
电偶极子在任意一点P的电位为
q ( 1 1 ) q ( r2 r1 ) 40 r1 r2 40 r1r2
式中 r1 和 r2分别是两电荷
到 P 点的距离。
x
z
d
q 2
o
r1 r2
q d 2
P(x, y, z)
y
如果两电荷沿z轴对称分布并且距离P点很远,于是
r 近

1

r 表
示2
r1 r 0.5d cos
r Idl
'
erR
(
1
)
r Idl
'
R2
R
rr
r
Ñ 根据高斯定律
BgdS gBdV
s
v
Ñ m
0 4
g
(
1
)
r Idl
'
dV
v
l' R

Ñ m
0 4
v
1r
g[( ) Idl ']dV
l'
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
q2
4
R
2 2
1R1 2R2, E 亦 然
在带电尖端附近,电离的 分子与周围分子碰撞,使周 围的分子处于激发态发光而 产生电晕现象。
+ +
+ +
+++
+ +
+++
+
尖端效应在大多数情况下是有害的:如高压电线上的电 晕,故此,高压设备中的金属柄都做成光滑的球形。
但尖端效应也有应用:如避雷针、静电喷涂、静电除尘等。
S qE 2ind S -0 q, q i 0
q -q
S1
腔体内表面所带的电量和腔内带电体所带的电量等量异号,腔体
外表面所带的电量由电荷守恒定律决定。
三 静电屏蔽
1 屏蔽外电场
E
E
外电场
空腔导体屏蔽外电场
空腔导体可以屏蔽外电场, 使空腔内物体不受外电 场影响.这时,整个空腔导体和腔内的电势也必处处相等.
+++++ + + +
+
感应电荷
导体的静电感应过程 无外电场时
导体的静电感应过程
E 外
加上外电场后
导体的静电感应过程
E 外
+
加上外电场后
导体的静电感应过程
E 外
+
+
加上外电场后
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
导体的静电感应过程
E 外
+ +
+
+ +
加上外电场后
导体的静电感应过程
如果空腔内表面有电荷
U A BAB E d l0
则与处于静电平衡的导体 是等势体相矛盾。
U A BAB E d l0
+
+A
+ S ++
+
+
B-- +
+ +
+ +
(2)腔内有带电体:
导体壳内部无电荷,电荷
Qq
只分布在导体壳表面
S S 1 E d S 0 ,q i 0 2
导体壳内表面有无电荷?
导体的静电感应过程
E 外
+ + + + + +
+ + + +
加上外电场后
导体的静电感应过程
E 外
+ + + + + +
+ + + +
加上外电场后
静电平衡:静电场中,导体上的电荷不再发生定向移动, 称导体达到了静电平衡。 。
+
+
+
+
+
E 感
E +
43;
+
E内 =
E 外
+
E 感
=
0
导体静电平衡的条件
U P-U QEdlEco 90 s0 d l0
UP
UQ
P
P
二、静电平衡导体上的电荷分布
1. 实心导体 净电荷分布在导体表面,导体内处处无净电荷。
证:导体内任取高斯面S
Eds 1
S
0
qi
+q
S
E 0 q i 0
2.导体表面电荷及场强
设导体表面某处电荷面密度为 (x,y,z)
该处的电场强度为
解:把板看成是无限大,两板四壁的电荷均匀分布,在A、B 板内分别取两点。
(12)SqA
(34)SqB EM2 10-2 20-2 30-2 400 EN2 1 02 2 02 3 0-2 4 00
q1
q2
3
1 2 3 4
A
B
1-2-3-40 2 -3 123-40 1 4
12qA/S
341-2q B/S q1
E 外
+
+
+
加上外电场后
导体的静电感应过程
E 外
+ +
+
+ +
加上外电场后
导体的静电感应过程
E 外
+ +
+
+ +
加上外电场后
导体的静电感应过程
E 外
+ + +
+
+ + +
加上外电场后
导体的静电感应过程
E 外
+ +
+
+ + +
加上外电场后
导体的静电感应过程
E 外
+ + + + +
+ + +
加上外电场后
例:尖端放电—— “电风” 高压线附近的辉光 避雷针的应用 静电除尘
图2.11 范德格拉夫起电机示意图
图2.10 范德格拉夫起电 机展示图
2. 空腔导体
(1)腔内无带电体时:
•净电荷分布在导体外表面
;导体内表面处处无净电
荷。
•空腔内没有电场,空腔内
电势处处相等。
S
S E d S 0 , q i 0
2 屏蔽腔内电场
接地空腔导体 将使外部空间不受 空腔内的电场影响.
接地导体电势为零
+
+
+
q
+
-q+
+ + q+
问:空间各部分的电场强度如何分布 ?
总之,可以利用导体空腔的静电特性形成静电屏蔽 可用导体空腔来保护内部不受外场影响,如所有电
气仪表的表头外部均有一金属外壳。
++++++++
导体空腔接地的情况下,可使金属壳内的场对 外界不产生影响。
q2
1(q A q B )/2 (S )4
2(q A- q B )/2 (S )-3 1 2 3 4
讨论:如果 qB -qA
则 140
A
B
3.孤立带电导体表面电荷分布
(1)一般情况较复杂 孤立的带电导体 电荷分布 实验的定性分布
•在表面凸出的尖锐部分(曲率是正值且较大)电荷面 密度较大;
•在比较平坦部分(曲率较小)电荷面密度较小;
•在表面凹进部分带电面密度最小;
孤立导体处于静电平衡时,表面各处的面电荷密度 与各
处表面的曲率有关,曲率越大的地方,电荷密度也越大。
定量证明:两导体球处于静电平衡,用细导线连接。
R1
Q1
U
1
q1 4 0R1
U
2
q2 4 0R 2
Q U1U 2
q1 q2 R1 R2
R2
Q2

1
q1
4
rR
2 1
Electromagnetics
电磁学
第二章 静电场中的导体和电介质
第二章 静电场中的导体和电介质
§2-1 静电场中的导体 §2-2 电容和电容器 §2-3 电介质 §2-4 电场的能量和能量密度
§2-1 静电场中的导体
一、静电感应 静电平衡条件 在外电场作用下,导体中电荷重新分布而呈
现出的带电现象 ,叫作静电感应现象。
E表 (x,y,z)
设P是导体外紧靠导体表面的一点
E
dSE 表 dS
EdS
E表ΔS
S
ΔS
S-ΔS
由得高E斯表 定理0 有写作E表EΔ表S0n0ˆS
E
+ +
++ + + + E0
+
+
+
+
仅在导体表面附近适用, ,0E且E由导体上和外部电荷共同产
生。
【例题1 】金属平板A和B,长宽对应相等, 在真空中对齐平 行放置,板间距比长宽小得多,分别让每板带qA及qB 的电荷 ,求每板表面的电荷密度。
⑴导体内部任意点的场强为零。 ⑵导体表面附近的场强方向处处与表面垂直。
E内 0 E表面 表面
静电场中的导体
推论:静电平衡的导体是等势体,导体表面是等势面。
证明:
等势体 a
b
等势面 p
Q
en
+ +P
+
E
dl
+ +Q

+
导体内 导体表面
b
Ua -Ub Edl E内0 Ua Ub
a
QQ
【例题2】在内外半径分别为R1和R2的导体球壳内,有一 个半径为R的导体小球,小球与球壳同心,让小球与球壳分
别带上电荷量q和Q.试求:
(1)小球的电势UR,球壳内、外表面的电势; (2)两球的电势差; (3)若球壳接地,再求小球与球壳的电势差。
相关文档
最新文档