6.2正态分布
6.2数理统计中几种常用的分布.
性质3. 设T~t(n),则:T ~F(1,n) .
2
证明:
由t分布定义 T
2
X Y /n
其中X∼N(0,1),Y~χ (n),且X与Y相互独立. 2 2 (1) / 1 X /1 2 F T 2 Y /n ( n) / n
且 2 (1)与 2 ( n)相互独立.
由F分布定义, ∴ F = T2~F(1,n) .
2
条件: 的点χ
P ( n)
2 2
2
( n )
f ( x)dx
2
(n)为χ 2(n)分布的上分位点.
χ (n)分布 的上分位点 图形如右图.
χ2(n)分布的上分位点可以查 附表5.
2Hale Waihona Puke 13例1:求2 2 0 ( 10 ) , )。 .05 0.1 (20
1.) 因为
P X z0.05 1 P X z0.05 1 0.05 0.95.
P X 1.64 0.9495.
P X 1.65 0.9505.
z0.05 1.64 1.65 1.645. 2
4
2.)
P X z0.005 1 PX z0.005 1 0.005 0.995.
i 1 n i 1
n
EX i2 n.
2 DX i
D D(
2n.
10
4.应用中心极限定理可得,若 若 X ~ 2 (n) ,则当n充分大时, X n 2n 的分布近似正态分布N(0,1).
11
2 (n)
分布的密度函 数的图形如右 图.
正态分布的概念及应用
• 正态分布的简介 • 正态分布的性质 • 正态分布的应用场景 • 正态分布在数据分析中的应用 • 正态分布在机器学习中的应用 • 正态分布与其他统计分布的关系
01
正态分布的简介
正态分布的定义
01
正态分布是一种连续概率分布, 描述了许多自然现象的概率分布 形态,其概率密度函数呈钟形曲 线,且具有对称性。
贝叶斯推断
正态分布在贝叶斯推断中发挥了重要作用。通过贝叶斯定理,我们可以根据先 验知识和数据更新对未知参数的估计,而正态分布可以作为先验知识的分布形 式。
核方法和支持向量机
核方法
在支持向量机(SVM)等核方法中,正态分布作为核函数的一 种形式,用于将输入空间映射到高维特征空间,从而使得线性 不可分的数据变得线性可分。
在时间序列分析中,正态分布可用于描述时间序列数据的分布特征, 并建立预测模型。
05
正态分布在机器学习中的应用
概率模型和贝叶斯推断
概率模型
正态分布是一种常用的概率分布,在贝叶斯推断中,我们常常假设某些参数服 从正态分布,以便进行统计推断。例如,在朴素贝叶斯分类器中,特征的概率 分布被假设为正态分布。
考试成绩和测试评分
考试成绩和各种测试评分也经常呈现正态分布,因为大多数人的得分集中在平均分附近, 而高分和低分的人数较少。
气温、降雨量等气候数据
气温、降雨量等自然现象数据也可以用正态分布来描述,因为它们通常遵循类似的统计规 律。
科学研究和技术开发
01 02
实验结果和测量数据
在科学实验和测量中,很多数据呈现正态分布,如放射性衰变的半衰期、 化学反应速率等。这些数据反映了物质内部微观粒子的随机运动和相互 作用。
正态分布在统计学中的地位
正态分布
正态分布维基百科,自由的百科全书跳转到:导航, 搜索此条目或章节需要精通或熟悉本主题的专家参与编辑请协助邀请适合的人士,或参照相关专业文献,自行改善这篇条目。
更多的细节与详情请参见条目讨论页。
汉漢▼正态分布概率密度函数绿线代表标准正态分布累积分布函数颜色与概率密度函数同参数μlocation(real)σ2 > 0 squared scale(real)支撑集概率密度函數累积分布函数期望值μ中位数μ众数μ方差σ2偏度0峰度 3信息熵动差生成函数特性函数正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:X∼N(μ,σ2),则其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。
因其曲线呈钟形,因此人们又经常称之为钟形曲线。
我们通常所说的标准正态分布是μ = 0,σ = 1的正态分布(见右图中绿色曲线)。
目录• 1 概要o 1.1 历史• 2 正态分布的定义o 2.1 概率密度函数o 2.2 累积分布函数o 2.3 生成函数▪ 2.3.1 动差生成函数▪ 2.3.2 特征函数• 3 性质o 3.1 标准化正态随机变量o 3.2 矩(英文:moment)o 3.3 生成正态随机变量o 3.4 中心极限定理o 3.5 无限可分性o 3.6 稳定性o 3.7 标准偏差• 4 正态测试• 5 相关分布• 6 参量估计o 6.1 参数的极大似然估计▪ 6.1.1 概念一般化o 6.2 参数的矩估计•7 常见实例o7.1 光子计数o7.2 计量误差o7.3 生物标本的物理特性o7.4 金融变量o7.5 寿命o7.6 测试和智力分布•8 计算统计应用o8.1 生成正态分布随机变量•9 参见•10 引用条目•11 外部连接[编辑]概要正态分布是自然科学与行为科学中的定量现象的一个方便模型。
正态分布ppt课件统计学
人类的身高和体重分布情况符合正态分布的特征。这是因为个体的生长发育受到多种因 素的影响,导致身高和体重的差异。根据正态分布规律,大部分人的身高和体重值会集 中在平均值附近,而偏离平均值越远的人数逐渐减少。这种分布形态有助于评估个体的
生长发育状况,并识别出异常身高和体重的个体。
股票价格波动
总结词
卡方检验
总结词
卡方检验是一种非参数检验方法,用于比较实际观测频数与 期望频数是否有显著性差异。
详细描述
卡方检验通过计算卡方值和对应的P值来判断实际观测频数与 期望频数是否有显著性差异。卡方值越大,P值越小,说明差 异越显著。
05
正态分布的实例分析
考试分数分布
总结词
考试分数分布通常呈现正态分布的特点,即大部分考生成绩集中在平均分附近,高分和低分均呈下降趋势。
03
正态分布的性质
钟形曲线
钟形曲线
正态分布的图形呈现钟形 ,中间高,两侧逐渐降低 ,对称轴为均值所在直线 。
概率密度函数
描述正态分布中取任意值 的概率大小,函数曲线下 的面积代表概率。
曲线下面积
正态分布曲线下的面积为1 ,表示随机变量取值在一 定范围内的概率。
平均数与标准差
平均数
正态分布的均值,表示数据的中 心位置,所有数据值加起来除以 数据个数得到。
概率密度函数
正态分布的概率密度函数公式为: $f(x) = frac{1}{sqrt{2pisigma^2}} e^{-frac{(x-mu)^2}{2sigma^2}}$
其中,$mu$表示平均值,$sigma$ 表示标准差,该公式描述了正态分布 曲线的形状和高度。
02
正态分布的应用
自然现象
[课件]概率与统计 6.2 常用统计分布
2 Y = ∑ Xi 2 i =n +1 1
电子科技大学
n +n2 1
常用统计分布
则
Y +Y = ∑ 1 2
n +n2 1 i =1
2 Xi
相互独立, 且Xi , i=1,2,…,n1+n2 相互独立,Xi~N(0,1), 从而 Y1+Y2~ χ2 (n1+n2).
电子科技大学
常用统计分布
总体, 总体,个体 简单随机样本 正态总体的 2个抽样定理 个抽样定理
统计量
样本均值 样本方差 样本矩(样本相关系数) 样本矩(样本相关系数)
统计量的分布
χ2分布
t 分布 F分布 分布
分位数 结构定理
电子科技大学
常用统计分布
设随机变量X 服从正态分布N(0,1), 对给 例6.2.1 设随机变量 服从正态分布 定的α(0<α<1),数uα满足 , 定的 , P{X > uα} = α
电子科技大学
T~t(n) ~
又称学生氏分布--第一个研究者以 又称学生氏分布--第一个研究者以Student --第一个研究者
常用统计分布
定理6.2.2 设随机变量 Y 相互独立 X 设随机变量X, 相互独立, 定理 ~N(0,1),Y~ χ2(n),则 , ~ ,
X T= ~ t(n) Yn
即随机变量 T 服从自由度为 n 的 t 分布 服从自由度为 分布.
电子科技大学
常用统计分布
χ2分布的三条性质: 分布的三条性质 三条性质:
性质1. 数字特征 数字特征) 性质 (数字特征 设 χ2 ~ χ2(n) ,则有 E( χ2 ) = n , 证明 D( χ2 ) = 2n
《正态分布》 讲义
《正态分布》讲义一、什么是正态分布在统计学中,正态分布是一种极其重要的概率分布。
它就像是自然界和人类社会中许多现象的“常客”,无处不在。
想象一下,我们测量一群人的身高,或者记录一段时间内某地区的气温,这些数据往往会呈现出一种特定的规律,这就是正态分布。
正态分布的形状就像一个钟形,中间高,两边逐渐降低并且对称。
这意味着大部分数据集中在平均值附近,而离平均值越远,数据出现的频率就越低。
二、正态分布的特点1、对称性正态分布曲线是关于均值对称的。
也就是说,如果均值是μ,那么在μ 左侧和右侧相同距离处的数据出现的频率是相等的。
2、集中性大部分数据都集中在均值附近。
这反映了在许多情况下,一个典型的或者最常见的值是存在的。
3、均匀变动性从均值向两侧,曲线的下降是均匀的。
这意味着数据的变化是相对平稳和有规律的。
三、正态分布的数学表达式正态分布的概率密度函数可以用下面的公式来表示:f(x) =(1 /(σ √(2π))) e^(((x μ)^2 /(2σ^2)))在这里,μ 是均值,σ 是标准差,π 是圆周率,e 是自然常数。
这个公式看起来可能有点复杂,但它精确地描述了正态分布的形状和特征。
四、正态分布的应用1、质量控制在生产过程中,例如制造零件,产品的某些质量指标往往服从正态分布。
通过对这些指标的监控和分析,可以判断生产过程是否稳定,是否需要进行调整。
2、考试成绩学生的考试成绩通常也近似符合正态分布。
这有助于教师评估教学效果,确定合理的分数段和等级划分。
3、金融领域股票价格的波动、收益率等常常呈现正态分布的特征。
投资者可以利用这一特点进行风险评估和投资决策。
4、医学研究例如人体的生理指标,如血压、身高体重指数等,很多都符合正态分布。
这对于疾病的诊断和预防具有重要意义。
五、如何计算正态分布的概率为了计算给定区间内的概率,我们通常需要借助数学表或者使用统计软件。
例如,要计算某个值 x 以下的概率,可以通过将 x 标准化为 z 分数:z =(x μ) /σ然后,查找标准正态分布表来获取对应的概率。
北师大版高中数学选修2-3课件:2.6 正态分布(共46张PPT)
重点难点
[重点] 认识分布密度曲线的特点,曲线所表示的意义;正态分布曲线的性质、 标准正态曲线N(0,1) . [难点] 认识分布密度曲线的特点,曲线所表示的意义;通过正态分布曲线的图 形特征,归纳正态分布曲线的性质.
教学建议
如何使学生从抽象转化到具体、直观的问题里来,是我们教学的一个重 点和难点.要借助具体实例及多媒体课件演示,有条件的让学生也上机 进行实习,通过实验了解一些概念的形成过程.具体的方法是利用直方 图来引进正态曲线.
例2 某厂生产的圆柱形零件的外 直径X服从正态分布N(4,0.52), 质量人员从该厂生产的1000件零 件中随机抽查1件,测得它的外直 径为5.7 cm,试问该厂生产的这 批零件是否合格?
解:由于X服从正态分布N(4,0.52), 由正态分布的性质可知,正态分布N(4, 0.52)在(4-3×0.5,4+3×0.5)之外取值 的概率只有0.003,而5.7∉(2.5,5.5), 这说明在一次试验中,出现了几乎不 可能发生的小概率事件,据此可以认 为这批零件是不合格的.
预习探究
正态分布密度曲线
正态曲线
预习探究
预习探究
预习探究
[思考] 某一集成块使用寿命X可看作是连续型随机变量吗? 解:可以,因为它的可能取值是任何一个非负实数,我们是无法一一列出的.
预习探究
[思考] 正态分布密度函数f(x)有最值吗?
预习探究
[讨论] 正态分布中的参数μ,σ的含义分别是什么?
6.结合正态分布曲线的图形特征,归纳正态分布曲线的性质.正态分布曲 线的作图较难,教材没做要求,授课时可以借助几何画板作图,学生只要了 解大致的情形就行了,关键是能通过正态曲线,引导学生归纳其性质.
三维目标
正态分布详解(很详细)
f (x)
1
e ,
(
x )2 2 2
x
2
用求导的方法可以证明, x=μσ
为f (x)的两个拐点的横坐标。
这是高等数学的内容,如果忘记了,课下 再复习一下。
根据对密度函数的分析,也可初步画出正 态分布的概率密度曲线图。
回忆我们在本章第三讲中遇到过的 年降雨量问题,我们用上海99年年降雨 量的数据画出了频率直方图。
定理1
设 X ~ N (, 2 ) ,则Y X ~N(0,1)
根据定理1,只要将标准正态分布的分布 函数制成表,就可以解决一般正态分布的概 率计算问题.
四、正态分布表
书末附有标准正态分布函数数值表,有了
它,可以解决一般正态分布的概率计算查表.
(x) 1
x t2
e 2 dt
2
表中给的是x>0时, Φ(x)的值.
下面我们在计算机上模拟这个游戏: 街头赌博
高尔顿钉板试验
平时,我们很少有人会去关心小球 下落位置的规律性,人们可能不相信 它是有规律的。一旦试验次数增多并 且注意观察的话,你就会发现,最后 得出的竟是一条优美的曲线。
高 尔 顿 钉 板 试 验
这条曲线就近似我们将要介 绍的正态分布的密度曲线。
正态分布的定义是什么呢?
由于连续型随机变量唯一地由它 的密度函数所描述,我们来看看正态 分布的密度函数有什么特点。
请看演示 正态分布
二、正态分布 N (, 2 ) 的图形特点
正态分布的密度曲线是一条关于 对
称的钟形曲线. 特点是“两头小,中间大,左右对称”.
正态分布 N (, 2 ) 的图形特点
决定了图形的中心位置, 决定了图形
P(|Y | 3 ) 0.9974
6.2数理统计中几种常用的分布
f ( x )dx = α
α
o Fα(m,n) x
F分布的性质 分布的性质: 分布的性质 1 ~ F ( n, m ) (1) 若F~F(m,n),则 则 F 1 (2) F1−α ( m , n) = Fα ( n, m ) ∵1−α =P{F≥F1−α(m,n)} − −
1 1 }= 1 − P{ 1 > = P{ 1 ≤ } F F1−α ( m , n) F F1−α ( m , n) 1 }=α ⇒ P{ 1 > F F1−α ( m , n) 1 ⇒ = Fα ( n, m ) F1−α ( m , n)
α
o tα(n) t
t分布的性质 分布的性质: 分布的性质 (1) 其密度函数 是偶函数 其密度函数f(t)是偶函数 (2) t1−α(n)= −tα(n) − (3) f(t)的极限为 的极限为N(0,1)的密度函数 即 的密度函数,即 的极限为 的密度函数
lim f ( t ) = ϕ ( t ) =
∴
∑(
i =1
16
Xi − µ
σ
σ
) ~ χ (16)
2 2
σ ≤ 1 P{
2
2
∑(X 16
i =1
16
i
− µ ) ≤ 2σ }
2 2
= P {8 ≤ ∑ (
i =1
16
Xi − µ
σ
) ≤ 32}
2
16
= P {∑ (
iБайду номын сангаас=1
16
Xi − µ
σ
) ≥ 8} − P { ∑ (
2 i =1
Xi − µ
6.2 数理统计中几种常用的分布
6.2正态分布
4
1 2
1
P
2
X
2
1 1 0.954 0.023
2
15
例2、在某次数学考试中,考生的成绩 X服从一个
正态分布,即 X N 90,100
(1)试求考试成绩 X 位于区间 70,110上的概率是
多少?
解: X N 90,100
90, 10
1 P 70 X 110 P 90 210 X 90 210 P 2 X 2 0.954 成绩X位于区间70,110内的概率为0.954
16
(2)试求考试成绩 大于80的概率是多少?
X N 90,100
(2)对称区域面积相等。
11
知识点五:正态曲线下的概率
若 X N (, 2 ) ,则对于任何实数a>0,
P( a ≤ a) a f x dx a x=μ
-a
+a
12
知识点六:特殊区间的概率
P( X ) 0.683 P( 2 X 2 ) 0.954 P( 3 X 3 ) 0.997
f (x)
1
e
( x )2 2 2
2
x (,)
式中的实数 , 0是参数,分别表示总体的平均
数与标准差.
随机变量X服从正态分布
7
知识点二:正态分布与密度曲线
正态分布由参数, 确定,因此正态分布常记作
N ,2
如果随机变量X服从正态分布,则记
X N ,2
2
2
成绩X大于80的概率为0.8415
正态分布——精选推荐
正态分布维基百科,自由的百科全书跳转到:导航, 搜索此条目或章节需要精通或熟悉本主题的专家参与编辑请协助邀请适合的人士,或参照相关专业文献,自行改善这篇条目。
更多的细节与详情请参见条目讨论页。
概率密度函数绿线代表标准正态分布颜色与概率密度函数同正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:X∼N(μ,σ2),则其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。
因其曲线呈钟形,因此人们又经常称之为钟形曲线。
我们通常所说的标准正态分布是μ = 0,σ = 1的正态分布(见右图中绿色曲线)。
目录∙ 1 概要o 1.1 历史∙ 2 正态分布的定义o 2.1 概率密度函数o 2.2 累积分布函数o 2.3 生成函数▪ 2.3.1 动差生成函数▪ 2.3.2 特征函数∙ 3 性质o 3.1 标准化正态随机变量o 3.2 矩(英文:moment)o 3.3 生成正态随机变量o 3.4 中心极限定理o 3.5 无限可分性o 3.6 稳定性o 3.7 标准偏差∙ 4 正态测试∙ 5 相关分布∙ 6 参量估计o 6.1 参数的极大似然估计6.1.1 概念一般化o 6.2 参数的矩估计∙7 常见实例o7.1 光子计数o7.2 计量误差o7.3 生物标本的物理特性o7.4 金融变量o7.5 寿命o7.6 测试和智力分布∙8 计算统计应用o8.1 生成正态分布随机变量∙9 参见∙10 引用条目∙11 外部连接[编辑]概要正态分布是自然科学与行为科学中的定量现象的一个方便模型。
各种各样的心理学测试分数和物理现象比如光子计数都被发现近似地服从正态分布。
尽管这些现象的根本原因经常是未知的,理论上可以证明如果把许多小作用加起来看做一个变量,那么这个变量服从正态分布(在R.N.Bracewell的Fourier transform and its application中可以找到一种简单的证明)。
第2章 6.1 连续型随机变量 6.2 正态分布
=( )
A.0.6
B.0.4
C.0.3
D.0.2
(2)在某项测量中,测量结果服从正态分布 N(1,4),求正态总体 X 在(-1,1)
内取值的概率. 【精彩点拨】 (1)根据正态曲线的对称性性质进行求解;(2)题可先求出 X
在(-1,3)内取值的概率,然后由正态曲线关于 x=1 对称知,X 在(-1,1)内取值
上一页
返回首页
下一页
(2)如图 2-6-2 是三个正态分布 X~N(0,0.25),Y~N(0,1),Z~N(0,4)的密度曲 线,则三个随机变量 X,Y,Z 对应的曲线分别是图中的______,______,______.(填 写序号)
图 2-6-2
上一页
返回首页
下一页
(3)如图 2-6-3 所示是一个正态曲线,试根据该图像机变量的均值为________,方差为________.
上一页
返回首页
下一页
[探究共研型]
正态分布的实际应用 探究 1 若某工厂生产的圆柱形零件的外直径 ε~N(4,0.25),那么该圆柱形 零件外直径的均值,标准差分别是什么? 【提示】 零件外直径的均值为 μ=4,标准差 σ=0.5. 探究 2 某工厂生产的圆柱形零件的外直径 ε~N(4,0.25),若零件的外直径 在(3.5,4.5]内的为一等品.试问 1 000 件这种零件中约有多少件一等品? 【提示】 P(3.5<ε≤4.5)=P(μ-σ<ε<μ+σ)=0.683 0,所以 1 000 件产品中 大约有 1 000×0.683 0=683(件)一等品.
阶
阶
段
段
一
三
*§6 正态分布
6.1 连续型随机变量
北师大版高中数学选修2-3 6.2正态分布第一课时正态分布的性质及应用教学课件 (共25张PPT)
(1)曲线在x轴的上方,与x轴不相交.
(2)曲线是单峰的,它关于直线x=μ对称.
(3)曲线在x=μ处达到峰值(最高点)
1 2πσ
(4)曲线与x轴之间的面积为1
2020年4月26日9时29分
4、正态曲线的性质
y
X=μ
σ=0.5
f (x)
1
e
(
x )2 2 2
2
σ=1
σ
2
2 x2
B.
f (x)
e2
2
C. f (x)
1
( x1)2
e4
2 2
D. f (x)
1
x2
e2
2
2020年4月26日9时29分
2、正态分布: 通常用X ~ N( μ,σ2 ) 表示X服从参数为μ和σ2
的正态分布。
2020年4月26日9时29分
3、正态分布图像:
f (x)
1
2
e
(
x )2 2 2
如图,是一个正态曲线, 试根据图象写出其正态分布 的概率密度函数的解析式, 求出总体随机变量的期望和 方差。
y
1
2 2
5 10 15 20 25 30 35 x
2020年4月26日9时29分
正态总体的函数表示式
f (x)
1
2
e
( x )2 2 2
x (,)
当μ= 0,σ=1时
y μ=0
标准正态总体的函数表示式
产品 尺寸 (mm)
复习
总体密度曲线
a
b
产品 尺寸 (mm)
如果知道了X的密度曲线,则X取值于任何 范围(例如a﹤X﹤b)的概率,都可以通过计算该 曲线下相应部分的面积而得到。
正态分布课件
矩估计
定义
矩估计法是利用样本矩估计总体矩的一种方法。
原理
基于概率论中的矩理论,通过样本矩来估计总体 矩。
方法
首先需要计算样本的一阶矩(均值)和二阶矩( 方差),然后用样本矩来估计总体矩。
贝叶斯估计
定义
01
贝叶斯估计法是通过贝叶斯定理来估计参数的方法。
原理
02
基于概率论中的贝叶斯定理,通过已知的先验概率和样本信息
应用
累积分布函数在统计学中 有广泛应用,如概率模拟 、置信区间的计算等。
正态分布的分位数函数
定义
正态分布的分位数函数是Φ(x) = (1/2) * [1 + erf(x / (√(2) * σ))] ,其中erf是误差函数。
解释
分位数函数描述了随机变量取值大于等于x的概率,即Φ(x) = P(X >= x)。
预测
正态分布还被用于时间 序列数据的预测,例如 在ARIMA模型中,差分 项通常假定服从正态分 布。
状态空间模型
在状态空间模型中,正 态分布被用于描述系统 扰动项的分布,以确保 模型的有效性和准确性 。
在金融风险管理中的应用
风险度量
正态分布被广泛用于金融风险度量,例如在计算VaR(风险价值 )时,通常假定回报率服从正态分布。
率密度函数为f(x)
=
(1/√(2πσ^2)) * exp(-(x-
μ)^2/(2σ^2)),其中μ为均值,σ
为标准差。
正态分布的特点
钟形曲线
正态分布的曲线呈钟形,左右对 称,最高点位于均值μ处,而标准 差σ则决定了曲线的宽度和扁平程
度。
连续性
正态分布是一种连续型概率分布, 其概率密度函数在全实数域上定义 。
正态分布
正态分布正态分布(normal distribution)又名高斯分佈(Gaussian distribution),是一個在數學、物理及工程等領域都非常重要的概率分佈,在統計學的許多方面有著重大的影響力。
若隨機變量X服從一個數學期望為μ、標準方差為σ2的高斯分佈,記為:則其概率密度函數為常態分佈的期望值μ決定了其位置,其標準差σ決定了分佈的幅度。
因其曲線呈鐘形,因此人們又經常稱之為鐘形曲線。
我們通常所說的標準常態分佈是μ = 0,σ = 1的常態分佈(見右圖中綠色曲線)。
目录[隐藏]1 概要o 1.1 歷史2 正态分布的定義o 2.1 概率密度函數o 2.2 累積分佈函數o 2.3 生成函數▪ 2.3.1 動差生成函數▪ 2.3.2 特徵函數3 性質o 3.1 標準化正態隨機變量o 3.2 矩(英文:moment)o 3.3 生成正態隨機變量o 3.4 中心極限定理o 3.5 無限可分性o 3.6 穩定性o 3.7 標準偏差4 正態測試5 相關分佈6 參量估計o 6.1 參數的極大似然估計▪ 6.1.1 概念一般化o 6.2 參數的矩估計7 常見實例o7.1 光子計數o7.2 計量誤差o7.3 生物標本的物理特性o7.4 金融變量o7.5 壽命o7.6 測試和智力分佈[编辑]概要正態分布是自然科學與行為科學中的定量現象的一個方便模型。
各種各樣的心理學測試分數和物理現象比如光子計數都被發現近似地服從常態分佈。
儘管這些現象的根本原因經常是未知的,理論上可以證明如果把許多小作用加起來看做一個變量,那麼這個變量服從正态分布(在R.N.Bracewell的Fourier transform and its application中可以找到一種簡單的證明)。
正态分布出現在許多區域統計:例如, 採樣分佈均值是近似地正態的,既使被採樣的樣本總體並不服從正态分布。
另外,常態分布信息熵在所有的已知均值及方差的分佈中最大,這使得它作為一種均值以及方差已知的分佈的自然選擇。
正态分布的概念及表和查表方法
正态分布概念及图表正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由A·棣莫弗在求二项分布的渐近公式中得到。
C.F.高斯在研究测量误差时从另一个角度导出了它。
P·S·拉普拉斯和高斯研究了它的性质。
是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。
其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。
当μ = 0,σ = 1时的正态分布是标准正态分布。
目录1历史发展2定理3定义▪一维正态分布▪标准正态分布4性质5分布曲线▪图形特征▪参数含义6研究过程7曲线应用▪综述▪频数分布▪综合素质研究▪医学参考值历史发展正态分布概念是由德国的数学家和天文学家Moivre于1733年首次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。
但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。
这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。
在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。
这要到20世纪正态小样本理论充分发展起来以后。
拉普拉斯很快得知高斯的工作,并马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于1810年)上加上了一点补充,指出如若误差可看成许多量的叠加,根据他的中心极限定理,误差理应有高斯分布。
正态分布讲解(含标准表)
2.4正态分布复习引入:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线b 单位O 频率/组距a它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积.观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:22()2,1(),(,)2x x e x μσμσϕπσ--=∈-∞+∞ 式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσϕ的图象为正态分布密度曲线,简称正态曲线.讲解新课:一般地,如果对于任何实数a b <,随机变量X 满足,()()b aP a X B x dx μσϕ<≤=⎰, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN .经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位.说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布.2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称 正态曲线的作图,书中没有做要求,教师也不必补上 讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质4.正态曲线的性质:(1)曲线在x 轴的上方,与x 轴不相交(2)曲线关于直线x=μ对称(3)当x=μ时,曲线位于最高点(4)当x <μ时,曲线上升(增函数);当x >μ时,曲线下降(减函数) 并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近(5)μ一定时,曲线的形状由σ确定σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学5.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其相应的函数表示式是2221)(x e x f -=π,(-∞<x <+∞)其相应的曲线称为标准正态曲线标准正态总体N (0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题讲解范例:例1.给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ (1)),(,21)(22+∞-∞∈=-x e x f x π(2)),(,221)(8)1(2+∞-∞∈=--x e x f x π (3)22(1)2(),(,)2x f x e x π-+=∈-∞+∞ 答案:(1)0,1;(2)1,2;(3)-1,0.5例2求标准正态总体在(-1,2)内取值的概率.解:利用等式)()(12x x p Φ-Φ=有)([]}{11)2()1()2(--Φ--Φ=-Φ-Φ=p=1)1()2(-Φ+Φ=0.9772+0.8413-1=0.8151.1.标准正态总体的概率问题: xy对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率,即 )()(00x x P x <=Φ, 其中00>x ,图中阴影部分的面积表示为概率0()P x x < 只要有标准正态分布表即可查表解决.从图中不难发现:当00<x 时,)(1)(00x x -Φ-=Φ;而当00=x 时,Φ(0)=0.5 2.标准正态分布表标准正态总体)1,0(N 在正态总体的研究中有非常重要的地位,为此专门制作了“标准正态分布表”.在这个表中,对应于0x 的值)(0x Φ是指总体取值小于0x 的概率,即)()(00x x P x <=Φ,)0(0≥x .若00<x ,则)(1)(00x x -Φ-=Φ.利用标准正态分布表,可以求出标准正态总体在任意区间),(21x x 内取值的概率,即直线1x x =,2x x =与正态曲线、x 轴所围成的曲边梯形的面积1221()()()P x x x x x <<=Φ-Φ. 3.非标准正态总体在某区间内取值的概率:可以通过)()(σμ-Φ=x x F 转化成标准正态总体,然后查标准正态分布表即可 在这里重点掌握如何转化 首先要掌握正态总体的均值和标准差,然后进行相应的转化4.小概率事件的含义发生概率一般不超过5%的事件,即事件在一次试验中几乎不可能发生假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率事件几乎不可能在一次试验中发生的原理对试验结果进行分析假设检验方法的操作程序,即“三步曲”一是提出统计假设,教科书中的统计假设总体是正态总体;二是确定一次试验中的a 值是否落入(μ-3σ,μ+3σ);三是作出判断讲解范例:例1. 若x ~N (0,1),求(l)P (-2.32<x <1.2);(2)P (x >2).解:(1)P (-2.32<x <1.2)=Φ(1.2)-Φ(-2.32)=Φ(1.2)-[1-Φ(2.32)]=0.8849-(1-0.9898)=0.8747.(2)P (x >2)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228.例2.利用标准正态分布表,求标准正态总体在下面区间取值的概率:(1)在N(1,4)下,求)3(F(2)在N (μ,σ2)下,求F(μ-σ,μ+σ);F(μ-1.84σ,μ+1.84σ);F(μ-2σ,μ+2σ);F(μ-3σ,μ+3σ) 解:(1))3(F =)213(-Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σμσμ-+Φ=Φ(1)=0.8413 F(μ-σ)=)(σμσμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826F(μ-1.84σ,μ+1.84σ)=F(μ+1.84σ)-F(μ-1.84σ)=0.9342F(μ-2σ,μ+2σ)=F(μ+2σ)-F(μ-2σ)=0.954F(μ-3σ,μ+3σ)=F(μ+3σ)-F(μ-3σ)=0.997对于正态总体),(2σμN 取值的概率:68.3%2σx 95.4%4σx 99.7%6σx在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率分别为68.3%、95.4%、99.7% 因此我们时常只在区间(μ-3σ,μ+3σ)内研究正态总体分布情况,而忽略其中很小的一部分 例3.某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π21,求总体落入区间(-1.2,0.2)之间的概率解:正态分布的概率密度函数是),(,21)(222)(+∞-∞∈=--x e x f x σμσπ,它是偶函数,说明μ=0,)(x f 的最大值为)(μf =σπ21,所以σ=1,这个正态分布就是标准正态分布( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 教学反思:1.在实际遇到的许多随机现象都服从或近似服从正态分布 在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布 但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口 正态分布在统计学中是最基本、最重要的一种分布 2.正态分布是可以用函数形式来表述的 其密度函数可写成:22()21(),(,)2x f x e x μσπσ--=∈-∞+∞, (σ>0)由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的 常把它记为),(2σμN 3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值 从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x 轴,但永不与x 轴相交,因此说曲线在正负两个方向都是以x 轴为渐近线的4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征。