第二章电磁学 PPT
合集下载
电磁学基本理论 ppt课件
2
0
0 I
4a
ˆz a
ppt课件
O点产生的磁感应强度: 0 I
B B1 B2 B3
ppt课件 2
3. 库仑定律
F21
q1q2 ˆR21 a 2 4π 0 R21
其中: 0为真空中介电常数。
0
1 109 8.85 1012 36 π
q1
R21
q2
F/m
q1
4. 电场强度的计算 q1qt2 ˆR21 F21 a 2 4π 0 R21
R21
q 2t
E
q 1 1 q R2 R1 4π 0 R1 R2 4π 0 R R 1 2
R1 R l cos 2 l R2 R cos 2
因为: l R 则: R2 R1 l cos
2 l R2 R1 R 2 cos2 R 2 4
15
(三) 磁场
Fm
产生磁场的源: a.永久磁铁 b.变化的电场 c.电流周围,即运动的电荷
v
B
1. 什么是磁场?
Fm qv B
存在于载流回路或永久磁铁周围空间,能对运动电荷 施力的特殊物质称为磁场。 ˆv Fm a B lim qt 0 2. 磁感应强度 B的定义 qt v
ˆv 和磁感应强度 B 三者相互 可见: 磁场力 Fm 、运动速度 a 垂直,且满足右手螺旋法则。
ppt课件 16
3. 磁感应强度的计算
安培力实验定律:
dF21 ˆR ) 0 I 2dl2 ( I1dl1 a 4π R
2
电流元
I1
I 2dl2
I2
I1dl1
0
0 I
4a
ˆz a
ppt课件
O点产生的磁感应强度: 0 I
B B1 B2 B3
ppt课件 2
3. 库仑定律
F21
q1q2 ˆR21 a 2 4π 0 R21
其中: 0为真空中介电常数。
0
1 109 8.85 1012 36 π
q1
R21
q2
F/m
q1
4. 电场强度的计算 q1qt2 ˆR21 F21 a 2 4π 0 R21
R21
q 2t
E
q 1 1 q R2 R1 4π 0 R1 R2 4π 0 R R 1 2
R1 R l cos 2 l R2 R cos 2
因为: l R 则: R2 R1 l cos
2 l R2 R1 R 2 cos2 R 2 4
15
(三) 磁场
Fm
产生磁场的源: a.永久磁铁 b.变化的电场 c.电流周围,即运动的电荷
v
B
1. 什么是磁场?
Fm qv B
存在于载流回路或永久磁铁周围空间,能对运动电荷 施力的特殊物质称为磁场。 ˆv Fm a B lim qt 0 2. 磁感应强度 B的定义 qt v
ˆv 和磁感应强度 B 三者相互 可见: 磁场力 Fm 、运动速度 a 垂直,且满足右手螺旋法则。
ppt课件 16
3. 磁感应强度的计算
安培力实验定律:
dF21 ˆR ) 0 I 2dl2 ( I1dl1 a 4π R
2
电流元
I1
I 2dl2
I2
I1dl1
大学物理《电磁学》PPT课件
欧姆定律
描述导体中电流、电压和电阻之间关系的 定律。
电场强度
描述电场强弱的物理量,其大小与试探电 荷所受电场力成正比,与试探电荷的电荷 量成反比。
恒定电流
电流大小和方向均不随时间变化的电流。
电势与电势差
电势是描述电场中某点电势能的物理量, 电势差则是两点间电势的差值,反映了电 场在这两点间的做功能力。
电介质的极化现象
1 2
电介质的定义 电介质是指在外电场作用下能发生极化的物质。 极化是指电介质内部正负电荷中心发生相对位移, 形成电偶极子的现象。
极化类型 电介质的极化类型包括电子极化、原子极化和取 向极化等。
3
极化强度
极化强度是描述电介质极化程度的物理量,用矢 量P表示。极化强度与电场强度成正比,比例系 数称为电介质的电极化率。
磁场对载流线圈的作用
对于载流线圈,其受力可分解为沿线圈平面的法向力和切线方 向的力,分别用公式Fn=μ0I²S/2πa和Ft=μ0I²a/2π计算。
05
电磁感应原理及技 术应用
法拉第电磁感应定律
法拉第电磁感应定律的内容
01
变化的磁场会产生感应电动势,感应电动势的大小与磁通量的
变化率成正比。
法拉第电磁感应定律的数学表达式
安培环路定理及其推广形式
安培环路定理
磁场中B沿任何闭合路径L的线积分, 等于穿过这路径所围面积的电流代数 和的μ0倍,即∮B·dl=μ0∑I。
推广形式
对于非稳恒电流产生的磁场,安培环路 定理可推广为 ∮B·dl=μ0∑I+ε0μ0∂/∂t∮E·dl。
磁场对载流导线作用力计算
载流导线在磁场中受力
当载流导线与磁场方向不平行时,会受到安培力的作用,其大 小F=BILsinθ,方向用左手定则判断。
大学物理《电磁学》PPT课件
电场性质
对放入其中的电荷有力的作用 ,且力的方向与电荷的正负有 关。
磁场性质
对放入其中的磁体或电流有力 的作用,且力的方向与磁极或
电流的方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相互作用 力,与电荷量的乘积成正比,与距离的平方 成反比。
高斯定理
通过任意闭合曲面的电通量等于该曲面内所包围的 所有电荷的代数和除以真空中的介电常数。
当导体回路在变化的磁场中或导体回路在恒定的磁场中运动时
,导体回路中就会产生感应电动势。
法拉第电磁感应定律公式
02
E = -n(dΦ)/(dt)。
法拉第电磁感应定律的应用
03
用于解释电磁感应现象,计算感应电动势的大小,判断感应电
动势的方向。
自感和互感现象分析
自感现象
当一个线圈中的电流发生变化时 ,它所产生的磁通量也会随之变 化,从而在线圈自身中产生感应 电动势的现象。
程称为磁化。随着外磁场强度的增大,铁磁物质的磁感应强度也增大。
03
铁磁物质的饱和现象
当铁磁物质被磁化到一定程度后,其内部磁畴的排列达到极限状态,此
时即使再增加外磁场强度,铁磁物质的磁感应强度也不会再增加,这种
现象称为饱和现象。
04
电磁感应与暂态过程
法拉第电磁感应定律及应用
法拉第电磁感应定律内容
01
06
现代电磁技术应用与发展趋势
超导材料在电磁领域应用前景
超导材料的基本特性:零电阻、完全抗磁性
超导磁体在MRI、NMR等医疗设备中的应用
超导电缆在电力传输中的优势及挑战
高温超导材料的研究进展及潜在应用
光纤通信技术发展现状及趋势
电磁学PPT课件
电磁学PPT课件
目录
• 电磁学基本概念与原理 • 静电场分析与应用 • 恒定电流与稳恒磁场研究 • 电磁波传播与辐射特性探讨 • 电磁学在日常生活和工业生产中应用实例
01
电磁学基本概念与原理
Chapter
电场与磁场定义及性质
01
电场
由电荷产生的特殊物 理场,描述电荷间的 相互作用。
02
磁场
由运动电荷或电流产 生的特殊物理场,描 述磁极间的相互作用 。
3
方程组中各量的含义及相互关系
E(电场强度)、B(磁感应强度)、D(电位移 矢量)、H(磁场强度)、J(电流密度)、ρ( 电荷密度)等。
电磁波产生、传播和接收过程
电磁波的产生
变化的电场和磁场相互激发,形 成电磁波。
电磁波的传播
电磁波在真空或介质中传播,速度 取决于介质的性质。
电磁波的接收
通过天线等接收装置,将电磁波转 换为电信号进行处理。
描述稳恒磁场的方法
介绍描述稳恒磁场的物理量,如磁感应强度、磁通量等,并给出相 应的定义和计算公式。
稳恒磁场的性质
列举稳恒磁场的基本性质,如磁场的叠加性、磁场的无源性等。
洛伦兹力与霍尔效应原理
洛伦兹力的定义和公式
阐述洛伦兹力的概念,即运动电荷在磁场中所受到的力,并给出 相应的计算公式。
霍尔效应的原理
03
电场性质
对电荷有力的作用, 具有能量和动量。
04
磁场性质
对运动电荷或电流有 力的作用,也具有能 量和动量。
库仑定律与高斯定理
01
02
03
库仑定律
描述真空中两个静止点电 荷之间的相互作用力,与 电荷量的乘积成正比,与 距离的平方成反比。
目录
• 电磁学基本概念与原理 • 静电场分析与应用 • 恒定电流与稳恒磁场研究 • 电磁波传播与辐射特性探讨 • 电磁学在日常生活和工业生产中应用实例
01
电磁学基本概念与原理
Chapter
电场与磁场定义及性质
01
电场
由电荷产生的特殊物 理场,描述电荷间的 相互作用。
02
磁场
由运动电荷或电流产 生的特殊物理场,描 述磁极间的相互作用 。
3
方程组中各量的含义及相互关系
E(电场强度)、B(磁感应强度)、D(电位移 矢量)、H(磁场强度)、J(电流密度)、ρ( 电荷密度)等。
电磁波产生、传播和接收过程
电磁波的产生
变化的电场和磁场相互激发,形 成电磁波。
电磁波的传播
电磁波在真空或介质中传播,速度 取决于介质的性质。
电磁波的接收
通过天线等接收装置,将电磁波转 换为电信号进行处理。
描述稳恒磁场的方法
介绍描述稳恒磁场的物理量,如磁感应强度、磁通量等,并给出相 应的定义和计算公式。
稳恒磁场的性质
列举稳恒磁场的基本性质,如磁场的叠加性、磁场的无源性等。
洛伦兹力与霍尔效应原理
洛伦兹力的定义和公式
阐述洛伦兹力的概念,即运动电荷在磁场中所受到的力,并给出 相应的计算公式。
霍尔效应的原理
03
电场性质
对电荷有力的作用, 具有能量和动量。
04
磁场性质
对运动电荷或电流有 力的作用,也具有能 量和动量。
库仑定律与高斯定理
01
02
03
库仑定律
描述真空中两个静止点电 荷之间的相互作用力,与 电荷量的乘积成正比,与 距离的平方成反比。
第二章电磁学PPT课件
E10 (rR3)
-q
q
E24πq0r2 (R3rR2)
R3
E 30 (R 1rR 2)
E4 4π2q0r2
.
(R1r)
R2 R1
3U 8 O4π q0(R 1 3-R 1 2R 2 1)2.3 1 130 V
第二章 静电场中的导体和电介质
§2-1 静电场中的导体 §2-2 电容和电容器 §2-3 电介质 §2-4 电场的能量和能量密度
外表面所带的电量由电荷守恒定律决定。
.
31
三 静电屏蔽
1 屏蔽外电场
E
E
外电场
空腔导体屏蔽外电场
空腔导体可以屏蔽外电场, 使空腔内物体不受外电 场影响.这时,整个空腔导体和腔内的电势也必处处相等.
.
32
2 屏蔽腔内电场
接地空腔导体 将使外部空间不受 空腔内的电场影响.
接地导体电势为零
+
+
+
q
别带上电荷量q和Q.试求:
(1)小球的电势UR,球壳内、外表面的电势; (2)两球的电势差; (3)若球壳接地,再求小球与球壳的电势差。
解:小球在球壳内外表面感应出电荷-q、q
球壳外总电荷为q+Q。
Q
R2
q
R R1
.
35
(1)小球的电势UR,球壳内、外表面的电势
UR410(R q-R q1qR 2Q)
+
-+
R2
+
-
-
+-
R
1
+ +
-
+
+-*P-
R2 ,
C4π .
R 450 1
孤立导体球电容
例3 两半径为 R的平行长直导线中心间距为d ,
中科大电磁学课件 第二章
图2.15 平行板电容器
图2.16 同心球面电容器
2、等离子体和超导体
? 部分或完全电离的气体,由大量自由电 子和正离子以及中性原子、分子组成的 电中性物质系统。
? 是有序态最差的聚集态。
? 是宇宙物质存在的主要形态,宇宙中 99.9%的物质是等离子体。
? 超导体 处于电阻为零(10-28 Ωm)的超 导状态的物体。
图2.1 北极光
图2.2太阳风
图2.11 范德格拉夫起电机示意图
图2.10 范德格拉夫 起电机展示图
§2.2.3 导体壳与唯一性定理
(1)腔内无带电体情形 ? 基本性质 ? 当导体腔内无带电体时,静电平衡下,
导体壳的内表面处处无电荷,电荷只分 布在外表面上; ? 空腔内没有电场,空腔内电势处处相等。 ? 法拉第圆筒 内表面无电荷的实验验证。 ? 库仑平方反比定律的精确验证
(2)腔内有带电体情形
? 基本性质
当导体壳腔内有其它带电体时,在静电平衡状 态下,导体壳的内表面所带电荷与腔内电荷的 代数和为0。
? 静电屏蔽
如前所述,导体壳的外表面保护了它所包围的 区域,使之不受导体壳外表面上的电荷或外界 电荷的影响,这个现象称为静电屏蔽。
图2.12 (a) 腔内无电荷
图2.12 (b)腔内有电荷
? 均匀导体的静电平衡条件 导体内的场强处处为零。 “均匀”是指质料均匀,温度均匀。
? 推断其电场分布特点
(1)导体是个等势体,导体表面是个等势面 (2)靠近导体表面外侧处的场强处处与表面垂直
§2.2.2 静电平衡导体上的电荷 分布特点
(1)体内无电荷,电荷只分布在导体表面; (2)导体表面的面电荷密度与该处表面外
附近的场强在数值上成比例:
大学物理电磁学PPT课件
磁场是电流周围存在的一种特殊物质,它 对放入其中的磁体或电流有力的作用。
磁场的描述
磁场对电流的作用
磁场可以用磁感线来描述,磁感线的疏密 表示磁场的强弱,磁感线的切线方向表示 磁场的方向。
磁场对放入其中的电流有力的作用,这个力 的大小与电流的大小、磁场的强弱以及电流 与磁场的夹角有关。
电磁感应定律
电磁感应现象
当闭合回路中的磁通量发生变化时,回路中就会 产生感应电流,这种现象称为电磁感应现象。
楞次定律
感应电流的方向总是要阻碍引起感应电流的磁通 量的变化,即“增反减同”。
法拉第电磁感应定律
感应电动势与磁通量变化率的负值成正比,即E=n(ΔΦ)/(Δt),其中E为感应电动势,n为线圈匝数 ,ΔΦ为磁通量的变化量,Δt为时间的变化量。
在各向同性介质中传播特性
在各向同性介质中,平面电磁波的传播速度、传播方向和电场、磁场分量之间的关系遵 循一定的规律,如折射定律、反射定律等。
反射、折射和衍射现象
反射现象
当电磁波遇到介质界面时,一部分能量被反射回原介质,形成反 射波。
折射现象Βιβλιοθήκη 当电磁波从一种介质传播到另一种介质时,传播方向会发生改变, 形成折射波。
互感现象
当两个线圈靠近并存在磁耦合时,一个线圈中的电流变化会在另一个线圈中产 生感应电动势。互感系数与两个线圈的形状、大小、匝数以及它们之间的相对 位置有关。
交流电路基本概念及分析方法
交流电路基本概念
交流电路是指电流、电压和电动势的大小和方向都随时间作周期性变化的电路。与交流电相对应的是直流电,其 电流、电压和电动势的大小和方向均不随时间变化。
06
电磁学实验方法与技巧
常见电磁学实验仪器介绍
电磁场与电磁波第2章1
如图所示,在电流回路 l '所产生的磁场中,任取一闭合回路
l , 设P是 l 回路上的一点,则电流回路 l ' 在P点处产生的
磁感应强度为
Ñ r
B
0
4
r Idl
'
erR
l ' r Rr2
Ñ 0I dl ' R
4 l ' R3
M
d
dl P
n
l
R
S
I l'
r
计算
B
在回路
蜒l Br
r dl
l
上的闭合线积分有
电偶极子在任意一点P的电位为
q ( 1 1 ) q ( r2 r1 ) 40 r1 r2 40 r1r2
式中 r1 和 r2分别是两电荷
到 P 点的距离。
x
z
d
q 2
o
r1 r2
q d 2
P(x, y, z)
y
如果两电荷沿z轴对称分布并且距离P点很远,于是
r 近
似
1
的
r 表
示2
r1 r 0.5d cos
r Idl
'
erR
(
1
)
r Idl
'
R2
R
rr
r
Ñ 根据高斯定律
BgdS gBdV
s
v
Ñ m
0 4
g
(
1
)
r Idl
'
dV
v
l' R
即
Ñ m
0 4
v
1r
g[( ) Idl ']dV
l'
《电磁学》PPT课件
磁场
由运动电荷(电流)产生的特 殊物理场,描述磁极间的相互
作用。
电场性质
对放入其中的电荷有力的作用, 且力的方向与电荷的电性有关。
磁场性质
对放入其中的磁体或通电导线 有力的作用,且力的方向与电
流方向及磁场方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相 互作用力,与电荷量的乘积成正比, 与距离的平方成反比。
超导材料在电磁领域应用前景
01
超导材料的基本特 性
零电阻、完全抗磁性Fra bibliotek02超导材料在电磁领 域的应用
超导磁体、超导电缆、超导电机 等
03
超导材料应用前景 展望
高温超导材料、超导电子学器件 等
太赫兹技术发展现状和挑战
太赫兹技术的概念和特点
介于微波和红外之间的电磁波
太赫兹技术发展现状
太赫兹源、太赫兹探测器、太赫兹波谱仪等
05
电磁波传播与辐射理论
麦克斯韦方程组内容解读
麦克斯韦方程组的四个基本方程
01
高斯定律、高斯磁定律、麦克斯韦-安培定律、法拉第感应定律。
方程组的物理意义
02
揭示了电荷、电流与电场、磁场之间的内在联系,描述了电磁
场的产生、传播和变化规律。
方程组在电磁学中的地位
03
是电磁学的基石,为电磁波理论、电磁辐射和天线设计等领域
实例分析
通过具体磁路实例,如电磁铁、变压器等,分析磁路的结构、工作原理和性能特点。
铁磁材料特性及应用领域
铁磁材料特性
具有高磁导率、低矫顽力、高饱和磁感应 强度等特点,易于实现磁化和退磁。
VS
应用领域
广泛应用于电机、变压器、继电器、扬声 器等电气设备中,以及磁记录、磁放大等 领域。
电磁学Electromagnetics教学PPT课件
第三章 电磁感应 电磁场的相对论变换
第四章 电磁介质
第五章 电路
第六章 麦克斯韦电磁理论 电磁波 电磁单位制
合计
学时数 16 12 8 10 20 6 72
2021/3/7
温州大学物理与电子信息学院6
课程意义与学习方法
课程意义
电磁学发展过程
电场和电场线
2021/3/7
法拉第及其夫人
温州大学物理与电子信息学院7
静电基本现象与规律
所有实 验结论:
2021/3/7
自然界中只存在两种电荷;而且,同种电荷相 互排斥,异种电荷相互吸引
温州大学物理与电子信息学1院6
静电基本现象与规律
电荷检验存储与起电机
2021/3/7
验电器
范德格拉夫起电机
温州大学物理与电子信息学1院7
静电基本现象与规律
静电感应与电荷守恒定律
f r2
他测出不大于 0.02(未发 表,100年以 后Maxwell整 理他的大量手稿,才将此 结果公诸于世。
2021/3/7
温州大学物理与电子信息学2院4
静电基本现象与规律
库仑实验: 精度与十三年前Cavendish的实验精度相当
库仑是扭称专家;只测电斥力——扭称 实验,数据只有几个,且不准确(由于 漏电),不是大量精确的实验;
半导体:介于两者 之间的物体
2021/3/7
温州大学物理与电子信息学1院9
静电基本现象与规律
砷化镓
砷化镓(GaAs)半导 体材料与传统的硅材料 相比,它具有很高的电 子迁移率、宽禁带、直 接带隙,消耗功率低的 特性,电子迁移率约为 硅材料的5.7倍。因此, 广泛应用于高频及无线 通讯中制做IC器件。所 制出的这种高频、高速、 防辐射的高温器件,通 常应用于激光器、无线 通信、光纤通信、移动 通信、GPS全球导航等
第二篇电磁学PPT精品文档90页
数学表述
n
E
i1
fi q0
n Ei 总场强
i1
注意:电场强度是矢量,迭加时应为矢量相加
3。带电体电荷连续分布
把带电体看作是由许多个元电荷 组成,再利用场强叠加原理。
dq
dV
电荷密度
ds
体电荷密度 面电荷密度 线电荷密度
dl
dq
dV
dq
ds
dq
dl
体电荷 dqdV
元电荷
面电荷 dqds
一、电荷与电场
实验证明,自然界只存在两种电荷,分别 称为正电荷和负电荷。同种电荷互相排斥,异 种电荷互相吸引。
电场: 带电体之间的相互作用是通过电场实现的。
带电体
电场
带电体
电场是物质的,具有能量与动量。 静电场是指由静止的电荷所形成的电场。
静电场的对外表现:
(1)电场中的任何带电体都将受到电场力的作用。 (2)静电场中的导体与电介质分别产生静电感应
晶格点阵 自由电子 自由电荷与束缚电荷 导体中的静电感应现象与电介质的极化现象
பைடு நூலகம்
电介质及其极化的微观机制
有极分子电介质和与无极分子电介质 正、负电荷中心重合的分子称为无极分子。 由无极分子构成的电介质——无极分子电介质。 正、负电荷中心不重合的分子称为有极分子。 由有机分子构成的电介质——有极分子电介质
和极化现象。 (3)带电体在电场中移动时,电场力将对其作功。
电荷守恒定律(Conservation of Electric Charge )
在一个与外界没有电荷交换的系统内,无论进行 怎 样的物理过程,系统内正、负电荷量的代数和总是 保持 不变。
物质的电结构:物质由分子组成,分子由原子组成,原子
大学物理电磁学ppt完整版
05 电磁感应现象和 规律
法拉第电磁感应定律内容
01
法拉第电磁感应定律指出,当一个回路中的磁通量发生
变化时,会在回路中产生感应电动势。
02
感应电动势的大小与磁通量的变化率成正比,即e=-
dΦ/dt,其中e为感应电动势,Φ为磁通量,t为时间。
03
法拉第电磁感应定律是电磁学的基本定律之一,揭示了
电磁感应现象的本质和规律。
01
变化的电场和磁场相互激发,形成电磁波。
电磁波传播方式
02
电磁波在真空中以光速传播,不需要介质。
电磁波传播特性
03
电磁波具有横波特性,电场和磁场振动方向相互垂直,且与传
播方向垂直。
电磁波谱及其在各领域应用
电磁波谱
按频率从低到高可分为无线电波、微波、红外线、可见光、紫外线、 X射线和伽马射线等。
无线电波
处于静电平衡状态的导体具有静电屏蔽效应,即外部电场 对导体内部无影响。这种效应在电磁屏蔽、静电防护等方 面有重要应用。
03 稳恒电流与电路 基础知识
稳恒电流条件及特点
稳恒电流条件
电路中各处电荷分布不随时间变化,即达到动态平衡状态。
稳恒电流特点
电流大小和方向均不随时间变化,呈现稳定的流动状态。
欧姆定律与非线性元件分析
技术应用
激光在科研、工业、医疗等领域有着广泛的应用,如激 光测距、激光雷达、激光切割、激光焊接、激光打印、 激光治疗等。随着科技的不断发展,激光的应用领域还 将不断扩大。
THANKS
感谢观看
激光原理及技术应用
激光原理
激光是一种特殊的光源,具有单色性、方向性和相干性 三大特点。激光的产生需要满足粒子数反转和光放大两 个基本条件。在激光器中,通过泵浦源提供能量,使工 作物质中的粒子被激发到高能级,形成粒子数反转分布。 当有一束光通过工作物质时,与激发态粒子相互作用, 产生受激辐射,发出与入射光相同的光子,实现光放大。 通过反射镜的反馈作用,使得光在激光器内来回反射, 不断被放大,最终从输出镜射出形成激光。
大学物理第二章电磁学PPT课件
大 学 物 理
第六章 稳恒磁场
(第一讲)
主讲:王建星
作业:6-1、6-2、6-3 本章重点: 1 .毕奥-萨伐尔定律 2 .安培环路定理 3 .求磁力的安培定律
预习:§6. 4
第六章 稳恒磁场 §6. 1 磁感(应)强度 一.基本磁现象
1.安培假说:(1822年)
1) 一切磁现象都是电流 (或运动电荷)产生的; 2) 组成磁铁的最小单元(“磁分子”)是环形电流。
B= —— 2R
O
(6-J1)
4) 若线圈是由N 匝细导线组成 可看成是N匝圆电流的磁场的迭加
O
x
x
B=N ————— 2(R2+ x2)3/2
0 IR2
(6-J2)
记住以上两类典型载流导线的B公式,解题时可直接引用!
① 任取一 I d l ,写出 d B 的大小、标明方向; ② 建立坐标,将d B 分解 d Bx d B y d Bz
③ 求各分量的积分和,Bx
④ 合成
B Bx i B y j Bz k
2 x 2 y 2 z
dB
L
x
By d By Bz d Bz
磁场
运动电荷②
2. 磁场对外表现 ① 磁场对引入其中的磁铁、运动电荷或载流导体有磁力作用;
② 载流导体在磁场中移动时,磁场力一般要作功。 与电场的规律非常相似 ——可借用电场的描述方法
三. 磁感(应)强度
洛仑兹力 磁场对运动电荷的作用力的规律: 当运动试探电荷以一定速率 v 、 磁 场 沿不同方向通过某点时,电荷所 y 受的磁力不同! 1. 存在一个特定的方向:电荷 沿该向运动不受磁力作用。 此方向与电荷种类无关. x 2.电荷沿不同于特定方向的 磁力 速度通过场中某点时, 的方向总是垂直于速度与该 特定方向组成的平面。
第六章 稳恒磁场
(第一讲)
主讲:王建星
作业:6-1、6-2、6-3 本章重点: 1 .毕奥-萨伐尔定律 2 .安培环路定理 3 .求磁力的安培定律
预习:§6. 4
第六章 稳恒磁场 §6. 1 磁感(应)强度 一.基本磁现象
1.安培假说:(1822年)
1) 一切磁现象都是电流 (或运动电荷)产生的; 2) 组成磁铁的最小单元(“磁分子”)是环形电流。
B= —— 2R
O
(6-J1)
4) 若线圈是由N 匝细导线组成 可看成是N匝圆电流的磁场的迭加
O
x
x
B=N ————— 2(R2+ x2)3/2
0 IR2
(6-J2)
记住以上两类典型载流导线的B公式,解题时可直接引用!
① 任取一 I d l ,写出 d B 的大小、标明方向; ② 建立坐标,将d B 分解 d Bx d B y d Bz
③ 求各分量的积分和,Bx
④ 合成
B Bx i B y j Bz k
2 x 2 y 2 z
dB
L
x
By d By Bz d Bz
磁场
运动电荷②
2. 磁场对外表现 ① 磁场对引入其中的磁铁、运动电荷或载流导体有磁力作用;
② 载流导体在磁场中移动时,磁场力一般要作功。 与电场的规律非常相似 ——可借用电场的描述方法
三. 磁感(应)强度
洛仑兹力 磁场对运动电荷的作用力的规律: 当运动试探电荷以一定速率 v 、 磁 场 沿不同方向通过某点时,电荷所 y 受的磁力不同! 1. 存在一个特定的方向:电荷 沿该向运动不受磁力作用。 此方向与电荷种类无关. x 2.电荷沿不同于特定方向的 磁力 速度通过场中某点时, 的方向总是垂直于速度与该 特定方向组成的平面。
大学物理《电磁学》课件
详细描述
电磁场能量守恒定律表明,在电磁场的演化过程中,电磁场的能量不能被创造或消失,只能被转移或转化。这个 定律可以通过麦克斯韦方程组进行描述,并且在许多物理现象中都有应用,例如电磁波的传播、电磁能的转换等 。
电磁场动量守恒定律及其应用
总结词
电磁场动量守恒定律是电磁学中的另一个基本定律,它描述了电磁场动量在空间中的转移和转化,对 于理解电磁波的传播和散射等现象具有重要意义。
电磁学实验设计思路与方法论介绍
实验目的与背景
明确实验的意义和工程应用背 景,有助于学生更好地理解实
验的设计思路。
实验器材与设备
列出所需的实验器材和设备, 并简要介绍其功能和使用方法 。
实验原理与公式
详细阐述实验的基本原理和相 关的公式,为学生后续理解和 应用实验数据打下基础。
实验步骤与流程
清晰地列出实验的操作步骤和 流程,确保学生能够按照规定
的步骤进行实验。
电磁学实验操作技巧与注意事项分享
01
操作技巧
02
正确使用实验器材:熟悉各种实验器材的使用方法 和注意事项,如电源、电阻器、电感器等。
03
准确测量数据:在实验过程中,要按照规定的步骤 准确测量数据,避免误差的产生。
电磁学实验操作技巧与注意事项分享
• 保持实验安全:在实验过程中,要注意安全,避免触电、 烫伤等事故的发生。
大学物理《电磁学 》课件
汇报人: 202X-12-20
目录
• 电磁学概述 • 电场与电势 • 磁场与磁感应强度 • 电磁感应现象与麦克斯韦方程组 • 电磁场能量与动量守恒定律 • 电磁学实验设计与操作技巧
01
电磁学概述
电磁学定义与基本概念
电磁学定义
电磁学是研究电荷、电流、电场、磁 场以及它们之间相互作用相互影响的 学科。
电磁场能量守恒定律表明,在电磁场的演化过程中,电磁场的能量不能被创造或消失,只能被转移或转化。这个 定律可以通过麦克斯韦方程组进行描述,并且在许多物理现象中都有应用,例如电磁波的传播、电磁能的转换等 。
电磁场动量守恒定律及其应用
总结词
电磁场动量守恒定律是电磁学中的另一个基本定律,它描述了电磁场动量在空间中的转移和转化,对 于理解电磁波的传播和散射等现象具有重要意义。
电磁学实验设计思路与方法论介绍
实验目的与背景
明确实验的意义和工程应用背 景,有助于学生更好地理解实
验的设计思路。
实验器材与设备
列出所需的实验器材和设备, 并简要介绍其功能和使用方法 。
实验原理与公式
详细阐述实验的基本原理和相 关的公式,为学生后续理解和 应用实验数据打下基础。
实验步骤与流程
清晰地列出实验的操作步骤和 流程,确保学生能够按照规定
的步骤进行实验。
电磁学实验操作技巧与注意事项分享
01
操作技巧
02
正确使用实验器材:熟悉各种实验器材的使用方法 和注意事项,如电源、电阻器、电感器等。
03
准确测量数据:在实验过程中,要按照规定的步骤 准确测量数据,避免误差的产生。
电磁学实验操作技巧与注意事项分享
• 保持实验安全:在实验过程中,要注意安全,避免触电、 烫伤等事故的发生。
大学物理《电磁学 》课件
汇报人: 202X-12-20
目录
• 电磁学概述 • 电场与电势 • 磁场与磁感应强度 • 电磁感应现象与麦克斯韦方程组 • 电磁场能量与动量守恒定律 • 电磁学实验设计与操作技巧
01
电磁学概述
电磁学定义与基本概念
电磁学定义
电磁学是研究电荷、电流、电场、磁 场以及它们之间相互作用相互影响的 学科。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
q2
4
R
2 2
1R1 2R2, E 亦 然
在带电尖端附近,电离的 分子与周围分子碰撞,使周 围的分子处于激发态发光而 产生电晕现象。
+ +
+ +
+++
+ +
+++
+
尖端效应在大多数情况下是有害的:如高压电线上的电 晕,故此,高压设备中的金属柄都做成光滑的球形。
但尖端效应也有应用:如避雷针、静电喷涂、静电除尘等。
S qE 2ind S -0 q, q i 0
q -q
S1
腔体内表面所带的电量和腔内带电体所带的电量等量异号,腔体
外表面所带的电量由电荷守恒定律决定。
三 静电屏蔽
1 屏蔽外电场
E
E
外电场
空腔导体屏蔽外电场
空腔导体可以屏蔽外电场, 使空腔内物体不受外电 场影响.这时,整个空腔导体和腔内的电势也必处处相等.
+++++ + + +
+
感应电荷
导体的静电感应过程 无外电场时
导体的静电感应过程
E 外
加上外电场后
导体的静电感应过程
E 外
+
加上外电场后
导体的静电感应过程
E 外
+
+
加上外电场后
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
导体的静电感应过程
E 外
+ +
+
+ +
加上外电场后
导体的静电感应过程
如果空腔内表面有电荷
U A BAB E d l0
则与处于静电平衡的导体 是等势体相矛盾。
U A BAB E d l0
+
+A
+ S ++
+
+
B-- +
+ +
+ +
(2)腔内有带电体:
导体壳内部无电荷,电荷
只分布在导体壳表面
S S 1 E d S 0 ,q i 0 2
导体壳内表面有无电荷?
导体的静电感应过程
E 外
+ + + + + +
+ + + +
加上外电场后
导体的静电感应过程
E 外
+ + + + + +
+ + + +
加上外电场后
静电平衡:静电场中,导体上的电荷不再发生定向移动, 称导体达到了静电平衡。 。
+
+
+
+
+
E 感
E +
43;
+
E内 =
E 外
+
E 感
=
0
导体静电平衡的条件
U P-U QEdlEco 90 s0 d l0
UP
UQ
P
P
二、静电平衡导体上的电荷分布
1. 实心导体 净电荷分布在导体表面,导体内处处无净电荷。
证:导体内任取高斯面S
Eds 1
S
0
qi
+q
S
E 0 q i 0
2.导体表面电荷及场强
设导体表面某处电荷面密度为 (x,y,z)
该处的电场强度为
解:把板看成是无限大,两板四壁的电荷均匀分布,在A、B 板内分别取两点。
(12)SqA
(34)SqB EM2 10-2 20-2 30-2 400 EN2 1 02 2 02 3 0-2 4 00
q1
q2
3
1 2 3 4
A
B
1-2-3-40 2 -3 123-40 1 4
12qA/S
341-2q B/S q1
E 外
+
+
+
加上外电场后
导体的静电感应过程
E 外
+ +
+
+ +
加上外电场后
导体的静电感应过程
E 外
+ +
+
+ +
加上外电场后
导体的静电感应过程
E 外
+ + +
+
+ + +
加上外电场后
导体的静电感应过程
E 外
+ +
+
+ + +
加上外电场后
导体的静电感应过程
E 外
+ + + + +
+ + +
加上外电场后
例:尖端放电—— “电风” 高压线附近的辉光 避雷针的应用 静电除尘
图2.11 范德格拉夫起电机示意图
图2.10 范德格拉夫起电 机展示图
2. 空腔导体
(1)腔内无带电体时:
•净电荷分布在导体外表面
;导体内表面处处无净电
荷。
•空腔内没有电场,空腔内
电势处处相等。
S
S E d S 0 , q i 0
2 屏蔽腔内电场
接地空腔导体 将使外部空间不受 空腔内的电场影响.
接地导体电势为零
+
+
+
q
+
-q+
+ + q+
问:空间各部分的电场强度如何分布 ?
总之,可以利用导体空腔的静电特性形成静电屏蔽 可用导体空腔来保护内部不受外场影响,如所有电
气仪表的表头外部均有一金属外壳。
++++++++
导体空腔接地的情况下,可使金属壳内的场对 外界不产生影响。
q2
1(q A q B )/2 (S )4
2(q A- q B )/2 (S )-3 1 2 3 4
讨论:如果 qB -qA
则 140
A
B
3.孤立带电导体表面电荷分布
(1)一般情况较复杂 孤立的带电导体 电荷分布 实验的定性分布
•在表面凸出的尖锐部分(曲率是正值且较大)电荷面 密度较大;
•在比较平坦部分(曲率较小)电荷面密度较小;
•在表面凹进部分带电面密度最小;
孤立导体处于静电平衡时,表面各处的面电荷密度 与各
处表面的曲率有关,曲率越大的地方,电荷密度也越大。
定量证明:两导体球处于静电平衡,用细导线连接。
R1
Q1
U
1
q1 4 0R1
U
2
q2 4 0R 2
Q U1U 2
q1 q2 R1 R2
R2
Q2
又
1
q1
4
rR
2 1
Electromagnetics
电磁学
第二章 静电场中的导体和电介质
第二章 静电场中的导体和电介质
§2-1 静电场中的导体 §2-2 电容和电容器 §2-3 电介质 §2-4 电场的能量和能量密度
§2-1 静电场中的导体
一、静电感应 静电平衡条件 在外电场作用下,导体中电荷重新分布而呈
现出的带电现象 ,叫作静电感应现象。
E表 (x,y,z)
设P是导体外紧靠导体表面的一点
E
dSE 表 dS
EdS
E表ΔS
S
ΔS
S-ΔS
由得高E斯表 定理0 有写作E表EΔ表S0n0ˆS
E
+ +
++ + + + E0
+
+
+
+
仅在导体表面附近适用, ,0E且E由导体上和外部电荷共同产
生。
【例题1 】金属平板A和B,长宽对应相等, 在真空中对齐平 行放置,板间距比长宽小得多,分别让每板带qA及qB 的电荷 ,求每板表面的电荷密度。
⑴导体内部任意点的场强为零。 ⑵导体表面附近的场强方向处处与表面垂直。
E内 0 E表面 表面
静电场中的导体
推论:静电平衡的导体是等势体,导体表面是等势面。
证明:
等势体 a
b
等势面 p
Q
en
+ +P
+
E
dl
+ +Q
eτ
+
导体内 导体表面
b
Ua -Ub Edl E内0 Ua Ub
a
【例题2】在内外半径分别为R1和R2的导体球壳内,有一 个半径为R的导体小球,小球与球壳同心,让小球与球壳分
别带上电荷量q和Q.试求:
(1)小球的电势UR,球壳内、外表面的电势; (2)两球的电势差; (3)若球壳接地,再求小球与球壳的电势差。