2.1有理数 同步练习1-1

合集下载

第二章 2.1 有理数同步练习-2021-2022学年北师大版数学七年级上学期

第二章 2.1 有理数同步练习-2021-2022学年北师大版数学七年级上学期

初中数学北师大版七年级上学期第二章有理数一、单项选择题1. 如果收入10元记作+10元,那么支出10元记作()2. 一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,缺乏标准质 量的克数记为负数,结果如下图,其中最接近标准质量的元件是(4. 向北行驶3km,记作+3km,向南行驶2km 记作()5. 以下数中,最小的正数的是(6. 以下实数中,有理数是()227 二、填空题7. 如果用+31表示温度升高3摄氏度,那么温度降低2摄氏度可表示为 ___________________ . 8. 向指定方向变化用正数表示,向指定方向的相反方向变化用负数表示,〃体重减少1.5kg 〃换一种说法可 以表达为“体重增加 __________ kg ”・9. 如果盈利100元记作+100元,那么亏损50元记作 _____________ 元10. 请你把以下各数填入表示它所在的数集的圈里:-2, - 20%, - 0.13, - 7 - , 10, - , 21, 6.2, 4.7, - 8 4 4A.+20 兀B. +10 兀C. -10 兀D. -20 兀B. 0 D. V2A. +2 kmB. - 2 kmC. +3 kmD. - 3 kmA. 3C. 0D. 2A. 2V2中,为负数的是((“是〃或“不是")全体有理数集合,假设不是,缺少的是.三、综合题 11.(1)如图,下面两个圈分别表示负数集和分数集,请你把以下各数填入它所在数集的圈里。

(2) 上图中,这两个圈的重叠局部表示什么数集合?(3) 列式并计算:在(1)的数据中,求最大的数与最小的数的和。

12.把以下各数填在相应的集合内:6, -3, 2.5, -1.11, 0, -1, -|-9| , - (-3.15)广 (1)整数集合{…}; (2)分数集合{...} (3)非负数集合{・..} (4)有理数集合{ ...}答案解析局部这四个集合合并在一起填3.4 ・15% ° 一3;・5 3一、单项选择题1.【答案】C2.【答案】D3.【答案】C4.【答案】B5.【答案】D6.【答案】C二、填空题7.【答案】-2°C8.【答案】9.【答案】-5010.【答案】不是;0三、综合题11.【答案】(1)解:根据题意可得分数集合(2)解:这两个圈的重叠局部表示负分数集合(3)解:因为最大的数是3.4,最小的数是・5, 所以最大的数与最小的数之和为12.【答案】(1)解:整数集合{6, -3,0, -1, -|-9| };(2)解:分数集合(2.5, -1.11, - (-3.15) , 3.14}(3)解:非负数集合{6,2.5,0, - (-3.15),凡3.14)(4)解:有理数集合{6, -3, 2.5, -1.11, 0, -1, -|-9| , - (-3.15) ,3.14}。

北师大数学七年级上《2.1有理数》同步练习含答案试卷分析详解

北师大数学七年级上《2.1有理数》同步练习含答案试卷分析详解

第二章有理数及其运算1 有理数基础巩固1.(题型一)[广东广州中考]中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元,那么-80元表示()A.支出20元B.收入20元C.支出80元D.收入80元2.(题型二)下列说法错误的是()A.负整数和负分数统称为负有理数B.正整数、0、负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数3.(知识点3)在-3.5,227,0,π2,0.616 116 111 6…(相邻两个6之间1的个数逐次加1)中,有理数的个数为()A.1 B.2 C.3 D.44.(题型一)下列选项,具有相反意义的量是()A.增加20个与减少30个B.6个老师和7个学生5.(题型一)吐鲁番盆地低于海平面155 m,记作-155 m,福州鼓山绝顶峰高于海平面919 m,记作_____m.6.(题型二)在有理数中,是整数而不是正数的是,是负数而不是分数的是______ .7.(知识点2)某栏目有一竞猜游戏:两人搭档,一人用语言描述,一人回答,要求描述者不能说出答案中的字或数.如果现在给的数是0,那么你给搭档描述的是_______.8.(题型二)把有理数-3,2 017,0,37,-237填入它所属的集合内(如图2-1-1).图2-1-1能力提升9.(题型一)一名足球守门员练习折返跑,从守门员守门的位置出发,向前记作正数,返回记作负数,他的记录(单位:m)如下:+5,-3,+10,-8,-6,+12,-10.(1)守门员是否回到了守门的位置?(2)守门员离开守门的位置最远是多少?10.(题型三)将一串有理数按下列规律排列,解答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A,B,C,D中的什么位置?(3)第2 018个数是正数还是负数?排在对应于A,B,C,D中的什么位置?-1 4→-5 8→-9 A→ B↓ ↑ ↓ ↑ ↓ ↑ ↓答案基础巩固1.C 解析:若收入为正,则支出为负,所以-80元表示支出80元.故选C.2.C 解析:负整数和负分数统称为负有理数,故A 正确,不符合题意;整数分为正整数、负整数和0,故B 正确,不符合题意;正有理数、负有理数和0组成全体有理数,故C 错误,符合题意;3.14是小数,也是分数,故D 正确,不符合题意.故选C.3.C 解析:有理数有-3.5,,0,共3个.虽然是分数形式,但π是一个无限不循环小数,不是有理数,0.616 116 111 6…(相邻两个6之间1的个数逐次加1)虽然有规律,但是不存在循环节,故也是无限不循环小数,不是有理数.所以有理数一共有3个.故选C.4.A 解析:增加20个与减少30个是具有相反意义的量.故选A.5.+919 解析:若低于海平面记作负数,则高于海平面应记作正数,所以高于海平面919 m 记作+919 m.6.负整数和0负整数7.既不是正数也不是负数的数(答案不唯一)8.如图D2-1-1.图D2-1-1能力提升(2)几次运动后,守门员的位置相对于最初的位置分别为:前5 m ,前2 m ,前12 m ,前4 m ,后2 m ,前10 m ,0 m ,所以守门员离开7222守门的位置最远是12 m.10.解:(1)在A处的数是正数.(2)负数排在B和D的位置.(3)第2 018个数是正数,排在对应于C的位置.。

华东师大版数学七年级上册2.1《有理数》综合练习1

华东师大版数学七年级上册2.1《有理数》综合练习1

2.1 有理数一、基础训练1.如果气温上升3度记作+3度,下降5度记作-5度,那么下列各量分别表示什么?(1)+5度;(2)-6度;(3)0度.2.向东走-8米的意义是()A.向东走8米B.向西走8米C.向西走-8米D.以上都不对3.下列语句:(1)所有整数都是正数;(2)分数是有理数;(3)所有的正数都是整数;(4)在有理数中,除了负数就是正数,其中正确的语句个数有()A.1个B.2个C.3个D.4个4.下列说法中,正确的是()A.正整数、负整数统称整数B.正分数、负分数统称有理数C.零既可是正整数,也可以是负分数D.所有的分数都是有理数5.下列各数是负数的有哪些?-13,-0,-(-2),+2,3,-0.01,-0.21,5%,-(+2)6.下列各数中,哪些属于正数集、负数集、非负数集、整数集、分数集,有理数集?-1,-3.14156,-13,-5%,-6.3,2006,-0.1,30000,200%,0,-0.010017.已知A、B、C三个数集,每个数集中所包含的数都写在各自的大括号内,•请把这些数填在如图所示圆内相应的位置,A={-2,-3,-8,6,7};B={-3,-5,1,2,6};C={-1,-3,-8,2,5).ABC8.某水库的平均水位为80米,在此基础上,若水位变化时,把水位上升记为正数;水库管理员记录了3月~8月水位变化的情况(单位:米):-5,-4,0,+3,+6,+8.试问这几个月的实际水位是多少米?二、递进演练1.(宜昌市中考·课改卷)如果收入15•元记作+•15•元,•那么支出20•元记作________元.2.(吉林省中考·课改卷)某食品包装袋上标有“净含量385±5”,•这包食品的合格净含量范围是______克~300克.3.下列说法正确的是()A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数4.下列不是具有相反意义的量是()A.前进5米和后退5米B.节约3吨和消费10吨C.身高增加2厘米和体重减少2千克D.超过5克和不足2克5.下列说法正确的是()。

北师大版数学初一上册同步练习:有理数(word解析版)

北师大版数学初一上册同步练习:有理数(word解析版)

北师大版数学初一上册同步练习:22.1 有理数(word解析版)学校:___________姓名:___________班级:___________一.选择题(共12小题)1.某种药品的说明书上标明储存温度是(20±2)℃,则该药品在()范畴内储存才合适.A.18℃~20℃ B.20℃~22℃C.18℃~21℃D.18℃~22℃2.若一辆汽车向南行驶5千米记作+5千米,那么向北行驶3千米应记作()A.+3千米B.+2千米C.﹣3千米D.﹣2千米3.假如“收入10元”记作+10元,那么支出20元记作()A.+20元B.﹣20元C.+10元D.﹣10元4.﹣2,0,2,﹣3这四个数中是正数的是()A.﹣2 B.0 C.2 D.﹣35.下列一组数:﹣8,0,﹣32,﹣(﹣5.7),其中负数的个数有()A.1个B.2个C.3个D.4个6.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数.则下面4个足球中,质量最接近标准的是()A.B.C.D.7.下列四个数中,正整数是()A.﹣2 B.﹣1 C.0 D.18.在数﹣2,π,0,2.6,+3,中,属于整数的个数为()A.4 B.3 C.2 D.19.最大的负整数是()A.0 B.1 C.﹣1 D.不存在10.下列四个数是负分数的是()A.﹣(﹣0.)B.π C.0.341 D.11.下列说法中不正确的是()A.﹣3.14既是负数,分数,也是有理数B.0既不是正数,也不是负数,然而整数C.﹣2021既是负数,也是整数,但不是有理数D.0是非正数12.在下列选项中,既是分数,又是负数的是()A.9 B.C.﹣0.125 D.﹣72二.填空题(共10小题)13.假如盈利200元记做+200元,那么亏损80元记做元.14.假如向东走10米记作+10米,那么向西走15米可记作米.15.把向东走4米记作+4米,那么向西走6米记作米.16.将高于平均水位2m记作“+2m”,那么低于平均水位0.5m记作.17.假如卖出一台电脑赚钱500元,记作+500,那么亏本300元,记作元.18.观看下面一列数:﹣1,2,﹣3,4,﹣5,6,﹣7,…将这列数排成下列形式:按照上述规律排下去,那么第10行从左边数第9个数是;数﹣201是第行从左边数第个数.19.在﹣42,+0.01,π,0,120,这5个数中正有理数是.20.在+8.3,﹣4,﹣0.8,0,90,,,+24中,非负数有,负分数有.21.下列各数:2,﹣5,0,﹣0.06,+,20%,0.1,其中分数有个.22.有一个五位数,十位上数字是最小的素数,百位上的数字是最小的自然数,千位上的数字是最小的合数,假如那个数能被2,3,5整除,那个数万位上的数字能够是.三.解答题(共4小题)23.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处动身去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A到B记为:A→B(+1,+4),从D到C记为:D→C(﹣1,+2),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B→C(,),D→(﹣4,﹣2);(2)若这只甲虫从A处去P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请运算该甲虫走过的路程.24.某高速公路养护小组,乘车沿南北向公路巡视爱护,假如约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+6(1)养护小组最后到达的地点在动身点的哪个方向?距动身点多远?(2)养护过程中,最远处离动身点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?25.观看下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数a,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,)差不多上“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是;(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)26.阅读下面文字,依照所给信息解答下面问题:把几个数用大括号括起来,中间用返号隔开,如:{3,4};{﹣3,6,8,18},其中大括号内的数称其为集合的元素.假如一个集合满足:只要其中有一个元素a,使得﹣2a+4也是那个集合的元素,如此的集合称为条件集合.例如;{3,﹣2},因为﹣2×3+4=﹣2,﹣2恰好是那个集合的元素因此吕{3,﹣2}是条件集合:例如;(﹣2,9,8,},因为﹣2×(﹣2)+4=8,8恰好是那个集合的元素,因此{﹣2,9,8,}是条件集合.(1)集合{﹣4,12}是否是条件集合?(2)集合{,﹣,}是否是条件集合?(3)若集合{8,n}和{m}差不多上条件集合.求m、n的值.2021-2021学年度北师大版数学七年级上册同步练习:2.1 有理数(w ord解析版)参考答案与试题解析一.选择题(共12小题)1.【分析】药品的最低温度是(20﹣2)℃,最高温度是(20+2)℃,据此即可求得温度的范畴.【解答】解:20﹣2=18℃,20+2=22℃,则该药品在18℃~22℃范畴内.故选:D.2.【分析】由向南行驶为正,向北行驶为负.即可得到向北行驶3千米应记作﹣3千米.【解答】解:汽车向南行驶5千米记作+5千米,那么向北行驶3千米应记作﹣3千米,故选:C.3.【分析】依照正负数的含义,可得:收入记住“+”,则支出记作“﹣”,据此求解即可.【解答】解:假如收入10元记作+10元,那么支出20元记作﹣20元.故选:B.4.【分析】依照正数的定义进行判定.【解答】解:正数是2,故选:C.5.【分析】依照题目中的数据能够判定各个数是正数依旧负数,从而能够解答本题.【解答】解:∵﹣32=﹣9,﹣(﹣5.7)=5.7,∴在﹣8,0,﹣32,﹣(﹣5.7)中负数是﹣8,﹣32,即负数的个数有2个.故选:B.6.【分析】求出每个数的绝对值,依照绝对值的大小找出绝对值最小的数即可.【解答】解:∵|+0.8|=0.8,|﹣3.5|=3.5,|﹣0.7|=0.7,|+2.1|=2.1,0.7<0.8<2.1<3.5,∴从轻重的角度看,最接近标准的是﹣0.7.故选:C.7.【分析】正整数是指既是正数依旧整数,由此即可判定求解.【解答】解:A、﹣2是负整数,故选项错误;B、﹣1是负整数,故选项错误;C、0是非正整数,故选项错误;D、1是正整数,故选项正确.故选:D.8.【分析】整数包括正整数、负整数和0,依此即可求解.【解答】解:在数﹣2,π,0,2.6,+3,中,整数有﹣2,0,+3,属于整数的个数,3.故选:B.9.【分析】依照负整数的概念和有理数的大小进行判定.【解答】解:负整数是负数且是整数,即最大的负整数是﹣1.故选:C.10.【分析】依照负分数的概念,选项必须既是负数又是分数.【解答】解:A、﹣(﹣0.)是正数,不是负分数;B、π是无理数,不是负分数;C、0.341是正数,不是负分数;D、﹣既是负数,又是分数,因此是负分数.故选:D.11.【分析】本题需先依照有理数的定义,找出不符合题意得数即可求出结果.【解答】解:依照题意得:﹣2021既是负数,也是整数,但它也是有理数故选:C.12.【分析】利用分数及负数的定义判定即可得到结果.【解答】解:下列选项中,既是分数又是负数的是﹣0.125.故选:C.二.填空题(共10小题)13.【分析】此题要紧用正负数来表示具有意义相反的两种量:盈利记为正,则亏损记为负,直截了当得出结论即可.【解答】解:“正”和“负”相对,把盈利200元记作+200元,则亏损80元记作﹣80元.故答案为﹣80.14.【分析】明确“正”和“负”所表示的意义,再依照题意作答.【解答】解:∵向东走10米记作+10米,∴向西走15米记作﹣215米.故答案为:﹣15.15.【分析】此题要紧用正负数来表示具有意义相反的两种量:向西记为负,则向东就记为正,由此解答即可;【解答】解:假如把向东走4米记作+4米,那么向西走6米记作:﹣6米.故答案为:﹣616.【分析】依照正数和负数表示相反意义的量,高于平均水位记为正,可得低于平均水位的表示方法.【解答】解:将高于平均水位2m记作“+2m”,那么低于平均水位0. 5m记作﹣0.5m.故答案为:﹣0.5m.17.【分析】由赚钱为正,亏本为负.赚钱500元记作+500,即可得到亏本300元应记作﹣300元.【解答】解:依照题意,亏本300元,记作﹣300元,故答案为:﹣300.18.【分析】先从排列中总结规律,再利用规律代入求解.【解答】解:依照题意,每一行最末的数字的绝对值是行数的平方,且奇数前带有负号,偶数前是正号;如第四行最末的数字是42=16,第9行最后的数字是﹣81,∴第10行从左边数第9个数是81+9=90,∵﹣201=﹣(142+5),∴是第15行从左边数第5个数.故应填:90;15;5.19.【分析】依照正有理数的定义解答即可.【解答】解:正有理数有:+0.01,120.故答案为:+0.01,120.20.【分析】依照有理数的分类:进行解答即可.【解答】解:非负数有+8.3,0,90,,+24;负分数有﹣0.8,;故答案为:+8.3,0,90,,+24;﹣0.8,.21.【分析】利用分数定义判定即可.【解答】解:下列各数:2,﹣5,0,﹣0.06,+,20%,0.1,其中分数有4个,故答案为:422.【分析】找出最小的素数,最小的自然数,以及最小的合数,再依照题意求出万位上的数即可.【解答】解:依照题意得:最小的素数是2,最小的自然数为0,最小的合数为4,能被2,3,5整除,个位上是0,其余各位上数字的和能够被3整除,可得那个数万位上的数字能够是3或6或9.故答案为:3或6或9.三.解答题(共4小题)23.【分析】(1)依照规定及实例可知A→C记为(3,4)B→C记为(2,0)D→A记为(﹣4,﹣2);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P的坐标,在图中标出即可;(3)依照点的运动路径,表示出运动的距离,相加即可得到行走的总路径长.【解答】解:(1)规定:向上向右走为正,向下向左走为负∴A→C记为(3,4)B→C记为(2,0)D→A记为(﹣4,﹣2);(2)P点位置如图所示.(3)据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C →D记为(1,﹣1);该甲虫走过的路线长为1+4+2+1+2=10.故答案为:(3,4);(2,0);A;24.【分析】(1)依照有理数的加法,可得答案;(2)依照有理数的加法,可得每次行程,依照绝对值的意义,可得答案;(3)依照单位耗油量乘以路程,可得答案.【解答】解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11+(﹣6)+(﹣8)+5+6=5(千米),答:养护小组最后到达的地点在动身点的北方距动身点5千米;(2)第一次17千米,第二次17+(﹣9)=8,第三次8+7=15,第四次15+(﹣15)=0,第五次0+(﹣3)=﹣3,第六次﹣3+11=8,第七次8+(﹣6)=2,第八次2+(﹣8)=﹣6,第九次﹣6+5=﹣1,第十次﹣1+6=5,答:最远距动身点17千米;(3)(17+|﹣9|+7+|﹣15|+|﹣3|+11+|﹣6|+|﹣8|+5+6)×0.5=87×0.5=43. 5(升),答:这次养护共耗油43.5升.25.【分析】(1)依照“椒江有理数对”的定义即可判定;(2)依照“椒江有理数对”的定义,构建方程即可解决问题;(3)依照“椒江有理数对”的定义即可判定;(4)依照“椒江有理数对”的定义即可解决问题.【解答】解:(1)﹣2+1=﹣1,﹣2×1﹣1=﹣3,∴﹣2+1≠﹣2×1﹣1,∴(﹣2,1)不是“共生有理数对”,∵5+=,5×﹣1=,∴5+=5×﹣1,∴(5,)中是“椒江有理数对”;(2)由题意得:a+3=3a﹣1,解得a=2.(3)不是.理由:﹣n+(﹣m)=﹣n﹣m,﹣n•(﹣m)﹣1=mn﹣1∵(m,n)是“椒江有理数对”∴m+n=mn﹣1∴﹣n﹣m=﹣(mn﹣1)=﹣(﹣n)×(﹣m)+1=﹣[(﹣n)×(﹣m)﹣1],∴(﹣n,﹣m)不是“椒江有理数对”,(4)(5,1.5)等.故答案为:(5,);不是;(5,1.5).26.【分析】(1)依据一个集合满足:只要其中有一个元素a,使得﹣2a+ 4也是那个集合的元素,如此的集合我们称为条件集合,即可得到结论;(2)依据一个集合满足:只要其中有一个元素a,使得﹣2a+4也是那个集合的元素,如此的集合我们称为条件集合,即可得到结论;(3)分情形讨论:当﹣2×8+4=n,解得:n=12;当﹣2n+4=8,解得:n=﹣2;当﹣2n+4=n,解得:n=;当﹣2m+4=m,解得:m=.【解答】解:(1)∵﹣2×(﹣4)+4=12,∴集合{﹣4,12}是条件集合;(2)∵﹣2×(﹣)+4=,∴{,,是条件集合;(3)∵集合{8,n}和{m}差不多上条件集合,∴当﹣2×8+4=n,解得:n=12;当﹣2n+4=8,解得:n=﹣2;当﹣2n+4=n,解得:n=;当﹣2m+4=m,解得:m=.。

1_2_1 有理数的概念 同步练习(含详解)人教版(2024)数学七年级上册

1_2_1 有理数的概念 同步练习(含详解)人教版(2024)数学七年级上册
1.2.1 有理数的概念
一、单选题
1.既不是正数也不是负数的数是( )
A. 2
B. 1
C.0
D.1
2.下列各数中,负整数是( )
A.3
B.0
C. 2
D. 2.5
3.在 1,0, 5 , 6.8 和 2024 这五个有理数中,正数有( ) 3
A.1 个
B.2 个
C.3 个
D.4 个
4.下列各数: 4 ,1,8.6, 7 ,0, 5 , 4 2 , 101 , 0.05 , 9 中,下列说法正确的
16.下列各数哪些属于非负数集合?哪些属于正整数集合?哪些是负分数集合?
3 , 2 , 1 , 0.21,0, 3.010010001, 3.14159 , 10 7
非负数:{
,...}
正整数:{
,...}
负分数:{
,...}
1.C
参考答案:
解:A、 2 是负数,故本选项不符合题意;
B、 1是负数,故本选项不符合题意;
C、互为相反数的两个数和为 0,互为倒数的两个数乘积为 1,故本选项不符合题意;
D、非负有理数是指正有理数,还有零,故本选项不符合题意;
6.B
解:A、0 不是正数,也不是负数,原说法正确,不符合题意;
B、0 是有理数,是整数,原说法错误,符合题意;
C、0 是整数,也是有理数,原说法正确,不符合题意;
个.
14.给出下列各数: 4.443, 0 , 3.1159 , 1000 , 7 ,其中分数的个数是 m ,非正数的 22
个数是 n ,则 m n

三、解答题 15.如图,两个圈分别表示正数集和整数集,请你从 3 ,9,0, 10%,3.14, 2 ,1300 这

1_2_1有理数的概念同步练习题(含简单答案)人教版(2024)数学七年级上册

1_2_1有理数的概念同步练习题(含简单答案)人教版(2024)数学七年级上册

A.整数集合 B.负数集合
C.有理数集合 D.非负数集合
5.如图表示负数集合与整数集合,则图中重合部分 A 处可以填入的数是( )
A.3
B.0
C.-2.6
D.-7
6.下列说法中,正确的是( ).
A.有理数分为正数、0 和负数 B.有理数分为正整数、0 和负数
C.有理数分为分数和整数
D.有理数分为正整数、0 和负整数
7
3
﹣2. 5 ,3.01,+9,4.020020002…,+10%,﹣2π, 100 中符合条件的数填入相应
5
的圈中.
15.小颖与小聪一起制作了10 张数字卡片.两个人规定做出一张正数卡片给小颖 加1分,做出一张负数卡片给小聪加1分.
1.2323
9
32333
0
0.3
(1)小颖得到 ___________ 分. (2)请找出正分数: ___________ ;负整数: ___________ .
1.A
参考答案:
2.D
3.C
4.D
5.D
6.C
7.C
8. 整数 分数 正有理 负有理 零
9. 4 2
10.
5
2
3
11. 正数有:0.6, 2011 ,368;
2012
负数有: ,是 0;
12. ﹣2.3 ﹣1.5(答案不唯一).
13.(1)1, 108

4

π
,其中有理数有
个,负数有个

10.有理数 1.7,﹣17,0, 5 2 ,﹣0.001,﹣ 9 ,2003 和﹣1 中,负数有
7
2
个,
其中负整数有 个,负分数有 个.

1.2.1 有理数的概念 同步练习-人教版数学七年级上册

1.2.1  有理数的概念 同步练习-人教版数学七年级上册

1.2.1 有理数的概念同步练习及答案一.选择题1.在﹣4 0 这四个数中,属于负整数的是()。

A.B.C.0D.﹣42.下列说法正确的是()A.所有的整数都是正数B.整数和分数统称有理数C.0是最小的有理数D.零既可以是正整数,也可以是负整数3.关于﹣4 0.41 ﹣1 0 3.14这六个数,下列说法错误的是()A.﹣4 0是整数B. 0.41 0 3.14是正数C.﹣4 0.41 ﹣1 0 3.14是有理数D.﹣4 ﹣1是负数4.下列四个有理数中,既是分数又是正数的是()A.3B.﹣3C.0D.2.45.与数4的和等于0的数是()A.±2B.﹣4C.D.25.﹣3.782()A.是负数,不是分数B.不是分数,是有理数C.是负数,也是分数D.是分数,不是有理数7.数学张老师采用一种新的计分方法如下:以全班同学的平均分70分为标准,李强考了75分记为+5分,赵刚考试成绩记为﹣3分,那么他这次测验的实际分数为()A.65分B.67分C.73分D.75分8.下列说法正确的是()A.一个有理数不是正数就是负数B.分数包括正分数、负分数和零C.有理数分为正有理数、负有理数和零D.整数包括正整数和负整数9.下列选项中,大括号中所填的数正确的是()A.正数集合:{50%,1,2.5,⋯}B.非负数集合:{0,﹣2,﹣4,⋯}C.分数集合:D.整数集合:10.根据如图的集合示意图,可填入M区域(两个集合的公共部分)的数是()A.﹣1B.C.﹣1.5D.0二.非选择题11.各数如下:,其中分数包括.12.小亮看报纸时,搜集到以下信息:①某地的国民生产总值位列全国第5位;②某城市有56条公共汽车线路;③小刚乘T32次火车去北京;④小风在校运会上获得跳远比赛第1名.你认为其中用到自然数排序的有.13.下列各数里:﹣7 ﹣0.5 0 ﹣98% 8.7 2018.负整数有个,非负数有个,正分数有个,负分数有个.14.下列各数:2 1.0010001 0 π﹣2021,其中有理数有个.15.既不是正数,也不是负数,它是正数与负数的分界线.16.地球上海洋的面积大约是三亿六千一百万平方千米,写作平方千米.17.一个数由42个万、7个千、9个百和32个千分之一组成,这个数是.18.选择合适的数填在相应的括号里(每个数只能选用一次).15 ﹣5 1.2 41.5.小明是七年级学生,身高160厘米,体重千克.他每天坚持晨练30分钟,即使冬天的早上温度达到℃,他也不怕,坚持锻炼.他沿着学校400米的跑道跑3圈,共千米,大约用分钟,跑步时间占整个晨练时间的.19.在数学测验中,把高出平均分的成绩记为正数,小郑考了98分,记作+12分,若小州成绩记作﹣4分,则他的考试分数为.20.把下列各数填在相应的大括号中.0.5 ﹣10 ﹣9.43 ﹣3.5 0.6 0.负数:{ …};非正数:{ …};正分数:{ …};整数:{ …}.21.地球上海洋的面积大约是三亿六千一百万平方千米,写作平方千米.22.定义:若有理数a,b满足等式a+b=ab+2,则称a,b是“准对称有理数对”,记作(a,b).如:数对(2,0),都是“准对称有理数对”.(1)判断数对是否为“准对称有理数对”,并说明理由;(2)是否存在a,b均为负数,使(a,b)是“准对称有理数对”的情况,若存在,求a,b的值;若不存在,说明理由.23.把下列各数填入它属于的集合的圈里.﹣19 3.14159 103 26% 0.2.24.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)★(c,d)=bc﹣ad.例如:(1,2)★(3,4)=2×3﹣1×4=2.根据上述规定解决下列问题:(1)有理数对(﹣5,6)★(﹣3,2)=:(2)若有理数对(﹣7,3x+2)★(2,x+3)=12,求x的值;25.数学活动课上,王老师把分别写有,5,﹣2,0,的五张卡片分别发给A,B,C,D,E五位同学,王老师要求同学们按照卡片上数字的特征挑选2人或者3人表演节目.(1)王老师先给同学们做了范例,他说手拿卡片上数字为整数的同学表演节目,请你选出表演节目的同学;(2)如果让你来挑选,你会按什么数字特征来选择表演节目的同学?答案一.选择题1.在﹣4 0 这四个数中,属于负整数的是()A.B.C.0D.﹣4【答案】D2.下列说法正确的是()A.所有的整数都是正数B.整数和分数统称有理数C.0是最小的有理数D.零既可以是正整数,也可以是负整数【答案】B3.关于﹣4 0.41 ﹣1 0 3.14这六个数,下列说法错误的是()A.﹣4 0是整数B. 0.41 0 3.14是正数C.﹣4 0.41 ﹣1 0 3.14是有理数D.﹣4 ﹣1是负数【答案】B4.下列四个有理数中,既是分数又是正数的是()A.3B.﹣3C.0D.2.4【答案】D5.与数4的和等于0的数是()A.±2B.﹣4C.D.2【答案】B6.﹣3.782()A.是负数,不是分数B.不是分数,是有理数C.是负数,也是分数D.是分数,不是有理数【答案】C7.数学张老师采用一种新的计分方法如下:以全班同学的平均分70分为标准,李强考了75分记为+5分,赵刚考试成绩记为﹣3分,那么他这次测验的实际分数为()A.65分B.67分C.73分D.75分【答案】B8.下列说法正确的是()A.一个有理数不是正数就是负数B.分数包括正分数、负分数和零C.有理数分为正有理数、负有理数和零D.整数包括正整数和负整数【答案】C9.下列选项中,大括号中所填的数正确的是()A.正数集合:{50%,1,2.5,⋯}B.非负数集合:{0,﹣2,﹣4,⋯}C.分数集合:D.整数集合:【答案】A10.根据如图的集合示意图,可填入M区域(两个集合的公共部分)的数是()A.﹣1B.C.﹣1.5D.0【答案】C二.非选择题11.各数如下:﹣4 0 ﹣3.14 2023 ﹣(+5) +1.88 其中分数包括﹣3.14 +1.88 .【答案】﹣3.14 +1.88.12.小亮看报纸时,搜集到以下信息:①某地的国民生产总值位列全国第5位;②某城市有56条公共汽车线路;③小刚乘T32次火车去北京;④小风在校运会上获得跳远比赛第1名.你认为其中用到自然数排序的有①④.【答案】①④.13.下列各数里:﹣7 ﹣0.5 0 ﹣98% 8.7 2018.负整数有 1 个,非负数有 3 个,正分数有 1 个,负分数有 3 个.【答案】1,3,1,3.14.下列各数:2 1.0010001 0 π﹣2021,其中有理数有 5 个.【答案】5.15.0 既不是正数,也不是负数,它是正数与负数的分界线.【答案】0.16.地球上海洋的面积大约是三亿六千一百万平方千米,写作361000000 平方千米.【答案】361000000.17.一个数由42个万、7个千、9个百和32个千分之一组成,这个数是427900.032 .【答案】427900.032.18.选择合适的数填在相应的括号里(每个数只能选用一次).15 ﹣5 1.2 41.5.小明是七年级学生,身高160厘米,体重41.5 千克.他每天坚持晨练30分钟,即使冬天的早上温度达到﹣5 ℃,他也不怕,坚持锻炼.他沿着学校400米的跑道跑3圈,共 1.2 千米,大约用15 分钟,跑步时间占整个晨练时间的.【答案】41.5 ﹣5 1.2 15 .19.在数学测验中,把高出平均分的成绩记为正数,小郑考了98分,记作+12分,若小州成绩记作﹣4分,则他的考试分数为82分.【答案】82分.20.把下列各数填在相应的大括号中.0.5 ﹣10 ﹣9.43 ﹣3.5 0.6 0.负数:{ ﹣10 ﹣9.43 ﹣3.5 …};非正数:{ ﹣10 ﹣9.43 ﹣3.5 0 …};正分数:{ 0.5 0.6 …};整数:{ ﹣10 0 …}.【答案】﹣10 ﹣9.43 ﹣3.5;﹣10 ﹣9.43 ﹣3.5 0;0.5 0.6;﹣10 0.21.地球上海洋的面积大约是三亿六千一百万平方千米,写作361000000 平方千米.【答案】361000000.22.定义:若有理数a,b满足等式a+b=ab+2,则称a,b是“准对称有理数对”,记作(a,b).如:数对(2,0),都是“准对称有理数对”.(1)判断数对是否为“准对称有理数对”,并说明理由;(2)是否存在a,b均为负数,使(a,b)是“准对称有理数对”的情况,若存在,求a,b的值;若不存在,说明理由.【答案】解:(1)∵,,.∴是“准对称有理数对”.(2)∵a,b均为负数;∴ab>0,ab+2>0.∵a+b<0.∴a+b<0<ab+2.故不存在a,b均为负数,使(a,b)是“准对称有理数对”的情况.23.把下列各数填入它属于的集合的圈里.﹣19 3.14159 103 26% 0.2.【答案】解:如图:24.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)★(c,d)=bc﹣ad.例如:(1,2)★(3,4)=2×3﹣1×4=2.根据上述规定解决下列问题:(1)有理数对(﹣5,6)★(﹣3,2)=﹣8 :(2)若有理数对(﹣7,3x+2)★(2,x+3)=12,求x的值;【答案】解:(1)(﹣5,6)★(﹣3,2)=6×(﹣3)﹣(﹣5)×2=﹣18+10=﹣8;故答案为:﹣8;(2)由题意,得(3x+2)×2﹣(﹣7)×(x+3)=12.6x+4+7x+21=12.13x=﹣13.x=﹣1.25.数学活动课上,王老师把分别写有,5,﹣2,0,的五张卡片分别发给A,B,C,D,E五位同学,王老师要求同学们按照卡片上数字的特征挑选2人或者3人表演节目.(1)王老师先给同学们做了范例,他说手拿卡片上数字为整数的同学表演节目,请你选出表演节目的同学;(2)如果让你来挑选,你会按什么数字特征来选择表演节目的同学?【答案】解:(1)五名同学按拿着的卡片上的数分为两组:拿着整数的为一组,拿着分数的为一组.即B、C、D为一组,A、E为另一组.所以B、C、D三位同学表演节目;(2)让我来挑选,五名同学按拿着的卡片上的数分为两组:拿着非负数的为一组,拿着负数的为一组.即B、D、E为一组,A、C为另一组.所以不拿着负数的B、C、D三位同学表演节目.。

新浙教版数学七年级上册同步练习:2.1第1课时有理数的加法法则

新浙教版数学七年级上册同步练习:2.1第1课时有理数的加法法则

2.1 有理数的加法第1课时有理数的加法法则知识要点分类练显圣星琏知识点1有理数的加法法则1 •计算:(1) ( + 3)+ (+ 2)=+ ( | 3 | ____ | 2 | ) = 5;(2) ( —3)+ (—2) = ____( | 3 | + | 2 | ) = ____;(3) 3 + (—2) = __ ( | 3 | — | —2 | ) = ___ ;(4) ( —3)+ (+ 2)=—( |—3 | — | 2 | ) = ___ .2. [2018温州一模]计算—5+ 2的结果是()A . —3 B.—1 C . 1 D . 33.[2018绍兴上虞区模拟]若□+ (—3)= 0,则“□”内可填的数是()1 1A . —3 B. 3 C. —3 D.§4. _____________________________ 下列运算中,正确的是 .(填序号)①(—5) + 5 = 0;②(—10) + (+ 7)= 3;③ 0+(—4)=—4;④-7 + + 5 =—7;⑤(一3) + 2 =—1.5. 用“>或“ <填空:(1)如果a>0, b>0,那么a+ b _______ 0;⑵如果a<0, b<0,那么a+ b ________ 0;⑶如果a>0, b<0, |a|>|b|,那么a+ b _______ 0;⑷如果a<0, b>0, |a|>|b|,那么a+ b _______ 0.6. 在数轴上表示下列有理数的运算,并求出结果.(1)( - 3)+ 5 ;(2)( —4) + (-3).7. 计算:(1)( - 3)+ (- 5); (2)( + 6) + ( -16);2 2(3)( - 2)+ 3;(4)0 + (-0.8);1 1(5) ( + 2.7) + (- 6.7); (6)( -2)+ (-刁.知识点2有理数加法的简单应用& 若收入记为正,支出记为负,则收入8元,又支出5元,可用算式表示为()A . (+ 8) + (+ 5)B . (+ 8) + (—5)C . (—8) + (—5)D . (—8) + (+ 5)9. A为数轴上表示一1的点,将点A沿数轴向右移动2个单位长度后得到点B,则点B 所表示的数为()A . —3 B. 3 C. 1 D . 1或—310 .某市某天早晨6点的气温是—1 C,到了中午气温比早晨6点时上升了8 C,这时该市的气温是 _____________________ C.11. 列式计算:(1)比—18大—30的数;(2)75的相反数与一24的和.12. 已知A地的海拔为—53米,而B地比A地高30米,求B地的海拔是多少.规律方搭综合练13. 绝对值大于1且小于4的所有整数和是()A . 6B . —6C. 0 D . 414. 如果两个有理数的和是负数,那么这两个数()A .都是负数B . 一个为零,一个为负数C . 一正一负,且负数的绝对值较大D .以上三种情况都有可能15 .某天股票A的开盘价为18元,上午11: 30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A . 0.3 元B . 16.2 元C. 16.8 元D. 18 元16. 在0, —2, 1, 1这四个数中,最大数与最小数的和是___________17. 若|a|= 7, |b|= 2,则a+ b 的值是___________ .18. 按下列要求分别写出一个含有两个加数的算式:(1) 两个加数都是负数,和是—13;(2) 至少一个加数是正整数,和是一13.19. 下表是某水位站记录的潮汛期某河流一周内的水位变化情况(单位:m. “ + ”号表示水位比前一天上升,“-”号表示水位比前一天下降,上周日的水位恰好达到警戒水位,警戒水位是0 m).回答下列问题:(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下与警戒水位的距离分别是多少?(2)与上周日相比,本周日河流的水位是上升了还是下降了?A拓广探究创新练沖岂满分20. 如图2- 1—1所示,在没有标出原点的数轴上有 A , B, C, D四个点,这四个点对应的有理数都是整数,且其中一个点在原点处,数轴的单位长度为1•若A , B对应的有理数a, b满足a+ b=—5,则数轴的原点只能是A , B, C, D四点中的哪个点?为什么?-_! -------- 4 Ji --------------- ! A ----------------- 1------- ! 4 9=^C A D出教师详解详析1. (1) + (2)——5 (3) + 1 (4) —12. A[解析]—5+ 2=—(|5|—|2|)=—3•故选A.3. B 4•①③⑤5. (1) > ⑵V ⑶> ⑷V6. 解:在数轴上表示略• (1)( —3)+ 5= 2.(2)( —4)+ (—3)= —7.7. (1) —8 (2) —10 (3)05(4) —0.8 (5) —4 (6) —68. B 9.C 10.711 .解:(1)v (—18)+ (—30) = —48,•••比一18大一30的数是一48.(2) •/ (—75) + (—24)=—99 ,• 75的相反数与一24的和为一99.12. 解:(—53) + 30=—23(米).答:B地的海拔是—23米.13. C [解析]绝对值大于1且小于4的所有整数是:—2, —3, 2, 3,共有4个,这4个数的和是0.14. D15. C [解析]18 + (—1.5) + (+ 0.3) = 16.8(元).116. —1 [解析]在有理数0, —2, 1 , 2中,最大的数是1 ,最小的数是一2,它们的和为(一2)+ 1 = —1.17. ± 5 或±9 [解析]T|a|= 7, ••• a= ±7.•/ |b|= 2, • b= ±2, • a+ b = ±5 或均.18. 解:答案不唯一,女口:(1)( —1)+ (—12)=—13.(2)1 + (—14)=—13.19. 解:(1)星期一的水位是0.20 m ;星期二的水位是0.20+ 0.81 = 1.01(m);星期三的水位是 1.01 + (—0.35) = 0.66(m);星期四的水位是0.66+ 0.13 = 0.79(m);星期五的水位是0.79+ 0.28 = 1.07(m);星期六的水位是 1.07+ (—0.36) = 0.71(m);星期日的水位是0.71 + (—0.01) = 0.70(m).则星期五河流水位最高,星期一河流水位最低,均高于警戒水位,与警戒水位的距离分另是 1.07 m, 0.20 m.(2)与上周日相比,本周日河流的水位上升了.20. 解:①若A为原点,则点A表示的数为0,点B表示的数为5,则a + b= 5,不符合题意;②若B为原点,则点A表示的数为一5,点B表示的数为0,则a + b=—5,符合题意;③若C为原点,则点A表示的数为1,点B表示的数为6,则a + b = 7,不符合题意;④若D为原点,则点A表示的数为一2,点B表示的数为3,则a + b= 1,不符合题意.故点B为原点.。

华东师大版数学七年级上册2.1有理数同步练习

华东师大版数学七年级上册2.1有理数同步练习

有理数1.下列说法正确的有()①0是最小的正数;②任意一个正数,前面加上一个“-”号,就是一个负数;③大于0的数是正数;④字母a既是正数,又是负数.A.0个B.1个C.2个D.3个2.若火箭发射前15秒记为-15秒,那么发射后10秒应记为()A.-5秒B.+5秒C.-10秒D.+10秒3.如果盈利20元记作+20元,那么亏本50元记作()A.+50元B.50元C.+20元D.-20元4.某工厂计划每月生产3000台电视机,八月份生产了2500台.若记超额完成为正,则八月份超额完成的台数是()A.500 B.2 500C.-500 D.-2 5005.在-2,2,-1,-5中,与其他三个数性质不同的是________.6.学校在大桥东面9千米处,那么大桥在学校______面-9千米处.7.如果以每月生产180个零件为准,超过的零件数记作正数,不足的零件数记作负数,那么1月生产160个零件记作______个,2月生产200个零件记作______个.8.分别写出一个符合下列条件的有理数:(1)是负数但不是整数:________;(2)是整数但不是负数:________;(3)是分数但不是正数:________.9.从-1到1有3个整数,它们分别是-1,0,1;从-2到2有5个整数,它们分别是-2,-1,0,1,2;从-3到3有7个整数,它们分别是-3,-2,-1,0,1,2,3,那么从-2016到2017有________个整数.10.在有理数中,是整数而不是正数的是________,既不是负数也不是分数的是________.11.下面的有理数中,哪些是自然数?哪些是非正数?哪些是非负数?哪些是非正整数?哪些是非负整数?10,200,-20.3,45,-30,2016,0,227. 12.在23-,3.14,0.161616…,π2中,分数有________个. 13.写出三个有理数,使它们满足:①是负数;②是整数;③能被2,3,5整除.________.14.至少按照两种不同的标准,将下列各数分类:-8,67-,0,7,8,9,0.26,1128-,-0.75,-3.1041. 15.如图,把下列各数填入相应的图形里.15,0.15,-22,-18.04,134,0.36,-60,225,83-,0.16.有一次同学聚会,小王的座位号与下列一组数中的负数的个数相等,小李的座位号与下列一组数中正整数的个数相等.5,283-,0,-100,123+,-4.11,-0.1,50,78-,16%,+1000,-26. (1)小王和小李的座位号分别是多少?(2)若这次同学聚会的人数是小王座位号的2倍与小李座位号的4倍的和,那么这次同学聚会到了多少名同学?参考答案1.C 解析①不正确,因为0既不是正数,也不是负数;②正确,符合负数的概念;③正确,符合正数的概念;④不正确,字母a既可以表示正数,又可以表示负数,但不可能既是正数,又是负数,这样的数是不存在的.2.D 解析因为发射前15秒记为-15秒,所以发射后10秒应记为+10秒.3.B 解析盈利与亏本具有相反意义,盈利为正,则亏本为负,所以亏本50元记作-50元.4.C 解析以3000台为基准,2 500台低于基准500台,所以记为-500台.5.2 解析2是正数,而另外3个数都是负数.6.东7.-20,+208.(1)答案不唯一,如12-等;(2)答案不唯一,如2等;(3)答案不唯一,如12-等.9.4 034 解析0是整数,所以从-2 016到2 017有2 016+2 017+1=4 034(个)整数.10.非正整数;非负整数解析是整数而不是正数的数包括负整数和0,既不是负数也不是分数的数是正整数和0.11.解:10,200,2 016,0是自然数;-20.3,-30,0是非正数;10,200,45,2 016,0,227是非负数;-30,0是非正整数;10,200,2 016,0是非负整数.点拨:“非”数里一般含有0这个数,如非负数即正数和0;非正数即负数和0;非负整数即正整数和0;非正整数即负整数和0.12.3 解析分数包含有限小数和无限循环小数,可知23-,3.14,0.161 616…是分数.13.答案不唯一,如-30,-60,-90等.14.解:(1)按“正负性”分类:78.90.260618120.75 3.140178⎪⎪⎨⎪⎪-----⎩正有理数:,,负有理数:,,,, (2)按“整分性”分类:807618.90.26120.75 3.140178-⎧⎪⎨----⎪⎩整数:,,分数:,,,,, (3)按“正数和非正数”分类:78.90.266180120.75 3.140178⎧⎪⎨-----⎪⎩正数:,,非正数:,,,,, (4)按“负数和非负数”分类:618120.75 3.140178078.90.26⎧-----⎪⎨⎪⎩负数:,,,,非负数:,,, (答案不唯一,答对一种得4分,最多8分)点拨:被分类的数共有9个,检查分类是否正确,一看9个数中有无漏掉的,二看9个数中有没有哪个数在分类中重复出现.15.思路建立 按照正数、负有理数、非负整数、分数的定义进行分类即可. 解:如图.注意:正有理数一定是正数,但正数不一定是有理数;负有理数、非负整数和分数一定是有理数.16.思路建立(1)要求小王和小李的座位号,确定题目中负数的个数和正整数的个数即可;(2)由(1)中的负数和正整数的个数分别乘2和4,然后相加即可得出同学的人数.借:(1)题中负数有283-,-100,-4.11,-0.1,78-,-16%,-26,故小王的座位号是7,题中正整数有5,50,+1 000,故小李的座位号是3;(2)2×7+4×3=26,即到了26名同学.。

人教版七年级数学上册《2.1-有理数的加法与减法》同步练习题-附答案

人教版七年级数学上册《2.1-有理数的加法与减法》同步练习题-附答案

人教版七年级数学上册《2.1 有理数的加法与减法》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.计算:−2−(−3)=()A.−5B.5 C.−1D.12.有理数a、b在数轴上的对应的位置关系如图所示,则()A.a+b>0B.a+b<0C.a−b=0D.a−b<03.小明口袋里原有9元钱,买饮料花去3元,求口袋里剩余的钱数.所列算式正确的是()A.9−(−3)B.9+(−3)C.9÷(−3)D.9÷34.某粮店出售的三种品牌的面粉袋上分别标有质量为(20±0.1)kg,(20±0.2)kg,(20±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差( )A.0.8kg B.0.6kg C.0.5kg D.0.4kg5.舟山市体育中考,女生立定跳远的测试中,以1.97m为满分标准,若小贺跳出了2.00m,可记作+0.03m,则小郑跳出了1.90m,应记作()A.−0.07m B.+0.07m C.+1.90m D.−1.90m6.“会当凌绝顶,一览众山小.”泰山,世界文化与自然双重遗产,有“五岳之首”和“天下第一山”之称.1月份的泰山,山顶的平均气温是−9℃,山脚的平均气温是−1℃,则山脚的平均气温与山顶的平均气温的温差是()A.−8℃B.−10℃C.10℃D.8℃7.大约公元前2200年在我国出现的“洛书”中就有关于幻方的记录.在如图所示的三阶幻方中,填写了一些数和汉字(其中每个汉字都表示一个数).若处于每行、每列及每条对角线上的3个数之和都相等,则“中”“国”“梦”这三个字表示的数之和是()A.3 B.1 C.0 D.−18.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,图1可列式计算为(+1)+(−1)=0,由此可推算图2中计算所得的结果为()A.+1B.+7C.−1D.−7二、填空题9.计算−4−2的结果为.10.数轴上表示2的点与表示−5的点之间的距离为.11.如图,点A,B,C是数轴上的三个点,A,B表示数分别是1,3,若C在B的右侧,且BC=2AB,则点C表示的数是.12.数轴上点A表示的数是−112,若数轴上点P,在点A右侧,到点A的距离等于113,则点P所表示的数是.13.如图,在数轴上点A 表示的数是2,点B 被墨水遮住了,已知AB =4,则点B 表示的数为 .14.小丽在4张同样的纸片上各写了一个正整数,从中随机抽取2张,并将它们上面的数相加.重复这样做,每次所得的和都是7,8,9,10中的一个数,并且这4个数都能取到.猜猜看,小丽在4张纸片上写的数字是 .15.同学们都知道|5−(−2)|表示5与(−2)之差的绝对值,也可理解为5与−2两数在数轴上所对应的两点之间的距离,试探索:满足条件|x +3|+|x −6|=9所有整数x 的和为 .16.某粮食仓库原库存小麦300吨,本周五天对这一品种小麦的进出货情况统计如下表所示(进货量用正数表示,出货量用负数表示):(单位:吨)星期一 星期二 星期三 星期四 星期五 50 30 60 40 50 −30−35−30−20本周五天后这种小麦库存 吨. 三、计算题17.计算下列各题. (1)−3.4−(−4.7); (2)(−13)+(−43)+2;(3)4+(−12)+0.5+8+(−12); (4)434−(+3.85)−(−314)+(−3.15). 四、解答题18.某市今天的最高气温为7℃,最低气温为0℃.据天气预报,两天后有一股强冷空气将影响该市,届时将降温5℃.问两天后该市的最高气温、最低气温约为多少摄氏度?19.一只昆虫从原点出发在一条直线上左右来回爬行,假定向右爬行的路程记作正,向左爬行的路程记作负,爬过的各段路程依次为(单位:cm):+2,﹣4,+5,﹣2.5,﹣5,+4.5,这只昆虫最后是否回到了原来的出发点?20.某慈善基金会某天上午共汇出三笔捐款,下午共收到两笔捐款,当天基金会的余额增加了1.6万元已知其中四笔的款项如下(记汇进为正,汇出为负.单位:万元):+2,-0.8,-1.5,+3.5.问:还有一笔款项是汇进还是汇出?汇进或汇出多少万元?21.如图,数轴上的A,B两点表示的数分别为−2,1.把一张透明的胶片放置在数轴所在的平面上,并在胶片上描出线段A′B′(点A,B分别对应点A′,B′).左右平移该胶片,平移后的点A′表示的数为a,点B′表示的数为b.(1)计算:−2+1;(2)若胶片向右平移m个单位长度,求a+2b的值(用含m的式子表示).22.某食品厂从生产的袋装食品中抽出样品8袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示与标准质量的差值(单位:克)-3 -1 0 2袋数 1 2 3 2(1)这8袋样品的总质量比标准质量多还是少?多或少几克?(2)若标准质量为500克,则抽样检测这8袋的总质量是多少?23.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,−3,+10,−8,−6,+12,−10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线的最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?24.国庆档电影《长津湖》以抗美援朝为背景,讲述了中国人民志愿军在极端严酷惨烈的环境下,凭借钢铁意志最终取得了长津湖战役的胜利,该电影也再次次起了全民爱国热潮,国安民才安,有国才有家!据猫眼数据,截止10月8日,《长津湖》累计票房超过60亿,成为2021年全球票房冠军!该电影9月30日在莱芜的票房为6.7万元,接下来国庆假期7天的票房变化情况如下表(正数表示比前一天增加的票房,负数表示比前一天减少的票房).日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日票房(万元)+7.6 +2.7 +2.5 +4.7 +2 -0.6 -13.8 (1)国庆假期7天中,10月4日的票房收入是万元;(2)国庆假期7天中,票房收入最多的一天是10月日:(3)国庆假期7天中,求票房收入最多的一天比最少的一天多多少万元?参考答案1.【答案】D2.【答案】B3.【答案】B4.【答案】B5.【答案】A6.【答案】D7.【答案】B8.【答案】C9.【答案】-610.【答案】711.【答案】712.【答案】−1613.【答案】−214.【答案】3,4,4,6或3,4,5,515.【答案】1516.【答案】41517.【答案】(1)解:原式=20−14+18+13=(20+18+13)−14=51−14=37;(2)解:原式=34−72−1−16+32+1=(−72+32)+(34−16)=−2+(912−212) =−2+712=−1512.18.【答案】(1)解:−3.4−(−4.7)=−3.4+(+4.7) =+(4.7−3.4)=1.3(2)解:(−13)+(−43)+2=(−53)+63=13(3)解:4+(−12)+0.5+8+(−12)=4+0.5+8+(−12)+(−12)=12.5+(−12.5)=0(4)解:434−(+3.85)−(−314)+(−3.15)=4.75−(+3.85)−(−3.25)+(−3.15) =4.75+(−3.85)+(+3.25)+(−3.15) =4.75+(+3.25)+(−3.85)+(−3.15)=8+(−7)=119.【答案】解:气温下降5℃,记为-5℃。

2.1有理数 同步练习1-2

2.1有理数 同步练习1-2

2.1有理数同步练习(二)一、选择题(每小题4分,共12分)1.如果零上5℃记作+5℃,那么零下7℃可记作( )A.-7℃B.+7℃C.+12℃D.-12℃2.下列各数中,为负数的是( )A.0B.-2C.1D.3.在下列数-3,+2.3,-,0.65,-2,-2.5,0中,整数和负分数一共有( )A.3个B.4个C.5个D.6个二、填空题(每小题4分,共12分)4. -1,0,0.2,,3中正数一共有________个.5.同学聚会,约定中午12时到会,早到1小时记为+1小时,迟到1小时的记为-1小时,甲同学是+1.5小时,乙同学是-2小时,这两名同学前后差________小时.6.有一组数列:2,-3,2,-3,2,-3,2,-3,…,根据这个规律,那么第2013个数是________.三、解答题(共26分)7.(6分)体育课上对七年级(1)班的8名女生做仰卧起坐测试,若以16次为达标,超过的次数用正数表示,不足的次数用负数表示.现成绩抄录如下:+2,+2,-2,+3,+1,-1,0,+1.(1)有几人达标?(2)平均每人做几次?8.(6分)小明在超市买一食品,外包装上印有“总净含量(300±5)g”的字样.请问“±5g”表示什么意义?小明拿去称了一下,发现只有297g.问食品生产厂家有没有欺诈行为?9.(6分)把下列各数填入表示它所在数集的圈里:-,-7,+2.5,-90,-3.6,0,2,5.10.(8分)(能力拔高题)小华家住在黄河边的开封市,黄河大堤高出开封市20米, 另有开封铁塔高约58米,是开封市的一大景观.小华和好朋友明明、玲玲出去玩.小华站在黄河大堤上,玲玲在地面放风筝,顽皮的明明则爬上了铁塔顶,小华说:“以大堤为基准,记为0米,则玲玲所在的位置高为-20米,明明所在的位置高为+58米.”明明说:“以铁塔顶为基准,记为0米,则玲玲所在的位置高为-58米,小华所在的位置高为-38米.”玲玲说:“明明的位置比我高58米.”他们谁说得对?参考答案一、选择题1.【解析】选A.因为“正”和“负”相对,所以零上5℃记作+5℃,则零下7℃可记作-7℃.2.【解析】选B.0既不是正数,也不是负数;-2是负数;1和是正数.3.【解析】选C.在给出的所有数字中,整数有:-3,0,共2个;负分数有:-,-2,-2.5,共3个,所以整数和负分数共有2+3=5(个).二、填空题4. 3【解析】正数有0.2,,3,故共3个正数.5.3.5【解析】甲同学是上午10:30到会,乙同学是下午14:00到会,所以相差3.5小时.6. 2【解析】第奇数个数字是2,第偶数个数字是-3,故第2013个数字是2.三、解答题7.【解析】(1)因为16次为达标,不足的次数用负数表示,一共有-1,-2两个负数,所以达标的人数为6人.(2)八名女生所做的总次数是:(16+2)+(16+2)+(16-2)+(16+3)+(16+1)+(16-1)+16+(16+1)=134,所以平均次数是134÷8=16.75(次).8.【解析】由题意可知:“±5g”表示总净含量的浮动范围为上下5g,即含量范围在300-5=295(g)到300+5=305(g)之间,故总净含量为297g在合格的范围内,食品生产厂家没有欺诈行为.9.【解析】答案如下:10.【解析】明明和玲玲说得都对;小华说得不对.由于基准的选法不同,表示的结果也不相同.若以大堤为基准,则地面比大堤低20米,记作-20米,而铁塔比大堤高(58-20)=38(米),应记作+38米;所以小华说得不对.。

人教版七年级上册 1.2.1 有理数知识点 同步练习(含答案)

人教版七年级上册 1.2.1 有理数知识点  同步练习(含答案)

人教版七年级上册 1.2.1 有理数知识点 同步练习(含答案)课堂导入某天毛毛看报纸,见到下面一段内容:冬季的一天,某地的最高气温为6℃,最低气温达到-10℃,平均气温是0℃,而同一天北京的气温-3℃~7℃,这里出现了哪些数?我们到目前为止学过了哪些数?你能试着将它们进行分类吗?今天我们要把大家学过的数进行分类命名.一:知识点梳理:1.有理数的概念(1)整数:正整数、零和负整数统称整数.(2)有理数:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数.2.有理数的分类①按定义分类为: ②按性质分类为:有理数 有理数{整数{正整数零负整数)分数{正分数负分数)){正有理数{正整数正分数)零负有理数{负整数负分数))二:考点分类考点一:有理数的有关概念【例1】下列各数:-,1,8.6,-7,0,,-4,+101,-0.05,-9中,( )455623A .只有1,-7,+101,-9是整数B .其中有三个数是正整数C .非负数有1,8.6,+101,0D .只有-,-4,-0.05是负分数4545解析:根据有理数的有关概念,整数包括:1,-7,0,+101,-9,故选项A 错误;正整数只有两个,即1和+101,故选项B 错误;非负数包括有1,8.6,+101,0,,故选项C 错误;负分数包括-,-4,-0.05,故选564523项D 正确.故选D.方法总结:当有理数只含有单个符号时,带负号的数即为负数.然后再区分是整数还是分数.考点二:有理数的分类【例2】把下列各数填入相应的集合内.-10,8,-7,3,-10%,1234,2,0,3.14,-67,,0.618,-1,0.3080080008…310137正数集合{ …};负数集合{ …};整数集合{ …};分数集合{ …}.解析:要将各数填入相应的集合里,首先要弄清楚有理数的分类标准,其次要弄清楚每个数的特征.在填入相应的集合时,要注意每个有理数,身兼不同的身份,所以解答时不要顾此失彼.解:正数集合{8,3,,2,3.14,,0.618,0.3080080008… …};34310137负数集合{-10,-7,-10%,-67,-1 …};12整数集合{-10,8,2,0,-67,-1 …};分数集合{-7,3,-10%,,3.14,,0.618,0.3080080008… 1234310137…}.方法总结:在填数时要注意以下两种方法:(1)逐个考察给出的每一个数,看它是什么数,是否属于某一集合;(2)逐个填写相应集合,从给出的数中找出属于这个集合的数,避免出现漏数的现象.三:随堂练习1.判断题(1)整数又叫自然数。

七年级数学上册1.2.1 有理数 同步练习(含答案)

七年级数学上册1.2.1 有理数 同步练习(含答案)

1.2.1有理数练习一、判断1、自然数是整数。

﹝ ﹞2、有理数包括正数和负数。

﹝ ﹞3、有理数只有正数和负数。

﹝ ﹞4、零是自然数。

﹝ ﹞5、正整数包括零和自然数。

﹝ ﹞6、正整数是自然数, ﹝ ﹞7、任何分数都是有理数。

﹝ ﹞8、没有最大的有理数。

﹝ ﹞9、有最小的有理数。

﹝ ﹞二、填空1、某日,泰山的气温中午12点为5℃,到晚上8点下降了6℃.那么这天晚上8点的气温为 。

2、如果零上28度记作280C ,那么零下5度记作3、若上升10m 记作10m ,那么-3m 表示4、比海平面低20m 的地方,它的高度记作海拔三、选择题5、在-3,-121,0,-73,2002各数中,是正数的有( ) A 、0个 B 、1个 C 、2个 D 、3个6、下列既不是正数又不是负数的是( )A 、-1B 、+3C 、0.12D 、07、飞机上升-30米,实际上就是( )A 、上升30米B 、下降30米C 、下降-30米D 、先上升30米,再下降30米。

8、下列说法正确的是( )A 、整数就是正整数和负整数B 、分数包括正分数、负分数C 、正有理数和负有理数组成全体有理数D 、一个数不是正数就是负数。

9、下列一定是有理数的是( )A 、πB 、aC 、a+2D 、72 四、把下列各数填在表示集合的相应大括号中:+6,-8,-0.4,25,0,-32,9.15,154 整数集合﹛ ﹜分数集合﹛ ﹜非负数集合﹛ ﹜正数集合﹛ ﹜负数集合﹛ ﹜五、解答题1 、 博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?2 、周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表: 单位:元 开盘3、 春季某河流的河水因春雨先上涨了15cm ,随后又下降了15cm .请你用合适的方法来表示这条河流河水的变化情况.六、探究创新1、一种零件的直径尺寸在图纸上是30±02.003.0-(单位:mm ),它表示这种零件的标准尺寸是30mm ,加工要求尺寸最大不超过( )A 、0.03B 、0.02C 、30.03D 、29.982、甲潜水员在海平面-50米作业,乙潜水员在海平面-28米作业,哪个离海平面比较近?近多少?3、某水泥厂计划每月生产水泥1000t ,一月份实际生产了950t ,二月份实际生产了1000t ,三月份实际生产了1100t ,用正数和负数表示每月超额完成计划的吨数各是多少?参考答案:一、1、√2、×3、×4、√5、×6、√7、√8、√9、×二、1、-1℃ 2、- 5度 3、下降3m 4、— 20m三、5、B 6、D 7、B 8、B 9、D四、略五、1、“收入4800元” 记作+4800元2、3略六、1、C 2、乙潜水员离海平面比较近,近22米。

1.2.1 有理数 同步练习

1.2.1 有理数 同步练习

1.2.1有理数同步测试题一、选择题1.在-15,15,-5,5这四个数中,正整数是( ) A .-15 B.15C .-5D .52. 0这个数( )A .是正数B .是负数C .是整数D .不是有理数3.下列说法错误的是( )A .-2是负数B .0不是整数C.13是正数 D .-0.35是负分数 4. 下列各数中,不是有理数的是( )A .4B .-5.6 C.227D .π 5. 下列说法中,正确的是( )A .正分数和负分数统称为分数B .0既是整数也是负整数C .正整数、负整数统称为整数D .正数和负数统称为有理数6. 在+1,27,0,-5,-313这几个数中,整数有( ) A .1个 B .2个 C .3个 D .4个7. 在数0,2,-3,-1.2中,属于负整数的是( )A .0B .2C .-3D .-1.2 二、填空题8. 下列各数:3,-5,-12,0,2,0.97,-0.21, -6,9,23,85,1.其中正数有________个,负数有________个, 正分数有________个,负分数有________个.9. 在-5,4.5,-1100,0,+11,2中, 非负数是_________________________.10. 把下面的有理数填在相应的大括号里:15,-38,0,-30,0.15,-128,225,+20,-2.6. (1)非负数集合:{…}; (2)负数集合:{…}; (3)正整数集合:{…}; (4)负分数集合:{ …}.三、解答题11. 将一串有理数按下列规律排列,回答下列问题.(1)在A 处的数是正数还是负数?(2)负数排在A 、B 、C 、D 中的什么位置?(3)第2 015个数是正数还是负数?排在对应于A 、B 、C 、D 中的什么位置?12. 某矿井的示意图如图所示,以地面为准,A 点的高度是4米,B ,C 两点的高度分别是-15米与-30米,请结合图说出题中各数4,-15,-30表示的实际意义,地面的高度用什数表示.参考答案一、选择题1.在-15,15,-5,5这四个数中,正整数是(D )A .-15 B.15C .-5D .52. 0这个数(C )A .是正数B .是负数C .是整数D .不是有理数3.下列说法错误的是( B )A .-2是负数B .0不是整数C.13是正数 D .-0.35是负分数4. 下列各数中,不是有理数的是( D )A .4B .-5.6 C.227 D .π5. 下列说法中,正确的是( A )A .正分数和负分数统称为分数B .0既是整数也是负整数C .正整数、负整数统称为整数D .正数和负数统称为有理数6. 在+1,27,0,-5,-313这几个数中,整数有( C )A .1个B .2个C .3个D .4个7. 在数0,2,-3,-1.2中,属于负整数的是( C )A .0B .2C .-3D .-1.2二、填空题8. 下列各数:3,-5,-12,0,2,0.97,-0.21, -6,9,23,85,1.其中正数有___7_____个,负数有___4_____个, 正分数有_____2___个,负分数有____2____个.9. 在-5,4.5,-1100,0,+11,2中, 非负数是____ 4.5,0,+11,2 ________________________.10. 把下面的有理数填在相应的大括号里:15,-38,0,-30,0.15,-128,225,+20,-2.6. (1)非负数集合:{ 15,0,0.15,225,+20 …}; (2)负数集合:{ -38,-30,-128,-2.6 …}; (3)正整数集合:{ 15,+20, …};(4)负分数集合:{ -38,-2.6 …}. 三、解答题11. 将一串有理数按下列规律排列,回答下列问题.(1)在A 处的数是正数还是负数?在A 处的数是正数.(2)负数排在A 、B 、C 、D 中的什么位置?负数排在B 和D 的位置.(3)第2 015个数是正数还是负数?排在对应于A 、B 、C 、D 中的什么位置?第2 015个数是负数,排在对应于D 的位置.12. 某矿井的示意图如图所示,以地面为准,A 点的高度是4米,B ,C 两点的高度分别是-15米与-30米,请结合图说出题中各数4,-15,-30表示的实际意义,地面的高度用什数表示.解:4表示高于地面4米,-15,-30分别表示低于地面15米,30米,地面的高度用0表示。

七年级数学上册第二章各节练习题含答案

七年级数学上册第二章各节练习题含答案

七年级数学上册第二章各节练习题含答案第二章:2.1有理数同步练习题一、选择题1.若向东记为正,向西记为负,那么向东走3米,再向西走﹣3米,结果是()A.回到原地B.向西走3米C.向东走6米D.向西走6米2.在,2,,3这四个数中,比小的数是A.B.2 C.D.33.如果赚120万元记作万元,那么亏100万元记作A .万元B.万元C.万元D.万元4.在0,,,3这四个数中,最小的数是A.0 B.C.D.35.下列说法正确的是( )A.一个数前面加上“-”号,这个数就是负数 B.零既是正数也是负数C.若a是正数,则-a不一定是负数D.零既不是正数也不是负数6.下列四个数中,是正整数的是()A.﹣1 B.0 C.D.17.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A. 2+(﹣2) B. 2﹣(﹣2) C. (﹣2)+2 D. (﹣2)﹣28.下列四个数中,是正整数的是()A.﹣1 B.0 C.D.1二、填空题9.用“ <” 、“ >” 或“ =” 连接:(1) 2 _____+6;(2)0 _____ 1.8;(3)_____10.有理数包含正有理数、负有理数和____________.11.A为数轴上表示﹣1的点,将点A沿数轴向右平移3个单位到点B,则点B所表示的数为______.12.在实数﹣3,0,1中,最大的数是_____.13.如果收入60元记作+60元,那么支出40元记作________ 元14.数轴上到1的距离是3的数有_________个,是______________.15.比较大小:-3__________0.(填“< ”“="”“" > ”)16.如果水位上升8米记作+8米,那么﹣5米表示_____.17.如果将“收入50元”记作“+50元”,那么“﹣20元”表示__________.18.在数轴上点A表示7,点B,C所表示的数互为相反数,且C与A间的距离为2,点B,C对应的数分别是__________.三、解答题19.所有的正数组成正数集合,所有的负数组成负数集合,所有的整数组成整数集合,所有的分数组成分数集合,请把下列各数填入相应的集合中:-2.5,3.14,-2,+72,-0.6,0.618,0,-0.101正数集合:{ …};负数集合:{ …};分数集合:{ …};非负数集合:{ …}.20.甲、乙两人同时从某地出发,如果甲向东走250 m记作+250 m,那么乙向西走150 m 怎样表示?这时甲、乙两人相距多远?21.某足球守门员练习折返跑,从守门员位置出发,向前跑记为正数,向后跑记为负数,他的练习记录如下(单位:米):+5,﹣3,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了守门员位置?(2)守门员离开守门员位置最远是多少米?(3)守门员离开守门员位置达到10米以上(包括10米)的次数是多少?22.粮库3天内进出库的粮食记录日下单位:吨进库的吨数记为正数,出库的吨数记为负数:,,,,,.经过这3天,库里的粮食是增多了还是减少了?经过这3天,仓库管理员结算发现库存粮食480吨,那么3天前库存粮食是多少吨?23.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=___________.(2)数轴上表示x和-1的两点之间的距离表示为___________.(3)找出所有符合条件的整数x,使|x+5|+|x-2|=7,这样的整数有___________个.(4)若x表示一个有理数,且|x-2|+|x+4|>6,则有理数x的取值范围是_________.24.体育课上,某中学对七年级女生进行仰卧起坐测试,以做28个为标准,超过的个数用正数表示,不足的个数用负数表示,其中10名女生的成绩如下:-2 +5 -1 0 +10 +3 0 +8 +1 +6(1)这10名女生有百分之几达到标准?(2)她们共做了多少个仰卧起坐?北师大新版数学七年级上册《2.2数轴》同步练习一.选择题(共9小题)1.若数a和﹣2两点之间的距离是3,那么a的值为()A.1 B.﹣5 C.﹣1或5 D.﹣5或12.小明同学将2B铅笔笔尖从原点O开始沿数轴进行连续滑动,先将笔尖沿正方向滑动1个单位长度完成第一次操作;再沿负半轴滑动2个单位长度完成第二次操作;又沿正方向滑动3个单位长度完成第三次操作,再沿负方向滑4个单位长度完成第四次操作,…,以此规律继续操作,经过第50次操作后笔尖停留在点P处,则点P对应的数是()A.0 B.﹣10 C.﹣25 D.503.数轴上表示整数的点称为整点,某数轴的单位长度为1cm,若在这个数轴上随意画出一条长2017cm的线段AB,则线段AB盖住的整点有()A.2016个B.2017个C.2016个或2017个D.2017个或2018个4.一个小虫在数轴上先向右爬3个单位,再向左爬7个单位,正好停在0的位置,则小虫的起始位置所表示的数是()A.0 B.2 C.4 D.﹣45.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>06.下列各对数中,互为相反数的是()A.2和B.﹣0.5和C.﹣3和D.和﹣27.若2(a+3)的值与4互为相反数,则a的值为()A.﹣1 B.﹣C.﹣5 D.8.﹣a﹣b+c的相反数是()A.a﹣b+c B.﹣a+b﹣c C.a+b﹣c D.﹣a﹣b﹣c9.下列说法正确的是()A.符号相反的两个数是相反数B.任何一个负数都小于它的相反数C.任何一个负数都大于它的相反数D.0没有相反数二.填空题(共7小题)10.在数轴上,点P表示的数是a,点P′表示的数是,我们称点P′是点P的“相关点”,已知数轴上A1的相关点为A2,点A2的相关点为A3,点A3的相关点为A4…,这样依次得到点A1、A2、A3、A4,…,A n.若点A1在数轴表示的数是,则点A2016在数轴上表示的数是.11.已知数轴上点A对应的数为3,点B对应的数为﹣5,则到A、B两点距离相等的点对应的数为.12.电影《哈利•波特》中,小哈利波特穿越墙进入“站台”的镜头(如示意图的Q站台),构思奇妙,能给观众留下深刻的印象.若A、B站台分别位于﹣,处,AP=2PB,则P站台用类似电影的方法可称为“站台”.13.﹣(﹣2)=,与﹣[﹣(﹣8)]互为相反数.14.如果a、b互为相反数,那么2016a+2016b﹣100=.15.当两数时,它们的和为0.16.若a=﹣5,则﹣a=.三.解答题(共2小题)17.操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.18.已知m是6的相反数,n比﹣m的相反数大3,求n﹣1与n﹣m的值.参考答案一.选择题1.D.2.C.3.D.4.C.5.D.6.B.7.C.8.C.9.B.二.填空题10.﹣1.11.﹣112..13.2,8.14.﹣100.15.互为相反数.16.5.三.解答题17.解:(1)∵1与﹣1重合,∴折痕点为原点,∴﹣3表示的点与3表示的点重合.故答案为:3.(2)①∵由表示﹣1的点与表示3的点重合,∴可确定折痕点是表示1的点,∴5表示的点与数﹣3表示的点重合.故答案为:﹣3.②由题意可得,A、B两点距离折痕点的距离为11÷2=5.5,∵折痕点是表示1的点,∴A、B两点表示的数分别是﹣4.5,6.5.18.解:∵m是6的相反数,n比﹣m的相反数大3,∴m=﹣6,n﹣m=3,∴n=9,∴n﹣1=8,n﹣m=3,答:n﹣1与n﹣m的值分别为8,3.北师大新版数学七年级上册《2.2数轴》同步练习一.选择题(共9小题)1.若数a和﹣2两点之间的距离是3,那么a的值为()A.1 B.﹣5 C.﹣1或5 D.﹣5或12.小明同学将2B铅笔笔尖从原点O开始沿数轴进行连续滑动,先将笔尖沿正方向滑动1个单位长度完成第一次操作;再沿负半轴滑动2个单位长度完成第二次操作;又沿正方向滑动3个单位长度完成第三次操作,再沿负方向滑4个单位长度完成第四次操作,…,以此规律继续操作,经过第50次操作后笔尖停留在点P处,则点P对应的数是()A.0 B.﹣10 C.﹣25 D.503.数轴上表示整数的点称为整点,某数轴的单位长度为1cm,若在这个数轴上随意画出一条长2017cm的线段AB,则线段AB盖住的整点有()A.2016个B.2017个C.2016个或2017个D.2017个或2018个4.一个小虫在数轴上先向右爬3个单位,再向左爬7个单位,正好停在0的位置,则小虫的起始位置所表示的数是()A.0 B.2 C.4 D.﹣45.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>06.下列各对数中,互为相反数的是()A.2和B.﹣0.5和C.﹣3和D.和﹣27.若2(a+3)的值与4互为相反数,则a的值为()A.﹣1 B.﹣C.﹣5 D.8.﹣a﹣b+c的相反数是()A.a﹣b+c B.﹣a+b﹣c C.a+b﹣c D.﹣a﹣b﹣c9.下列说法正确的是()A.符号相反的两个数是相反数B.任何一个负数都小于它的相反数C.任何一个负数都大于它的相反数D.0没有相反数二.填空题(共7小题)10.在数轴上,点P表示的数是a,点P′表示的数是,我们称点P′是点P的“相关点”,已知数轴上A1的相关点为A2,点A2的相关点为A3,点A3的相关点为A4…,这样依次得到点A1、A2、A3、A4,…,A n.若点A1在数轴表示的数是,则点A2016在数轴上表示的数是.11.已知数轴上点A对应的数为3,点B对应的数为﹣5,则到A、B两点距离相等的点对应的数为.12.电影《哈利•波特》中,小哈利波特穿越墙进入“站台”的镜头(如示意图的Q站台),构思奇妙,能给观众留下深刻的印象.若A、B站台分别位于﹣,处,AP=2PB,则P站台用类似电影的方法可称为“站台”.13.﹣(﹣2)=,与﹣[﹣(﹣8)]互为相反数.14.如果a、b互为相反数,那么2016a+2016b﹣100=.15.当两数时,它们的和为0.16.若a=﹣5,则﹣a=.三.解答题(共2小题)17.操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.18.已知m是6的相反数,n比﹣m的相反数大3,求n﹣1与n﹣m的值.数轴测试题时间:45分钟总分:100题号一二三四总分得分一、选择题(本大题共8小题,共32.0分)1.在数轴上到原点距离等于3的数是A. 3B.C. 3或D. 不知道2.有理数a,b在数轴的位置如图,则下面关系中正确的个数为.A. 1B. 2C. 3D. 43.若数轴上表示和3的两点分别是点A和点B,则点A和点B之间的距离是A. B. C. 2 D. 44.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且数a对应的点在M与N之间,数b对应的点在P与R之间,若,则原点是A. M或RB. N或PC. M或ND. P或R5.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是A. B.C. D.6.点M为数轴上表示的点,将点M沿数轴向右平移5个单位到点N,则点N表示的数是A. 3B. 5C.D. 3或7.在数轴上,与表示数的点的距离是3的点表示的数是A. 2B.C.D. 2或8.下列说法错误的有最大的负整数是;绝对值是本身的数是正数;有理数分为正有理数和负有理数;数轴上表示的点一定在原点的左边;在数轴上7与9之间的有理数是8.A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共8小题,共32.0分)9.已知A,B,C是数轴上的三个点,且C在B的右侧点A,B表示的数分别是1,3,如图所示若,则点C表示的数是______ .10.在数轴上,与表示的点相距6个单位长度的点表示的数是______ .11.在数轴上,点A表示1,点C与点A间的距离为3,则点C所表示的数是______ .12.在数轴上把表示的点A沿数轴移动6个单位后得到点B,则B所表示的数为______ .13.已知数轴上的A点表示那么在数轴上与A点的距离5个长度单位的点所表示的数是______.14.如图的数轴上有两处不小心被墨水淹没了,所标注的数据是墨水部分边界与数轴相交点的数据;则被淹没的整数点有______ 个,负整数点有______ 个,被淹没的最小的负整数点所表示的数是______ .15.在数轴上与所对应的点相距4个单位长度的点表示的数是______.16.数轴上表示与之间的所有整数之和是______.三、计算题(本大题共4小题,共24.0分)17.点A、B在数轴上的位置如图所示:点A表示的数是______ ,点B表示的数是______ ;在原图中分别标出表示的点C、表示的点D;在上述条件下,B、C两点间的距离是______ ,A、C两点间的距离是______ .18.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东记为正,向西记为负,当天的航行路程记录如下单位:千米:14,,,,,,,.请你帮忙确定B地相对于A地的位置;若冲锋舟每千米耗油升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?19.已知数轴上有A,B,C三个点,分别表示有理数,,10,动点P从A出发,以每秒4个单位长度的速度向终点C移动,设移动时间为t秒.用含t的代数式表示点P与A的距离:______;点P对应的数是______;动点Q从点B出发,以每秒1个单位长度的速度向终点C移动,若P、Q同时出发,求:当点P运动多少秒时,点P和点Q间的距离为8个单位长度?20.把下列各数在数轴上表示出来,并用“”把它们连接起来,3,,,0.四、解答题(本大题共2小题,共12.0分)21.已知数轴上三点A,O,B表示的数分别为6,0,,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.22.在数轴上有A、B两点,所表示的数分别为n,,A点以每秒5个单位长度的速度向右运动,同时B点以每秒3个单位长度的速度也向右运动,设运动时间为t秒.当时,则______ ;当t为何值时,A、B两点重合;在上述运动的过程中,若P为线段AB的中点,数轴上点C所表示的数为是否存在t的值,使得线段,若存在,求t的值;若不存在,请说明理由.答案和解析【答案】1. C2. C3. D4. A5. B6. A7. D8. D9. 710. 或411. 或412. 1或13. 或214. 70;53;15. 2或16.17. ;1;;718. 解:,答:B地在A地的东边20千米;这一天走的总路程为:千米,应耗油升,故还需补充的油量为:升,答:冲锋舟当天救灾过程中至少还需补充9升油.19. 4t;20. 解:,.21. 122.【解析】1. 解:设这个数是x,则,解得或.故选:C.先设出这个数为x,再根据数轴上各点到原点的距离进行解答即可.本题考查的是数轴,熟知数轴上各点到原点的距离的定义是解答此题的关键.2. 解:由图可知:,,,,,,,所以只有、、成立.故选:C.由图可判断a、b的正负性,a、b的绝对值的大小,即可解答.此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.3. 解:.故选:D.根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.本题考查了数轴,主要利用了两点间的距离的表示,需熟记.4. 解:,,;当原点在N或P点时,,又因为,所以,原点不可能在N或P点;当原点在M、R时且时,;综上所述,此原点应是在M或R点.故选A.先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.主要考查了数轴的定义和绝对值的意义解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.5. 解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB 上的点与原点的距离.6. 解:由M为数轴上表示的点,将点M沿数轴向右平移5个单位到点N可列:,故选A.根据在数轴上平移时,左减右加的方法计算即可求解.此题主要考查点在数轴上的移动,知道“左减右加”的方法是解题的关键.7. 解:在数轴上,与表示数的点的距离是3的点表示的数有两个:;.故选:D.此题可借助数轴用数形结合的方法求解在数轴上,与表示数的点的距离是3的点有两个,分别位于与表示数的点的左右两边.本题考查的是数轴,注意此类题应有两种情况,再根据“左减右加”的规律计算.8. 解:最大的负整数是,故正确;绝对值是它本身的数是非负数,故错误;有理数分为正有理数、0、负有理数,故错误;时,在原点的右边,故错误;在数轴上7与9之间的有理数有无数个,故错误;故选:D.根据负整数的意义,可判断;根据绝对值的意义,可判断;根据有理数的分类,可判断;根据负数的意义,可判断;根据有理数的意义,可判断.本题考查了有理数,理解概念是解题关键.9. 解:点A,B表示的数分别是1,3,,,,点C表示的数是7.故答案为7.先利用点A、B表示的数计算出AB,存在计算出BC,然后计算点C到原点的距离即可得到C点表示的数.本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数一般取右方向为正方向,数轴上的点对应任意实数,包括无理数10. 解:在数轴上,与表示的点相距6个单位长度的点表示的数是或4,故答案为:,4.根据数轴上到一点距离相等的点有两个,分别位于该点的左右,可得答案.本题考查了数轴,数轴上到一点距离相等的点有两个,以防漏掉.11. 解:若点在1的左面,则点为;若点在1的右面,则点为4.故答案为:或4.此类题注意两种情况:要求的点可以在已知点的左侧或右侧.本题考查了数轴,注意:要求的点在已知点的左侧时,用减法;要求的点在已知点的右侧时,用加法.12. 解:在数轴上把表示的点A沿数轴移动6个单位后得到点B,则B所表示的数为:,或,故答案为:1或.考虑两种情况:要求的点在已知点左移或右移6个单位长度.此题考查了数轴,要求掌握数轴上的两点间距离公式的运用在数轴上求到已知点的距离为一个定值的点有两个.13. 解:若该点在A点左边,则该点为:;若该点在A点右边,则该点为:.故答案为:2或.该点可以在数轴的左边或右边,即或.本题考查了数轴,此类题一定要考虑两种情况:左减右加.14. 解:由数轴可知,和之间的整数点有:,,,,共32个;和之间的整数点有:,,,16,共38个;故被淹没的整数点有个,负整数点有个,被淹没的最小的负整数点所表示的数是.故答案为:70,53,.根据数轴的构成可知,和之间的整数点有:,,,,共32个;和之间的整数点有:,,,16,共38个;依此即可求解.本题考查了数轴,熟悉数轴的结构是解题的关键.15. 解:当该点在的右边时,由题意可知:该点所表示的数为2,当该点在的左边时,由题意可知:该点所表示的数为,故答案为:2或由于题目没有说明该点的具体位置,故要分情况讨论.本题考查数轴,涉及有理数的加减运算、分类讨论的思想.16. 解:如图所示:,数轴上表示与之间的所有整数为:,,,,0,1,2,故符合题意的所有整数之和是:.故答案为:.根据题意画出数轴,进而得出符合题意的整式,求出答案即可.此题主要考查了数轴,根据题意得出符合题意的所有整数是解题关键.17. 解:点A表示的数是,点B表示的数是1;根据题意得:;根据题意得:,.故答案为:;1;;7 根据数轴上点的位置找出A与B表示的点即可;在数轴上找出表示与的两个点C与D即可;找出B、C之间的距离,以及A,C之间的距离即可.此题考查了数轴,弄清题意是解本题的关键.18. 根据有理数的加法,可得和,再根据向东为正,和的符号,可判定方向;根据行车就耗油,可得耗油量,再根据耗油量与已有的油量,可得答案.本题考查了正数和负数,有理数的加法运算是解题关键,有理数的大小比较得出最远距离.19. 解:;点P对应的数是;故答案为:4t;;分两种情况:当点P在Q的左边:,解得:;当点P在Q的右边:,解得:,综上所述:当点P运动2秒或秒时,点P和点Q间的距离为8个单位长度.根据题意容易得出结果;需要分类讨论:当点P在Q的左边和右边列出方程解答.本题考查了数轴,一元一次方程的应用解答题,对t分类讨论是解题关键.20. 根据有理数大小比较法则先把这些数按照从小到大的顺序排列起来,再在数轴上表示出来即可.本题考查了有理数大小比较的法则以及数轴的知识,解题时牢记法则是关键,比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序在数轴上表示的两个有理数,右边的数总比左边的数大;也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.21. 解:,B表示的数分别为6,,,,点P表示的数是1,故答案为:1;设点P运动x秒时,在点C处追上点R,则:,,,,解得,,点P运动5秒时,追上点R;线段MN的长度不发生变化,理由如下分两种情况:当点P在A、B之间运动时如图:.当点P运动到点B左侧时如图,;综上所述,线段MN的长度不发生变化,其长度为5.由已知条件得到,由,于是得到结论;设点P运动x秒时,在点C处追上点R,于是得到,,根据,列方程即可得到结论;线段MN的长度不发生变化,理由如下分两种情况:当点P在A、B之间运动时当点P运动到点B左侧时,求得线段MN的长度不发生变化.此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.22. 解:当运动时间为t秒时,点A表示的数为,点B表示的数为.当时,点A表示的数为,点B表示的数为,.故答案为:.根据题意得:,解得:.当t为3时,A、B两点重合.为线段AB的中点,点P表示的数为,,,解得:或.存在t的值,使得线段,此时t的值为或.找出运动时间为t秒时,点A、B表示的数.将代入点A、B表示的数中,再根据两点间的距离公式即可得出结论;根据点A、B重合即可得出关于t的一元一次方程,解之即可得出结论;根据点A、B表示的数结合点P为线段AB的中点即可找出点P表示的数,根据即可得出关于t的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用、两点间的距离、数轴以及列代数式,解题的关键是:找出点A、B表示的数;根据两点重合列出关于t的一元一次方程;根据PC列出关于t 的含绝对值符号的一元一次方程.参考答案一.选择题1.D.2.C.3.D.4.C.5.D.6.B.7.C.8.C.9.B.二.填空题10.﹣1.11.﹣112..13.2,8.14.﹣100.15.互为相反数.16.5.三.解答题17.解:(1)∵1与﹣1重合,∴折痕点为原点,∴﹣3表示的点与3表示的点重合.故答案为:3.(2)①∵由表示﹣1的点与表示3的点重合,∴可确定折痕点是表示1的点,∴5表示的点与数﹣3表示的点重合.故答案为:﹣3.②由题意可得,A、B两点距离折痕点的距离为11÷2=5.5,∵折痕点是表示1的点,∴A、B两点表示的数分别是﹣4.5,6.5.18.解:∵m是6的相反数,n比﹣m的相反数大3,∴m=﹣6,n﹣m=3,∴n=9,∴n﹣1=8,n﹣m=3,答:n﹣1与n﹣m的值分别为8,3.第二章有理数及其运算 2.3 绝对值同步练习题1.3的相反数是()A.-3 B.3 C.-13 D.132.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.-1 B.1 C.-2 D.23. 下列说法中不正确的是()A.正数的相反数是负数B.负数的相反数是正数C.0的相反数是0 D.0没有相反数4. 如果a与-3互为相反数,那么a等于()A .3B .-3 C.13 D .-13 5. 如果两个数的绝对值相等,则这两个数( )A .相等B .是0,1,-1C .相等或互为相反数D .都是06. |-12|的值是( )A .-12 B.12 C .-2 D .27. 实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是( )A .aB .bC .cD .d8. 如图,数轴上有A ,B ,C ,D 四个点,其中绝对值为2的数对应的点是( )A .点A 与点CB .点A 与点DC .点B 与点CD .点B 与点D9. 检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是( ) A .-2 B .-3 C .3 D .510. 在0,-2,1,-3这四个数中,最小的是( ) A .0 B .-2 C .1 D .-311. 下列说法中:①一个数的绝对值越大,这个数越大;②一个正数的绝对值越小,这个数越小;③一个数的绝对值越小,这个数越大;④一个负数的绝对值越小,这个数越大.其中正确的有( ) A.1个 B.2个 C.3个 D.4个12. 如图,数轴的单位长度为1,若点A,B表示的数的绝对值相等,则点A表示的数是( )A.-4 B.-2 C.0 D.413.有理数a,b在数轴上的位置如图所示,那么( )A.b>a B.|a|>|b| C.-a<b D.-b>a14. 如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A.点M B.点N C.点P D.点Q15.已知实数a,b在数轴上的位置如图所示,下列结论错误的是( )A.|a|<1<|b| B.1<-a<b C.1<|a|<b D.-b<a<-116. 若|x|=|-3.5|,则x=;绝对值大于3但不大于5的整数有 . 17. 若a ,b ,c 在数轴上的表示如图,|a|=5,|b|=2,|c|=3,则a =____,b =____,c =____. 18. 比较下列各组数的大小: (1)-13和-14; (2)-45和-1.1 19. 计算:(1)|-12|+|-5|-|+12|;(2)|-313|÷|-114|×|-112|.20. 师傅让一名学徒工加工一些标准长度为0.5米的钢管,为了检查加工的质量,师傅随便从加工成品中抽出六根,经测量发现: (表中正数表示超过标准的长度/米,负数表示不足标准的长度/米). 问哪一根钢管加工的质量要好些?你能否用所学的绝对值的知识加以解释?。

人教版数学七年级上册《1.2.1 有理数》 同步练习

人教版数学七年级上册《1.2.1 有理数》 同步练习

1.2.1 有理数一.选择题1.下列结论中正确的是()A.正数、负数统称为有理数B.3.14不是分数C.正整数和负整数统称为整数D.0是最小的自然数2.在﹣、3.14、0、﹣0.333…、﹣、﹣0.、2.010010001(相邻两个1之间依次多一个0)…中,有理数的个数是()A.2B.3C.4D.53.下列关于0的说法错误的是()A.任何情况下,0的实际意义就是什么都没有B.0是偶数不是奇数C.0不是正数也不是负数D.0是整数也是有理数4.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数;⑤不仅是有理数,而且是分数;⑥是无限不循环小数,所以不是有理数;⑦无限小数不都是有理数;⑧正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为()A.7个B.6个C.5个D.4个5.下列说法中正确的是()A.没有最大的正数,但有最大的负数B.没有最小的负数,但有最小的正数C.没有最小的有理数,也没有最大的有理数D.有最小的自然数,也有最小的整数6.在﹣,,0,﹣1,0.4,π,2,﹣3,﹣6这些数中,有理数有m个,自然数有n个,分数有k个,则m﹣n﹣k的值为()A.3B.2C.1D.47.下列各数中3,﹣7,﹣,5.6,0,﹣8,15,,非正数有()A.1个B.2个C.3个D.4个8.如果一对有理数a,b使等式a﹣b=a•b+1成立,那么这对有理数a,b叫做“共生有理数对”,记为(a,b),根据上述定义,下列四对有理数中不是“共生有理数对”的是()A.(3,)B.(2,)C.(5,)D.(﹣2,﹣)9.若是分母为12的最简真分数,则a可取的自然数个数是()A.1B.2C.3D.410.下列说法正确的是()A.一个数前面加上“﹣”号,这个数就是负数B.零是最小的整数C.若a是正数,则﹣a不一定是负数D.零既不是正数也不是负数二.填空题11.已知下列8个数:﹣3.14,24,+17,,,﹣0.01,0,﹣12,其中整数有个,负分数有个,非负数有个.12.三个互不相等的有理数,既可以表示为0,b,的形式,也可以表示为1,a,a+b的形式,那么a=;b=.13.把列数填在相应的大括号里.+15,﹣6,﹣2,﹣0.9,1,0,0.13,﹣4.95.正数集合:{};负分数集合:{};非负数集合:{}.14.定义:A={b,c,a},B={c},A∪B={a,b,c},若M={﹣1},N={0,1,﹣1},。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1有理数 同步练习(一)
基础训练 一.填空
1.如果零上28度记作280C ,那么零下5度记作 .
2.若上升10m 记作10m ,那么-3m 表示 .
3.比海平面低20m 的地方,它的高度记作海拔 . 二.选择题
4.在-3,-12
1,0,-7
3,2002各数中,是正数的有( ) A.0个 B.1个 C.2个 D.3个 5.下列既不是正数又不是负数的是( )
A.-1
B.+3
C.0.12
D.0 6.飞机上升-30米,实际上就是( )
A.上升30米
B.下降30米
C.下降-30米
D.先上升30米,再下降30米 7.下列说法正确的是( )
A.整数就是正整数和负整数
B.分数包括正分数.负分数
C.正有理数和负有理数组成全体有理数
D.一个数不是正数就是负数。

8.下列一定是有理数的是( )
A.π
B.a
C.a+2
D.7
2 三.解答题 9.
……………………………………………………
7 查尔顿30 12 7 11 35 42 -7 43
8 米德尔斯堡30 11 9 10 42 42 0 42 ……………………………………………………(1)表格中数据0表示:-7表示:
(2)布莱克本入球55 ,失球51,净胜球为
米德尔斯堡入球35 ,失球47,净胜球为
10.A地海拔高度是-40m,B地比A地高20m ,C地又比B地高30m,试用正数或负数表示B、C两地的海拔高度。

综合提高
一.填空题:
1.整数和分数统称为 .
2.气温下降-40C,改成使用正数的说法是 .
3.如果自行车车条的长度比标准长度长2毫米记作 +2毫米,那么比标准短2毫米记作 . 二.选择题
4.下列各数-5,3
1
,7
1_,0,-2
12,3
14,-m(m 是有理数)中,一定是负数的有()。

A.1个 B.2个 C.3个 D.4个 5.下列对“0”的说法中,不正确的是( )
A.0既不是正数,也不是负数。

B.0是最小的整数
C.0是有理数
D.0是非负数 6.最小的正整数是( )
A.-1
B.0
C.1
D.2
7.室内温度是180C,室外温度是-30C, 室内温度比室外温度高( ) A.-210C B.150C C.-150C D.210C 8.下列说法正确的是( )
A.“向东5米”与“向西10米”不是相反意义的量
B.如果气球上升25米记作+25米,那么-15米的意义就是下降-15米
C.如果气温下降60C ,那么+80C 的意义就是下降零上80C
D.若将高1米设为标准0,高.1.20米记作+ 1.20,那么-0.05米所表示的高是0.95米 三.解答题
9.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?
10.一物体可以左右移动,设向右为正,问:(1)向左移动12米应记作什么?(2)“记作8米”表明什么?
探究创新
1.一种零件的直径尺寸在图纸上是30±
02
.003
.0-(单位:mm ),它表示这种零件的标准尺寸是30mm ,加工要求尺寸最大不超过( ) A.0.03 B.0.02 C.30.03 D.29.98
2.甲潜水员在海平面-50米作业,乙潜水员在海平面-28米作业,哪个离海平面比较近?近多少?
1.某水泥厂计划每月生产水泥1000t ,一月份实际生产了950t ,二月份实际生产了1000t ,三月份实际生产了1100t ,用正数和负数表示每月超额完成计划的吨数各是多少?
参考答案
1.2 有理数
基础训练
1.- 5度
2.下降3m
3.— 20m
4.B
5.D
6.B
7.B
8.D
9.入球数与失球数相等入球数比失球数少7个 4 -12 10.B地:-20 C 地:10
综合提高
1.有理数
2.气温上升40C
3.-2毫米
4.C
5.B
6.C
7.D
8.D
9.死海的湖面比海平面低392 10.-12米向右移动8米
探究创新
1.C
2.乙潜水员离海平面比较近,近22米。

3.一月份超额完成计划-50t ,二月份超额完成计划0t ,三月份超额完成计划100t 。

相关文档
最新文档