大学物理 习题答案
大学物理习题答案
大学物理习题答案 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-一、 单项选择题:1. 北京正负电子对撞机中电子在周长为L 的储存环中作轨道运动。
已知电子的动量是P ,则偏转磁场的磁感应强度为: ( C ) (A)eLP π; (B)eL P π4; (C) eLPπ2; (D) 0。
2. 在磁感应强度为B的均匀磁场中,取一边长为a 的立方形闭合面,则通过该闭合面的磁通量的大小为: ( D )(A) B a 2; (B) B a 22; (C) B a 26; (D) 0。
3.半径为R 的长直圆柱体载流为I ,电流I 均匀分布在横截面上,则圆柱体内(R r 〈)的一点P 的磁感应强度的大小为 ( B ) (A) r I B πμ20=; (B) 202R Ir B πμ=; (C) 202rIB πμ=; (D) 202RIB πμ=。
4.单色光从空气射入水中,下面哪种说法是正确的 ( A ) (A) 频率不变,光速变小; (B) 波长不变,频率变大; (C) 波长变短,光速不变; (D) 波长不变,频率不变.5.如图,在C 点放置点电荷q 1,在A 点放置点电荷q 2,S 是包围点电荷q 1的封闭曲面,P 点是S 曲面上的任意一点.现在把q 2从A 点移到B 点,则 (D )(A) 通过S 面的电通量改变,但P 点的电场强度不变;(B) 通过S 面的电通量和P 点的电场强度都改变; (C) 通过S 面的电通量和P 点的电场强度都不变; (D) 通过S 面的电通量不变,但P 点的电场强度改变。
6.如图所示,两平面玻璃板OA 和OB 构成一空气劈尖,一平面单色光垂直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将 ( C )(A) 干涉条纹间距增大,并向O 方向移动; (B) 干涉条纹间距减小,并向B 方向移动; (C) 干涉条纹间距减小,并向O 方向移动; (D) 干涉条纹间距增大,并向O 方向移动.7.在均匀磁场中有一电子枪,它可发射出速率分别为v 和2v 的两个电子,这两个电子的速度方向相同,且均与磁感应强度B 垂直,则这两个电子绕行一周所需的时间之比为 ( A )(A) 1:1; (B) 1:2; (C) 2:1; (D) 4:1.8.如图所示,均匀磁场的磁感强度为B ,方向沿y 轴正向,欲要使电量为Q 的正离子沿x 轴正向作匀速直线运动,则必须加一个均匀电场E ,其大小和方向为 ( D )(A) E =νB ,E 沿z 轴正向; (B) E =vB ,E 沿y 轴正向;(C) E =B ν,E 沿z 轴正向; (D) E =B ν,E 沿z 轴负向。
大学物理课后习题答案
第九章 静电场 (Electrostatic Field)二、计算题9.7 电荷为+q 和-2q 的两个点电荷分别置于x =1 m 和x =-1 m 处.一试验电荷置于x 轴上何处,它受到的合力等于零?解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得()()()()022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x εεεε⋅-⋅-+=⇒+=π-π+π-π+即:2610(3x x x m -+=⇒=±。
因23-=x 点处于q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得()223+=x m9.8 一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如题图9.4所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ 处取微小电荷d q = λd l = 2Q d θ / π它在O 处产生场强θεεd 24d d 20220R QR q E π=π=按θ 角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202R QE E x π==θθεθd cos 2cos d d 202RQE E y π-=-= 对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =02022/2/0202d cos d cos 2R QR Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以j R Q j E i E E y x202επ-=+=9.9如图9.5所示,一电荷线密度为λ的无限长带电直导线垂直纸面通过A 点;附近有一电量为Q 的均匀带电球体,其球心位于O 点。
AOP ∆是边长为a 的等边三角形。
已知P 处场强方向垂直于OP ,求:λ和Q 间的关系。
《大学物理》各章练习题及答案解析
《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。
(B) 匀速率圆周运动。
(C) 行星的椭圆轨道运动。
(D) 抛体运动。
(E) 圆锥摆运动。
2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。
3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。
大学物理习题大题答案
1.1质点延Ox轴做直线运动加速度a=-kx,k为正的常量,质点在X0处的速度是V0,求质点速度的大小V与坐标X的函数能量守恒:(m*V0^2 / 2)=(m*V^2 / 2)+(m*K*X^2 )F= ma=-mkx 。
上式解得:V=±根号(V0^2-2K*X^2)1.2飞轮半径为0.4m,自静止启动,其角加速度为0.2转每秒,求t=2s时边缘上,各点的速度、法向加速度、切向加速度、合加速度ω=ω0+a'tω0=0,t=2s,a'=0.2 × 2pi弧度/s^2=1.257弧度/s^2ω=a't=1.257弧度/s^2×2s=2.514弧度/s切向速度:v=ωr=0.4mx1.257弧度/s=1m/s法向加速度:a。
=ω^2r=(2.514弧度/s)^2 × 0.4m=2.528m/s^2切向加速度:a''=dv/dt=rdω/dt=ra'=0.4m × 1.257弧度/s^2=0.5m/s^2合加速度:a=√(a''^2+a。
^2)=2.58m/s^2合加速度与法向夹角:Q=arctan(a''/a。
)=11.2°2.2质量为m的子弹以速度v0水平射入沙土中,设子弹所受的阻力与速度成正比,系数为k,1.求子弹射入沙土后速度随时间变化的函数关系式,a = -kv/m = dv/dt dv/v = - k/m dt 两边同时定积分,得到lnv-lnv0 = kt/m v=v0*exp(-k/m * t)2.求子弹射入沙土的最大深度dv/dt=a=f/m=-kv/m v=ds/dt=ds/dv * dv/dt = -ds/dv * kv/m 整理得:kds=-mdv 同时对等号两边积分,得:ks=mv0 =》 s=mv0/k.3.1一颗子弹在枪筒离前进时所受的合力刚好为F=400-4*10的五次方/3*t,子弹从枪口射出时的速率为300m/s。
大学物理教材习题答案
⼤学物理教材习题答案第⼀章质点运动习题解答⼀、分析题1.⼀辆车沿直线⾏驶,习题图1-1给出了汽车车程随时间的变化,请问在图中标出的哪个阶段汽车具有的加速度最⼤。
答: E 。
位移-速度曲线斜率为速率,E 阶段斜率最⼤,速度最⼤。
2.有⼒P 与Q 同时作⽤于⼀个物体,由于摩擦⼒F 的存在⽽使物体处于平衡状态,请分析习题图1-2中哪个可以正确表⽰这三个⼒之间的关系。
答: C 。
三个⼒合⼒为零时,物体才可能处于平衡状态,只有(C )满⾜条件。
3.习题图1-3(a )为⼀个物体运动的速度与时间的关系,请问习题图1-3(b )中哪个图可以正确反映物体的位移与时间的关系。
答:C 。
由v-t 图可知,速度先增加,然后保持不变,再减少,但速度始终为正,位移⼀直在增加,且三段变化中位移增加快慢不同,根据v-t 图推知s-t 图为C 。
三、综合题:1.质量为的kg 50.0的物体在⽔平桌⾯上做直线运动,其速率随时间的变化如习题图1-4所⽰。
问:(1)设s 0=t 时,物体在cm 0.2=x 处,那么s 9=t 时物体在x ⽅向的位移是多少?(2)在某⼀时刻,物体刚好运动到桌⼦边缘,试分析物体之后的运动情况。
解:(1)由v-t 可知,0~9秒内物体作匀减速直线运动,且加速度为:220.8cm/s 0.2cm/s 4a == 由图可得:0 2.0cm s =,00.8cm/s v =, 1.0cm/s t v =-,则由匀减速直线运动的位移与速度关系可得:22002() t a s s v v -=- 2200()/2t s v v a s =-+ 22[0.8( 1.0)]/20.2 2.0cm =--?+1.1c m =(2)当物体运动到桌⼦边缘后,物体将以⼀定的初速度作平抛运动。
2.设计师正在设计⼀种新型的过⼭车,习题图1- 5为过⼭车的模型,车的质量为0.50kg ,它将沿着图⽰轨迹运动,忽略过⼭车与轨道之间的摩擦⼒。
大学物理习题答案
B 班级 学号 姓名第1章 质点运动学1-2 已知质点的运动方程为r i 3j 6k e e tt-=++。
(1)求:自t =0至t =1质点的位移。
(2)求质点的轨迹方程。
解:(1) ()k j i r 630++= ()k j i r 6e 3e 1-1++= 质点的位移为()j i r ⎪⎭⎫⎝⎛-+-=3e 31e ∆(2) 由运动方程有t x e =,t y -=e 3, 6=z 消t 得 轨迹方程为 1=xy 且6=z1-3运动质点在某瞬时位于矢径()y x,r 的端点处,其速度的大小为( D ) (A)dt dr (B)dt d r(C)dt d r (D)22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx1-5某质点的运动方程为k j i r 251510t t ++-=,求:t =0,1时质点的速度和加速度。
^解:由速度和加速度的定义得k j r v t dt d 1015+==, k va 10==dtd 所以 t =0,1时质点的速度和加速度为 015==t j v 11015=+=t kj v1010,ka ==t1-8 一质点在平面上运动,已知质点的运动方程为j i r 2235t t +=,则该质点所作运动为[ B ](A) 匀速直线运动 (B) 匀变速直线运动 (C) 抛体运动 (D) 一般的曲线运动*1-6一质点沿Ox 轴运动,坐标与时间之间的关系为t t x 233-=(SI)。
则质点在4s 末的瞬时速度为 142m·s -1 ,瞬时加速度为 72m·s -2 ;1s 末到4s 末的位移为 183m ,平均速度为 61m·s -1 ,平均加速度为 45m·s -2。
解题提示:瞬时速度计算dt dxv =,瞬时加速度计算22dtx d a =;位移为()()14x x x -=∆,平均速度为()()1414--=x x v ,平均加速度为 ()()1414--=v v a】~1-11 已知质点沿Ox 轴作直线运动,其瞬时加速度的变化规律为t a x 3=2s m -⋅。
大学物理习题答案
Pd LθxydE d θ习题1212-3.如习题12-3图所示,真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上到杆的一端距离为d 的点P 的电场强度。
[解] 建立如图所示坐标系ox ,在带电直导线上距O 点为x 处取电荷元x Lqq d d =,它在P 点产生的电电场强度度为()()x x d L Lq x d L qE d 41d 41d 2020-+=-+=πεπε则整个带电直导线在P 点产生的电电场强度度为()()d L d qx x d L Lq E L+=-+=⎰002041d 41πεπε故()i E d L d q+=04πε12-4.用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心处点O 的场强。
[解] 将半圆环分成无穷多小段,取一小段dl ,带电量l Rq d d π=dq 在O 点的电场强度20204d 4d d R lR Q R q E πεππε== 从对称性分析,y 方向的电场强度相互抵消,只存在x 方向的电场强度l R Q E E d sin 4sin d d 302x ⋅=⋅=θεπθ θd d R l =θεπθd 4sin d 202x RQ E =2020202x x 2d 4sin d R QR Q E E E επθεπθπ====⎰⎰ 方向沿x 轴正方向 12-5. 如习题12-5图所示,一半径为R 的无限长半圆柱面形薄筒,均匀带电,沿轴向单位长度上的带电量为λ,试求圆柱面轴线上一点的电场强度E 。
[解] θd 对应的无限长直线单位长带的电量为θπλd d =q 它在轴线O 产生的电场强度的大小为d θRRq E 0202d 2d d επθλπε==因对称性y d E 成对抵消RE E 02x 2d cos cos d d επθθλθ=⋅= RR E E 02202x 2d cos 2d επλεπθθλπ===⎰⎰ 12-6.一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ,求球心点O 处的场强。
大学物理习题答案
1. 图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是 R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第 5 个明环的半径是0.30 cm.。
(1) 求入射光的波长;(2) 设图中 OA = 1.00 cm ,求在半径为 OA 的范围内可观察到的明 (1) 明环半径 ()212λR k r -=()52105122-⨯=-=Rk r λ cm(2) ()λR r k 2212=-对于r = 1.00 cm ,5.02+=λR r k = 50.5故在 OA 范围内可观察到的明环数目为50个。
2. 在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问 (1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合? 解答及评分标准:(1) 由单缝衍射暗纹公式得111sin λθ=a 222s i n λθ=a (2分) 由题意可知 21θθ= , 21sin sin θθ=代入上式可得 212λλ= (3分)(2) 211112sin λλθk k a == (k 1 = 1, 2, ……) a k /2sin 211λθ=222sin λθk a = (k 2 = 1, 2, ……) (2分) a k /sin 222λθ=若k 2 = 2k 1,则θ1 = θ2,即λ1的任一k 1级极小都有λ2的2k 1级极小与之重合.(3分)1. 波长为λ的单色光垂直照射到折射率为n 2的劈尖薄膜上, n 1<n 2<n 3,如图23.4所示,观察反射光形成的条纹.(1) 从劈尖顶部O 开始向右数第五条暗纹中心所对应的薄膜厚度e 5是多少?相邻的二明纹所对应的薄膜厚度之差是多少? (1)因n 1<n 2<n 3,所以光程差δ=2n 2e暗纹中心膜厚应满足δk =2n 2e k =(2k +1)λ/2 e k =(2k +1)λ/(4n 2)对于第五条暗纹,因从尖端数起第一条暗纹On 1 n 1 n 1λ图23.4δ=λ/2,即 k =0,所以第五条暗纹的k =4,故e 4=9λ/(4n 2)(2)相邻明纹对应膜厚差∆e=e k +1-e k =λ/(2n 2)2. 在折射率n =1.50的玻璃上,镀上n '=1.35的透明介质薄膜,入射光垂直于介质膜表面照射,观察反射光的干涉,发现对λ1=6000Å的光干涉相消,对λ2=7000Å的光波干涉相长,且在6000Å~7000Å之间没有别的波长的光波最大限度相消或相长的情况,求所镀介质膜的厚度. 2.因n 1<n 2<n 3所以光程差 δ=2n 2e λ1相消干涉,有 δ=2n 2e =(2k 1+1)λ1/2 λ2相长干涉,有 δ=2n 2e =2k 2λ2/2因λ2>λ1,且中间无其他相消干涉与相长干涉,有k 1=k 2=k ,故(2k +1)λ1/2=2k λ2/2 k=λ1/[2(λ2-λ1)]=3得 e=k λ2/(2n 2)=7.78⨯10-4mm3.(3685) 在双缝干涉实验中,单色光源S0到两缝 S1和S2的距离别为 和 ,并且 , 为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D ,如图。
大学物理习题集答案
一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]x o A ϖ x ω(A) A/2 ω (B) (C)(D)o ooxxxA ϖ x ω ωA ϖA ϖxA/2 -A/2 -A/2 (3)题4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的 (为固有圆频率)值之比为:[ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。
6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ]2153(A),or ;A;(B),;332663223(C),or ;(D),;4433ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ]xtOx 1x 2(8)题(A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm ,/6rad /s =ωπ, /3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。
大学物理学第一章习题答案
习题11、1选择题(1) 一运动质点在某瞬时位于矢径的端点处,其速度大小为(A)(B)(C)(D)[答案:D](2) 一质点作直线运动,某时刻的瞬时速度,瞬时加速度,则一秒钟后质点的速度(A)等于零(B)等于-2m/s(C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R的圆周作匀速率运动,每t秒转一圈,在2t时间间隔中,其平均速度大小与平均速率大小分别为(A)(B)(C) (D)[答案:B]1、2填空题(1) 一质点,以的匀速率作半径为5m的圆周运动,则该质点在5s内,位移的大小就是;经过的路程就是。
[答案: 10m;5πm](2) 一质点沿x方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v0为5m·s-1,则当t为3s时,质点的速度v=。
[答案: 23m·s-1 ](3) 轮船在水上以相对于水的速度航行,水流速度为,一人相对于甲板以速度行走。
如人相对于岸静止,则、与的关系就是。
[答案:]1、3一个物体能否被瞧作质点,您认为主要由以下三个因素中哪个因素决定:(1) 物体的大小与形状;(2) 物体的内部结构;(3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1、4下面几个质点运动学方程,哪个就是匀变速直线运动?(1)x=4t-3;(2)x=-4t3+3t2+6;(3)x=-2t2+8t+4;(4)x=2/t2-4/t。
给出这个匀变速直线运动在t=3s时的速度与加速度,并说明该时刻运动就是加速的还就是减速的。
(x单位为m,t单位为s)解:匀变速直线运动即加速度为不等于零的常数时的运动。
加速度又就是位移对时间的两阶导数。
于就是可得(3)为匀变速直线运动。
其速度与加速度表达式分别为t=3s时的速度与加速度分别为v=20m/s,a=4m/s2。
因加速度为正所以就是加速的。
大学物理课后习题答案第一章
第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 的路程; (3)1s 末的瞬时加速度和第2s 的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述数据求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:= 4.49(s). 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1),v a 22(1)(1)n sa n t -=+22(1)(1)n sa n t -=+22(51)30(51)10a -=+222h t g=70m22.5º 图1.3所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程, 解得:.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为; (2)试证在时间t ,船行驶的距离为. [证明](1)分离变量得, 故 ,可得:. (2)公式可化为,由于v = d x/d t ,所以: 积分.因此 . 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .201sin 02gt v t y θ-+=0(sin t v g θ=011kt v v =+01ln(1)x v kt k=+2d d vk t v =-020d d v t v v k t v =-⎰⎰011kt v v =+001v v v kt=+00001d d d(1)1(1)v x t v kt v kt k v kt ==+++00001d d(1)(1)x tx v kt k v kt =++⎰⎰01ln(1)x v kt k=+d d ()m vt f v =d d vk t v=-而d v = v 0e -kt d t ,积分得:. 当t = 0时,x = 0,所以C` = v 0/k ,因此.(2)如果n ≠1,则得,积分得. 当t = 0时,v = v 0,所以,因此. 如果n = 2,就是本题的结果.如果n ≠2,可得,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即.由此得,即 ,解得 .所以 =3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s).将t 代入x 的方程求得x = 9000m .0e `ktv x C k-=+-0(1-e )kt vx k -=d d n vk t v=-11n v kt C n -=-+-101n v C n-=-11011(1)n n n kt v v --=+-1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-3n t a a =23r r ωβ=22(12)243t t =33/6t =3242(13/3)t θ=+=+32012x x x v t a t =+2012y y y v t a t =-+201cos cos 2x v t a t θα=⋅+⋅201sin sin 2y v t a t θα=-⋅+⋅02sin 103sin v t a θα== y xO α v 0θ a a xa yv 0x v 0y[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为= 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= 0.705(s).算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为;(3)如果气流的速度向北,证明来回飞行的总时间为.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为 . (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB 方向的速度大小为,所以飞行时间为212t h a t =∆2n v a R=21012h v t at =+22012h v t gt =-21()2h a g t =+2/()t h a g =+02l t v =1221/t t u v =-02221/t t u v=-1222l l vl t v u v u v u =+=+--022222/1/1/t l v u v u v==--22V v u =-RA图1.7AB AB vv + uv - uABvuuvv. 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕. 方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.22222222/1/l l l v t V v u u v ===--0221/t u v=-2v 3v 1v 12(sin cos )lv v hθθ=+12sin()sin(90)v v θαα=+︒-12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+12(sin cos )lv v hθθ=+v 1hl v 2θ图1.10v 1h lv 2θ v 3 α α v ⊥。
大学物理习题册答案
第15单元 机械振动[ B ]1. 已知一质点沿y 轴作简谐振动,其振动方程为)4/3cos(πω+=t A y 。
与其对应的振动曲线是:[ B ] 2. 一质点在x 轴上作简谐振动,振幅A = 4cm ,周期T = 2s, 其平衡位置取作坐标原点。
若t = 0时刻质点第一次通过x = -2cm 处,且向x 轴负方向运动,则质点第二次通过x = -2cm 处的时刻为: (A) 1s (B)s 32 (C) s 34(D) 2s [ C ] 3. 如图所示,一质量为m 的滑块,两边分别与劲度系数为k1和k2的轻弹簧联接,两弹簧的另外两端分别固定在墙上。
滑块m 可在光滑的水平面上滑动,O 点为系统平衡位置。
现将滑块m 向左移动x0,自静止释放,并从释放时开始计时。
取坐标如图所示,则其振动方程为:⎥⎦⎤⎢⎣⎡+=t m k k x x 210cos (A)⎥⎦⎤⎢⎣⎡++=πt k k m k k x x )(cos (B)21210 ⎥⎦⎤⎢⎣⎡++=πt m k k x x 210cos (C)⎥⎦⎤⎢⎣⎡++=πt m k k x x 210cos (D)⎥⎦⎤⎢⎣⎡+=t mk k x x 210cos (E)[ E ] 4. 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的: (A)167 (B) 169 (C) 1611 (D) 1613(E) 1615 [ B ] 5. 图中所画的是两个简谐振动的振动曲线,若这两个简谐振动可叠加,则合成的余弦振动的初相为:(A) π21(B)π(C) π23(D) 0二 填空题1. 一水平弹簧简谐振子的振动曲线如图所示,振子处在位移零、速度为A ω-、加速度为零和弹性力为零的状态,对应于曲线上的 b,f 点。
振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力-kA 的状态,对应于曲线的 a,e点。
2两个同方向同频率的简谐振动,其合振动的振幅为20.cm,与第一个简谐振动的相位差为1ϕϕ-=π/6,若第一个简谐振动的振幅为103cm ,则第二个简谐振动的振幅为____10___cm ,第一、二个简谐振动的相位--(C)/A -A-差21ϕϕ-为2π-。
大学物理习题与答案解析
a d dvtt28j(m2/)s
大学物理
3、质点作直线运动,加速度 a2Asint,已知
t 0时质点初始状态为x 0
动学方程为xAsi n .t0
、v0 A、该质点运
解:
vv0
t
a
0
dt A
t2As
0
intdt
AAcostA
Acost
t
t
即 a2ct, t a 2c
vx vy
vvx 2vy 2a24c2t22a
大学物理
5、一飞机在跑道上跑过500米后,即升空,如果它在跑
前是静止的,以恒定加速度运动,升空前跑了30秒,则
当它升空时的速度为 v 100 m/s
.
3
解: x 1 at 2 2
a2t2x2 352 000190m2/s
答:B
v(m / s)
2
0到7秒的位移为:
0
r 2 22 2 2 2 2 3 1 i 3 .5 im1
坐标为:x23 .55 .5 m
t(s) 24 5 7
大学物理
3、一质点沿x轴运动的规律是 xt24t5,其中x以m 计,t以s计,则前3s内它的位移和路程分别是
(A)位移和路程都是3m. (B) 位移和路程都是-3m .
dvy dy
则
a vy
dvy dy
kvy2
分离变量得 :
dvy kdy vy
两边积分得 :
v dvy
y
k dy
v v0 y
0
v v0eky
大学物理
3、一质点沿半径为1 m 的圆周运动,运动方程
为 23t,3 式中以弧度计,t以秒计,求:(1) t=2 s
大学物理练习题册答案
大学物理练习题册答案一、选择题1. 光在真空中的传播速度是:A. 299792458 m/sB. 299792458 km/sC. 299792458 cm/sD. 299792458 mm/s2. 根据牛顿第二定律,如果一个物体的质量为2 kg,受到的力为6 N,那么它的加速度是:A. 1 m/s²B. 2 m/s²C. 3 m/s²D. 6 m/s²3. 以下哪个不是电磁波的类型?A. 无线电波B. 微波C. 可见光D. 声波4. 一个物体从静止开始做匀加速直线运动,经过4秒后的速度为8m/s,那么它的加速度是:A. 1 m/s²B. 2 m/s²C. 4 m/s²D. 8 m/s²5. 根据能量守恒定律,如果一个物体的势能减少,那么它的:A. 动能增加B. 动能减少C. 总能量不变D. 温度增加二、填空题6. 根据热力学第一定律,能量______,它表明能量不能被创造或销毁,只能从一种形式转换为另一种形式。
7. 波长为600 nm的光的频率是______ Hz(光速为299792458 m/s)。
8. 一个物体在水平面上做匀速直线运动,其动摩擦系数为0.25,如果物体受到的摩擦力是10 N,那么物体的重力是______ N。
9. 根据库仑定律,两个点电荷之间的力与它们的电荷量的乘积成正比,与它们之间的距离的平方成______。
10. 理想气体状态方程是______,其中P代表压强,V代表体积,n代表摩尔数,R代表理想气体常数,T代表绝对温度。
三、简答题11. 简述牛顿第三定律的内容及其在日常生活中的应用。
12. 解释什么是相对论,并简述其对时间和空间概念的影响。
13. 描述麦克斯韦方程组,并解释它们在电磁学中的重要性。
14. 什么是量子力学?它与经典物理学有何不同?15. 描述什么是热力学第二定律,并解释它对能量转换的限制。
大学物理课后习题答案
大学物理课后习题答案(共15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1—1 一质点在xOy 平面上运动,运动方程为2135,342x t y t t t s x y m =+=+-式中以计,,以计。
(1)以时间t 为变量,写出质点位置矢量的表示式; (2)计算第1秒内质点的位移;(3)计算0t = s 时刻到4t = s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算4t = s 时质点的速度; (5)计算0t = s 到4t = s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算4t = s 是质点的加速度。
(位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移 j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i j i +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度 )s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i tr V ∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a(6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1—2 质点沿直线运动,速度32132()v t t m s -=++,如果当时t=2 s 时,x=4 m,求:t=3 s 时质点的位置、速度和加速度。
解:23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t x tt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m xP .31 1—9 一个半径R= m 的圆盘,可依绕一个水平轴自由转动,一根轻绳子饶在盘子的边缘,其自由端拴一物体。
大学物理课后习题答案(高教版 共三册)
由 得则
7、在xy平面内有一运动质点,其运动学方程为:(SI) 则t时刻其速度为多少?其切向加速度的大小为多少?该质点运动的轨 迹是什么? 解:(1)
(2)速率: (3)两式平方后相加,, 轨迹为一半径为10m的圆。
8、一条河在某一段直线岸边有A、B两个码头,相距 1km ,甲、乙两人 需要从码头A到码头B,再立即由B返回。甲划船前去,船相对河水的速 度 4km/h,而乙沿岸步行,步行速度也为 4km/h ,如河水流速为 2km/h ,方向从A到B,试推算甲比乙晚多少分钟回到码头A? 解:由A到B船对地的速度大小:
2、质点在一直线上运动,其坐标与时间有如下关系: (SI) (A 为常 数),则在任意时刻 t 质点的加速度为多少?什么时刻质点的速度为零? 解:(1)
(SI) (2)令
有 得 (SBiblioteka ) (K=0,1,2……)3、一质点沿X 方向运动,其加速度随时间变化关系为:a=3+2t (SI), 如果初始时质点的速度 为 5m/s ,则当 t 为 3s 时,质点的速度为多少? 解:由
由B到A船对地的速度大小: 甲由A到B再回到A所需时间: 乙由A到B再回到A所需时间:
所以甲比乙晚十分钟回到码头A 。
9、轮船在水上以相对于水的速度航行,水流速度为,人相对于甲板以 速度行走。如人相对于岸静止,则、和的关系是怎样的? 解:
即 的关系为:
第一章 运动学
1、质点的运动方程为 (SI),则在t 由 0 至 4s 的时间间隔内,质点的位 移大小为多少?在 t 由0 到 4s 的时间间隔内质点走过的路程为多少? 解:本题质点在x方向作直线运动
(1) t1=0时,=0 t2=4(s) 时, =(m) ∴位移大小(m) (2 ) 令 得t=3 (s ) 即t=3 (s )时,质点拐弯沿x轴负向运动,则0~4(s)内质点走过 的路程:
大学物理习题答案
大学物理习题答案
11. 一质点作简谐振动,其运动速度 与时间的曲线如图所示。若质点的振 动规律用余弦函数描述,其初相应为
(A) / 6 ; (B) 5 / 6 ;
(C) 5 / 6 ; (D) / 6 ; (E) 2 /3 。
y Acos(t 0 )
3. 如图,长载流导线ab和cd相互垂直, 它们相距l,ab固定不动,cd能绕中点 O 转动,并能靠近或离开 ab,当电流 方向如图所示时,导线 cd 将
(A) 顺时针转动同时离开ab; (B) 顺时针转动同时靠近ab ; (C) 逆时针转动同时离开ab ; (D) 逆时针转动同时靠近ab .
b
d
; ;
ym
0.5
u
(D) y0.50cos14t2,(SI) 。 1 O 1 2 3
yo
0.5 cos( 8
u
t
16 )
2 u 大学物理习题答案
凑出结果
xm
解: 设P的振动方程为:
yo Acos(t 0 )
已知:A 0.5 2 8
uu
yo
0.5 cos( 8
u
t
0 )
由于 t 2s, yo 0,0 0
0
0.5 cos( 8
u
2
0 )
ym
0.5
u
1 O 1 2 3 x m
8
u
0.5 sin( 8
u
2
0 )
0
16
u
0
2
0
2
大学16u物理习题答y案o
0.5 cos( 8
u
t
2
16
u
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯专业班级_____ 姓名________ 学号________第九章 电磁感应一.单项选择题:如图所示,通有电流I 的无限长直载流导线旁,共面放一矩形导线框。
当导线框平行于无限长直载流导线以速度v 向右匀速运动时,关于线框内出现的现象,下列表述正确的是 :[ C ](A)线框内每边产生电动势,互相抵消,线框内感应电流为零; (B)线框内感应电流为零,整个线框为一等势体;(C)ab 和dc 两边产生电动势,而使V a >V b ,但导线框内感应电流为零; (D)线框内电动势为ab 边产生电动势值的两倍。
2、如右图,导体棒AB 在均匀磁场B 中绕通过C 点的垂直于棒长且沿磁场方向的轴O O '转动(角速度ω与B同方向),BC 的长度为棒长的3/1,则:[ A ](A)A 点比B 点电势高。
(B)A 点与B 点电势相等。
(C)A 点比B 点电势低。
(D)有稳恒电流从A 点流向B 点。
3、一根长为L 的铜棒,在均匀磁场B 中以匀角速度ω旋转着,B的方向垂直铜棒转动的平面,如图。
设0=t 时,铜棒与Ob 成θ角,则在任一时刻t 这根铜棒两端之间的感应电动势是:[ E ](A))cos(2θωω+t B L (B)t B L ωωcos 212(C))cos(22θωω+t B L (D)B L 2ω(E)B L 221ω4、自感为H 25.0的线圈中,当电流在s )16/1(内由A 2均匀减小到零时,线圈中自感电动势的大小为:[ C ](A)V 3108.7-⨯。
(B)V 0.2。
(C)V 0.8。
(D)V 2101.3-⨯。
⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯5、对于单匝线圈取自感系数的定义式为I L m /Φ=。
当线圈的几何形状、大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数L :[ C ] (A)变大,与电流成反比关系。
(B)变小。
(C)不变。
(D)变大,但与电流不成反比关系。
6、两个相距不太远的平面圆线圈,怎样放置可使其互感系数近似为零?设其中一线圈的轴线恰通过另一线圈的圆心。
[ C ](A)两线圈的轴线互相平行。
(B)两线圈的轴线成045角。
(C)两线圈的轴线互相垂直。
(D)两线圈的轴线成030角。
7、用线圈的自感系数L 来表示载流线圈磁场能量的公式221LIW m =[ D ] (A)只适用于无限长密绕螺线管。
(B)只适用于单匝线圈。
(C)只适用于匝数很多,且密绕的螺线管。
(D)适用于自感系数L 一定的任意线圈。
8、用导线围成如图所示的回路(以O 点为心的圆,加一直径),放在轴线通过O 点垂直于图面的圆柱形均匀磁场中,如磁场方向垂直图面向里,其大小随时间减小,则磁感电流的流向为:[ B ](A) (B) (C) (D)9、一铜条置于均匀磁场中,铜条中电子流的方向如图所示。
试问下述哪一种情况将会发生?[ A ](A)在铜条上a 、b 两点产生一小电势差,且b a U U >; (B)在铜条上a 、b 两点产生一小电势差,且b a U U <; (C)在铜条上产生涡流;(D)电子受到洛仑兹力而减速。
ab cdababcdvvⅠⅡ⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯B10、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流:[ B ](A)以情况I 中为最大。
(B)以情况∏中为最大。
(C)以情况III 中为最大。
(D)在情况I 和 ∏中相同。
二、填空题:1、一自感线圈中,电流强度在s 002.0内均匀地由A 10增加到A 12,此过程中线圈内自感电动势为V 400,则线圈的自感系数为___________=L 。
2、磁场恒定,导体切割磁感线产生的电动势叫 电动势,对应的非静电力是 ; 若线圈不动,磁场变化,则在线圈中产生的电动势叫 电动势,对应的非静电力是___________=L 。
3、 如下左图,aoc 为一折成∠ 形的金属导线L oc ao ==,位于XY 平面中;磁场感应强度为B 的匀强磁场垂直于XY 平面,当aoc 以速度v沿X 轴正向运动时,导线上a 、c 两点间电势差=ac U ;当aoc 以速度v 沿Y 轴正向运动时,a 、c 两点中是 点电势高。
4、一导线被弯成如上右图所示形状,acb 为半径为R 的四分之三圆弧,直线段Oa 长为R 。
若此导线放在匀强磁场B 中,B的方向垂直图面向内,导线以角速度ω在图面内绕O 点匀速转动,则此导线中的动生电动势为=i ε ,电势最高的点是 。
5、面积为S 的平面线圈置于磁感应强度为B的均匀磁场中。
若线圈以匀角速度ω绕位于线圈平面内且垂直于B 方向的固定轴旋转,在时刻0=t 时B与线圈平面垂直。
则任意时刻t 时通过线圈的磁通量 ,线圈中的感应电动势 。
若均匀磁场B是由通有电流I 的线圈所产生,且KI B =(K 为常量),则旋转线圈相对于产生磁场的线圈最大互感系数为 。
6、 无限长密绕直螺线管通以电流I 、内部充满均匀、各向同性的磁介质,磁导率为μ。
设管内部的磁感应强度大小为B ,则内部的磁场强度为 , 磁能密度为 。
设螺线管体积为V,则存储在螺线管内部的总磁能为 。
7、反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为⎰∑==⋅Sn i i q S d D 1① ⎰Φ-=⋅Lm dt d l d E /②0⎰=⋅SS d B ③ ⎰∑=Φ+=⋅Lni e i dt d I l d B 1/ ④试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的。
将你确定的方程式用代号填在相应结论后的空白处。
(1) 变化的磁场一定伴随有电场:______________。
(2) 磁感应线是无头无尾的:______________。
(3)电荷总伴随有电场:______________。
8、 平行板电容器的电容C 为F μ0.20,两板上的电压变化率为151050.1/-⋅⨯=s V dt dU ,则该平行板电容器中的位移电流为______________。
答案:1. 0.4 H 2. 动生、洛伦兹力;感生、涡旋电场力 3. θsin BvL , a4. 252R B ω, O 5. )cos(t BS ω ,)sin(t BS ωω,KS6. μB,μ22B ,V B μ227. (2);(3);(1)8. 3A三、计算题:1、如图所示,长直导线和矩形线圈共面,AB 边与导线平行,cm a 1=,cm b 8=,cm l 30=。
x(1)若直导线中的电流i 在s 1内均匀地从A 10降为零,则线圈ABCD 中的感应电动势的大小和方向如何?=M ?(693.02ln =) 解:(1)由环路定理得矩形线圈内磁场02IB xμπ=矩形线圈磁通00.d In 22b a I I b B d S l x x aμμππΦ===⎰⎰感应电动势61.247410d V dtε-Φ=-=⨯,沿顺时针方向。
(2)互感系数70 1.2474102l bM In I aμπ-Φ===⨯。
2、如图所示,矩形导体框架置于通有电流I 的长直导线旁,且两者共面,ad 边与长直导线平行,dc 段可沿框架移平动。
设导体框架的总电阻R 始终保持不变,现dc 以速度v沿框架向下作匀速运动,试求(1)当dc 段运动到图示位置(与ab 相距x ),穿过abcd 回路的磁通量;(2)回路中的感应电流i I ;解:(1)矩形框内的磁场02IB yμπ=矩形框内的磁通00000.22r l r I Ix r l B d S xdy In y r μμππ++Φ===⎰⎰⎰(2)回路的感应电动势0002Iv r l d In dt r μεπ+Φ=-=-感应电流0002i Iv r lI InRR r μεπ+==-,沿逆时针方向。
3、如图所示,长直导线和矩形线圈共面,AB 边长为l 且与导线平行,AB、CD 边距导线分别为a、b。
(1)若直导线中的电流为i ,试求通过矩形线框的磁通量; (2)若i 对时间的变化率为0dtdi<,求线圈ABCD 中的感应电动势的大小和方向?解:(1)矩形框内的磁场02IB x μπ=矩形框内的磁通00.22b a Il Il bB d S dx In x a μμππΦ===⎰⎰⎰(2)感应电动势02l d b dI Indta dt μεπΦ=-=-,沿顺时针方向。
4、如图所示,长为L 的金属细棒ab,从静止开始沿倾角为θ的绝缘框架下滑,整个框架置放在磁感应强度大小为B、方向竖直向上的均匀磁场中。
求棒上的动生电动势与时间的函数关系(不计棒与框架间的摩擦)。
解答 求解本题时应注意磁感应强度B 的方向与棒滑下的速度v 的方向并不垂直,而且棒ab 滑下的速度大小随时间增大,由于框架绝缘,则棒上产生动生电动势,但无电流流过。
解:棒ab 在倾斜框架上下滑时,加速度为sin a g θ=,从静止开始经时间t,其速度sin v at gt θ==。
磁感应强度B 与速度v 的夹角为θπ+2/,则由动生电动势定义式得:将 sin v at gt θ==带入上式,则: 得到当棒ab 下滑时间为t 时,动生电动势为θθπεcos )2/sin(d )(bBlv dl vB l B aab=+=⋅⨯=⎰⎰v 动生θθθε2sin 2/1cos sin Bglt Bglt ==动生。