2019-2020年中考数学一轮专题复习第6讲分式方程及应用精讲精练浙教版

合集下载

中考数学复习攻略 专题6 方程与不等式的实际应用(含答案)

中考数学复习攻略 专题6 方程与不等式的实际应用(含答案)

专题六 方程与不等式的实际应用解决方程与不等式的实际应用题的一般步骤:①认真审题,理解题意,弄清题中的已知量、未知量以及它们之间的关系;②设未知数(合理地选择未知数是解题的关键);③列方程(组)或不等式;④解方程(组)或不等式(注意:解分式方程时必须要有“验根”这一步);⑤检验,对所求结果进行检验,看是否符合题意;⑥作答.解决方程与不等式的实际应用题时,首先要认真审题,从题中找出已知量与未知量之间的关系,然后根据题意列出关系式,进而解决相关问题.在解决问题的过程中要注意方程与不等式的解是否符合题意,涉及函数要检验自变量的取值范围,当题干中出现方案设计问题或最值问题时,往往需要根据题干中的已知条件和函数的增减性来解决方案设计或最值问题.中考重难点突破一次方程(组)的实际应用【例1】(2021·陕西中考)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.【解析】设这种服装每件的标价是x 元,根据“这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等”列出方程,然后解方程即可求解.【解答】解:设这种服装每件的标价是x 元.根据题意,得10×0.8x =11(x -30).解得x =110.答:这种服装每件的标价为110元.1.现有一条长度为359 mm 的铜管料,把它锯成长度分别为39 mm 和29 mm 的两种不同规格的小铜管(要求没有余料).每锯一次损耗1 mm 的铜管料.为了使铜管料损耗最少,应分别锯成39 mm 的小铜管__6__段,29 mm 的小铜管__4__段.2.某中学组织七年级全体学生参加社会实践,若只调配45座客车若干辆,则有15人没有座位;若只调配30座客车,则用车数量将增加3辆,且空出15个座位.(1)该学校七年级总共有多少学生?(2)若同时调配45座和30座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?解:(1)设只调配45座客车x 辆,则该学校七年级共有学生(45x +15)人,只调配30座客车需要(x +3)辆.由题意,得30(x +3)-(45x +15)=15.解得x =4.∴45x +15=45×4+15=180+15=195.答:该学校七年级共有学生195人;(2)设需要调配45座客车m 辆,30座客车n 辆,由题意,得45m +30n =195.∴n =13-3m 2. 又∵m ,n 均为正整数,∴⎩⎪⎨⎪⎧m =1,n =5 或⎩⎪⎨⎪⎧m =3,n =2. 答:需调配45座客车1辆,30座客车5辆或调配45座客车3辆,30座客车2辆.分式方程的实际应用【例2】(2021·常州中考)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20 t 水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?【解析】本题考查了分式方程的应用,读懂题意,找到合适的等量关系是解决问题的关键.设该景点在设施改造后平均每天用水x t ,则在改造前平均每天用水2x t ,根据“20 t 水可以比原来多用5天”列出方程并解答.【解答】解:设该景点在设施改造后平均每天用水x t ,则在改造前平均每天用水2x t.根据题意,得20x -202x=5. 解得x =2.经检验,x =2是原方程的解,且符合题意.答:该景点在设施改造后平均每天用水2 t .3.(2021·徐州中考)某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?解:设该商品打折前每件x 元,则打折后每件0.8x 元.根据题意,得400x +2=4000.8x. 解得x =50.经检验,x =50是原方程的解,且符合题意.答:该商品打折前每件50元.方程与不等式的综合应用【例3】某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?【解析】(1)设每副围棋x 元,则每副象棋(x -8)元,根据“420元购买象棋数量=756元购买围棋数量”列出方程求解即可;(2)设购买围棋m 副,则购买象棋(40-m )副,根据题意列出不等式求解即可.【解答】解:(1)设每副围棋x 元,则每副象棋(x -8)元.根据题意,得420x -8=756x .解得x =18. 经检验,x =18是原方程的解,且符合题意.∴x -8=10.答:每副围棋18元,每副象棋10元;(2)设该校购买m 副围棋,则购买(40-m )副象棋.根据题意,得18m +10(40-m )≤600.解得m ≤25.∵m 为正整数,∴m 的最大值是25.答:该校最多可再购买25副围棋.4.(2021·玉林中考)某市垃圾处理厂利用焚烧垃圾产生的热能发电.有A ,B 两个焚烧炉,每个焚烧炉每天焚烧垃圾均为100 t ,每焚烧一吨垃圾,A 焚烧炉比B 焚烧炉多发电50度,A ,B 焚烧炉每天共发电55 000度.(1)求焚烧一吨垃圾,A 焚烧炉和B 焚烧炉各发电多少度?(2)若经过改进工艺,与改进工艺之前相比每焚烧一吨垃圾,A 焚烧炉和B 焚烧炉的发电量分别增加a %和2a %,则A ,B 焚烧炉每天共发电至少增加(5+a )%,求a 的最小值.解:(1)设焚烧一吨垃圾,A 焚烧炉发电m 度,B 焚烧炉发电n 度.根据题意,得⎩⎪⎨⎪⎧m -n =50,100(m +n )=55 000. 解得⎩⎪⎨⎪⎧m =300,n =250.答:焚烧一吨垃圾,A 焚烧炉发电300度,B 发焚烧炉发电250度;(2)由题意,得改进工艺后每焚烧一吨垃圾A 焚烧炉发电300(1+a %)度,则B 焚烧炉发电250(1+2a %)度,由题意,得100×300(1+a %)+100×250(1+2a %)≥55 000[1+(5+a )%].整理,得5a ≥55.解得a ≥11.∴a 的最小值为11.一元二次方程的实际应用【例4】(2021·烟台中考)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?【解析】(1)根据日利润=每件利润×日销售量,可求出售价为60元时的原利润,设售价应定为x 元,则每件的利润为(x -40)元,日销售量为20+10(60-x )5=(140-2x )件,根据日利润=每件利润×日销售量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)设该商品需要打a 折销售,根据销售价格不超过50元,列出不等式求解即可.【解答】解:(1)设售价应定为x 元,则每件的利润为(x -40)元,日销售量为20+10(60-x )5=(140-2x )件. 由题意,得(x -40)(140-2x )=(60-40)×20.整理,得x 2-110x +3 000=0.解得x 1=50,x 2=60(舍去).答:每件售价应定为50元;(2)设该商品需要打a 折销售.由题意,得62.5×a 10≤50. 解得a ≤8.答:该商品至少需打8折销售.5.列方程(组)解应用题:某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600 m 2的矩形试验茶园,便于成功后大面积推广.如图,茶园一面靠墙,墙长35 m ,另外三面用69 m 长的篱笆围成,其中一边开有一扇1 m 宽的门(不包括篱笆).求这个茶园的长和宽.解:设茶园AB 边的长为x m ,则BC 边的长为(69+1-2x ) m .根据题意,得x (69+1-2x )=600.整理,得x 2-35x +300=0.解得x 1=15,x 2=20.当x =15时,70-2x =40>35,不符合题意,舍去;当x =20时,70-2x =30<35,符合题意.答:这个茶园的长和宽分别为30 m ,20 m .6.如图,某城建部门计划在新建的城市广场的一块长方形空地上修建一个面积为1 200 m 2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知整个长方形空地的长为50 m ,宽为40 m.(1)求四周通道的宽度;(2)某建筑公司希望用80万元的承包金额承揽这项工程,城建部门认为金额太高需要降价,经过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.解:(1)设四周通道的宽度为x m ,则停车场的长为(50-2x ) m ,宽为(40-2x ) m.由题意,得(50-2x )(40-2x )=1 200.整理,得x 2-45x +200=0.解得x 1=5,x 2=40.当x =5时,40-2x =40-2×5=30,符合题意;当x =40时,40-2x =40-2×40=-40<0,不符合题意,舍去.答:四周通道的宽度为5 m ;(2)设每次降价的百分率为a .由题意,得80(1-a )2=51.2.解得a 1=0.2=20%,a 2=1.8(不合题意,舍去).答:每次降价的百分率为20%.中考专题过关1.(2021·吉林中考)港珠澳大桥是世界上最长的跨海大桥,它由桥梁和隧道两部分组成,桥梁和隧道全长共55 km.其中桥梁长度比隧道长度的9倍少4 km.求港珠澳大桥的桥梁长度和隧道长度.解:设港珠澳大桥隧道长度为x km ,桥梁长度为y km.由题意,得⎩⎪⎨⎪⎧x +y =55,y =9x -4. 解得⎩⎪⎨⎪⎧x =5.9,y =49.1. 答:港珠澳大桥的桥梁长度和隧道长度分别为49.1 km 和5.9 km.2.(2021·郴州中考)“七·一”建党节前夕,某校决定购买A ,B 两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A 奖品比B 奖品每件多25元,预算资金为1 700元,其中800元购买A 奖品,其余资金购买B 奖品,且购买B 奖品的数量是A 奖品的3倍.(1)求A ,B 奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A 奖品的资金不少于720元,A ,B 两种奖品共100件,求购买A ,B 两种奖品的数量,有哪几种方案?解:(1)设A 奖品的单价为x 元,则B 奖品的单价为(x -25)元.由题意,得800x ×3=1 700-800x -25. 解得x =40.经检验,x =40是原方程的解,且符合题意.∴x -25=15.答:A 奖品的单价为40元,B 奖品的单价为15元;(2)设购买A 奖品的数量为m 件,则购买B 奖品的数量为(100-m )件.由题意,得⎩⎪⎨⎪⎧40×0.8×m ≥720,40×0.8×m +15×0.8×(100-m )≤1 700. 解得22.5≤m ≤25.∵m 为正整数,∴m 的值为23,24,25.∴有三种方案:①购买A 奖品23件,B 奖品77件;②购买A 奖品24件,B 奖品76件;③购买A 奖品25件,B 奖品75件.3.(2021·朝阳中考)某商场以每件20元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于38元,经市场调查发现:该商品每天的销售量y (件)与每件售价x (元)之间符合一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)该商场销售这种商品要想每天获得600元的利润,每件商品的售价应定为多少元?(3)设商场销售这种商品每天获利w (元),当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0).由所给函数图象可知,⎩⎪⎨⎪⎧25k +b =70,35k +b =50. 解得⎩⎪⎨⎪⎧k =-2,b =120. ∴y 与x 之间的函数关系式为y =-2x +120(20≤x ≤38);(2)根据题意,得(x -20)(-2x +120)=600.整理,得x 2-80x +1 500=0.解得x =30或x =50(不合题意,舍去).答:每件商品的售价应定为30元;(3)∵y =-2x +120,∴w =(x -20)y=(x -20)(-2x +120)=-2x 2+160x -2 400=-2(x -40)2+800.∵-2<0,20≤x ≤38,∴当x =38时,w 最大=792.∴当每件商品的售价定为38元时,每天销售利润最大,最大利润是792元.。

中考一轮复习 数学专题06 分式方程(老师版)

中考一轮复习 数学专题06 分式方程(老师版)

专题06 分式方程一、单选题1.(2022·江苏无锡)方程213x x =-的解是( ). A .3x =-B .1x =-C .3x =D .1x =【答案】A【解析】【分析】根据解分式方程的基本步骤进行求解即可.先两边同时乘最简公分母(3)x x -,化为一元一次方程;然后按常规方法,解一元一次方程;最后检验所得一元一次方程的解是否为分式方程的解.【详解】解:方程两边都乘(3)x x -,得 23x x =-解这个方程,得3x =-检验:将3x =-代入原方程,得 左边13=-,右边13=-,左边=右边. 所以,3x =-是原方程的根.故选:A .【点睛】本题考查解分式方程,熟练掌握解分式方程的基本步骤和验根是解题的关键.2.(2022·内蒙古通辽)若关于x 的分式方程:121222k x x --=--的解为正数,则k 的取值范围为( ) A .2k <B .2k <且0k ≠C .1k >-D .1k >-且0k ≠【答案】B【解析】【分析】先解方程,含有k 的代数式表示x ,在根据x 的取值范围确定k 的取值范围.【详解】解:∵121222k x x--=--, ∵()22121x k --+=-,解得:2x k =-,∵解为正数,∵20k ->,∵2k <,∵分母不能为0,∵2x ≠,∵22k -≠,解得0k ≠,综上所述:2k <且0k ≠,故选:B .【点睛】本题考查解分式方程,求不等式的解集,能够熟练地解分式方程式解决本题的关键.3.(2022·辽宁营口)分式方程322x x =-的解是( ) A .2x =B .6x =-C .6x =D .2x =-【答案】C【解析】【分析】先去分母,去括号,移项,合并同类项得出答案,最后检验即可.【详解】 解:322x x =-, 去分母,得3(2)2x x -=, 去括号,得362x x -=,移项,得326x x -=,所以6x =.经检验,6x =是原方程的解.故选:C .【点睛】本题主要考查了解分式方程,掌握解分式方程的步骤是解题的关键.4.(2022·湖北恩施)一艘轮船在静水中的速度为30km/h ,它沿江顺流航行144km 与逆流航行96km 所用时间相等,江水的流速为多少?设江水流速为v km/h ,则符合题意的方程是( )A .144963030v v =+- B .1449630v v =- C .144963030v v =-+ D .1449630v v=+ 【答案】A【解析】【分析】先分别根据“顺流速度=静水速度+江水速度”、“逆流速度=静水速度-江水速度”求出顺流速度和逆流速度,再根据“沿江顺流航行144km 与逆流航行96km 所用时间相等”建立方程即可得.【详解】解:由题意得:轮船的顺流速度为(30)km/h v +,逆流速度为(30)km/h v -, 则可列方程为144963030v v =+-, 故选:A .【点睛】本题考查了列分式方程,正确求出顺流速度和逆流速度是解题关键.5.(2022·海南)分式方程2101x -=-的解是( ) A .1x =B .2x =-C .3x =D .3x =-【答案】C【解析】【分析】按照解分式方程的步骤解答即可.【详解】 解:2101x -=- 2-(x -1)=02-x +1=0-x =-3x =3检验,当x =3时,x -1≠0,故x =3是原分式方程的解.故答案选C .【点睛】本题主要考查了解分式方程,解分式方程的基本步骤为去分母、去括号、移项、合并同类项、系数化为1,以及检验,特别是检验是解分式方程的关键.6.(2022·黑龙江哈尔滨)方程233x x =-的解为( ) A .3x =B .9x =-C .9x =D .3x =-【答案】C【解析】【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】 解:233x x =- 去分母得:23(3)x x =-,去括号得:239x x =-,移项、合并同类项得:9x -=-,解得:x =9,经检验:x =9是原分式方程的解,故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根. 7.(2022·黑龙江)已知关于x 的分式方程23111x m x x --=--的解是正数,则m 的取值范围是( ) A .4m >B .4m <C .4m >且5m ≠D .4m <且1m ≠ 【答案】C【解析】【分析】先将分式方程去分母转化为整式方程,求出整式方程的解,根据分式方程的解为正数得到40m ->且410m --≠,即可求解.【详解】方程两边同时乘以(1)x -,得231x m x -+=-,解得4x m =-,关于x 的分式方程23111x m x x--=--的解是正数, 0x ∴>,且10x -≠,即40m ->且410m --≠,4m ∴>且5m ≠,故选:C .【点睛】本题考查了分式方程的解,涉及解分式方程和分式方程分母不为0,熟练掌握知识点是解题的关键. 8.(2022·山东潍坊)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:267100% 6.6%4036⨯≈).2022年3月当月增速为14.0%-,设2021年3月原油进口量为x 万吨,下列算法正确的是( )A .4271100%14.0%4271x -⨯=- B .4271100%14.0%4271x -⨯=- C .4271100%14.0%x x -⨯=- D .4271100%14.0%x x -⨯=- 【答案】D【解析】【分析】根据题意列式即可.【详解】解:设2021年3月原油进口量为x 万吨,则2022年3月原油进口量比2021年3月增加(4271-x )万吨, 依题意得:4271100%14.0%x x -⨯=-, 故选:D .【点睛】本题考查了列分式方程,关键是找出题目蕴含的数量关系.9.(2021·四川巴中)关于x 的分式方程2m x x +--3=0有解,则实数m 应满足的条件是( ) A .m =﹣2B .m ≠﹣2C .m =2D .m ≠2【答案】B【解析】【分析】解分式方程得:63m x x +=-即46x m =-,由题意可知2x ≠,即可得到68m -≠.【详解】 解:302m x x +-=- 方程两边同时乘以2x -得:630m x x +-+=,∵46x m =-,∵分式方程有解,∵20x -≠,∵2x ≠,∵68m -≠,∵2m ≠-,故选B.【点睛】本题主要考查了分式方程的解,熟练掌握分式方程的解法,理解分式方程有意义的条件是解题的关键. 10.(2021·内蒙古呼伦贝尔)若关于x 的分式方程2233x a x x ++=--无解,则a 的值为( ) A .3 B .0 C .1- D .0或3【答案】C【解析】【分析】直接解分式方程,再根据分母为0列方程即可.【详解】 解:2233x a x x++=--, 去分母得:2﹣x ﹣a =2(x ﹣3),解得:x =83a -, 当833a -=时,方程无解, 解得1a =-.故选:C .【点睛】本题考查了分式方程无解,解题关键是明确分式方程无解的条件,解方程,再根据分母为0列方程. 11.(2021·四川宜宾)若关于x 的分式方程322x m x x -=--有增根,则m 的值是( ) A .1B .﹣1C .2D .﹣2【答案】C【解析】【分析】先把分式方程化为整式方程,再把增根x =2代入整式方程,即可求解.【详解】 解:322x m x x -=--, 去分母得:()32x x m --=,∵关于x 的分式方程322x m x x -=--有增根,增根为:x =2, ∵()2322m --=,即:m =2,故选C .【点睛】本题主要考查解分式方程以及分式方程的增根,把分式方程化为整式方程是解题的关键.12.(2021·广西贺州)若关于x 的分式方程43233m x x x +=+--有增根,则m 的值为( ) A .2B .3C .4D .5【答案】D【解析】【分析】 根据分式方程有增根可求出3x =,方程去分母后将3x =代入求解即可.【详解】解:∵分式方程43233m x x x +=+--有增根, ∵3x =,去分母,得()4323m x x +=+-,将3x =代入,得49m +=,解得5m =.故选:D .【点睛】本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键. 13.(2021·黑龙江)已知关于x 的分式方程3121m x +=-的解为非负数,则m 的取值范围是( ) A .4m ≥-B .4m ≥-且3m ≠-C .4m >-D .4m >-且3m ≠- 【答案】B【解析】【分析】根据题意先求出分式方程的解,然后根据方程的解为非负数可进行求解.【详解】解:由关于x 的分式方程3121m x +=-可得:42m x +=,且12x ≠, ∵方程的解为非负数, ∵402m +≥,且4122m +≠, 解得:4m ≥-且3m ≠-,故选B .【点睛】本题主要考查分式方程的解法及一元一次不等式的解法,熟练掌握分式方程的解法及一元一次不等式的解法是解题的关键.14.(2020·黑龙江鹤岗)已知关于x 的分式方程433x k x x -=--的解为非正数,则k 的取值范围是( ) A .12k ≤-B .12k -≥C .12k >-D .12k <- 【答案】A【解析】【分析】表示出分式方程的解,由解为非正数得出关于k 的不等式,解出k 的范围即可.【详解】 解:方程433x k x x-=--两边同时乘以(3)x -得:4(3)x x k --=-, ∵412x x k -+=-,∵312x k -=--, ∵43k x =+, ∵解为非正数, ∵403k +≤, ∵12k ≤-,故选:A .【点睛】本题考查了分式方程的解及解一元一次不等式,熟练掌握分式方程的解法和一元一次不等式的解法是解题的关键.15.(2020·湖北荆门)已知关于x 的分式方程2322(2)(3)x k x x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( )A .正数B .负数C .零D .无法确定 【答案】A【解析】【分析】先解出关于x 的分式方程得到x =63k -,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解.【详解】关于x 的分式方程2322(2)(3)x kx x x +=+--+得x =217k -,∵41x -<<- ∵21471k --<<-解得-7<k <14∵整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13, 又∵分式方程中x ≠2且x ≠-3∵k ≠35且k ≠0∵所有符合条件的k 中,含负整数6个,正整数13个,∵k 值的乘积为正数,故选A .【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法. 16.(2020·黑龙江牡丹江)若关于x 的方程201mx x -=+的解为正数,则m 的取值范围是() A .2m < B .2m <且0m ≠ C .2m > D .2m >且4m ≠【答案】C【解析】【分析】先将分式方程化为整式方程,再根据方程的解为正数得出不等式,且不等于增根,再求解.【详解】解:∵解方程201mx x -=+,去分母得:()210mx x -+=,整理得:()22m x -=,∵方程有解, ∵22x m =-,∵分式方程的解为正数, ∵202m >-,解得:m >2,而x≠-1且x≠0,则22m-≠-1,22m-≠0,解得:m≠0,综上:m的取值范围是:m>2.故选C.【点睛】本题主要考查分式方程的解,解题的关键是掌握分式方程的解的概念.17.(2020·四川泸州)已知关于x的分式方程3211mx x+=---的解为非负数,则正整数m的所有个数为()A.3B.4C.5D.6本号资料@皆来源于微*信公#众号:数学【答案】B【解析】【分析】根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,即可解题.【详解】解:去分母,得:m+2(x-1)=3,移项、合并,解得:x=52m,∵分式方程的解为非负数,∵52m≥0且52m≠1,解得:m≤5且m≠3,∵m为正整数∵m=1,2,4,5,共4个,故选:B.【点睛】本题考查了分式方程的解,先求出分式方程的解,再求出符合条件的不等式的解.18.(2020·重庆)若关于x的一元一次不等式组()213212x xx a⎧-≤-⎪⎨->⎪⎩的解集为x≥5,且关于y的分式方程122+=---y a y y有非负整数解,则符合条件的所有整数a 的和为( ) A .-1B .-2C .-3D .0【答案】B【解析】【分析】 首先由不等式组的解集为x ≥5,得a <3,然后由分式方程有非负整数解,得a ≥-2且a ≠2的偶数,即可得解.【详解】由题意,得()2132x x -≤-,即5x ≥12x a ->,即2x a +> ∵25a +<,即3a <122+=---y a y y ,解得22a y += 有非负整数解,即202a y +=≥ ∵a ≥-2且a ≠2∵23a -≤<且2a ≠ ∵符合条件的所有整数a 的数有:-2,-1,0,1又∵22a y +=为非负整数解, ∵符合条件的所有整数a 的数有:-2,0∵其和为202-+=-故选:B.【点睛】此题主要考查根据不等式组的解集和分式方程的解求参数的值,熟练掌握,即可解题.19.(2020·重庆)若关于x 的一元一次不等式结3132x x x a-⎧≤+⎪⎨⎪≤⎩的解集为x a ≤;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( )# 本号资料皆来源于微@信公*众号:数学A .7B .-14C .28D .-56【答案】A【解析】【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a 的值,求出之和即可.【详解】 解:解不等式3132x x -≤+,解得x ≤7, ∵不等式组整理的7x x a≤⎧⎨≤⎩, 由解集为x ≤a ,得到a ≤7,分式方程去分母得:y −a +3y −4=y −2,即3y −2=a ,解得:y =+23a , 由y 为正整数解且y ≠2,得到a =1,7,1×7=7,故选:A .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.20.(2022·重庆)关于x 的分式方程31133x a x x x -++=--的解为正数,且关于y 的不等式组92(2)213y y y a +≤+⎧⎪-⎨>⎪⎩的解集为5y ≥,则所有满足条件的整数a 的值之和是( )A .13B .15C .18D .20【答案】A【解析】【分析】先通过分式方程求出a 的一个取值范围,再通过不等式组的解集求出a 的另一个取值范围,两个范围结合起来就得到a 的有限个整数解.【详解】由分式方程的解为整数可得:313x a x x ---=-解得:2=-x a又题意得:20a ->且23a -≠∵2a >且5a ≠,由()922y y +≤+得:5y ≥ 由213y a ->得:32a y +> ∵解集为5y ≥ ∵352a +< 解得:7a <综上可知a 的整数解有:3,4,6它们的和为:13故选:A .【点睛】本题考查含参数的分式方程和含参数的不等数组,掌握由解集倒推参数范围是本题关键.21.(2022·四川遂宁)若关于x 的方程221m x x =+无解,则m 的值为( ) A .0B .4或6C .6D .0或4 【答案】D【解析】【分析】现将分时方程化为整式方程,再根据方程无解的情况分类讨论,当40m -=时,当40m -≠时,0x =或210x +=,进行计算即可.【详解】方程两边同乘(21)x x +,得2(21)x mx +=,整理得(4)2m x -=,原方程无解,∴当40m -=时,4m =;当40m -≠时,0x =或210x +=,此时,24x m =-, 解得0x =或12x =-,当0x =时,204x m ==-无解;当12x =-时,2142x m ==--,解得0m =; 综上,m 的值为0或4;故选:D .【点睛】本题考查了分式方程无解的情况,即分式方程有增根,分两种情况,分别是最简公分母为0和化成的整式方程无解,熟练掌握知识点是解题的关键.22.(2022·重庆)若关于x 的一元一次不等式组411351x x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x -≤,且关于y 的分式方程1211y a y y -=-++的解是负整数,则所有满足条件的整数a 的值之和是( ) A .-26B .-24C .-15D .-13【答案】D【解析】【分析】 根据不等式组的解集,确定a >-11,根据分式方程的负整数解,确定a <1,根据分式方程的增根,确定a ≠-2,计算即可.【详解】 ∵ 411351x x x a -⎧-≥⎪⎨⎪-⎩①<②,解∵得解集为2x -≤,解∵得解集为15a x +<, ∵ 不等式组411351x x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x -≤, ∵125a +->, 解得a >-11, ∵ 1211y a y y -=-++的解是y =13a -,且y ≠-1,1211y a y y -=-++的解是负整数, ∵a <1且a ≠-2,∵-11<a <1且a ≠-2,故a =-8或a =-5,故满足条件的整数a 的值之和是-8-5=-13,故选D.【点睛】本题考查了不等式组的解集,分式方程的特殊解,增根,熟练掌握不等式组的解法,灵活求分式方程的解,确定特殊解,注意增根是解题的关键.23.(2022·四川德阳)关于x的方程211x ax+=-的解是正数,则a的取值范围是()A.a>-1B.a>-1且a≠0C.a<-1D.a<-1且a≠-2【答案】D【解析】【分析】将分式方程变为整式方程求出解,再根据解为正数且不能为增根,得出答案.【详解】方程左右两端同乘以最小公分母x-1,得2x+a=x-1.解得:x=-a-1且x为正数.所以-a-1>0,解得a<-1,且a≠-2.(因为当a=-2时,方程不成立.).【点睛】本题难度中等,易错点:容易漏掉了a≠-2这个信息.24.(2020·云南昆明)某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A.1600元B.1800元C.2000元D.2400元【答案】C【解析】【分析】设原计划每间直播教室的建设费用是x元,则实际每间建设费用为1.2x,根据“实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元”列出方程求解即可.【详解】解:设原计划每间直播教室的建设费用是x元,则实际每间建设费用为1.2x,根据题意得:80004000800011.2x x+-=, 解得:x =2000,经检验:x =2000是原方程的解,答:每间直播教室的建设费用是2000元,故选:C .【点睛】本题考查了分式方程的应用,解题的关键是找到题目中的等量关系,难度不大.25.(2020·黑龙江齐齐哈尔)若关于x 的分式方程32x x -=2m x -+5的解为正数,则m 的取值范围为( ) A .m <﹣10B .m ≤﹣10C .m ≥﹣10且m ≠﹣6D .m >﹣10且m ≠﹣6【答案】D【解析】【分析】分式方程去分母化为整式方程,表示出方程的解,由分式方程的解为正数求出m 的范围即可.【详解】解:去分母得35(2)x m x =-+-, 解得102m x +=, 由方程的解为正数,得到100m +>,且2x ≠,104m +≠,则m 的范围为10m >-且6≠-m ,故选:D .【点睛】本题主要考查了分式方程的计算,去分母化为整式方程,根据方程的解求出m 的范围,其中考虑到分式方程的分母不可为零是做对题目的关键.26.(2020·黑龙江牡丹江)若关于x 的分式方程21m x x =-有正整数解,则整数m 的值是( ) A .3B .5C .3或5D .3或4【答案】D【解析】【分析】解带参数m 的分式方程,得到2122m x m m ==+--,即可求得整数m 的值.【详解】 解:21mx x =-,两边同时乘以()1x x -得:()21x m x =-,去括号得:2x mx m =-,移项得:2x mx m -=-,合并同类项得:()2m x m -=-,系数化为1得:2122mx m m ==+--,若m 为整数,且分式方程有正整数解,则3m =或4m =,当3m =时,3x =是原分式方程的解;当4m =时,2x =是原分式方程的解;故选:D .【点睛】本题考查分式方程的解,始终注意分式方程的分母不为0这个条件.27.(2020·黑龙江黑龙江)已知关于x 的分式方程422x kx x -=--的解为正数,则x 的取值范围是()A .80k -<<B .8k >-且2k ≠-C .8k >-D .4k <且2k ≠-【答案】B【解析】【分析】先解分式方程利用k 表示出x 的值,再由x 为正数求出k 的取值范围即可.【详解】方程两边同时乘以2x -得,()420x x k --+=, 解得:83kx +=.∵x 为正数, ∵803k+>,解得8k >-,∵2x ≠,∵823k +≠,即2k ≠-, ∵k 的取值范围是8k >-且2k ≠-.故选:B .【点睛】本题考查了解分式方程及不等式的解法,解题的关键是熟练运用分式方程的解法,28.(2020·山东枣庄)对于实数a 、b ,定义一种新运算“⊗”为:21a b a b ⊗=-,这里等式右边是实数运算.例如:21113138⊗==--.则方程()2214⊗-=--x x 的解是( ) A .4x =B .5x =C .6x =D .7x = 【答案】B【解析】【分析】根据题中的新运算法则表达出方程,再根据分式方程的解法解答即可.【详解】 解:211(2)(2)4x x x ⊗-==--- ∵方程表达为:12144x x =--- 解得:5x =,经检验,5x =是原方程的解,故选:B .【点睛】本题考查了新定义的运算法则的计算、分式方程的解法,解题的关键是理解题中给出的新运算法则及分式方程的解法.二、填空题29.(2022·辽宁大连)方程213x =-的解是_______. 【答案】5x =【解析】【分析】先去分母,化成一元一次方程,求解,检验分母不为0,即可.【详解】去分母得:23x =-,解得:5x =,检验:35320x -=-=≠,∵原方程的解为x =5.故答案为:5x =.【点睛】本题考查解分式方程,注意结果要代入分母,检验分母是否为0. 本号资料皆来源于微信#:数学30.(2022·湖南永州)解分式方程2101x x -=+去分母时,方程两边同乘的最简公分母是______. 【答案】()1x x +【解析】【分析】根据解分式方程的方法中确定公分母的方法求解即可.【详解】 解:分式方程2101x x -=+的两个分母分别为x ,(x +1), ∴最简公分母为:x (x +1),故答案为:x(x +1).【点睛】题目主要考查解分式方程中确定公分母的方法,熟练掌握解分式方程的步骤是解题关键. 31.(2021·湖北黄石)分式方程11322-+=--x x x的解是______. 【答案】3x =【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】 解:11322-+=--x x x 去分母得:()()1132x x --=-,去括号化简得:26x =,解得:3x =,经检验3x=是分式方程的根,故填:3x=.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.32.(2020·山东济南)代数式31x-与代数式23x-的值相等,则x=_____.【答案】7【解析】【分析】根据题意列出分式方程,去分母,解整式方程,再检验即可得到答案.【详解】解:根据题意得:3213x x=--,去分母得:3x﹣9=2x﹣2,解得:x=7,经检验x=7是分式方程的解.故答案为:7.【点睛】本题考查的是解分式方程,掌握分式方程的解法是解题的关键.33.(2020·山东潍坊)若关于x的分式方程33122x mx x+-=--有增根,则m的值为_____.【答案】3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m的值.【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∵m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:∵让最简公分母为0确定增根;∵化分式方程为整式方程;∵把增根代入整式方程即可求得相关字母的值. 34.(2022·广东广州)分式方程3221x x =+的解是________ 【答案】3x = 【解析】 【分析】先去分母,将分式方程转化成整式方程求解,再检验即可求解; 【详解】解:方程两边同时乘以2x (x +1),得 3(x +1)=4x 3x +3=4x x =3,检验:把x =3代入2x (x +1)=2×3(3+1)=24≠0, ∵原分式方程的解为:x =3. 故答案为:x=3. 【点睛】本题考查解分式方程,解分式方程的基本思想是将分式方程转化成整式方程求解,注意:解分式方程一定要验根.35.(2022·黑龙江齐齐哈尔)若关于x 的分式方程2122224x mx x x ++=-+-的解大于1,则m 的取值范围是______________. 【答案】m >0且m ≠1 【解析】 【分析】先解分式方程得到解为1x m =+,根据解大于1得到关于m 的不等式再求出m 的取值范围,然后再验算分母不为0即可. 【详解】解:方程两边同时乘以()()22x x +-得到:22(2)2x x x m ,整理得到:1x m =+, ∵分式方程的解大于1, ∵11m +>,解得:0m >,又分式方程的分母不为0, ∵12m 且12m ,解得:1m ≠且3m ≠-,∵m 的取值范围是m >0且m ≠1. 【点睛】本题考查分式方程的解法,属于基础题,要注意分式方程的分母不为0这个隐藏条件. 36.(2021·湖北湖北)关于x 的方程2220x mx m m -+-=有两个实数根,αβ.且111αβ+=.则m =_______.【答案】3 【解析】 【分析】先根据一元二次方程的根与系数的关系可得22,m m m αβαβ+==-,再根据111αβ+=可得一个关于m 的方程,解方程即可得m 的值. 【详解】解:由题意得:22,m m m αβαβ+==-, 111αβαβαβ++==, 221mm m∴=-,化成整式方程为230m m -=, 解得0m =或3m =,经检验,0m =是所列分式方程的增根,3m =是所列分式方程的根, 故答案为:3. 【点睛】本题考查了一元二次方程的根与系数的关系、解分式方程,熟练掌握一元二次方程的根与系数的关系是解题关键.37.(2021·湖南常德)分式方程1121(1)x x x x x ++=--的解为__________. 【答案】3x = 【解析】 【分析】直接利用通分,移项、去分母、求出x 后,再检验即可. 【详解】解:1121(1)x x x x x ++=-- 通分得:212(1)(1)x x x x x x -+=--,移项得:()301x x x -=-, 30x ∴-=,解得:3x =,经检验,3x =时,(1)60x x -=≠, ∴3x =是分式方程的解,故答案是:3x =. 【点睛】本题考查了对分式分式方程的求解,解题的关键是:熟悉通分,移项、去分母等运算步骤,易错点,容易忽略对根进行检验.38.(2021·四川凉山)若关于x 的分式方程2311x mx x-=--的解为正数,则m 的取值范围是_________. 【答案】m >-3且m ≠-2 【解析】 【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可. 【详解】解:方程两边同时乘以x -1得,()231x x m --=-, 解得3x m =+, ∵x 为正数,∵m +3>0,解得m >-3. ∵x ≠1,∵m +3≠1,即m ≠-2.∵m 的取值范围是m >-3且m ≠-2. 故答案为:m >-3且m ≠-2. 【点睛】本题考查的是分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键.39.(2020·四川巴中)若关于x 的分式方程31(1)x mx x x +=--有增根,则m =_________. 【答案】4-或0 【解析】 【分析】先确定最简公分母,令最简公分母为0求出x 的值,然后把分式方程化为整式方程,再将x 的值代入整式方程,解关于m 的方程即可得解. 【详解】解:分式方程最简公分母为(1)x x -,由分式方程有增根,得到10x -=或0x =,即0x =或1x =, 分式方程去分母得:23x x m +=-, 把0x =代入方程得:0m =-, 解得:0m =.把1x =代入方程得:13m +=-, 解得:4m =-. 故填:4-或0. 【点睛】本题考查了分式方程的增根问题,增根问题可按如下步骤进行:∵让最简公分母为0确定增根;∵化分式方程为整式方程;∵把增根代入整式方程即可求得相关字母的值.40.(2022·重庆)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________. 【答案】35【解析】 【分析】适当引进未知数,合理转化条件,构造等式求解即可. 【详解】设三座山各需香樟数量分别为4x 、3x 、9x .甲、乙两山需红枫数量2a 、3a .∵425336x a x a +=+,∵3a x =,故丙山的红枫数量为()742955x a x x +-=, 设香樟和红枫价格分别为m 、n .∵()()()()()16695161 6.25%120%695125%mx x x x n x m x x x n +++=-⋅-+++⋅+, ∵:5:4m n =,∵实际购买香樟的总费用与实际购买红枫的总费用之比为()()()()161 6.25%120%3695125%5x mx x x n⋅-⋅-=++⋅+, 故答案为:35.【点睛】本题考查了未知数的合理引用,熟练掌握未知数的科学设置,灵活构造等式计算求解是解题的关键. 41.(2021·山东潍坊)若x <2,且12102x x x +-+-=-,则x =_______. 【答案】1 【解析】 【分析】先去掉绝对值符号,整理后方程两边都乘以x ﹣2,求出方程的解,再进行检验即可. 【详解】 解:12x +-|x ﹣2|+x ﹣1=0, ∵x <2, ∵方程为12x +-2﹣x +x ﹣1=0, 即12x =--1, 方程两边都乘以x ﹣2,得1=﹣(x ﹣2), 解得:x =1,经检验x =1是原方程的解, 故答案为:1. 【点睛】本题考查了解分式方程和绝对值,能把分式方程转化成整式方程是解此题的关键.42.(2021·四川雅安)若关于x 的分式方程11222k x x--=--的解是正数,则k 的取值范围是______. 【答案】4k <且0k ≠ 【解析】 【分析】根据题意,将分式方程的解x 用含k 的表达式进行表示,进而令0x >,再因分式方程要有意义则2x ≠,进而计算出k 的取值范围即可. 【详解】解: 2(2)11x k -+-=420x k --=42kx -=根据题意0x >且2x ≠ ∵402422kk -⎧>⎪⎪⎨-⎪≠⎪⎩∵40k k <⎧⎨≠⎩∵k 的取值范围是4k <且0k ≠. 【点睛】本题主要考查了分式方程的解及分式方程有意义的条件、一元一次不等式组的求解,熟练掌握相关计算方法是解决本题的关键.43.(2021·辽宁本溪)为了弘扬我国书法艺术,培养学生良好的书写能力,某校举办了书法比赛,学校准备为获奖同学颁奖.在购买奖品时发现,A 种奖品的单价比B 种奖品的单价多10元,用300元购买A 种奖品的数量与用240元购买B 种奖品的数量相同.设B 种奖品的单价是x 元,则可列分式方程为________. 【答案】30024010x x=+ 【解析】 【分析】设B 种奖品的单价为x 元,则A 种奖品的单价为(x +10)元,利用数量=总价÷单价,结合用300元购买A 种奖品的件数与用240元购买B 种奖品的件数相同,即可得出关于x 的分式方程. 【详解】解:设B 种奖品的单价为x 元,则A 种奖品的单价为(x +10)元, 依题意得:30024010x x =+, 故答案为:30024010x x=+ 【点睛】本题考查了根据实际问题列分式方程,解题的关键是找准等量关系,正确列出分式方程. 44.(2021·河北)用绘图软件绘制双曲线m :60y x=与动直线l :y a =,且交于一点,图1为8a =时的视窗情形.(1)当15a =时,l 与m 的交点坐标为__________;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O 始终在视窗中心.例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的12,其可视范围就由1515x -≤≤及1010y -≤≤变成了3030x -≤≤及2020y -≤≤(如图2).当 1.2a =-和 1.5a =-时,l 与m 的交点分别是点A 和B ,为能看到m 在A 和B 之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的1k,则整数k =__________.【答案】 ()4,15 4 【解析】 【分析】(1)结合题意,根据一次函数和反比例函数的性质列分式方程并求解,即可得到答案;(2)当 1.2a =-和 1.5a =-时,根据一次函数、反比例函数和直角坐标系的性质,分别计算k 的值,再根据题意分析,即可得到答案. 【详解】(1)根据题意,得6015y x== ∵4x = ∵0x ≠ ∵4x =是6015x=的解 ∵当15a =时,l 与m 的交点坐标为:()4,15 故答案为:()4,15; (2)当 1.2a =-时,得601.2y x==- ∵50x =- ∵0x ≠ ∵50x =-是601.2x=-的解 ∵l 与m 的交点坐标为:()50, 1.2--∵(1)视窗可视范围就由1515x -≤≤及1010y -≤≤,且10 1.210-<< ∵1550k -<-根据题意,得k 为正整数 ∵103k >∵4k =同理,当 1.5a =-时,得40x =- ∵1540k -<-∵83k >∵3k =∵要能看到m 在A 和B 之间的一整段图象 ∵4k = 故答案为:4. 【点睛】本题考查了一次函数、反比例函数、分式方程、直角坐标系的知识;解题的关键是熟练掌握一次函数、反比例函数、分式方程、直角坐标系的性质,从而完成求解. 45.(2020·四川眉山)关于x 的分式方程11222kx x-+=--的解为正实数,则k 的取值范围是________. 【答案】2k >-且2k ≠ 【解析】 【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可. 【详解】 解:11222kx x-+=-- 方程两边同乘(x -2)得,1+2x -4=k -1, 解得22k x +=222k +≠,022k +> 2k ∴>-,且2k ≠故答案为:2k >-且2k ≠ 【点睛】本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.46.(2020·内蒙古呼和浩特)分式22x x -与282x x-的最简公分母是_______,方程228122-=--x x x x 的解是____________.。

2021年浙江省中考数学一轮复习训练:第6课时 分式方程及其应用

2021年浙江省中考数学一轮复习训练:第6课时 分式方程及其应用

(六)分式方程及其应用夯实基础1.分式方程3x-1-1=0的解为()A.x=1B.x=2C.x=3D.x=42.解分式方程1x-2-3=42-x时,去分母可得()A.1-3(x-2)=4B.1-3(x-2)=-4C.-1-3(2-x)=-4D.1-3(2-x)=43.[2020·成都]已知x=2是分式方程kx +x-3x-1=1的解,那么实数k的值为()A.3B.4C.5D.64.分式方程x-5x-1+2x=1的解为()A.x=-1B.x=1C.x=2D.x=-25.[2020·宜宾]学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x元,则列方程正确的是()A.15000x-8=12000xB.15000x+8=12000xC.15000x =12000x-8D.15000x=12000x+86.[2020·牡丹江]若关于x的分式方程2x-1=mx有正整数解,则整数m的值是()A.3B.5C.3或5D.3或47.若关于x的方程2x-2+x+m2-x=2有增根,则m的值为()A.2B.0C.-2D.-48.[2020·徐州]方程9x =8x-1的解为.9.对于非零的两个实数a,b,规定a⊕b=1b -1a.若2⊕(2x-1)=1,则x的值为.10.小明解方程1x -x-2x=1的过程如图K6-1.请指出他解答过程中的错误,并写出正确的解答过程.图K6-111.(1)[2020·遵义]解方程:1x-2=3 2x-3;(2)[2020·陕西]解分式方程:x-2x -3x-2=1.12.[2020·岳阳]为做好复工复产,某工厂用A,B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20 kg,且A型机器人搬运1200 kg所用时间与B型机器人搬运1000 kg所用时间相等,求这两种机器人每小时分别搬运多少原料.图K6-213.[2020·常德]第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?拓展提升14.[2018·达州]若关于x的分式方程xx-3+3a3-x=2a无解,则a的值为.15.[2018·吉林]如图K6-3是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.图K6-3根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示,庆庆同学所列方程中的y表示;(2)从两个方程中任选一个,写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.【参考答案】1.D2.B3.B4.A5.B6.D[解析] 方程2x-1=mx可化为整式方程2x=m(x-1),∴x=mm-2=1+2m-2,而分式方程有正整数解,∴m-2=1或m-2=2,∴m=3或m=4,经检验均符合题意,故选D.7.B8.x=99.5 6[解析] 因为a⊕b=1b−1a,所以2⊕(2x-1)=12x-1−12,故有12x-1−12=1,所以12x-1=32,解得x=56,经检验,x=56是原方程的根.10.解:步骤①去分母时,没有在等号右边乘x;步骤②括号前面是“-”号,去括号时,没有变号;步骤⑥前没有检验.正确解答过程如下:方程两边都乘x,得1-(x-2)=x.去括号得,1-x+2=x.移项,合并同类项,得-2x=-3,解得x=32.经检验,x=32是原分式方程的根.∴原分式方程的解为x=32.11.解:(1)去分母,得2x-3=3x-6,解得x=3.检验:把x=3代入(x-2)(2x-3)≠0,∴x=3是原分式方程的解.(2)去分母,得(x-2)2-3x=x(x-2),去括号,得x2-4x+4-3x=x2-2x,移项,合并同类项,得-5x=-4,系数化为1,得x=45.检验:当x=45时,x(x-2)≠0,所以x=45是原分式方程的解.12.解:设B型机器人每小时搬运x kg,则A型机器人每小时搬运(x+20)kg.列方程得1200x+20=1000x,解得x=100,经检验,x=100是原方程的解且符合题意,100+20=120(kg).答:A,B两种机器人每小时分别搬运120 kg,100 kg原料.13.解:设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,由题意得600x −60015x=140,解得x=4.经检验:x=4是原分式方程的解,且符合题意,15×4=60.答:该地4G的下载速度是每秒4兆,5G的下载速度是每秒60兆.14.1或12[解析] 去分母,得x-3a=2a(x-3),整理得(1-2a)x=-3a.由整式方程无解,得1-2a=0,∴a=12;由分式方程有增根,得到x=3,把x=3代入整式方程,得3-3a=2a(3-3),解得a=1.15.解:(1)∵冰冰是根据时间相等列出的分式方程,∴x表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20米列出的分式方程,∴y表示甲队修路400米(乙队修路600米)所需的时间.故答案为:甲队每天修路的长度甲队修路400米(乙队修路600米)所需的时间.(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每天修路的长度-甲队每天修路的长度=20米.(选择一个即可)(3)选冰冰所列的方程:400x =600x+20,去分母,得:400x+8000=600x,移项、x的系数化为1,得:x=40,检验:当x=40时,x,x+20均不为零,∴x=40是分式方程的根且符合题意.答:甲队每天修路的长度为40米.选庆庆所列的方程:600y −400y=20,去分母,得:600-400=20y,将y的系数化为1,得:y=10,检验:当y=10时,分母y不为0,∴y=10是分式方程的根且符合题意,∴400y=40.答:甲队每天修路的长度为40米.。

第06讲分式方程(讲义)(原卷版)-2024年中考数学一轮复习讲义

第06讲分式方程(讲义)(原卷版)-2024年中考数学一轮复习讲义

第06讲 分式方程目 录一、考情分析 二、知识建构考点一 解分式方程题型01 判断分式方程 题型02 分式方程的一般解法 题型03 分式方程的特殊解法 类型一 分组通分法 类型二 分离分式法 类型三 列项相消法 类型四 消元法题型04 错看或错解分式方程问题 题型05 解分式方程的运用(新定义运算)题型06 根据分式方程解的情况求值题型07 根据分式方程有解或无解求参数题型08 已知分式方程有增根求参数 题型09 已知分式方程有整数解求参数考点二 分式方程的应用题型01 列分式方程题型02 利用分式方程解决实际问题 类型一 行程问题 类型二 工程问题 类型三 和差倍分问题 类型四 销售利润问题考点一解分式方程分式方程的概念:分母中含有未知数的方程叫做分式方程.增根的概念:在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.1.分式方程与整式方程的根本区别:分母中含有未知数,也是判断分式方程的依据.2. 去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项.3. 分式方程的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.4. 分式方程的增根是去分母后的整式方程的根,也是使分式方程的公分母为0的根,它不是原分式方程的根.5. 解分式方程可能产生使分式方程无意义的根,检验是解分式方程的必要步骤.6. 分式方程有增根与无解并非是同一个概念.分式方程无解,需分类讨论:可能是解为增根,也可能是去分母后的整式方程无解.题型01 判断分式方程题型02 分式方程的一般解法解分式方程方法:先通过方程两边同乘最简公分母将分式方程化为整式方程,再解整式方程,最后需要检验整式方程的解是不是分式方程的解.题型03 分式方程的特殊解法类型一分组通分法方法简介:如果整个方程一起通分,计算量大又易出错,观察方程中分母的特点可联想分组通分求解.类型二分离分式法方法简介:每个分式的分母与分子相差1,利用这个特点可采用分类分式法求解类型三列项相消法方法简介:根据分式方程的结果特点,依据公式“1n(n+1)=1n−1n+1”化积为差,裂项相消,简化难度.类型四消元法方法简介:当方程中的分式互为倒数,或不同分式中的分母互为相反式,或方程中分子、分母的二次项与一次项分别相同时,可考虑用换元法.题型04 错看或错解分式方程问题+1,其中x=先化简,再求值:3−xx−4⋅(x−4)+(x−4)解:原式=3−xx−4=3−x+x−4=−1题型05 解分式方程的运用(新定义运算)题型06 根据分式方程解的情况求值由分式方程的解的情况求字母系数的取值范围,一般解法是:①根据未知数的范围求出字母的范围;②把使分母为0的未知数的值代入到去分母后的整式方程中,求出对应的字母系数的值;③综合①②,求出字母系数的范围.题型07 根据分式方程有解或无解求参数已知分式方程的解确定字母参数,首先将分式方程化为整式方程,用含字母参数的代数式表x,再根据解的情况确定字母参数的取值. 同时要注意原分式方程的最简公分母不能为零.题型08 已知分式方程有增根求参数依据分式方程的增根确定字母参数的值的一般步骤:1)先将分式方程转化为整式方程;2)由题意求出增根;3)将增根代入所化得的整式方程,解之就可得到字母参数的值.题型09 已知分式方程有整数解求参数考点二分式方程的应用用分式方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解方程;验:考虑求出的解是否具有实际意义;+1)检验所求的解是否是所列分式方程的解.2)检验所求的解是否符合实际意义.答:实际问题的答案.与分式方程有关应用题的常见类型:题型01 列分式方程【例1】(2022·云南·中考真题)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该A.1.4−x=8 1.4+x=8 1.4−2x=8 1.4+2x=8题型02 利用分式方程解决实际问题类型一行程问题【例2】(2022·四川自贡·统考中考真题)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【变式2-1】(2023青岛市一模)小李从A地出发去相距4.5千米的B地上班,他每天出发的时间都相同.第一天步行去上班结果迟到了5分钟.第二天骑自行车去上班结果早到10分钟.已知骑自行车的速度是步行速度的1.5倍:(1)求小李步行的速度和骑自行车的速度分别为多少千米每小时;(2)有一天小李骑自行车出发,出发1.5千米后自行车发生故障.小李立即跑步去上班(耽误时间忽略不计)为了至少提前5分钟到达.则跑步的速度至少为多少千米每小时?类型二工程问题【例3】(2023重庆市模拟预测)为方便群众出行,甲、乙两个工程队负责修建某段通往高铁站的快线,已知甲队每天修路的长度是乙队的1.5倍,如果两队各自修建快线600m,甲队比乙队少用4天.(1)求甲,乙两个工程队每天各修路多少米?(2)现计划再修建长度为3000m的快线,由甲、乙两个工程队来完成.若甲队每天所需费用为1万元,乙队每天所需费用为0.6万元,求在总费用不超过38万元的情况下,至少安排乙工程队施工多少天?【变式3-1】(2023·重庆渝中·重庆巴蜀中学校考一模)重庆市潼南区是中国西部绿色菜都,为全市人民提供了新鲜多样的蔬菜.今年,区政府着力打造一个新的蔬菜基地,计划修建灌溉水渠1920米,由甲、乙两,而乙施工队单独修建这个施工队合作完成.已知乙施工队每天修建的长度是甲施工队每天修建的长度的43项工程需要的天数比甲施工队单独修建这项工程需要的天数少4天.(1)求甲、乙两施工队每天各修建多少米?(2)若甲施工队每天的修建费用为13万元,乙施工队每天的修建费用为15万元,实际修建时先由甲施工队单独修建若干天,再由甲、乙两个施工队合作修建,恰好12天完成修建任务,求共需修建费用多少万元?类型三和差倍分问题【例4】(2022·广东深圳·深圳中学校考一模)2022年北京冬奥会吉祥物冰墩墩深受大家的喜欢.某商家两次购进冰墩墩进行销售,第一次用22000元,很快销售一空,第二次又用48000元购进同款冰墩墩,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进冰墩墩多少个?(2)若所有冰墩墩都按相同的标价销售,要求全部销售完后的利润率不低于20%(不考虑其他因素),那么每个冰墩墩的标价至少为多少元?【变式4-1】(2022·河南·统考中考真题)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需倍,用300元在市场上要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的54购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【变式4-2】(2021·山东济南·统考中考真题)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【变式4-3】(2022·山东烟台·统考中考真题)扫地机器人具备敏捷的转弯、制动能力和强大的自主感知、规划能力,深受人们喜爱.某商场根据市场需求,采购了A,B两种型号扫地机器人.已知B型每个进价比A型的2倍少400元.采购相同数量的A,B两种型号扫地机器人,分别用了96000元和168000元.请问A,B两种型号扫地机器人每个进价分别为多少元?类型四销售利润问题【例5】(2023梁山县三模)某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?【变式5-1】(2023银川市二模)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?。

考点05 分式、分式方程及其应用-备战2023届中考数学一轮复习考点梳理(解析版)

考点05 分式、分式方程及其应用-备战2023届中考数学一轮复习考点梳理(解析版)

考点05 分式、分式方程及其应用分式在中考中的考察难度不大,考点多在于分式有意义的条件,以及分式的化简求值。

浙江中考中,分式这个考点的占比并不太大,其中分式的化简求值问题为主要出题类型,出题多以简答题为主;个别城市会同步考察分式方程的简单应用,多以选择填空题为主,有些城市甚至不会出分式的单独考题;而分式方程的应用也和分式方程一样,较少出题,出题也基本是以选择题或者填空题的形式考察,整体难度较小。

但是,分式的化简方法以及分式方程的解法的全面复习对后期辅助几何综合问题中的计算非常重要!考向一、分式有意义的条件考向二、分式的运算法则考向三、分式方程的解法考向四、分式方程的应用考向一:分式有意义的条件1.分式:一般地,如果A,B 表示两个整式,并且B中含有分母,那么式子叫做分式,分式中A叫做分子,B 叫做分母。

最简分式:分子分母中不含有公因式的分式2.分式有意义的条件3.分式值=0需满足的条件【易错警示】1.下列四个式子:,x 2+x ,m ,,其中分式的个数有( )A .1个B .2个C .3个D .4个【分析】根据分式的定义可得.【解答】解:分母上含有字母的式子是分式,题目中所给的式子中只有,两个分母中都含有字母,所以这两个是分式,故选:B .2.若分式无意义,则x 的取值范围是( )A .B .C .D .【分析】根据分式无意义的条件可得2x ﹣1=0,再解即可.【解答】解:由题意得:2x ﹣1=0,解得:x =,若 <故选:C .3.若分式的值为零,则x 的值为( )A .2或﹣2B .2C .﹣2D .1【分析】分式的值为零,分子等于零,且分母不等于零.【解答】解:依题意,得x 2﹣4=0,且x +2≠0,解得,x =2.故选:B .4.已知=,则的值为( )A .﹣B .﹣C .D .【分析】先化简,代入数值计算即可.【解答】解:∵,===.故选:C .考向二:分式的运算法则1.分式的基本性质:分式的分子和分母同乘(或除以)一个不等于 0 的整式,分式的值不变。

浙江省中考数学总复习第二章方程与不等式第6讲一元一次方程与分式方程及其应用讲解篇

浙江省中考数学总复习第二章方程与不等式第6讲一元一次方程与分式方程及其应用讲解篇

第6讲一元一次方程与分式方程及其应用1.一元一次方程及解法考试内容考试要求等式的性质性质1:等式两边加(或减)同一个数或同一个____________________,所得结果仍是等式;性质2:等式两边乘(或除以)同一个数(除数不能为0),所得结果仍是.ab方程的概念含有未知数的叫做方程.方程的解使方程左右两边的值的未知数的值叫做方程的解.一元一次方程的概念只含有个未知数,且未知数的最高次数是的整式方程,叫做一元一次方程.一元一次方程的解法解一元一次方程的一般步骤:去分母、去_____________、移项、合并______________、系数化为1.c2.分式方程及解法考试内容考试要求分式方程的概念分母里含有的方程叫做分式方程.a分式方程的解法解分式方程的基本思路是将分式方程转化为______________方程,具体步骤是:(1)去分母,在方程的两边都乘以____________________,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入最简公分母,如果,c则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.3.列方程解应用题的一般步骤考试内容考试要求列方程解应用题的一般步骤c1.审审清题意和数量关系,弄清题中的已知量和未知量,明确各数量之间的关系.2.设设未知数(可设直接或____________________未知数).3.列根据题意寻找列方程.4.解解方程.5.答检验所求的未知数的值是否符合题意(分式方程既要检验求出来的解是否为原方程的根,又要检验是否符合题意),写出答案.考试内容考试要求基本思想解分式方程的基本思想:把分式方程转化为整式方程,即分式方程――→去分母转化整式方程.c 基本方法1.分式方程无解有可能是两种情况:一是去分母后的整式方程无解;二是整式方程有解,但整式方程的解使最简公分母为0,分式方程也无解.2.列方程的关键是寻找等量关系,寻找等量关系常用的方法有:①抓住不变量;②找关键词;③画线段图或列表格;④运用数学公式.1.(2016·杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为( )A .518=2(106+x )B .518-x =2×106C .518-x =2(106+x )D .518+x =2(106-x ) 2.(2017·宁波)分式方程2x +13-x =32的解是____________________.3.(2017·温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程:____________________.4.(2017·金华)解分式方程:2x +1=1x -1.【问题】给出以下五个代数式:2x -4,x -2,x ,12,3.(1)选取其中的几个代数式,组成一个一元一次方程和一个分式方程; (2)解出(1)中所选的一元一次方程和分式方程.【归纳】通过开放式问题,归纳、疏理一元一次方程和分式方程的概念,以及它们的解法.类型一 等式性质和方程的解的含义例1 (1)(2017·杭州)设x ,y ,c 是实数,( )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y 3c,则2x =3y(2)已知关于x 的方程2x +a -9=0的解是x =2,则a =________.(3)已知关于x 的方程3x +n2x +1=2的解是负数,则n 的取值范围为______________.【解后感悟】(1)熟记等式的性质并根据等式的性质求解是解题关键;(2)本题利用方程的思想,通过方程的解来构造关于a 的一元一次方程,求出a 值;(3)本题是分式方程的解和解一元一次不等式,关键是得出n -2<0和n -2≠-12,注意题目中的隐含条件2x +1≠0不要忽略.1.(1)已知等式3a =2b +5,则下列等式中不一定成立的是( )A .3a -5=2bB .3a +1=2b +6C .3ac =2bc +5D .a =23b +53(2)如果方程x +2=0与方程2x -a =0的解相同,那么a =____________________. (3)(2017·成都)已知x =3是分式方程kx x -1-2k -1x=2的解,那么实数k 的值为( )A .-1B .0C .1D .2类型二 一元一次方程的解法例2 解方程:x -x -12=2-x +23.【解后感悟】(1)去分母,方程两边同乘各分母的最小公倍数时,不要漏乘没有分母的项(尤其是常数项),若分子是多项式,则要把它看成一个整体加上括号;(2)去括号可用分配律,注意符号,勿漏乘.2.解方程:(1)(2016·贺州)解方程:x 6-30-x4=5;(2)7x -12⎣⎢⎡⎦⎥⎤x -12(x -1)=23(x -1).类型三 分式方程的解法例3 (2015·营口)若关于x 的分式方程2x -3+x +m3-x=2有增根,则m 的值是( )A .m =-1B .m =0C .m =3D .m =0或m =3【解后感悟】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程:③把增根代入整式方程即可求得相关字母的值.例4 (1)(2017·湖州)解方程:2x -1=1x -1+1;(2)(2017·陕西模拟)解方程:2-x x -3=13-x -2.【解后感悟】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3.解分式方程:(1)x x -3=x -63-x +3;(2)x x +1-4x 2-1=1.类型四一元一次方程和分式方程的应用例5(2015·宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【解后感悟】此题主要考查了分式方程的应用,此题关键是正确理解题意,找到合适的等量关系,列出方程.注意不要忘记检验.4.(2017·黄冈)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?【探索规律题】一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?【方法与对策】根据寻找的规律,每增加1张这样的餐桌可增加4人求解即可.这是探索规律题(图形的变化类),并利用方程思想来解决.它是中考热点题之一.【解分式方程去分母时,漏乘整式项,忘记验根】 解分式方程:x 2-4x x 2-1+1=2xx +1.参考答案第6讲 一元一次方程与分式方程及其应用【考点概要】1.整式 等式 等式 相等 一 1 括号 同类项 2.未知数 整式 最简公分母 不为0 3.间接 等量关系【考题体验】1.C 2.x =1 3.160x =200x +54.x =3【知识引擎】【解析】(1)答案不唯一,2x -4=3和2x -4x -2=12;(2)2x -4=3,解得x =3.5;2x -4x -2=12,解得x =2,代入方程x =2是方程的增根,舍去,所以,方程无解. 【例题精析】例1 (1)B ;(2)5;(3)解方程3x +n 2x +1=2得x =n -2.∵关于x 的方程3x +n2x +1=2的解是负数,∴n -2<0.解得:n <2.又∵原方程有意义的条件为:x≠-12,∴n -2≠-12,即n≠32.∴n <2且n≠32. 例2 6x -3(x -1)=12-2(x +2),6x -3x +3=12-2x -4,3x +3=8-2x ,3x +2x =8-3,5x =5,∴x =1. 例3 方程两边都乘以(x -3)得,2-x -m =2(x -3),∵分式方程有增根,∴x -3=0,解得x =3,∴2-3-m =2(3-3),解得m =-1.故选A . 例4 (1)方程两边都乘以x -1得:2=1+x -1,解得:x =2,检验:∵当x =2时,x -1≠0,∴x =2是原方程的解,即原方程的解为x =2. (2)方程的两边同乘(x -3),得:2-x =-1-2(x -3),解得:x =3,检验:把x =3代入(x -3)=0,即x =3不是原分式方程的解.则原方程无解. 例5 (1)设B 花木数量为x 棵,则A 花木数量是(2x -600)棵,由题意得:x +2x -600=6600,解得:x =2400,2x -600=4200,答:B 花木数量为2400棵,则A 花木数量是4200棵; (2)设安排a 人种植A 花木,由题意得:420060a =240040(26-a ),解得:a=14,经检验:a =14是原分式方程的解,26-a =26-14=12,答:安排14人种植A 花木,12人种植B 花木.【变式拓展】1.(1)C (2)-4 (3)D 2. (1)x =30; (2)x =-573.3.(1)解得x =3,经检验x =3是增根,分式方程无解. (2)x =-3.4.设文学类图书平均每本的价格为x 元,则科普类图书平均每本的价格为(x +5)元.根据题意,得12000x +5=5000x .解得x =257.经检验,x =257是原方程的解,且符合题意,则科普类图书平均每本的价格为257+5=607元,答:文学类图书平均每本的价格为257元,科普类图书平均每本的价格为607元.【热点题型】【分析与解】(1)寻找规律:1张这样的餐桌四周可坐6人,2张这样的餐桌拼接起来四周可坐6+4人,3张这样的餐桌拼接起来四周可坐6+4×2人,4张这样的餐桌拼接起来四周可坐6+4×3人,…n 张这样的餐桌拼接起来四周可坐6+4(n -1)人.∴4张这样的餐桌拼接起来四周可坐18人,8张这样的餐桌拼接起来四周可坐34人.(2)∵n 张这样的餐桌拼接起来四周可坐6+4(n -1)人,∴若用餐的人数有90人,则6+4(n -1)=90,解得n =22.∴若用餐的人数有90人,则这样的餐桌需要22张.【错误警示】原方程变形为x 2-4x (x +1)(x -1)+1=2x x +1.方程两边同乘(x +1)(x -1),得x 2-4x +(x+1)(x -1)=2x(x -1).整理得x 2-4x +x 2-1=2x 2-2x ,即2x =-1,x =-12.检验:当x=-12时,(x +1)(x -1)≠0,所以x =-12是原方程的根.。

中考数学一轮复习专题解析—分式的运算

中考数学一轮复习专题解析—分式的运算

中考数学一轮复习专题解析—分式的运算复习目标1.了解分式的概念2.会利用分式的基本性质进行约分和通分。

3.会进行分式的加、减、乘、除、乘方运算4.能够根据具体问题数量关系列出简单的分式方程5.会解简单的可化为一元一次方程的分式方程;考点梳理一、分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.【归纳总结】分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B ≠0时,分式有意义;当分式有意义时,B ≠0.②当B =0时,分式无意义;当分式无意义时,B =0.③当B ≠0且A =0时,分式的值为零.例1、若把x ,y 的值同时缩小x 为原来的13倍,则下列分式的值保持不变的是()A .xy x y+B .22y x ++C .()22x y x +D .222x y x -【答案】C 【解析】A.1111333==11333x y xyxy x y x y x y⨯⨯+++,选项说法错误,不符合题意;B.61263=3616233y y x x y x +++=+++,选项说法错误,不符合题意;C.22222222111()()()33311()()33x y x y x y x x x ⎛⎫++ ⎪+⎝⎭==,选项说法正确,符合题意;D.22222213112261())(33()3xx xy x y x y x ⨯==---⨯,选项说法错误,不符合题意故选C二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算±=同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算(分式乘方)分式的乘方,把分子分母分别乘方.2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.例2、计算22111m mm m----的结果是()A.1m+B.1m-C.2m-D.2m--【答案】B【解析】解:()222121211 1111mm m m m mm m m m---+-===-----;故选B.【归纳总结】约分需明确的问题:(1)对于一个分式来说,约分就是要把分子与分母都除以同一个因式,使约分前后分式的值相等;(2)约分的关键是确定分式的分子和分母的公因式,其思考过程与分解因式中提取公因式时确定公因式的思考过程相似;在此,公因式是分子、分母系数的最大公约数和相同字母最低次幂的积.【特别提醒】通分注意事项(1)通分的关键是确定最简公分母;最简公分母应为各分母系数的最小公倍数与所有因式的最高次幂的积.(2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.(3)确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母因式的最高次幂的积.三、分式方程及其应用1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.【特别提醒】1.解分式方程注意事项(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.2.列分式方程解应用题的基本步骤(1)审——仔细审题,找出等量关系;(2)设——合理设未知数;(3)列——根据等量关系列出方程;(4)解——解出方程;(5)验——检验增根;(6)答——答题.例3、随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周6000件提高到8400件,平均每人每周比原来多投递80件,若快递公司的快递人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.6000x=840080x+B.6000x+80=8400xC.8400x=6000x﹣80D.6000x=840080x-【答案】A【解析】解:设原来平均每人每周投递快件x件,则更换交通工具后平均每人每周投递快件(x+80)件,依题意得:6000x=840080x+,故选:A.综合训练1.(2022·全国九年级课时练习)若代数式13x x -+有意义,则x 的取值范围是()A .3x ≠B .1x ≠C .3x ≥-D .3x ≠-【答案】D【分析】根据分式有意义的条件分析即可.【详解】 数式13x x -+有意义,30x ∴+≠,解得3x ≠-.故选D .2.(2022·老河口市教学研究室九年级月考)化简2b a ba a a ⎛⎫+-÷ ⎪⎝⎭的结果是()A .-a bB .a b +C .1a b-D .1a b+【答案】A【分析】直接将括号里面通分,进而分解因式,再利用分式的除法运算法则计算得出答案.【详解】解:2b a ba a a ⎛⎫+-÷⎪⎝⎭=22a b aa a b-⨯+=()()a b a b aaa b+-⨯+=-a b .故选:A .3.(2022·厦门市第九中学九年级二模)港珠澳大桥是我国桥梁建筑史上的又一伟大奇迹,东接香港,西接珠海、澳门,全程55千米.通车前需走水陆两路共约170千米,通车后,约减少时间3小时,平均速度是原来的2.5倍,如果设原来通车前的平均时速为x 千米/小时,则可列方程为()A .1705532.5x x-=B .5517032.5x x-=C .17055 2.53x x ⨯-=D .1705532.5x x-=【答案】D【分析】设原来通车前的平均时速为x 千米/小时,所以通车后,的平均时速为2.5x 千米/小时,根据它们行驶的时间差为3小时列出分式方程.【详解】解:设原来通车前的平均时速为x 千米/小时,所以通车后,的平均时速为2.5x 千米/小时,依题意得:1705532.5x x-=故选D .4.(2022·哈尔滨市第十七中学校)分式方程1x x +12x +-=1的解是()A .x =1B .x =﹣1C .x =3D .x =﹣3【答案】A【分析】观察可得最简公分母是x (x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解即可.【详解】解:112x x x ++-=1,去分母,方程两边同时乘以x (x ﹣2)得:(x +1)(x ﹣2)+x =x (x ﹣2),x 2﹣x ﹣2+x =x 2﹣2x ,x =1,经检验,x =1是原分式方程的解.故选:A .5.(2022·四川九年级期中)关于x 的方程244x ax x -=++有增根,则a 的值为()A .-4B .-6C .0D .3【答案】B【分析】将分式方程转化为整式方程,根据方程有增根求得4x =-,代入整式方程即可.【详解】解:244x ax x -=++两边同时乘4x +得:2x a -=①∵244x ax x -=++有增根∴4x =-代入方程①得:6a =-故答案为B .6.(2022·全国)已知实数a ,b 满足1a b ⋅=,那么221111a b +++的值为()A .14B .12C .1D .2【答案】C【分析】把所求分式通分,再把已知条件代入求解.【详解】解:∵•1a b =,∴()2221a b ab ==,∴22222222112111a b a b a b b a +++=+++++2222211a b b a ++=+++1=.故选:C .7.(2022·日照市田家炳实验中学九年级一模)已知关于x 的方程2222x mm x x+=--无解,则m 的值是___.【答案】12或1【分析】分方程有增根,增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母20x -=,得到2x =,然后代入化为整式方程的方程算出m 的值和方程没有增根两种情况进行讨论.【详解】解:①当方程有增根时方程两边都乘2x -,得22(2)x m m x -=-,∴最简公分母20x -=,解得2x =,当2x =时,1m =故m 的值是1,②当方程没有增根时方程两边都乘2x -,得22(2)x m m x -=-,解得221mx m =-,当分母为0时,此时方程也无解,∴此时210m -=,解得12m =,∴综上所述,当12m =或1时,方程无解.故答案为:12或1.8.(2022·山东滨州市·九年级其他模拟)已知关于x 的分式方程3522x mx x=+--的解为非负数,则m 的取值范围为______.【答案】10m ≥-且6≠-m 【分析】根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,可得答案.【详解】解:3522x m x x=+--去分母,得:35(2)x m x =-+-,移项、合并,得:210x m=+系数化为1得:102mx +=∵分式方程的解为非负数,∴1002m +≥且1022m +≠,解得:10m ≥-且6≠-m ,故答案为:10m ≥-且6≠-m .9.(2022·云南九年级期末)先化简,再求值:212(1)11x x x ++÷+-,其中2x =.【答案】x -1,1【分析】根据分式的混合运算法则化简原式然后代值计算即可.【详解】解:原式=2111()12x x x x ++-⨯++=2(1)(1)12x x x x x ++-⨯++=1x -,∵2x =,∴原式=211-=.10.(2022·河南三门峡市·)下面是小锐同学进行分式化简的过程,请认真阅读并完成相应任务.229216926x x x x x -+-+++()()()()23321233x x x x x +-+=-++…第一步()321323x x x x -+=-++…第二步()()()23212323x x x x -+=-++…第三步()()262123x x x --+=+…第四步()262123x x x --+=+…第五步526x =-+…第六步(1)填空:①以上化简步骤中,第______步是进行分式的通分,通分的依据是______;②第______步开始出现错误,这一步错误的原因是__________.(2)请从出现错误的步骤开始继续进行该分式的化简;(3)除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需注意的事项给其他同学提一条建议.【答案】(1)①三,分式的基本性质;②五,括号前面是“-”,去掉括号后,括号里面的第二项没有变号;(2)见解析;(3)最后结果应化为最简分式或整式【分析】(1)①分式的通分是把异分母的分式化为同分母的分式,通分的依据是分式的基本性质,据此即可进行判断;②根据分式的运算法则可知:第五步开始出现错误,然后根据去括号法则解答即可;(2)根据分式的混合运算法则解答;(3)可从分式化简的最后结果或通分时应注意的事项等进行说明.【详解】解:(1)①在以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质(或分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变);②第五步开始出现错误,这一步错误的原因是:括号前面是“-”,去掉括号后,括号里面的第二项没有变号;(2)原式()262172326x x x x ---==-++;(3)答案不唯一.如:最后结果应化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;分式化简不能与解分式方程混淆等.。

中考数学专题训练第6讲分式1(解析版)

中考数学专题训练第6讲分式1(解析版)

分式题型一 分式的概念1.(2021·浙江平阳·九年级期中)已知要使分式32x x +-有意义.则x 的取值应满足( )A .2x ≠B .3x ≠-C .3x =-D .2x =【答案】A 【分析】要使分式32x x +-有意义.则20x -≠.所以2x ≠.故选:A . 2.(2021·内蒙古·包头市第四十八中学九年级月考)下面是某同学在一次数学测验中解答的填空题.其中答对的是( ) A .若x 2=4.则x =2 B .若分式2232x x x --+的值为零.则x =2C .x 2+x ﹣k =0的一个根是1.则k =2D .若3x 2=6x .则x =2 【答案】C【分析】解:A 、x 2=4.则2x =±.选项错误.不符合题意;B 、分式2232x x x --+的值为零.则220320x x x -=⎧⎨-+≠⎩.21,2x x x =⎧⎨≠≠⎩.无解.选项错误.不符合题意;C 、x 2+x ﹣k =0的一个根是1.则110k +-=.解得2k =.选项正确.符合题意;D 、3x 2=6x .解得0x =或2x =.选项错误.不符合题意;故选C3.(2021·陕西·西安高新一中实验中学九年级开学考试)如果分式||11x x -+的值为0.那么x 的值为( ) A .0 B .1 C .1- D .±1【答案】B 【分析】分式||11x x -+的值为0.10x ∴-=.1x =.解得1x =±.又10x +≠.1x ∴≠-.1x ∴=.故选:B . 4.若代数式(2)(1)||1x x x ---的值为零.则x 的取值是( )A .2x =或1x =B .2x =且1x =C .2x =D .1x =-【答案】C【分析】(2)(1)0x x --=且||1x ≠.解得x =2或x =1.且x ≠±1∴2x =.故选C .5.(2021·广西百色·中考真题)当x =﹣2时.分式2232796x x x -++的值是( )A .﹣15B .﹣3C .3D .15【答案】A【分析】解:2232796x x x -++()()22393x x -=+()()()23333x x x +-+=()333x x -=+ 把2x =-代入上式中.原式()3231523--==--+.故选A.6.(2021·四川省隆昌市第一中学九年级月考)3311a a a a --=++ )A .1a ≠-B .3a ≥-且1a ≠C .1a >-D .3a ≥【答案】D【分析】解:根据题意得.30-≥a .10a +> ∴3a ≥.1a >- ∴3a ≥.故选D . 7.(2021·云南昭通·二模)1x-.则实数x 的取值范围是( ) A .1x ≤ B .1x ≤且0x ≠ C .1x <且0x ≠ D .1x <【答案】D【分析】由题意可得:10x -≥10x -≠.解得:1x <.故选:D 8.(2021·浙江瓯海·三模)若a b=12.则a bb+的值是( ) A .3 B .23C .32D .2【答案】C【分析】解:∵ab=12.∴2b a =.将2b a =代入a bb +中.得2322a a a +=.故选:C . 9.(2021·浙江浙江·九年级期末)下列分式一定有意义的是( )A .11x -B .1xC .211x - D .211x + 【答案】D【分析】∵当x =1时.|1-x |=0,∴A 不符合题意;∵当x =0时.分母为0.∴B 不符合题意;∵当x =1或-1时.21x -=0,∴C 不符合题意;∵220+110x x ≥,≥≠.∴D 符合题意;故选D 10.(2021·广东·执信中学模拟预测)不论x 取何值.下列代数式的值不可能为0的是( )A .1x +B .21x -C .11x + D .()21x +【答案】C【分析】解:A 、当x =-1时.x +1=0.故不合题意;B 、当x =±1时.x 2-1=0.故不合题意;C 、分子是1.而1≠0.则11x +≠0.故符合题意;D 、当x =-1时.()210x +=.故不合题意;故选C .题型二 分式的性质、约分、通分11.(2021·贵州·贵阳市第十九中学九年级月考)若把x .y 的值同时缩小x 为原来的13倍.则下列分式的值保持不变的是( )A .xy x y+B .22y x ++C .()22x y x + D .222xy x - 【答案】C【分析】A.1111333==11333x y xyxy x y x y x y ⨯⨯+++.选项说法错误.不符合题意;B. 61263=3616233y y x x y x +++=+++.选项说法错误.不符合题意;C. 22222222111()()()33311()()33x y x y x y x x x ⎛⎫++ ⎪+⎝⎭==.选项说法正确.符合题意;D. 22222213112261())(33()3xx x y x y x y x ⨯==---⨯.选项说法错误.不符合题意.故选C12.(2021·重庆一中九年级开学考试)把代数式3xyx y+中的x 、y 同时扩大五倍后.代数式的值( ) A .扩大为原来的3倍 B .不变 C .缩小为原来的15D .扩大为原来的5倍【答案】D 【分析】解:3xyx y+中的x 、y 都扩大为原来的5倍.得3557515555()x y xy xy x y x y x y ⨯⋅==+++.故选:D . 13.分式11x--可变形为( ). A .11x -- B .11x+ C .11x -+ D .11x -【答案】D 【分析】解:1111=1(1)11x x x x -==----+-.故选项A 、B 、C 均不符合题意.选项D 符合题意.故选:D .14.(2021·河北张家口·一模)下列各式从左到右的变形中.不正确的是( ) A .2233a a-=- B .66b ba a-=- C .3344a ab b=- D .8833a ab b--=-- 【答案】C 【分析】解:A 、2233a a-=-.符号改变了两处.改变了分子与分式的符号.分式的值不变.正确.故选项A 不符合题意;B 、66b ba a-=-.符号改变了两处.改变了分子与分母的符号.分式的值不变.正确.故选项B 不符合题意;C 、3344a ab b=-.符号改变了一处.改变了分母的符号.分式的值发生改变.不正确.故选项C 符合题意; D 、8833--=a ab b. 符号改变了两处.改变了分子与分式的符号.分式的值不变.正确.故选项D 不符合题意;故选:C . 15.下列各式中.正确的有( )①263333()22=b b a a ;②222224()=++x x x y x y ;③a b a b a b a b -++=---;④1x y x y -+=--;⑤0x y x y +=+;⑥2222()()()()---+=+-x y x y x y x y .A .1个B .2个C .3个D .4个【答案】B【分析】①2633327()28b b a a =.故不符合题意;②222224()2x x x y x xy y =+++.故不符合题意;③a b a ba b a b-+-=--+.故不符合题意;④1x y x y -+=--.故符合题意;⑤1x y x y +=+.故不符合题意;⑥2222()()()()---+=+-x y x y x y x y .故符合题意;所以正确的有2个.故选:B .16.下列分式中属于最简分式的是( ) A .42xB .11xx -- C .211x x -- D .221xx + 【答案】D 【分析】解:A 、42=2x x.不是最简分式.故此选项不符合题意;B 、111x x -=--.不是最简分式.故此选项不符合题意;C 、211x x --=11(1)(1)1x x x x -=+-+.不是最简分式.故此选项不符合题意;D 、221xx +是最简分式.故此选项符合题意.故选:D . 17.(2021·河北唐山·一模)若221()3m n m n m n -=≠-.则m n +=( ) A .3 B .-3 C .13D .13-【答案】C【分析】∵()()22,m n m n m n m n m n m n +--=≠--.∴2213m n m n m n -=+=-.故选:C . 18.(2021·江苏·苏州市南环实验中学校二模)分式222()a b a b --化简为最简分式的结果为( ) A .a b + B .-a b C .a ba b+- D .a ba b-+ 【答案】C【分析】解:222()a b a b --=2()()()a b a b a b +--=a ba b+-.故选C .19.(2021·广东·广州市第十六中学二模)分式3x y xy +.232yx .26xy xy 的最简分母是( ) A .3x B .xC .26xD .226x y【答案】D 【分析】解:3x y xy +.232y x .26xy xy的分母分别是3xy 、22x 、26xy .故最简公分母为226x y .故选:D .20.(2021·河北唐山·一模)要把分式232a b 与2a bab c-通分.分式的最简公分母是( ) A .222a b c B .332a b C .332a b c D .336a b c【答案】A【分析】解:根据最简公分母是各分母的最小公倍数.∵系数2与1的公倍数是2.2a 与a 的最高次幂是2a .b 与2b 的最高次幂是2b .对于只在一个单项式中出现的字母c 直接作公分母中的因式.∴公分母为:222a b c .故选择:A .21.能使分式2321020224x x x x ---+-的值为正整数的所有x 的值的和为( ) A .10 B .0 C .8- D .10-【答案】D【分析】∵20x ≥.∴220x +>.()()()22322102102010224222x x x x x x x x -+---==-+---+.若分式的值为正整数.则210x -=-.1-.2-.5-.所以8x =-.1.0.3-.所以()810310-+++-=-.故选D. 22.关于分式的约分或通分.下列哪个说法正确( ) A .211x x +-约分的结果是1x B .分式211x -与11x -的最简公分母是x ﹣1 C .22xx约分的结果是1D .化简221x x -﹣211x -的结果是1【答案】D 【分析】解:A 、211x x +-=11x - .故本选项错误;B 、分式211x -与11x -的最简公分母是x 2﹣1.故本选项错误;C 、22x x =2x .故本选项错误;D 、221x x -﹣211x -=1.故本选项正确;故选D .题型三 分式的运算23.(2021·四川蓬安·九年级月考)卵细胞是人体中最大的细胞.直径约为0.0002米.直径用科学记数法表示为( )米. A .0.2×10﹣3 B .0.2×10﹣4 C .2×10﹣4 D .2×10﹣3【答案】C【分析】解:直径约为0.0002米.用科学记数法表示为2×10﹣4米.故选:C . 24.(2021·河南·郑州外国语中学九年级开学考试)化简22111a a a+--的结果正确的是( ) A .2311a a +- B .2311a a -- C .11a + D .11a - 【答案】C 【分析】221212(1)111(1)(1)1(1)(1)1a a a a a a a a a a a a -++=-==--+--+-+;故选:C . 25.(2021·北京市陈经纶中学分校九年级月考)如果a ﹣b =3那么代数式(222a b a+﹣b )•aa b-的值为( ) A 3B .3C .3 D .3【答案】A【分析】解:原式222()22a b ab aa a ab +=-⋅-2()2a b a a a b-=⋅-2a b -=. 当23a b -=.原式233==故选:A . 26.(2021·湖北·老河口市教学研究室九年级月考)化简2b a ba a a ⎛⎫+-÷ ⎪⎝⎭的结果是( )A .-a bB .a b +C .1a b- D .1a b+ 【答案】A【分析】解:2b a b a a a ⎛⎫+-÷ ⎪⎝⎭=22a b aa ab -⨯+ =()()a b a b a a a b +-⨯+ =-a b .故选:A .27.(2021·山东乳山·模拟预测)如果2320a a +-=.那么代数式2231933a a a a ⎛⎫+÷ ⎪-+-⎝⎭的值为( ) A .1 B .12C .13D .14【答案】B【分析】解:2231933a a a a ⎛⎫+÷⎪-+-⎝⎭=2333(3)(3)(3)(3)a a a a a a a ⎡⎤--+⋅⎢⎥+-+-⎣⎦.23(3)(3)a a a a a -=⋅+-213a a =+ 由a 2+3a ﹣2=0.得到a 2+3a =2.则原式=12.故选B . 28.已知实数a .b 满足1a b ⋅=.那么221111a b +++的值为( ) A .14B .12C .1D .2【答案】C【分析】解:∵•1a b =.∴()2221a b ab ==.∴22222222112111a b a b a b b a +++=+++++2222211a b b a ++=+++1=.故选:C . 29.(2021·重庆市天星桥中学九年级开学考试)化简2111a a a +--的结果为( )A .211a a +-B .211a a+-C .1a +D .1a -【答案】C【分析】解:原式=2111a a a ---=211a a --=()()111a a a +--=1a +.故选C . 30.(2021·河北桥东·二模)当2ab =-时.计算2b a ba a a ⎛⎫--÷ ⎪⎝⎭的值为( )A .2B .2-C .12D .12-【答案】A【分析】2b a b a a a ⎛⎫--÷⎪⎝⎭22a b a b a a --=÷()()a b a b aa ab -+=⋅-a b =+.把2a b =-代入得22a b b b +=-+=故选A .31.(2021·河南·二模)下列各式计算正确的是( ) A 42±B .11011a a+=+- C .2333122x y x x y ⎛⎫÷= ⎪⎝⎭D .22()()a b b a b a +-=-【答案】D【分析】42=.故该选项计算错误.不符合题意.B.21111211(1)(1)1a a a a a a a -+++==+-+--.故该选项计算错误.不符合题意.C.233122x y x xy ⎛⎫÷= ⎪⎝⎭.故该选项计算错误.不符合题意.D.22()()a b b a b a +-=-.故该选项计算正确.符合题意.故选:D . 32.(2021·山东诸城·二模)下列计算正确的是( ) A .1a ba b-+=-- B .5333= C .23193x x x -=-- D .1122a a-=【答案】A 【分析】A.()1a b a b a b a b-+--==---.符合题意;B. 532333不符合题意;C. 23193x x x -=-+.不符合题意;D.1122a a -=.不符合题意.故选A . 33.(2021·广东高要·二模)下列运算错误的是( ) A .224a a a += B .34a a a ÷= C .1a bb a-=-- D .123ccc+=【答案】A【分析】A 、2222a a a +=.原式计算错误.符合题意;B 、34a a a ÷=.正确.不合题意;C 、1a b b a -=--.正确.不合题意;D 、123c c c+=.正确.不合题意;故选:A .34.(2021·黑龙江大庆·中考真题)已知0b a >>.则分式a b 与11a b ++的大小关系是( )A .11a ab b +<+B .11a ab b +=+ C .11a ab b +>+ D .不能确定【答案】A 【分析】解:()()()()111111a b b a a a a bb b b b b b +-++--==+++.∵0b a >>.∴()1011a a a b b b b b +--=<++.∴11a ab b +<+.故选:A .题型四 分式方程的概念与解法35.下列关于x 的方程.其中不是分式方程的是( ) A .1a ba xa++=B .11b a a x b x-=+ C .1x a x a b+-= D .1x n x mx m x n-++=+- 【答案】C【分析】分式方程是分母含有未知数的等式.A 、1a ba xa++=分母含未知数.是分式方程.不符合题意;B 、11b a ax b x -=+分母含未知数.是分式方程.不符合题意;C 、1x a x a b+-=分母不含未知数.不是分式方程.符合题意;D 、1x n x mx m x n-++=+-分母含未知数.是分式方程.不符合题意;故选:C . 36.下列结论正确的是( ) A .153y y+=是分式方程 B .方程221624x x x --+-=1无解 C .方程223x xx x x x=++的根为x =0 D .解分式方程时.一定会出现增根【答案】B【分析】解:A .原方程中分母不含未知数.不是分式方程.所以A 选项不符合题意;B .解方程.得x =﹣2.经检验x =﹣2是原方程的增根.所以原方程无解.所以B 选项符合题意;C .解方程.得x =0.经检验x =0是原方程的增根.所以原方程无解.所以C 选项不符合题意;D .解分式方程时.不一定会出现增根.只有使分式方程分母的值为0的根是增根.所以D 选项不符合题意.故选:B .37.(2021·黑龙江·哈尔滨市萧红中学九年级期中)方程5113x x =-+的解是( ) A .2x =- B .2x =C .4x =-D .4x =【答案】C【分析】解:去分母得:5(x +3)=x -1. 去括号得:5x +15=x -1. 解得:x =-4.检验:把x =-4代入得:(x -1)(x +3)≠0. ∴分式方程的解为x =-4.故选:C .38.(2021·重庆八中九年级月考)若关于x 的一元一次不等式组()31212x x x a ⎧-<+⎨≤+⎩的解集为4x <.且关于y 的分式方程2422y a ay y++=--的解是非负整数解.则所有满足条件的整数a 的值之和是( )A .5B .7C .13D .15【答案】C【分析】解不等式()3121x x -<+得.4x <.2x a ≤+不等式组的解集为:4x < 24a ∴+≥2a ∴≥解分式方程2422y a ay y++=--得 2422y a ay y +-=-- 24(2)y a a y ∴+-=-整理得8=3ay -. 20,y -≠ 则82,3a-≠ 2,a ∴≠分式方程的解是非负整数解.803a-∴≥ 8a ∴≤.且8a -是3的倍数. 28a ∴<≤.且8a -是3的倍数.∴整数a 的值为58,5813∴+=.故选:C .39.(2021·重庆实验外国语学校九年级月考)关于x的分式方程114211a xx x---=++有整数解.且关于y的不等式组116232(1)5y yy a-⎧->-⎪⎨⎪-≤-⎩有解.则所有满足条件的正整数a的和是()A.6 B.12 C.14 D.20 【答案】A【分析】解:∵11 623 2(1)5y yy a-⎧->-⎪⎨⎪-≤-⎩∴y<52.y≥32a-∵关于y的不等式组116232(1)5y yy a-⎧->-⎪⎨⎪-≤-⎩有解∴不等式组的解集为32a-≤y<52.∴32a-<52.即a-3<5.可得a<8由114211a xx x---=++有整数解,可得:x=22a-,即a为偶数∵x≠-1∴x≠6∵正整数a∴a=2或a=4∴4+2=6.故选A.40.(2021·重庆一中九年级期中)若关于x的不等式组4213222()x xx x a+-⎧-≥⎪⎨⎪+≤-⎩有解.且关于y的分式方程1211y a yy y--+--=﹣3的解为非负数.则所有满足条件的整数a的值之积是()A.﹣6 B.0 C.4 D.12 【答案】D【分析】解:不等式组整理得:822xx a≤⎧⎨≥+⎩.∵关于x的不等式组4213222()x xx x a+-⎧-≥⎪⎨⎪+≤-⎩有解.∴2a+2≤8.即a≤3.解分式方程1211y a yy y--+--=﹣3得y=22a+.∵关于y 的分式方程1211y a yy y--+--=﹣3的解为非负数. ∴22a +≥0.且22a +≠1. 解得.a ≥﹣2.且a ≠0. ∴﹣2≤a ≤3.且a ≠0. ∵a 为整数.∴a =﹣2或﹣1或1或2或3.∴满足条件的所有整数a 的值之积:(﹣2)×(﹣1)×1×2×3=12.故选:D . 41.(2021·重庆实验外国语学校九年级月考)若关于x 的一元一次不等式组3214x x x a+⎧>-⎪⎨⎪≤⎩的解集为x a ≤.且关于y 的分式方程52122y a yy y--+=--有正整数解.则所有满足条件的整数a 的个数为( ) A .2 B .3 C .4 D .5【答案】B【分析】解:3214x x x a +⎧>-⎪⎨⎪≤⎩①②. 解不等式①.得:x <6. 解不等式②.得:x ≤a . ∵该不等式解集为x ≤a . ∴a <6; 由52122y a yy y--+=-- 分式方程去分母.得:y -a -(5-2y )=y -2. 解得:y =32a +. ∵分式方程有正整数解.且y ≠2.∴满足条件的整数a 可以取5;3;-1;共3个;故选:B . 42.(2021·重庆·西南大学附中九年级月考)已知关于x 的分式方程()()232626mx x x x x +=--+-无解.且关于y 不等式组()4434m y y y ->⎧⎨-≤+⎩有且只有三个偶数解.则符合条件的整数m 有( )个A .0B .1C .2D .3【答案】B【分析】解:分式方程无解的情况有两种.分式方程去分母得:(2)2(2)(6)3(2)(2)mx x x x x x ++--=+-.整理得:2(1)2(8)360m x m x -+-+=.情况一:整式方程无解时.即()()24843610m m ∆=--⨯-<且10m -≠时.方程无解. ∴2521000m m -+<. 解得250m <<.即当250m <<时方程无解;情况二:当整式方程有解.是分式方程的增根.即2x =.或6x =.或2x =-. ①当2x =时.4(1)4(8)360m m -+-+=.解得0m =. ②当6x =时.36(1)12(8)360m m -+-+=.解得2m =. ③当2x =-时.4(1)4(8)360m m ---+=.此方程无解. 综合两种情况得.当0m =或250m <≤时.分式方程无解.解不等式得48y m y <-⎧⎨≥-⎩. 根据题意得不等式的解集为84y m -<-. ∵不等式组有且只有三个偶数解为8-.6-.4-. ∴442m -<--≤. ∴02m <≤.综上所述当2m =时符合题目中所有要求.故选:B .43.(2021·四川省成都市七中育才学校九年级月考)若关于x 的分式方程211x kx x-=--有增根.则k 的值为( ) A .1 B .0 C .﹣2 D .﹣1【答案】D【分析】解:去分母得: ()21--=-x x k .∴22x x k -+=-.∴2x k =+∵分式方程有增根.10x -=.解得x =1.即210k +-=解得:k =﹣1.故选D .44.(2021·重庆酉阳·九年级期末)在321012-,-,-,,,这六个数中.随机取出一个数记为a .那么使得关于x 的一元二次方程2420x x a --=有解.且使得关于x 的方程1311x a x x+-=--有整数解的所有a 的值之和为( ) A .2B .1C .0D .1-【答案】A【分析】解:要使得关于x 的一元二次方程2420x x a --=有解.则Δ≥16-4×(-2a )≥0.解得a ≥-2,∴a 的可能值为-2.-1、0、1、2.解1311x a x x+-=--可得.22a x=+.1,x ≠ 21,2a∴+≠2,a ∴≠- 使得方程有整数解满足条件的a 的值为0、2.综上所述满足条件的a 的值为0、2.0+2=2.故选:A .45.(2021·广东·深圳市罗湖区翠园初级中学九年级开学考试)关于x 的分式方程311x mx x -=--有增根.则m 的值是( ) A .﹣2 B .3 C .﹣3 D .2【答案】A【分析】解:去分母.得:x -3=m .由分式方程有增根.得到x -1=0.即x =1.把x =1代入整式方程.可得:m =-2.故选:A .46.(2021·黑龙江佳木斯·三模)已知关于x 的分式方程3102112kx x x-+=--有解.则k 的取值范围为( ) A .2k ≠- B .6k ≠- C .2k ≠-且6k ≠- D .2k <-且6k ≠-【答案】C 【分析】解:3102112kx x x-+=--. 去分母得.3210kx x ++-=. 解得.22x k -=+. ∵关于x 的分式方程3102112kx x x-+=--有解. ∴2122k -≠+且20k +≠. 解得.2k ≠-且6k ≠-.故选:C .题型五 分式方程的应用47.(2021·湖南·长沙市开福区青竹湖湘一外国语学校九年级期中)高铁为居民出行提供了便利.从铁路沿线相距360km 的甲地到乙地.乘坐高铁列车比乘坐普通列车少用3h .已知高铁列车的平均速度是普通列车平均速度的3倍.设普通列车的平均速度为x km/h.依题意.下面所列方程正确的是( )A.36036033x x-=B.36036033x x-=C.360360313x x-=D.360360313xx-=【答案】A【分析】根据题意可得:列车的平均速度为x km/h.则高铁列车的平均速度为3x km/h.高铁列车所用的时间为:3603x.普通列车的时间为:360x.所列方程为:36036033x x-=.故选:A.48.(2021·陕西·交大附中分校模拟预测)某修路队计划x天内铺设铁路120km.由于采用新技术.每天多铺设铁路3km.因此提前2天完成计划.根据题意.可列方程为()A.12012032x x=+-B.12012032x x=+-C.12012032x x=++D.12012032x x=++【答案】B【分析】解:原计划每天修建道路120xm.则实际用了(x﹣2)天.每天修建道路为1202x-m.根据采用新技术.每天多铺设铁路3km得.12012032x x=+-.故选:B.49.(2021·辽宁·沈阳市第四十三中学九年级月考)随着快递业务的增加.某快递公司为快递员更换了快捷的交通工具.公司投递快件的能力由每周6000件提高到8400件.平均每人每周比原来多投递80件.若快递公司的快递人数不变.求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件.根据题意可列方程为()A.6000x=840080x+B.6000x+80=8400xC.8400x=6000x﹣80 D.6000x=840080x-【答案】A【分析】解:设原来平均每人每周投递快件x件.则更换交通工具后平均每人每周投递快件(x+80)件.依题意得:6000x=840080x+.故选:A.50.(2021·福建省厦门第六中学三模)某次列车平均提速v km/h.用相同的时间.列车提速前行驶s km.提速后比提速前多行驶50km.则方程50s svx x++=所表达的等量关系是()A.提速前列车行驶s km与提速后行驶(s+50)km的时间相等B .提速后列车每小时比提速前列车每小时多开v kmC .提速后列车行驶(s +50)km 的时间比提速前列车行驶s km 多v hD .提速后列车用相同的时间可以比提速前多开50km 【答案】B【分析】解:∵用相同的时间.列车提速前行驶s km.提速后比提速前多行驶50km .∴s +50表示列车提速后同样的时间内行驶的路程.∵某次列车平均提速v km/h.路程=速度×时间.∴方程50s s v xx++=表达的含义提速后列车每小时比提速前列车每小时多开v km.故选B.51.(2021·山东淄博·中考真题)甲、乙两人沿着总长度为10km 的“健身步道”健步走.甲的速度是乙的1.2倍.甲比乙提前12分钟走完全程.设乙的速度为km/h x .则下列方程中正确的是( ) A .1010121.2x x-= B .10100.21.2x x-= C .1010121.2x x-= D .10100.21.2x x-= 【答案】D【分析】解:由题意得:10100.21.2x x-=;故选D . 52.(2021·重庆市育才中学九年级月考)每年中秋节.某商家生产的甲、乙、丙三种月饼礼盒一直深受消费者喜爱.今年中秋节.该商家继续售卖甲、乙、丙三种月饼礼盒.已知去年该商家售卖甲、乙、丙三种月饼礼盒的营业额之比为4:9:7.今年.由于商家加大了促销宣传力度.预计三种月饼礼盒的营业额都会增加.其中甲种礼盒增加的营业额占总增加的营业额的815.此时.甲种月饼礼盒的营业额与今年三种月饼礼盒总营业额之比为4:15.为使今年乙、丙两种月饼礼盒的营业额之比为6:5.则今年乙种月饼礼盒增加的营业额与今年总营业额之比为______. 【答案】1:25【分析】解:∵甲种月饼礼盒的营业额与今年三种月饼礼盒总营业额之比为4:15.且乙、丙两种月饼礼盒的营业额之比为6:5.∴今年甲、乙、丙三种月饼礼盒的营业额之比为4∶6∶5.设今年甲、乙、丙三种月饼礼盒的营业额分别为4a .6a .5a .则今年总营业额为15a .∵去年该商家售卖甲、乙、丙三种月饼礼盒的营业额之比为4:9:7.∴设去年甲、乙、丙三种月饼礼盒的营业额分别为4b .9b .7b .则去年总营业额为20b .∴今年甲、乙、丙三种月饼礼盒的营业额分别增加了44a b -.69a b -.57a b -.总营业额增加了1520a b -.∵甲种礼盒增加的营业额占总增加的营业额的815.∴448152015a b a b -=-.解得:0.6b a =.经检验:b=0.6a 符合题意.∴今年乙种月饼礼盒增加的营业额与今年总营业额之比为69690.66 5.4115151525a b a a a a a a a --⨯-===.故答案为:1∶25. 53.(2021·重庆实验外国语学校九年级开学考试)重庆某笔记本电脑公司每年都会组织员工出国学习旅行.今年有A 、B 、C 、D 四个国家可供员工们选择(每名员工只能选择一个国家旅行).但要求选择A 、C 两个国家的人数相同.选择B 、D 两个国家的人数也相同.选择A 、B 两国的人数总和为100人.A 、D 两国的费用单价相等.B 、C 两个国的费用单价也相等.A 、B 两国的费用单价之和不超过8万元.且选择A 、B 两个国家的员工总费用比选择C 、D 两个国家员工总费用多20万元.则选择A 、B 两个国家员工总费用的最大值为__万元. 【答案】410【分析】解:设有x 人选择A .A 单价为1y 万元.B 单价为2y 万元.依题意可知.B 有(100)x -人.即100x <.128y y +①.1221(100)[(100)]20xy x y xy x y +--+-=.即121050y y x -=-.100x .5050x ∴-.101505x -. 即1215y y -②.①+②得24125y .解得24110y .代入①中.13910y .代入②中.13910y .13910y ∴=.24110y ∴=.A ∴、B 两个国家员工总费用为12(100)xy x y +-.B 单价A >单价.0x ∴=时总费用最大.最大值为410(1000)41010+-⨯=(万元).故选择A 、B 两个国家员工总费用的最大值为410万元.故答案为:410.54.(2021·四川省宜宾市第二中学校三模)某服装厂准备加工400套运动装.在加工完160套后.采用了新技术.使得工作效率比原计划提高了20%.结果共用了18天完成任务.问计划每天加工服装多少套?在这个问题中.设计划每天加工x 套.则根据题意可得方程为__________________.【答案】160x +()400160120%x -+=18【分析】根据题意.采用新技术前所用时间为:160x天.采用新技术后所用时间为:()400160120%x -+天.∴所列方程为:160x +()400160120%x -+=18.故答案为:160x +()400160120%x -+=18.55.(2021·辽宁鞍山·中考真题)习近平总书记指出.中华优秀传统文化是中华民族的“根”和“魂”.为了大力弘扬中华优秀传统文化.某校决定开展名著阅读活动.用3600元购买“四大名著”若干套后.发现这批图书满足不了学生的阅读需求.图书管理员在购买第二批时正赶上图书城八折销售该套书.于是用2400元购买的套数只比第一批少4套.设第一批购买的“四大名著”每套的价格为x 元.则符合题意的方程是___________________. 【答案】3600240040.8x x-= 【分析】解:设第一批购买的“四大名著”每套的价格为x 元.则设第二批购买的“四大名著”每套的价格为0.8x 元.依题意得:3600240040.8x x -=.故答案为:3600240040.8x x-=. 56.(2021·吉林省第二实验学校九年级月考)2021年4月8日世界园艺博览会在扬州拉开了帷幕.世园会以“绿色城市.健康生活”为主题.吸引了大批游客游览.世园会成人一日票分为平日票和指定日票.其中平日票比指定日票便宜30元/张.某一售票点在5月份售出平日票4万元.指定日票2.6万元.且售出的平日票数量是指定日票的2倍.这一售票点在5月份售出的平日票和指定日票各多少张?【答案】这一售票点在5月份售出的平日票和指定日票各400张.200张.【分析】解:设这一售票点在5月份售出的指定日票为x 张.则平日票为2x 张.由题意得:2600040000302x x-=. 解得:200x =.经检验200x =是原方程的解.∴2400x =.答:这一售票点在5月份售出的平日票和指定日票各400张.200张.57.某公司生产开发了960件新产品.需要经过加工后才能投放市场.现在有A .B 两个工厂都想参加加工这批产品.已知A 工厂单独加工这批产品比B 工厂单独加工这批产品要多用20天.而B 工厂每天比A 工厂多加工8件产品.公司需要支付给A 工厂每天80元的加工费.B 工厂每天120元的加工费.(1)A .B 两个工厂每天各能加工多少件新产品?(2)公司制定产品方案如下:可以由每个厂家单独完成;也可以由两个厂家同时合作完成.在加工过程中.公司需要派一名工程师每天到厂进行技术指导.并负担每天5元的午餐补助费.请帮助公司选择哪家工厂加工比较省钱.并说明理由.【答案】(1)A 每天加工16件.B 每天加工24件;(2)两个工厂合作完成.理由见解析 【分析】解:(1)设A 每天加工x 件产品.则B 每天加工x +8件产品.由题意得960960208x x -=+.解得x =16件.答:A 每天加工16件产品.则B 每天加工24件产品; (2)A 单独加工完成需要960÷16=60天.费用为:60×(80+5)=5100元.B 单独加工完成需要960÷24=40天.费用为:40×(120+5)=5000元;A 、B 合作完成需要960÷(16+24)=24天.费用为:24×(120+80+5)=4920元.所以既省时又省钱的加工方案是A 、B 合作.58.(2021·黑龙江·哈尔滨市虹桥初级中学校九年级月考)某单位在疫情期间用6000元购进A 、B 两种口罩1100包.购买A 种口罩与购买B 种口罩的费用相同.且一包A 种口罩的单价是一包B 种口罩单价的1.2倍. (1)求A .B 两种口罩一包的单价各是多少元?(2)若计划用不超过11000元的资金再次购进A 、B 两种口罩共2000包.已知A 、B 两种口罩的进价不变.求A 种口罩最多能购进多少包?【答案】(1)A 种口罩一包的单价为6元.B 种口罩一包的单价为5元(2)A 种口罩最多能购进1000包【分析】(1) 设B 种口罩一包的单价为x 元.则A 种口罩一包的单价为1.2x 元.根据题意.得:3000300011001.2x x+=.解得:x = 5.经检验.x = 5是原方程的解.且符合题意.则1.2 x = 6.答:A 种口罩一包的单价为6元.B 种口罩一包的单价为5元;(2)设购进A 种口罩m 包.则购进B 种口罩(2000-m )包. 依题意.得:6m +5 (2000 - m )≤ 11000.解得:m ≤ 1000.答:A 种口罩最多能购进1000包.59.(2021·黑龙江·哈尔滨市第六十九中学校九年级月考)杭州国际动漫节开幕前.某动漫公司预测某种动漫玩具能够畅销.就用32000元购进了一批这种玩具.上市后很快脱销.动漫公司又用68000元购进第二批这种玩具.所购数量是第一批购进数量的2倍.但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同.且全部售完后总利润率不低于20%.那么每套售价至少是多少元?【答案】(1)600套;(2)200元【分析】解:(1)设动漫公司第一次购x 套玩具.由题意得:6800032000102x x-=.解这个方程.200x =.经检验.200x =是原方程的根.∴22200200600x x +=⨯+=.答:动漫公司两次共购进这种玩具600套.(2)设每套玩具的售价y 元.由题意得:600y 320006800020%3200068000--≥+.解这个不等式.200y ≥.答:每套玩具的售价至少是200元.60.(2021·山东青岛·中考真题)某超市经销甲、乙两种品牌的洗衣液.进货时发现.甲品牌洗衣液每瓶的进价比乙品牌高6元.用1800元购进甲品牌洗衣液的数量是用100元购进乙品牌洗衣液数量的45.销售时.甲品牌洗衣液的售价为36元/瓶.乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶.且购进两种洗衣液的总成本不超过3120元.超市应购进甲、乙两种品牌洗衣液各多少瓶.才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?【答案】(1)甲品牌洗衣液进价为30元/瓶.乙品牌洗衣液进价为24元/瓶;(2)购进甲品牌洗衣液40瓶.乙品牌洗衣液80瓶时所获利润最大.最大利润是560元【分析】解:(1)设甲品牌洗衣液进价为x 元/瓶.则乙品牌洗衣液进价为()6x -元/瓶. 由题意可得.18004180056x x =⋅-. 解得30x =.经检验30x =是原方程的解.答:甲品牌洗衣液进价为30元/瓶.乙品牌洗衣液进价为24元/瓶. (2)设利润为y 元.购进甲品牌洗衣液m 瓶. 则购进乙品牌洗衣液()120m -瓶. 由题意可得.()30241203120m m +-≤. 解得40m ≤.由题意可得.()()()363028*********y m m m =-+--=+. ∵20k =>.∴y 随m 的增大而增大.∴当40m =时.y 取最大值.240480560y =⨯+=最大值.答:购进甲品牌洗衣液40瓶.乙品牌洗衣液80瓶时所获利润最大.最大利润是560元. 61.(2021·重庆八中九年级月考)巫溪某村民承包土地发展李子种植.2020年开始大量投产增收.其中早熟李种植面积亩数是晚熟李种植面积亩数的3倍.早熟李、晚熟李分别收益60000元和40000元.而早熟李平均每亩收益比晚熟李少1000元. (1)2020年早熟李、晚熟李种植面积分别有多少亩?(2)在扶贫专家小组的精准帮助下.优化管理.淘汰了部分低产李子林改种其他经济作物增加收益.2021年.早熟李、晚熟李的种植面积比2020年分别降低了1%3a 和%a .然而平均每亩早熟李和晚熟李的收益在2020年基础上分别增加了%a 和1%2a .2021年两种李子的总收益与2020年两种李子总收益相等.求a 的值.【答案】(1)早熟李种60亩.晚熟李种20亩;(2)50.【分析】解:(1)设2020年晚熟李种植面积有x 亩.则早熟李种植面积为3x 亩. 根据题意.得40006000010003x x-= . 解方程.得20x. 经检验.20x是分式方程式得解.360x ∴= . 即2020年早熟李、晚熟李种植面积分别有60亩、20亩.(2)由(1)可得: 2020年早熟李、晚熟李种植面积分别有60亩、20亩.2020年早熟李平均每亩收益为60000100060=元.晚熟李平均每亩收益为40000200020=元. 由题意可得:2021 年早熟李、晚熟李种植面积分别有1601%3a ⎛⎫- ⎪⎝⎭亩、()201%a -亩. 2021 年早熟李平均每亩收益为()10001%a + 元.晚熟李平均每亩收益为120001%2a ⎛⎫+ ⎪⎝⎭元. 由2021 年两种李子的总收益与2020 年两种李子总收益相等.得.()()11601%10001%201%20001%600004000032a a a a ⎛⎫⎛⎫-⨯++-⨯+=+ ⎪ ⎪⎝⎭⎝⎭令%t a =.则()()11600001140000111000032t t t t ⎛⎫⎛⎫-++-+= ⎪ ⎪⎝⎭⎝⎭. ()()()()31125t t t t -++-+= .223225t t t t +-+--=.220t t -=.()210t t -=.0t =或0.5=t .0a =(舍).50a =.答:50a =.62.(2021·湖南·长沙市开福区青竹湖湘一外国语学校九年级期中)某学校计划从商店购买测温枪和洗手液.已知购买一个测温枪比购买一瓶洗手液多用20元.若用400元购买测温枪和用160元购买洗手液.则购买测温枪的数量是购买洗手液数量的一半. (1)求购买一个测温枪、一瓶洗手液各需多少元;(2)经商谈.商店给予该学校购买一个测温枪赠送一瓶洗手液的优惠.如果该学校需要洗手液的数量是测温枪数量的2倍还多8个.且该学校购买测温枪和洗手液的总费用不超过1540元.那么该学校最多可购买多少个测温枪?【答案】(1)购买一个测温枪需要25元.购买一瓶洗手液需要5元;(2)该学校最多可购买50个测温枪.【分析】(1)设购买一瓶洗手液需要x 元.则购买一个测温枪需要(20)x +元.依题意.得:4001160202x x=⨯+. 解得:5x =.经检验.5x =是原方程的解.且符合题意.2025x ∴+=.答:购买一个测温枪需要25元.购买一瓶洗手液需要5元.(2)设该学校购买m 个测温枪.则购买(28)m +瓶洗手液.依题意.得:255(28)1540m m m ++-.解得:50m .答:该学校最多可购买50个测温枪.63.(2021·山东·青岛大学附属中学二模)扶贫工作小组对果农进行精准扶贫.帮助果农将一种有机生态水果拓宽了市场.与去年相比.今年这种水果的产量增加了1000千克.每千克的平均批发价比去年降低了125.批发销售总额比去年增加了20%. (1)已知去年这种水果批发销售总额为10万元.求这种水果今年每千克的平均批发价是多少元?(2)今年某水果店从果农处直接批发.专营这种水果.调查发现.若每千克的平均销售价为41元.则每天可售出300千克;若每千克的平均销售价每降低3元.每天可多卖出180千克.工商部门规定.该水果利润率不得超过40%.设水果店一天的利润为W 元.当每千克的平均销售价为多少元时.该水果店一天的利润最大.最大利润是多少?(利润计算时.其他费用忽略不计.并且售价为整数)【答案】(1)24元;(2)每千克平均售价为33元.最大利润为7020元.【分析】解: (1)由题意.设这种水果去年每千克的平均批发价是x 元.则今年的批发价为1125x ⎛⎫- ⎪⎝⎭元 .今年的批发销售总额为10(1+20%)=12万元 ∴ 1000001200001000,1125x x +=⎛⎫- ⎪⎝⎭解得x =25经检验x =25是分式方程的解.。

中考数学专题复习课件 --- 第六讲一元一次方程与分式方程

中考数学专题复习课件 --- 第六讲一元一次方程与分式方程
3
【解析】选A.把x=2代入方程2x+3m-1=0,解得m=-1.
2.(2010 ·东营中考)分式方程 (A)-3 (B)2 (C)3
1 3 的解是( x2 x
)
(D)-2
【解析】选C.原方程去分母,得x=3x-6,解得x=3,经检验x=3是
原方程的根,或者把选项代入原方程检验即可.
3.(2010·河北中考)小悦买书需用48元钱,付款时恰好用了 1元和5元的纸币共12张.设所用的1元纸币为x张,根据题意,
去分母,得(2x-8)-4=8, 去括号,得2x-8-4=8, 移项,合并同类项,得2x=20, 系数化为1,得x=10.
【纠错空间】上述解题过程出现了三个常见错误: (1)不会利用分式的符号法则对分式进行等值变形,这个法则 是“分式的分子、分母和分式本身的符号,任意改变两处, 分式的值不变”,按此法则,下列变形应该是:
3
检验:当 x 26 时,x-7≠0,且原方程的左右两边相等,
∴原方程的解为 x 26 .
3
3
x 1.(2010·江西中考)解方程: 2 x2
4 1. x2 4
【解析】 去分母,得(x-2)2+4=x2-4, 解得x=3. 检验:当x=3时,x2-4≠0, ∴x=3是原方程的解.
【解析】设原计划每天修水渠 x 米.
3 根据题意得: 600 3 600 20, x 1.8x
解得:x=80, 经检验:x=80是原分式方程的解. 答:原计划每天修水渠80米.
解分式方程常见的错误
【例】解分式方程 2x 8 4 8.
x7 7x 2x 8 4Байду номын сангаас【错误解析】变形,得 8 , x 7 x 7

浙江省2020届中考一轮复习浙教版数学课件:第6讲 一次方程(组)及其应用(共45张PPT)

浙江省2020届中考一轮复习浙教版数学课件:第6讲 一次方程(组)及其应用(共45张PPT)

⑤系数化为 1:方程两边同除以 x 的系数,得 x=ba的形式. (2)解二元一次方程组的基本思想是通过消元,化二元为一元.常用的 方法有:①代入消元法;②加减消元法.
返回
基础自测
本测评满分 50 分,测一测,看看你的得分!____
一、选择题(每小题 5 分,满分 20 分)
1. 把方程12x=1 变形为 x=2,其依据是( B )
解 由一元一次方程一般形式 ax+b=0 可知: a=3,x=2. 将 a 与 x 的值代入,得:3×2+b=0, 解得:b=-6, 故该一元一次方程为 3x-6=0.

答案
(2)若关于 x、y 的二元一次方程组xx+-yy==59kk, 的解也是二元一次方程
2x+3y=6 的解,则 k 的值是( B )
自主演练

思维提升 解一元一次方程的五个步骤,有些可能用不到,有些可能重 复使用,也不一定按从上到下的顺序进行,要根据方程的特点灵活选 用.但在去分母时,切勿漏乘不含分母的项,移项时,要注意变号.
【跟踪】 (1)解方程:4x-3=2(x-1). 解 去括号,得:4x-3=2x-2, 移项,得:4x-2x=-2+3, 合并同类项,得:2x=1, 系数化为 1,得:x=12.
A. -34
B.
3 4
4 C. 3
D. -43

答案
解 解方程组xx+ -yy= =59kk, , 得yx==-7k,2k, 根据方程解的定义,将该解代入方程:2x+3y=6, 得:14k-6k=6,解得:k=34.
【跟踪】 (1)已知xy==3-,2 是方程组baxx++abyy==-3,7 的解,则代数式(a+ b)(a-b)的值为 -8 . 解 把xy= =3-,2 代入方程组,得33ab- -22ba= =3-,7① ,② ①+②得:a+b=-4; ①-②得:5a-5b=10,a-b=2; 则(a+b)(a-b)=-4×2=-8.

中考复习浙教版数学课件:第6讲 一次方程(组)及其应用(共45张PPT)

中考复习浙教版数学课件:第6讲 一次方程(组)及其应用(共45张PPT)


思维提升
解一元一次方程的五个步骤,有些可能用不到,有些可能重
复使用,也不一定按从上到下的顺序进行,要根据方程的特点灵活选 用.但在去分母时,切勿漏乘不含分母的项,移项时,要注意变号.
【跟踪】 (1)解方程:4x-3=2(x-1). 解 去括号,得:4x-3=2x-2,
移项,得:4x-2x=-2+3, 合并同类项,得:2x=1,
一次 方程组成, 且含有 两个 未知数的方程组, 叫做二元一次方程组.
答案
2. 方程(组)的解 使方程左右两边 相等 的未知数的值, 叫做方程的解. 求方程解的过程, 叫做解方程.同时满足方程组中各个方程的解,叫做这个方程组的解.
答案
3. 解方程(组)的步骤及方法 (1)解一元一次方程的一般步骤: ①去分母:在方程两边都乘以各分母的最小公倍数,注意别漏乘; ②去括号:注意括号前的系数与符号; ③移项:把含有未知数的项移到方程的一边,其他项移到另一边,注意 移项时要改变符号; ④合并同类项:把方程化成 ax=b(a≠0)的形式;
b ⑤系数化为 1:方程两边同除以 x 的系数,得 x=a的形式. (2)解二元一次方程组的基本思想是通过消元,化二元为一元.常用的 方法有:①代入消元法;②加减消元法.
返回
基础自测
本测评满分 50 分,测一测,看看你的得分!____ 一、选择题(每小题 5 分,满分 20 分) 1 1. 把方程2x=1 变形为 x=2,其依据是( B ) A. 等式的性质 1 C. 分式的基本性质 B. 等式的性质 2 D. 不等式的性质 1
2x+56=589-x
.
答案
三、解答题(满分 12 分) 8. 某超市为促销,决定对 A,B 两种商品进行打折出售.打折前,买 6 件 A 商品和 3 件 B 商品需要 54 元,买 3 件 A 商品和 4 件 B 商品需要 32 元;打折后,买 50 件 A 商品和 40 件 B 商品仅需 364 元,打折前需要 多少钱?

2020版中考数学新素养大一轮浙江专用:第06课时 分式方程及其应用

2020版中考数学新素养大一轮浙江专用:第06课时 分式方程及其应用

运某种货物,已知乙比甲每小时多搬运600 kg, [解析]甲每小时搬运 x kg 货物,

甲搬运5000 kg所用时间与乙搬运8000 kg所用 则乙每小时搬运(x+600)kg 货
频 考 向
时间相等,求甲、乙两人每小时分别搬运多少 千克货物.设甲每小时搬运x kg货物,则可列方
物,由题意得,������������������������������ = ���������+���������������������������������������.

德上高速公路巨野至单县段正在加速建设,预计2019年8月竣工.届时,如果汽车行


驶在高速公路上的平均速度比在普通公路上的平均速度提高80%,那么行驶81千

米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在
高 频
高速公路上的平均速度.




课 时 分 层 训 练

解:设汽车行驶在普通公路上的平均速度是 x 千米/时,则汽车行驶在高速公路上
梳 理
=1,去分母得(2x-1)(x+1)-2=(x+1)(x-1),

解得 x1=1,x2=-2,经检验 x1=1 是增

根,x2=-2 是原方程的解,∴原方程的


解为 x=-2.故答案为 x=-2.


课 时 分 层 训 练
考 点
3.解分式方程:������������--������������+2=���������-���������.


∴m≤3.

2019届浙教版中考一轮复习《分式方程》知识梳理及自主测试

2019届浙教版中考一轮复习《分式方程》知识梳理及自主测试

第6讲 分式方程考纲要求命题趋势1.理解分式方程的概念,会解可化为一元一次(二次)方程的分式方程(方程中的分式不超过两个),知道解分式方程的基本思想是把分式方程化为整式方程.2.了解解分式方程产生增根的原因,能解决有关字母系数的问题. 3.会列分式方程解决实际问题.中考中多以选择题、填空题、解答题的形式考查以下几点:(1)找分式方程的最简公分母,将分式方程化成整式方程;(2)已知方程有增根,确定有关字母的值;(3)解分式方程.列分式方程解决实际问题.一、分式方程1.分母里含有未知数的有理方程叫做分式方程.2.使分式方程分母为零的未知数的值即为分式的增根;分式方程的增根有两个特征: (1)增根使分母为零;(2)增根是分式方程化成的整式方程的根. 二、分式方程的基本解法解分式方程的一般步骤:(1)去分母,把分式方程转化为整式方程. (2)解这个整式方程,求得方程的根.(3)检验,把解得整式方程的根代入最简公分母,如果最简公分母为零,则它不是原方程的根,而是方程的增根,必须舍去;如果使最简公分母不为零,则它是原分式方程的根. 三、分式方程的实际应用分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验: (1)检验所求的解是否是所列分式方程的解; (2)检验所求的解是否符合实际.1.观察下列方程:(1);(2);(3);(4)其中是关于x 的分式方程的有( )A .(1)B .(2)C .(2)(3)D .(2)(4)2.某工程甲单独做x天完成,乙单独做比甲慢3天完成,现由甲、乙合作5天后,余下的工程由甲单独做3天才能全部完成,则下列方程中符合题意的是()A. B.C. D.3.解方程时,令y=x2+2x,原方程可化为()A.y2﹣5y﹣6=0 B.y2﹣6y﹣5=0 C.y2+5y﹣6=0 D.y2+6y﹣5=04.关于x的分式方程﹣=0无解,则m= .5.已知关于x的方程2x m3x2+=-的解是正数,则m的取值范围为.6.解方程:7.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?答案1. C2. B3. A4.0或﹣45. m>-6且≠-46.解:方程两边都乘(x+2)(x﹣2),得x(x﹣2)+(x+2)2=8,x2﹣2x+x2+4x+4=8,整理得x2+x﹣2=0.解得x1=﹣2,x2=1.经检验,x2=1为原方程的根,x1=﹣2是增根(舍去).∴原方程的根是x=1.7.解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有+30=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)=160,160﹣30=130(元),130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元)答:售完这批T恤衫商店共获利5960元.2019-2020学年数学中考模拟试卷一、选择题1.如图,AB ∥ED ,CD=BF ,若△ABC ≌△EDF ,则还需要补充的条件可以是( )A.AC=EFB.BC=DFC.AB=DED.∠B=∠E2.在△ABC 中,D 是BC 延长线上一点,且BC =m•BD,过D 点作直线AB ,AC 的垂线,垂足分别为E 、F ,若AB =n•AC.则DEDF=( ) A .1(1)n m +B .1m(1n)-C .1(1)n m -D .1(1)n m -3.已知点()1,3x ,()2,2x 是直线 2 1y x =-+上两点,则下列正确的是( ) A.120x x ->B.120x x -<C.12x x =D.120x x +>4.已知二次函数y=ax 2+bx+c ,且a <0,a-b+c >0,则一定有( ) A.2b 4ac 0->B.2b 4ac 0-=C.2b 4ac 0-<D.2b 4ac 0-≤ 5.如图,在平面直角坐标系中,的顶点、在函数的图象上,轴.若且BC ∥x轴,点、的横坐标分别为、,的面积为,则的值为( )A. B.C. D.6.设m ,n 分别为一元二次方程x 2+2x ﹣2018=0的两个实数根,则m 2+3m+n =( ) A .2015B .2016C .2017D .20187.如图,CD 是⊙O 的弦,∠ADC=35°,则∠CBA 的度数为( )A .35B .45C .55D .658.如果数m 使关于x 的不等式组12260x x m <⎧⎪⎨⎪-≥⎩有且只有四个整数解,且关于x 的分式方程311x m x x -=--有整数解,那么符合条件的所有整数m 的和是( ) A .8B .9C .﹣8D .﹣99.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A .该班总人数为50B .步行人数为30C .乘车人数是骑车人数的2.5倍D .骑车人数占20%10.八年级6班的一个互助学习小组组长收集并整理了组员们讨论如下问题时所需的条件:如图所示,在四边形ABCD 中,点E 、F 分别在边BC 、AD 上,____,求证:四边形AECF 是平行四边形. 你能在横线上填上最少且简捷的条件使结论成立吗?条件分别是:①BE =DF ;②∠B =∠D ;③BAE =∠DCF ;④四边形ABCD 是平行四边形. 其中A 、B 、C 、D 四位同学所填条件符合题目要求的是( )A .①②③④B .①②③C .①④D .④11.在边长为2的正方形ABCD 中,对角线AC 与BD 相交于点O ,P 是BD 上一动点,过P 作EF ∥AC ,分别交正方形的两条边于点E ,F .设BP=x ,△BEF 的面积为y ,则能反映y 与x 之间关系的图象为( )A .B .C .D .12.如图,在四边形ABCD 中,AC 与BD 相交于点O ,∠BAD =90°,BO =DO ,那么添加下列一个条件后,仍不能判定四边形ABCD 是矩形的是( )A .∠ABC =90°B .∠BCD =90°C .AB =CD D .AB ∥CD二、填空题13.若23(1)0m n -++=,则m -n 的值为_____.14.如图,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线33y x =-上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 1的位置,使点O 1的对应点O 2落在直线33y x=-上,依次进行下去…若点B 的坐标是(0,1),则点O 12的纵坐标为________________________.15.如图,在边长为3的正方形ABCD 中,点E 是BC 边上的点,EC=2,∠AEP=90°,且EP 交正方形外角的平分线CP 于点P ,则PC 的长为_____.16.﹣95的绝对值是_____.17.如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为_____.18.已知单位体积的空气质量为1.34×10﹣3克/厘米3,将1.34×10﹣3用小数表示为_____.三、解答题19.解方程:1112x xx x-+-=.20.如图,在△ABC中,∠ACB=90°,AC=4,BC=3,点D为边AB的中点.点P从点A出发,沿AC方向以每秒1个单位长度的速度向终点C运动,同时点Q从点C出发,以每秒2个单位长度的速度先沿CB 方向运动到点B,再沿BA方向向终点A运动,以DP、DQ为邻边构造▱PEQD,设点P运动的时间为t秒.(1)设点Q到边AC的距离为h,直接用含t的代数式表示h;(2)当点E落在AC边上时,求t的值;(3)当点Q在边AB上时,设▱PEQD的面积为S(S>0),求S与t之间的函数关系式;(4)连接CD,直接写出CD将▱PEQD分成的两部分图形面积相等时t的值.21.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处若∠AGE=32°,则∠GHC 等于多少度?22.如图,一次函数y=kx+b的图象与反比例函数y=mx(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.(1)求一次函数、反比例函数的解析式;(2)求证:点C为线段AP的中点.23.有三张正面分别写有数字-1,2,3的卡片,它们背面完全相同.(1)将这三张卡片背面朝上洗匀后随机抽取一张,则抽到的卡片正面写有正数的卡片的概率为_______.(2)小王将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为平面直角坐标系內点P的横坐标,然后将此卡片放回、洗匀,再由小李从三张卡片中随机抽取一张,以其正面数字作为平面直角坐标系內点P的纵坐标,请用树状图或表格列出点P所有可能的坐标,并求出点P在第二象限的概率。

2020年浙江数学中考复习第二单元方程(组)与不等式(组)之第6课时 分式方程及其应用

2020年浙江数学中考复习第二单元方程(组)与不等式(组)之第6课时 分式方程及其应用

3 x-1
去分母,得到正确的整式方程
是( B )
A. 1-2x=3
B. x-1-2x=3
C. 1+2x=3
D. x-1+2x=3
第6课时 分式方程及其应用
2. (2017宁波14题4分)分式方程 2x+1= 3 的解是___x_=__1________。 3-x 2
3. (2015温州14题5分)方程
返回目录
第6课时 分式方程及其应用
练习 1 解分式方程: 5 = 3 x-2 x+2
解:去分母得 ,5(x+ 1)= 3( x-2), 去括号得,5x+ 10= 3x-6, 移项、合并同类项得,2x =﹣16 , 系数化为1得,x =﹣8。 检验:当x =﹣8时,(x+ 1)( x-2)≠0, ∴ x =﹣8是原分式方程的解。
型及等 工程问题:工作时间= 工作效率 ,特别地,有时工作总
量关系 量可以看作整体“1”,这时, 1
=工作效率

行程问题:时间= 路程
工作时间
速度
【满分技法】必须双检验,既要检验是否为所列分式方程的根,又要
检验是否符合实际情况
第6课时 分式方程及其应用
重难点突破
分式方程的解法

解分式方程:
x-1 1-2=
3
2x x-3
【答题模板】
解:去分母得,__3_-__( 2__3_x- __3_)__=__2_x___,
去括号得,___3_-_6__x+__6_=__2_x______,
移项、合并同类项得,_﹣__8_x_=__﹣_9___________, 系数化为1得,____x=__98_____________, 检验:__当__x_=_98_时__,__3_x_-__3_≠_0__, 作答:x_=_98_是__原__分__式___方__程__的__根_。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年中考数学一轮专题复习第6讲分式方程及应用精讲精练浙教版考点一、分式方程的解法【例1】分式方程的根为()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2 C.x=2 D.x=1方法总结解分式方程时应注意以下两点:(1)去分母时,要将最简公分母乘以每一个式子,不要“漏乘”;(2)解分式方程时必须检验,检验时只要代入最简公分母看其是否为0即可.若能使最简公分母为0,则该解是原方程的增根.举一反三解分式方程:=﹣.考点二、分式方程增根【例2】 1.已知方程有增根,则k= .2.分式方程=有增根,则m的值为()A.0和3 B.1 C.1和﹣2 D.3方法总结利用增根求分式方程中字母的值:(1)确定增根;(2)将原分式方程化成整式方程;(3)增根代入变形后的整式方程,求出字母的值.举一反三 1.若关于x的分式方程﹣2=有增根,则m的值为.2.若分式方程有增根,则增根可能是()A.1 B.﹣1 C.1或﹣1 D.0考点三、分式的应用【例3】 1.已知a2﹣3a﹣1=0,求a6+120a﹣2= .2.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备精加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍;信息三:甲工厂加工一天、乙工厂加工2天共需加工费11200元,甲工厂加工2天、乙工厂加工3天共需加工费18400元;根据以上信息,完成下列问题:(1)求甲、乙两个工厂每天分别能加工多少件新产品?(2)公司将1200件新产品交甲、乙两工厂一起加工3天后,根据产品质量和市场需求,决定将剩余产品交乙工厂单独加工,求该公司这批产品的加工费用为多少?方法总结对于分式的应用题要把握好前面讲的解分式方程的步骤,对于分式的综合题型要把握好分式的增根计算及性质等的综合。

举一反三1.对于正数x,规定,例如:,,则= .2.为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元. (1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?一、选择题1.(2015江干区一模,6)将分式方程13)1(251+=++-x x x x 去分母,整理后得 ( )A.018=+xB.038=-xC.0272=+-x x D.0272=--x x 二、填空题1.(2011杭州,13)已知分式ax x x +--532,当2=x 时,分式无意义,则=a ;当6<x 时,使分式无意义的x 的值共有 个. 三、解答题1.(2013上城区一模,17)阅读材料,解答问题: 观察下列方程:① 23x x +=; ②65x x +=; ③127x x+=;…; (1)按此规律写出关于x 的第4个方程为 ,第n 个方程为 ;(2)直接写出第n 个方程的解,并检验此解是否正确.2.(2016江干区一模,17)解方程﹣2.3.(2016拱墅区一模,19)(1)解方程:﹣2=;(2)设y=kx,且k≠0,若代数式(x﹣3y)(2x+y)+y(x+5y)化简的结果为2x2,求k的值.1.已知方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值范围是()A.﹣1<b≤3 B.2<b≤3 C.8≤b<9 D.3≤b<42.已知关于x的方程+=恰有一个实根,则满足条件的实数a的值的个数为()A.1 B.2 C.3 D.43.若关于x的方程=+1无解,则a的值为()A.1 B.2 C.1或2 D.0或24.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了,设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是()A.B.C.D.5.关于x的分式方程﹣=0无解,则m= .6.关于x的方程=﹣1的解是正数,则a的取值范围是.7.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程的解为.8. 关于x的方程有实根,则a的取值范围是.9.已知实数x满足x2++x﹣=4,则x﹣的值是.10.已知关于x的分式方程﹣=0无解,则a的值为.12.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.13.先阅读下面的材料,然后回答问题:方程x+=2+的解为x1=2,x2=;方程x+=3+的解为x1=3,x2=;方程x+=4+的解为x1=4,x2=;…(1)观察上述方程的解,猜想关于x的方程x+=5+的解是;(2)根据上面的规律,猜想关于x的方程x+=的解是;(3)由(2)可知,在解方程:y+=时,可变形转化为x+=的形式求值,按要求写出你的变形求解过程.14.(1)解下列方程:①根为;②根为;③根为;(2)根据这类方程特征,写出第n个方程为,其根为.(3)请利用(2)的结论,求关于x的方程(n为正整数)的根.答案【例1】 D举一反三解:原方程即=﹣,两边同时乘以(2x+1)(2x﹣1)得:x+1=3(2x﹣1)﹣2(2x+1),x+1=6x﹣3﹣4x﹣2,解得:x=6.经检验:x=6是原分式方程的解.∴原方程的解是x=6.【例2】 1. ﹣2.解:∵分式方程=有增根,∴x﹣1=0,x+2=0,∴x1=1,x2=﹣2.两边同时乘以(x﹣1)(x+2),原方程可化为x(x+2)﹣(x﹣1)(x+2)=m,整理得,m=x+2,当x=1时,m=1+2=3,当x=﹣2时,m=﹣2+2=0,当m=0时,分式方程无解,并没有产生增根,故选:D.举一反三 1. 32.解:∵原方程有增根,∴最简公分母(x+1)(x﹣1)=0,解得x=﹣1或1,∴增根可能是:±1.故选:C.【例3】 1.1309解:∵a2﹣3a﹣1=0,∴a2=3a+1,a6=(a2)3=(3a+1)2(3a+1)=(9a2+6a+1)(3a+1)=[9×(3a+1)+6a+1](3a+1)=(33a+10)(3a+1)=99a2+63a+10=99(3a+1)+63a+10=360a+109,∵a2﹣3a=1,120a﹣2=(a2﹣3a)=120﹣=120﹣×(a2﹣3a)=120﹣360a+1080,∴a6+120a﹣2=360a+109+120﹣360a+1080=1309.2.解:(1)设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意得﹣=10解得 x=40.经检验,x=40是原方程的跟,且符合题意,则1.5x=60答:甲工厂每天加工40件产品,乙工厂每天加工60件产品;(2)设甲、乙工厂一天的加工费分别为a万元、b万元,由题意得,解得.∵加工3天后的时间为:=15(天)∴3×3200+(15+3)×4000=81600(元)答:该公司这批产品的加工费用为81600元.举一反三1.2011.5解:∵当x=1时,f(1)=,当x=2时,f(2)=,当x=时,f()=;当x=3时,f(3)=,当x=时,f()=…,∴f(2)+f()=1,f(3)+f()=1,…,∴f(n)+…+f(1)+…+f()=f(1)+(n﹣1),∴=f(1)+(2012﹣1)=+2011=2011.5.2.解:(1)设签字笔的单价为x元,笔记本的单价为y元.则可列方程组,解得.答:签字笔的单价为1.5元,笔记本的单价为3.5元.(2)设学校获奖的同学有z人.则可列方程=,解得z=48.经检验,z=48符合题意.答:学校获奖的同学有48人.一、选择题1. C二、填空题1. 6 ; 2 . 三、解答题 1. 解:(1)920=+x x , 12)1(+=++n xn n x (2)1,21+==n x n x 检验2.解:方程的两边同乘(x ﹣3),得:2﹣x=﹣1﹣2(x ﹣3), 解得:x=3,检验:把x=3代入(x ﹣3)=0,即x=3不是原分式方程的解. 则原方程无解.3.解:(1)去分母得:1﹣2(x ﹣3)=﹣3x , 解得:x=﹣7,检验:当x=﹣7时,x ﹣3≠0,故x=﹣7是原方程的解; (2)∵(x ﹣3y )(2x+y )+y (x+5y ) =2x 2﹣5xy ﹣3y 2+xy+5y 2=2x 2﹣4xy+2y 2=2(x ﹣y )2=2x 2, ∴x ﹣y=±x , 则x ﹣kx=±x ,解得:k=0(不合题意舍去)或k=2.1.D解:分式方程去分母得:3﹣a ﹣a 2+4a=﹣1,即(a ﹣4)(a+1)=0, 解得:a=4或a=﹣1,经检验a=4是增根,故分式方程的解为a=﹣1, 已知不等式组解得:﹣1<x ≤b , ∵不等式组只有4个整数解, ∴3≤b <4. 故选:D 2. C解:去分母,将原方程两边同乘x(x﹣2),整理得2x2﹣3x+(4﹣a)=0.①方程①的根的情况有两种:(1)方程①有两个相等的实数根,即△=9﹣4×2(4﹣a)=0.解得a=.当a=时,解方程2x2﹣3x+(﹣+4)=0,得x1=x2=.(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为0或2.(i)当x=0时,代入①式得4﹣a=0,即a=4.当a=4时,解方程2x2﹣3x=0,x(2x﹣3)=0,x1=0或x2=1.5.而x1=0是增根,即这时方程①的另一个根是x=1.5.它不使分母为零,确是原方程的唯一根.(ii)当x=2时,代入①式,得2×4﹣2×3+(4﹣a)=0,即a=6.当a=6时,解方程2x2﹣3x﹣2=0,x1=2,x2=﹣.x1是增根,故x=﹣为方程的唯一实根;因此,若原分式方程只有一个实数根时,所求的a的值分别是,4,6共3个.故选:C.3.C解:方程去分母得:ax=4+x﹣2解得:(a﹣1)x=2,∴当a﹣1=0即a=1时,整式方程无解,分式方程无解;当a≠1时,x=x=2时分母为0,方程无解,即=2,∴a=2时方程无解.故选:C.4. A5.0或﹣4解:方程去分母得:m﹣(x﹣2)=0,解得:x=2+m,∴当x=2时分母为0,方程无解,即2+m=2,∴m=0时方程无解.当x=﹣2时分母为0,方程无解,即2+m=﹣2,∴m=﹣4时方程无解.综上所述,m的值是0或﹣4.故答案为:0或﹣4.6.a>﹣1且a≠﹣解:=﹣1,解得x=,∵=﹣1的解是正数,∴x>0且x≠2,即0且≠2,解得a>﹣1且a≠﹣.故答案为:a>﹣1且a≠﹣.7.x=3解:根据题意可得:y=x+m﹣2,∵“关联数”[1,m﹣2]的一次函数是正比例函数,∴m﹣2=0,解得:m=2,则关于x的方程变为+=1,解得:x=3,检验:把x=3代入最简公分母2(x﹣1)=4≠0,故x=3是原分式方程的解,故答案为:x=3.8. ﹣3<a≤2解:设y=,方程变形为y2﹣6y+2﹣a=0,抛物线对称轴为y=3,开口向上.∵方程有实根,∴△=b2﹣4ac=36﹣4(2﹣a)=28+4a≥0,解得:a≥﹣7,又y=的取值范围为0≤y<1即方程在0≤y<1.所以有f(0)=2﹣a≥0,f(1)=﹣3﹣a<0,解得﹣3<a≤2故答案为:﹣3<a≤29.1或﹣2解:x﹣=t,则由原方程,得t2+t+2=4,整理,得(t﹣1)(t+2)=0,解得 t=1或t=﹣2,所以 x﹣的值是 1或﹣2.故答案是:1或﹣2.10.0、或﹣112.解:(1)由90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,即可得:,解得m=18,经检验m=18是原方程的解,即m=18;(2)设买A型污水处理设备x台,则B型(10﹣x)台,根据题意得:18x+15(10﹣x)≤165,解得x≤5,由于x是整数,则有6种方案,当x=0时,10﹣x=10,月处理污水量为1800吨,当x=1时,10﹣x=9,月处理污水量为220+180×9=1840吨,当x=2时,10﹣x=8,月处理污水量为220×2+180×8=1880吨,当x=3时,10﹣x=7,月处理污水量为220×3+180×7=1920吨,当x=4时,10﹣x=6,月处理污水量为220×4+180×6=1960吨,当x=5时,10﹣x=5,月处理污水量为220×5+180×5=2000吨,答:有6种购买方案,每月最多处理污水量的吨数为2000吨.13.14.解:(1)①去分母,得:x2+2=3x,即x2﹣3x+2=0,(x﹣1)(x﹣2)=0,则x﹣1=0,x﹣2=0,解得:x1=1,x2=2,经检验:x1=1,x2=2都是方程的解;②去分母,得:x2+6=5x,即x2﹣5x+6=0,(x﹣2)(x﹣3)=0,则x﹣2=0,x﹣3=0,解得:x1=2,x2=3,经检验:x1=2,x2=3是方程的解;③去分母,得:x2+12=7x,即x2﹣7x+12=0,(x﹣3)(x﹣4)=0,则x1=3,x2=4,经检验x1=3,x2=4是方程的解;(2)出第n个方程为x+=2n+1,解是x1=n,x2=n+1;(3),即x﹣3+=2n+1,则x﹣3=n或x﹣3=n+1,解得:x1=n+3,x2=n+4.2019-2020年中考数学一轮专题复习第7讲一元一次不等式组及应用知识梳理及自主测试浙教版方式出现.二元一次方程组在中考一、等式及方程的有关概念1.等式及其性质(1)用等号“=”来表示相等关系的式子,叫做等式.(2)等式的性质:等式两边加(或减)同一个数或同一个整式,所得结果仍是等式;等式两边乘(或除以)同一个数(除数不能是0),所得结果仍是等式.2.方程的有关概念(1)含有未知数的等式叫做方程.(2)方程的解:使方程左右两边的值相等的未知数的值叫做方程的解,一元方程的解,也叫它的根.(3)解方程:求方程解的过程叫做解方程. 二、一元一次方程1.只含有一个未知数,并且未知数的最高次数都是一次,系数不等于零的整式方程叫做一元一次方程,其标准形式为ax=b ,其解为x =b/a.2.解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)未知数的系数化为1.三、二元一次方程组的有关概念1.二元一次方程(1)概念:含有两个未知数,并且未知数的项的次数都是一次,这样的整式方程叫做二元一次方程.(2)一般形式:ax +by =c(a ≠0,b ≠0).(3)使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.(4)解的特点:一般地,二元一次方程有无数个解.由这些解组成的集合,叫做这个二元一次方程的解集.2.二元一次方程组(1)概念:具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.(2)一般形式:⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2(a 1,a 2,b 1,b 2均不为零).(3)二元一次方程组的解:一般地,二元一次方程组的两个方程的解,叫做二元一次方程组的解. 四、二元一次方程组的解法解二元一次方程组的基本思想是消元,即化二元一次方程组为一元一次方程,主要方法有代入消元法和加减消元法.1.用代入消元法解二元一次方程组的一般步骤(1)从方程组中选定一个系数比较简单的方程进行变形,用含有x(或y)的代数式表示出y(或x),即变成y =ax +b(或x =ay +b)的形式;(2)将y =ax +b(或x =ay +b)代入另一个方程,消去y(或x),得到关于x(或y)的一元一次方程;(3)解这个一元一次方程,求出x(或y)的值;(4)把x(或y)的值代入y =ax +b(或x =ay +b)中,求y(或x)的值. 2.用加减消元法解二元一次方程组的一般步骤(1)在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可以直接相减(或相加),消去一个未知数;(2)在二元一次方程组中,若不存在(1)中的情况,可选一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数;(3)解这个一元一次方程;(4)将求出的一元一次方程的解代入原方程组中系数比较简单的方程内,求出另一个未知数. 五、列方程(组)解应用题的一般步骤审:审清题意,分清题中的已知量、未知量.设:设未知数,设其中某个未知量为x ,并注意单位.对于含有两个未知数的问题,需要设两个未知数.列:根据题意寻找等量关系列方程(组). 解:解方程(组).验:检验方程(组)的解是否符合题意. 答:写出答案(包括单位). 六、常见的几种方程类型及等量关系1.行程问题中的基本量之间的关系 路程=速度×时间;相遇问题:全路程=甲走的路程+乙走的路程;追及问题:若甲为快者,则被追路程=甲走的路程-乙走的路程; 流水问题:v 顺=v 静+v 水,v 逆=v 静-v 水. 2.工程问题中的基本量之间的关系 工作效率=工作总量工作时间.(1)甲、乙合作的工作效率=甲的工作效率+乙的工作效率. (2)通常把工作总量看作“1”.1.下列不等式变形正确的是( )A .由a >b ,得ac -2>bc -2B .由a >b ,得-2a <-2bC .由a >b ,得-a -1>-b -1D .由a -1>b -1,得a -2<b -2 2.不等式(m ﹣2)x >2﹣m 的解集为x <﹣1,则m 的取值范围是 . 3.不等式组的解集在数轴上表示为( )A .B .C .D .4.若不等式组的解集是x <2,则a 的取值范围是( )A .a <2B .a ≤2C .a ≥2D .无法确定5.解不等式组:,并把解集在数轴上表示出来.6.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:进价(元/(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.答案:1. B2. A3. C4.m<25.解:∵解不等式①得:x>﹣3,解不等式②得:x≤2,∴不等式组的解集为﹣3<x≤2,在数轴上表示不等式组的解集为:.6.解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.。

相关文档
最新文档