高考数学(集合)第一轮复习
高三数学高考第一轮复习计划(10篇)
高三数学高考第一轮复习计划(10篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高三数学高考第一轮复习计划(10篇)2023高三数学高考第一轮复习计划(10篇)如何规划好数学第一轮的高考复习计划呢?制定详细的复习计划,学生需要好好把握做好复习计划,复习并不是某种意义上的“炒冷饭”,而是“温故而知新”。
高考第一轮复习知识点(数学)
考试要求:
(1)了解映射的概念,理解函数的概念.
(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.
(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.
(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.
⑶.反函数的求法:先解x,互换x、y,注明反函数的定义域(即原函数的值域).
⑷.函数的定义域的求法:布列使函数有意义的自变量的不等关系式,求解即可求得函数的定义域.常涉及到的依据为①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义等.
例: 解的集合{(2,1)}.
②点集与数集的交集是 .(例:A ={(x,y)|y=x+1} B={y|y=x2+1}则A∩B= )
4.①n个元素的子集有2n个.②n个元素的真子集有2n-1个.③n个元素的非空真子集有2n-2个.
5.⑴①一个命题的否命题为真,它的逆命题一定为真.否命题 逆命题.
②一个命题为真,则它的逆否命题一定为真.原命题 逆否命题.
④若集合A=集合B,则CBA= ,CAB= CS(CAB)=D(注:CAB= ).
3.①{(x,y)|xy=0,x∈R,y∈R}坐标轴上的点集.
②{(x,y)|xy<0,x∈R,y∈R 二、四象限的点集.
③{(x,y)|xy>0,x∈R,y∈R}一、三象限的点集.
[注]:①对方程组解的集合应是点集.
高考一轮复习知识点
数学
第一章-集合
考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.
高考数学第一轮复习知识点分类指导
高考数学第一轮复习知识点分类指导一、集合与简易逻辑1.集合元素具有确定性、无序性和互异性.(1)设p、q为两个非空实数子集,定义子集p+q={a?b|a?p,b?q},若p?{0,2,5},(答:8)q?{1,2,6},则p+q中元素的有________个。
(2)非空集合s?{1,2,3,4,5},且满足用户“若a?s,则6?a?s”,这样的s共计_____个(答:7)22.“极端”情况否忘掉a??:子集a?{x|ax?1?0},b?x|x?3x?2?0,且a?b?b,则实数a=______.(答:a1?0,1,)23.满足用户{1,2}??m?{1,2,3,4,5}子集m存有______个。
(请问:7)4.运算性质:设全集u?{1,2,3,4,5},若a?b?{2},(cua)?b?{4},(cua)?(cub)?{1,5},则a=_____,b=___.(请问:a?{2,3},b?{2,4})x?2},集合n=?y|y?x2,x?m?,则m?n?___(请问:[4??,);(2)设立子集m?{a|a)?(1,?2?)(?3?,4r),,??n?{a|a?(2,3)??(4,5),??r},则m?n?_____(请问:{(?2,?2)})6.补集思想:已知函数f(x)?4x2?2(p?2)x?2p2?p?1在区间[?1,1]上至少存在一3个实数c,并使f(c)?0,谋实数p的值域范围。
(请问:(?3,))25.集合的代表元素:(1)设集合m?{x|y?7.复合命题真假的判断:在下列说法中:⑴“p且q”为真是“p或q”为真的充分不必要条件;⑵“p且q”为假是“p或q”为真的充分不必要条件;⑶“p或q”为真是“非p”为假的必要不充分条件;⑷“非p”为真是“p且q”为假的必要不充分条件。
其中正确的是____答:⑴⑶)8.充要条件:(1)得出以下命题:①实数a?0就是直线ax?2y?1与2ax?2y?3平行的充要条件;②若a,b?r,ab?0就是a?b?a?b设立的充要条件;③未知x,y?r,“若xy?0,则x?0或y?0”的逆否命题是“若x?0或y?0则x y?0”;④“若a和b都是偶数,则a?b是偶数”的否命题是假命题。
高考数学一轮复习 1.1 集合的概念与运算
2.如果集合 A 中含有 n 个元素,则集合 A 有 2n 个子集,2n-1 个真子集. 3.正确理解交、并、补集的含义是解决集合的运算问题的关键.数轴和 Venn 图是进行集合交、并、补运算的有力工具.
12
核心考点
(4)空集: 不含任何元素的集合
叫做空集,记作: ⌀
.
规定:空集是 任何集合的子集 .
4
知识梳理
双击自测
知识梳理
-5-
3.集合的基本运算
并集
符号 表示
A∪B
图形 表示
交集 A∩B
补集
设全集为 U,集合 A 的 补集∁UA
含义
A∪
B={x|x∈A,或 x∈B}
A∩B={x|x∈A,且 x∈B}
∁UA={x|x∈U,且 x∉ A}
-13-
考点一
考点二
考点三
考点一集合的基本概念
1.设集合 A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则 M 中元素的
个数为( )
A.3
B.4
C.5
D.6
关闭
由题意知 x=a+b,a∈A,b∈B,则 x 的可能取值为 5,6,7,8.因此,集合 M 共有 4 个元素.故选 B.
关闭
B
13 解析 答案
核心考点
-14-
考点一
考点二
考点三
2.若集合 A={x∈R|ax2+ax+1=0}中只有一个元素,则 a=( )
(6)设全集为 R,函数 y= 1-������2的定义域为 M,则∁RM={x|x>1,或 x<1}.( )
【名师导学】高考数学第一轮总复习 1
A.{0}
B.{1}
C.{1,2}
D.{0,2}
【解析】∵N={x|x=2a+1,a∈M}={1,3,5}. ∴M∩N={1},选B.
3.已知全集U=R,则正确表示集合M={-1,0,1}和 N={x|x2+x=0}关系的韦恩图是( B)
【解析】∵N={x|x2+x=0}={-1,0} M={-1,0,1}. ∴选B.
4.(2011辽宁)已知M,N为集合I的非空真子集,且 M,N不相等,若N∩∁IM=∅,则M∪N=( A)
A.M
B.N
C.I
D.∅
【解析】利用韦恩图:N M,∴M∪N=M,∴选A.
5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0}, B={x|x=2a,a∈A},则集合∁U(A∪B)中元素的个数共 有__2__个.
【解析】由已知得M∩N={2,3},∴∁U(M∩N)= {1,4},选D.
4.(2011广东)已知集合A={(x,y)|x,y为实数,且
x2+y2=1},B={(x,y)|x,y为实数,且y=x},则
A∩B的元素的个数为( C)
A.0
B.1
C.2
D.3
【解析】集合A表示的是圆心在原点的单位圆,集合 B表示的是直线y=x,画图可知选C.
1.确定一个集合的依据是:一是判断集合的元素 是什么?二是理解元素的属性有哪些?
2.判断集合之间的包含关系,关键是理解符号 “⊆”的含义.注意∅对问题的影响.
3.对求解含有参数的集合运算问题,能化简的集 合应先化简,以便使问题进一步明朗化.
4.集合问题多与函数、方程、不等式、解析几何 等有关.在解题时,要注意相关知识间的联系.
③理解必要条件、充分条件与充要条件的意义.
高考数学一轮复习 考点01 集合必刷题 理(含解析)-人教版高三全册数学试题
考点01 集合1.若集合A={-1,0,1},B={y|y=x2,x∈A},则A∩B=( )A.{0} B.{1}C.{0,1} D.{0,-1}【答案】C【解析】因为B={y|y=x2,x∈A}={0,1},所以A∩B={0,1}.2.设集合,集合,则()A. B. C. D.【答案】B【解析】集合=,集合,则。
故答案为:B.3.已知全集为整数集Z.若集合A={x|y=1-x,x∈Z},B={x|x2+2x>0,x∈Z},则A∩(∁Z B)=( ) A.{-2} B.{-1}C.[-2,0] D.{-2,-1,0}【答案】D【解析】由题意可知,集合A={x|x≤1,x∈Z},B={x|x>0或x<-2,x∈Z},故A∩(∁Z B)={-2,-1,0}.故选D.4.已知集合A={x|0<x≤6},B={x∈N|2x<33},则集合A∩B中的元素个数为( )A.6 B.5C.4 D.3【答案】B【解析】集合A={x|0<x≤6},B={x∈N|2x<33}={0,1,2,3,4,5},∴A∩B={1,2,3,4,5},∴A∩B中元素个数为5.故选B.5.已知集合,,则()A. B. C. D.【答案】A【解析】因为集合,,所以A∩B={0,1}.故答案为:A.6.若集合M={x||x|≤1},N={y|y=x2,|x|≤1},则( )A .M =NB .M ⊆NC .M ∩N =∅D .N ⊆M【答案】D【解析】∵M ={x ||x |≤1}={x |-1≤x ≤1},N ={y |y =x 2,|x |≤1}={y |0≤y ≤1},∴N ⊆M .故选D. 7.已知集合 ,,则( )A .B .C .D .【答案】C 【解析】由题意得,,.故选C.8.已知集合A ={1,a 2},B ={2a ,-1},若A ∩B ={4},则实数a 等于( ) A .-2 B .0或-2 C .0或2 D .2【答案】D【解析】因为A ∩B ={4},所以4∈A 且4∈B ,故⎩⎪⎨⎪⎧a 2=4,2a =4,a =2.故选D.9.已知集合,,则集合( )A .B .C .D .【答案】D 【解析】已知集合,,∴A∩B 中的元素满足:解得: 则A∩B=. 故选D.10.设全集U =R ,已知集合A ={x ||x |≤1},B ={x |log 2x ≤1},则(∁U A )∩B =( ) A .(0,1] B .[-1,1] C .(1,2]D .(-∞,-1]∪[1,2]【答案】C【解析】因为A={x||x|≤1}={x|-1≤x≤1},B={x|log2x≤1}={x|0<x≤2},所以∁U A={x|x>1或x<-1},则(∁U A)∩B=(1,2].11.已知全集U=R,集合A={0,1,2,3,4},B={x|x2-2x>0},则图中阴影部分表示的集合为( )A.{0,1,2} B.{1,2}C.{3,4} D.{0,3,4}【答案】A【解析】∵全集U=R,集合A={0,1,2,3,4},B={x|x2-2x>0}={x|x>2或x<0},∴∁U B={x|0≤x≤2},∴图中阴影部分表示的集合为A∩(∁U B)={0,1,2}.故选A.12.设集合M={x|x<4},集合N={x|x2-2x<0},则下列关系中正确的是( )A.M∩N=M B.M∪(∁R N)=MC.N∪(∁R M)=R D.M∩N=N【答案】D【解析】由题意可得N=(0,2),M=(-∞,4),N⊆M.故选D.13.设集合A={x|y=lg(-x2+x+2)},B={x|x-a>0}.若A⊆B,则实数a的取值X围是( ) A.(-∞,-1) B.(-∞,-1]C.(-∞,-2) D.(-∞,-2]【答案】B【解析】集合A={x|y=lg(-x2+x+2)}={x|-1<x<2},B={x|x-a>0}={x|x>a},因为A⊆B,所以a≤-1.14.已知,则()A. B.C. D.【答案】C【解析】由题可得则故选C.15.已知集合A={x|x<1},B={x|x2-x-6<0},则( )A.A∩B={x|x<1}B.A∪B=RC.A∪B={x|x<2}D.A∩B={x|-2<x<1}【答案】D【解析】集合A={x|x<1},B=x{x|x2-x-6<0}={x|-2<x<3},则A∩B={x|-2<x<1},A∪B={x|x <3}.故选D.16.设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值X围是( ) A.(-∞,1) B.(-∞,1]C.(1,+∞)D.[1,+∞)【答案】A【解析】∵U=R,集合A={x|x≥1}=[1,+∞),∴∁U A=(-∞,1),由B={x|x>a}=(a,+∞)以及(∁U A)∪B=R可知实数a的取值X围是(-∞,1).故选A.17.已知集合,集合,则A. B. C. D.【答案】A【解析】由题得A={x|-2<x<3},所以={x|x≤-2或x≥3},所以=.故答案为:A18.已知集合,,则∁A. B. C. D.【答案】A【解析】由,即,解得或,即,∁,解得,即,则∁,故选A.1.A ,B 为两个非空集合,定义集合A -B ={x |x ∈A 且x ∉B },若A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A -B =( ) A .{2} B .{1,2} C .{-2,1,2} D .{-2,-1,0}【答案】C【解析】∵A ,B 为两个非空集合,定义集合A -B ={x |x ∈A 且x ∉B },A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0}={x |-2<x <1},∴A -B ={-2,1,2}.故选C.20.对于任意两集合A ,B ,定义A -B ={x |x ∈A 且x ∉B },A *B =(A -B )∪(B -A ),记A ={y |y ≥0},B ={x |-3≤x ≤3},则A *B =________. 【答案】[-3,0)∪(3,+∞)【解析】由题意知A -B ={x |x >3},B -A ={x |-3≤x <0},所以A *B =[-3,0)∪(3,+∞). 21.设集合I ={x |-3<x <3,x ∈Z },A ={1,2},B ={-2,-1,2},则A ∩(∁I B )=________. 【答案】{1}【解析】∵集合I ={x |-3<x <3,x ∈Z }={-2,-1,0,1,2},A ={1,2},B ={-2,-1,2},∴∁I B ={0,1},则A ∩(∁I B )={1}.22.(2018某某红色七校联考)集合A ={x |x 2+x -6≤0},B ={y |y =x ,0≤x ≤4},则A ∩(∁R B )=________. 【答案】[-3,0)【解析】∵A ={x |x 2+x -6≤0}={x |-3≤x ≤2},B ={y |y =x ,0≤x ≤4}={y |0≤y ≤2},∴∁R B ={y |y <0或y >2},∴A ∩(∁R B )=[-3,0).23.已知集合A ={y |y 2-(a 2+a +1)y +a (a 2+1)>0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪ y =12x 2-x +52,0≤x ≤3.若A ∩B =∅,则实数a 的取值X 围是________. 【答案】(-∞,-3]∪[3,2]【解析】由题意可得A ={y |y <a 或y >a 2+1},B ={y |2≤y ≤4}.当A ∩B =∅时,⎩⎪⎨⎪⎧a 2+1≥4,a ≤2,∴3≤a ≤2或a ≤-3,∴a 的取值X 围是(-∞,-3]∪[3,2]. 24.已知集合,,则_________.【答案】【解析】因为,,所以,故{0,7},故填. 25.已知集合,.(1)若A∩B=,某某数m的值;(2)若,某某数m的取值X围.【答案】(1)2;(2)【解析】由已知得:,.(1)因为,所以,故,所以.(2).因为,或,所以或.所以的取值X围为.。
高考数学一轮复习第一章集合与常用逻辑用语1.1集合及其运算课件理
A.{1} C.{1,3}
B.{4} D.{1,4}
因为集合B中,x∈A, 所以当x=1时,y=3-2=1; 当x=2时,y=3×2-2=4; 当x=3时,y=3×3-2=7; 当x=4时,y=3×4-2=10;即B={1,4,7,10}. 又因为A={1,2,3,4},所以A∩B={1,4}.故选D.
5.(2016·云南名校联考)集合A={x|x-2<0},B={x|x<a},若A∩B=A, 则实数a的取值范围是___[2_,__+__∞__)__. 答案 解析 由A∩B=A,知A⊆B,
从数轴观察得a≥2.
题型分类 深度剖析
题型一 集合的含义
例1 (1)(2016·济南调研)设P,Q为两个非空实数集合,定义集合P+Q ={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的
考点自测
1.(教材改编)若集合 A={x∈N|x≤ 10},a=2 2,则下列结论正确的是
A.{a}⊆A
B.a⊆A
答案 解析
C.{a}∈A
D.a∉A
由题意知 A={0,1,2,3},由 a=2 2,知 a∉A.
2.(2016·江西重点中学联考)已知集合 A={x|x2-6x+5≤0},B={x|y=
个数是 答案 解析
A.9
B.8
C.7
D.6
当a=0时,a+b=1,2,6; 当a=2时,a+b=3,4,8; 当a=5时,a+b=6,7,11. 由集合中元素的互异性知P+Q中有1,2,3,4,6,7,8,11共8个元素.
(2)若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=_0_或__98__.
答案 解析
因为{1,a+b,a}=0,ba,b,a≠0, 所以 a+b=0,得ba=-1, 所以a=-1,b=1,所以b-a=2.
高考数学第一轮复习知识点总结
高考数学第一轮复习知识点总结高考数学第一轮复习知识点总结高考数学作为重中之重的一门课程,对于很多考生来说是一道难关。
数学题目难,考点多,所以在备考过程中复习知识点是非常关键的一环。
在高考数学中,第一轮复习是非常重要的,因为它是考生们对于数学知识点的回顾和积累过程,对于巩固基础打下坚实的基础非常关键。
在这篇文章中,我们将对高考数学第一轮复习的知识点进行总结,帮助考生们更好地备考。
一、集合和函数1. 集合的基本概念和表示方法。
2. 集合的运算:交、并、差、补、对称差。
3. 集合的关系:包含关系、相等关系。
4. 数学函数的定义。
5. 常用函数:幂函数、指数函数、对数函数、三角函数等。
6. 函数的性质:奇偶性、周期性、单调性、最值等。
7. 反函数。
二、数列1. 数列的定义。
2. 等差数列和等比数列的性质。
3. 数列的通项公式和前n项和公式。
4. 数列极限的定义和性质。
5. 数列的收敛和发散。
三、函数图像与方程1. 一次函数。
2. 二次函数。
3. 线性方程组。
4. 二元一次方程和一元二次方程。
5. 一元两次方程,求根公式,有理系数情况的根的奇偶性判断,一次两个根判别式,一元二次方程的最值问题。
四、三角函数1. 弧度制和角度制的互相转换。
2. 常用角的正弦、余弦、正切、余切。
3. 三角函数的基本关系式。
4. 三角函数的图像和性质。
5. 三角函数的反函数。
五、立体几何1. 空间向量的概念。
2. 空间向量之间的运算。
3. 空间中直线和平面的基本概念。
4. 平面与平面的位置关系:平行、共面、垂直等。
5. 空间中直线与直线、直线与平面的位置关系:共面、垂直等。
6. 空间向量与平面的位置关系:平行、垂直等。
七、概率统计1. 随机事件及其概率。
2. 条件概率及其应用。
3. 离散型随机变量及其概率分布。
4. 连续型随机变量及其概率密度函数。
5. 随机事件的运算。
以上是高考数学第一轮复习的知识点总结。
复习数学可以多练习题,特别是选择题,可以涉及到很多数学知识点。
高考数学一轮复习《集合》复习练习题(含答案)
高考数学一轮复习《集合》复习练习题(含答案)一、单选题1.设集合{2,2,4,6}A =-,{}2120B x x x =+-<,则A B =( )A .(2,2)-B .{2,0,2}-C .{2,4}D .{2,2}- 2.已知22,{|1},{|log }U R A y y x B x y x ===-==,则A B =A .()1,1-B .(),1-∞C .(],1-∞-D .[)1,+∞ 3.已知全集,则 ( ) A . B . C . D .4.已知集合{}2,1,0,1,2A =--,{}21,B y y x x ==+∈R ,则A B =( ) A .∅ B .{}1,2 C .{}0,1,2 D .{}2,1,0,1,2-- 5.图中阴影表示的集合是( ).A .()U P Q C S ⋃⋂B .()U P QC S ⋂⋃ C .()U P Q C S ⋂⋂D .()U P Q C S ⋂⋂6.集合2101x A x x ⎧⎫-=≤⎨⎬+⎩⎭,集合()12log 1B x y x ⎧⎪==-⎨⎪⎩,则集合A B 等于( ) A .10,2⎡⎤⎢⎥⎣⎦ B .()1,-+∞ C .()1,1- D .[)1,-+∞7.已知集合{}2,A x x x Z =<∈,{}220B x x x =--<,则A B =( ) A .{}0,1 B .()0,1 C .{}1,0,1- D .()1,2- 8.设集合M={-1,0,1},N={x |2x =x },则M∩N=A .{-1,0,1}B .{0,1}C .{1}D .{0} 9.已知P ={小于π的自然数},则( )A .2P ∈B .2P ⊆C .{}2P ∈D .{}2P ⊇10.若2{|1}M y y x x R ,==-∈,22{|1,,}N x x y x R y R =+=∈∈,则M N ⋂=( ) A .()1,1- B .[]1,1- C .[)1,1- D .∅11.已知集合{}2,0,2A =-,{}2230B x x x =-->,集合P A B =⋂,则集合P 的子集个数是 A .1 B .2 C .3 D .412.若集合{0,1,2,3}A =,{1,2,4}B =,C A B =,则C 的子集共有A .2个B .3个C .4个D .6个二、填空题13.已知集合A 、B 与集合A@B 的对应关系如下表:A{1,2,3,4,5} {-1,0,1} {-4,8} B{2,4,6,8} {-2,-1,0,1} {-4,-2,0,2} A@B {1,3,6,5,8} {-2} {-2,0,2,8} 若A ={-2009,0,2018},B ={-2009,0,2019},试根据图表中的规律写出A@B =________.14.已知函数2,()4,x x m f x x x x m<⎧=⎨+≥⎩,且对任意p m <,存在q m ≥,使得()()0f p f q +=,则实数m 的取值范围是________.15.记{|()sin()A f x x θωθ==+为偶函数,ω是正整数},{|()(1)0}B x x a x a =---<,对任意实数a ,满足A B 中的元素不超过两个,且存在实数a 使A B 中含有两个元素,则ω的值是__________.16.已知全集U ={0,2,4,6,8},集合A ={0,4,6},则∁U A =_______.17.定义:若对非空数集P 中任意两个元素a 、b ,实施“加减乘除”运算(如+a b 、-a b 、a b ⨯、(0)a b b ÷≠),其结果仍然是P 中的元素,则称数集P 是一个“数域”.下列四个命题:①有理数集Q 是数域;②若有理数集Q M ⊆,则数集M 是数域;③数域必是无限集;④存在无穷多个数域;上述命题错误的序号是_________.18.定义全集的子集的特征函数为,这里表示在全集中的补集,那么对于集合,下列所有正确说法的序号是 .(1)(2)()1()U A A f x f x =-(3)()()()A B A B f x f x f x ⋃=+(4)()()()A B A B f x f x f x ⋂=⋅ 19.集合{}21,2,,31M a a a =--,{1,3}N =-,若3M ∈且N M ⊆,则a 的取值为________.20.被3除余1的所有整数组成的集合用描述法表示为_________.三、解答题21.已知集合{}220A x x x =+=,{}22(1)10B x x a x a =+++-=. (1)若m A ∈,求实数m 的值;(2)若A B B ⋃=,求实数a 的值.22.(1)设集合{|13}A x x =-<<,{|04}B x x =<<,求()R AC B ; (2)计算:232lg 5lg 48+-.23.已知集合{}2{|22}|540A x a x a B x x x =+-=-+≥. ⑴当3a =-时,求A B ,A B .⑵若A B φ⋂=,求实数a 的取值范围.24.对于任意的复数(,)z x yi x y R =+∈,定义运算P 为2()(cos sin )P z x y i y ππ=+. (1)设集合A ={|(),||1,Re ,Im P z z z z ωω=≤均为整数},用列举法写出集合A ; (2)若2()=+∈z yi y R ,()P z 为纯虚数,求||z 的最小值;(3)问:直线:9=-L y x 上是否存在横坐标、纵坐标都为整数的点,使该点(,)x y 对应的复数z x yi =+经运算P 后,()P z 对应的点也在直线L 上?若存在,求出所有的点;若不存在,请说明理由.25.已知集合{}U 17x R x =∈<≤,{}25A x R x =∈≤<,{}37B x R x =∈≤<,求: (1)A B ;(2)()U A B ⋂;26.已知函数()()()112232F x x x =-++的定义域为A ,集合()1,21B m m =-+,m R ∈若A B A =,求实数m 的取值范围.27.已知集合{}2|650A x x x =-+<,{}2|1216x B x -=<<,{}|ln()C x y a x ==-,全集为实数集R .(1)求A B 和()A B R ∩.(2)若A C ⋂=∅,求实数a 的范围.28.已知集合{|12}A x x =-≤≤,{|1}B x m x m =≤≤+.(1)当2m =-时,求()R C A B ;(2)若B A ⊆,求实数m 的取值范围.29.设全集{}22,3,23U a a =+-,16,26a A +⎧⎫=⎨⎬⎩⎭.若{}5U A =,求实数a 的值.参考答案1.D2.D3.C4.B5.C6.C7.A8.B9.A10.B11.B12.C13.{}2018,201914.(,0]-∞15.4、5、616.{2,8}17.②18.(1)(2)(4)19.3a =或1a =-20.{|31,}x x k k Z =+∈21.(1)0m =或2m =-;(2)1.22.(1)(){|10}R A C B x x =-<≤(2)2-. 23.(1)=[1,1][4,5],A B=R A B -(2)(1,)-+∞24.(1){0,1}A =;(2;(3)存在,(3,6)-或(3,12)-- 25.(1){}27x R x ∈≤<,(2){|13x x <<或57}x ≤≤, 26.()3,+∞27.(1) {}|16A B x x ⋃=<<,(){} |56R C A B x x ⋂=≤<.(2) 1a ≤. 28.(1)(){|22}R C A B x x x ⋃=-或;(2){|11}m m -≤≤ 29.2a =。
高考数学一轮复习第一章集合常用逻辑与不等式
3.集合间的基本运算 (1)交集:一般地,由属于集合 A 且属于集合 B 的所有 元素组成的集合,称为 A 与 B 的交集,记作 A∩B,即 A∩ B={x|x∈A,且 x∈B}. (2)并集:一般地,由所有属于集合 A 或属于集合 B 的 元素组成的集合,称为 A 与 B 的并集,记作 A∪B,即 A∪ B={x|x∈A,或 x∈B}. (3)补集:对于一个集合 A,由全集 U 中不属于集合 A 的所有元素组成的集合称为集合 A 相对于全集 U 的补集, 简称为集合 A 的补集,记作∁UA,即∁UA={x|x∈U,且 x∉A).
题组一 小题自测 1.已知集合 A={0,1,x2-5x},若-4∈A,则实 数 x 的值为________. 解析:因为-4∈A,所以 x2-5x=-4,解得 x=1 或 x=4. 答案:4 或 1
2.设全集 U=R,集合 A={-2,-1,0,1,2}, B={x|x≥1},则 A∩(∁UB)=____________.
算
4.在具体情境中,了解全集与空集的含义.
5.理解两个集合的并集与交集的含义,会求两 个简单集合的并集与交集.
核
6.理解在给定集合中一个子集的补集的含义, 会求给定子集的补集.
心 数学抽象、数 素 学运算
7.能使用Venn图表达集合的关系及运算,体会 养
直观图示对理解抽象概念的作用.
1.集合的有关概念 (1)集合元素的三个特性:确定性、无序性、互异性. 提示:元素互异性,即集合中不能出现相同的元素, 此性质常用于求解含参数的集合问题中. (2)集合的三种表示方法:列举法、描述法、图示法. (3)元素与集合的两种关系:属于,记为∈;不属于, 记为∉.
(3)集合相等:如果 A⊆B,并且 B⊆A,则 A=B. 两集合相等:A=B⇔AA⊆⊇BB,. A 中任意一个元素都符 合 B 中元素的特性,B 中任意一个元素也符合 A 中元素 的特性. (4)空集:不含任何元素的集合.空集是任何集合 A 的子集,是任何非空集合 B 的真子集,记作∅. 提示:0,{0},∅,{∅}之间的关系:∅≠{∅},∅∈{∅}, ∅⊆{∅},0∉∅,0∉{∅},0∈{0},∅⊆{0}.
2025高考数学一轮复习1.1集合-专项训练【含答案】
2025年高考数学一轮复习-第一章-第一节-集合-专项训练基础巩固练1.(2023新高考Ⅰ)已知集合M={-2,-1,0,1,2},N={x|x2-x-6≥0},则M∩N=()A.{-2,-1,0,1}B.{0,1,2}C.{-2}D.{2}2.(2023新高考Ⅱ)设集合A={0,-a},B={1,a-2,2a-2},若A⊆B,则a=()A.2B.1C.23D.-13.(2024南京、盐城一模)已知集合A={0,1,2},B={x|y=lg(-x2+2x)},则A∩B=()A.{0,1,2}B.{1}C.{0}D.(0,2)4.设集合A={x|x2-4≤0},B={x|2x+a≤0},且A∩B={x|-2≤x≤1},则a=()A.-4B.-2C.2D.45.(2023镇江检测)记集合M={x||x|>2},N={x|y=2- },则(∁R M)∩N=()A.{x|-2≤x≤2}B.{x|x>2}C.{x|0≤x<2}D.{x|x<-2}6.设集合A={2,3,a2-2a-3},B={0,3},C={2,a}.若B⊆A,A∩C={2},则a=()A.-3B.-1C.1D.37.设集合U=R,集合M={x|x<1},N={x|-1<x<2},则{x|x≥2}=()A.∁U(M∪N)B.N∪(∁U M)C.∁U(M∩N)D.M∪(∁U N)8.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%9.定义集合A,B的一种运算:A B={x|x=a2-b,a∈A,b∈B},若A={-1,0},B={1,2},则A B中的元素个数为()A.1B.2C.3D.410.(多选题)已知集合{x|mx2-2x+1=0}={n},则m+n的值可能为()A.0B.12C.1D.211.若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”.对于集合A={-1,2},B={x|ax2=2,a≥0},若这两个集合构成“鲸吞”或“蚕食”,则实数a的取值集合为.12.设集合A={x|x2+2x-3>0},集合B={x|x2-2ax≤0},若A∩B中恰含有一个整数,则实数a的取值范围是.综合提升练13.设全集U={x||x|<4且x∈Z},S={-2,1,3},若P⊆U,(∁U P)⊆S,则这样的集合P共有()A.5个B.6个C.7个D.8个14.设集合M={(x,y)|y=4- 2},N={(x,y)|(x-2)2+(y-2)2=r2}(r>0).当M∩N有且只有一个元素时,正数r 的所有取值为()A.2+2或22-2B.2<r≤25C.2<r≤25或r=22-2D.2≤r≤25或r=22-215.已知集合M={x|1≤x≤10,x∈N},对它的非空子集A,将A中每个元素k都乘(-1)k再求和,如A={1,3,6},可求得和为(-1)1×1+(-1)3×3+(-1)6×6=2,则对M的所有非空子集,这些和的总和为()A.5B.5120C.2555D.256016.(多选题)已知M是同时满足下列条件的集合:①0∈M,1∈M;②若x,y∈M,则x-y∈M;③x∈M且x≠0,则1 ∈M.下列结论中,正确的有()A.13∈MB.-1∉MC.若x,y∈M,则x+y∈MD.若x,y∈M,则xy∈M17.设集合S,T,S⊆N*,T⊆N*,S,T中至少有两个元素,且S,T满足:①对于任意x,y∈S,若x≠y,则有xy∈T;②对于任意x,y∈T,若x<y,则 ∈S.若S有4个元素,则S∪T有个元素.创新应用练18.已知数集A=[t,t+1]∪[t+4,t+9].若存在λ∈R,使得对任意a∈A都有 ∈A,则称A为完美集,给出下列四个结论:①存在t∈(0,+∞),使得A为完美集;②存在t∈(-∞,0),使得A为完美集;③如果t∉Z,那么A一定不为完美集;④使得A为完美集的所有t的值之和为-2.其中,所有正确结论的序号是.参考答案与解析1.C2.B3.B4.B5.A6.B7.A8.C9.C10.BD11 0,12,212 -52,-2∪113.D14.C15.D16.ACD17.718.①②。
集合高考数学一轮复习课件
归入同一个集合时只能算作集合的一个元素.
(3)无序性:集合中各元素之间无先后排列的要求,没有一定的顺序关系.
集合的概念及表示
练习 2、下列说法中正确的是________. ①参加 2012 年中央电视台举办的春节联欢
晚会的优秀演员能组成集合;
即∁UA={x|x∈U,且x∉A}.
集合
补集的性质 (1)∁UU=___∅______; (2)∁U∅=_____U_____; (3)A∪(∁UA)=____U_____; (4)A∩(∁UA)=____∅_____; (5)∁U(∁UA)=____A_____; (6)(∁UA)∪(∁UB)=____∁_U(_A_∩__B_)______; (7)(∁UA)∩(∁UB)=____∁_U_(_A_∪__B_) _______.
是非负整数,|- 3|= 3是无理数,因此,① ②③正确,④错误.
集合的概念及表示
4、集合中元素的特征 (1)确定性:给定一个集合,任何一个对象是不是这个集合的元素就确定了, 即任何对象都能明确它是或不是这个集合的元素,两者必居其一,不会模 棱两可.这是判断一组对象能否构成集合的标准.如“ 较大的整数”就不能 构成集合.
无代表元素.D 代表元素写错.
集合的概念及表示 三、集合的分类
按照集合中元素个数的多少,集合分为有限集、无限集和空集。
类别
意义
有限集 含 有限 个元素的集合叫有限集.
无限集 含 无限 个元素的集合叫无限集.
空集 不含有任何元素的集合叫作空集,记作_∅__.
集合间的关系
第二讲 集合间的关系
给出下面两个集合A={1,2},B={1,2,3,4}.
集合-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版
2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第01练集合(精练)1.了解集合的含义,体会元素与集合的属于关系,能用自然语言、图形语言、集合语言列举法或描述法描述不同的具体问题.2.理解集合间包含与相等的含义,能识别给定集合的子集.在具体情境中,了解全集与空集的含义.3.理解两个集合的并集、交集与补集的含义,会求两个简单集合的并集、交集与补集.能使用Venn 图表示集合间的基本关系及集合的基本运算.一、单选题1.(2023·全国·高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð()A .{}0,2,4,6,8B .{}0,1,4,6,8C .{}1,2,4,6,8D .U2.(2023·全国·高考真题)已知集合{}2,1,0,1,2M =--,260N x x x =--≥,则M N ⋂=()A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C【分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出.方法二:将集合M 中的元素逐个代入不等式验证,即可解出.-3.(2023·全国·高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ().A .2B .1C .23D .1-4.(2023·全国·高考真题)设全集Z U =,集合{31,},{32,}M xx k k Z N x x k k Z ==+∈==+∈∣∣,()U M N ⋃=ð()A .{|3,}x x k k =∈Z B .{31,}xx k k Z =-∈∣C .{32,}xx k k Z =-∈∣D .∅【答案】A【分析】根据整数集的分类,以及补集的运算即可解出.【详解】因为整数集{}{}{}|3,|31,|32,x x k k x x k k x x k k ==∈=+∈=+∈Z Z Z Z ,U Z =,所以,(){}|3,U M N x x k k ==∈Z ð.故选:A .5.(2023·全国·高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A .-1B .12-C .0D .126.(2022·全国·高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M ∈C .4M ∉D .5M∉【答案】A【分析】先写出集合M ,然后逐项验证即可【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误故选:A7.(2022·全国·高考真题)若集合{4},{31}M x N x x ==≥∣,则M N ⋂=()8.(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ()A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【A 级基础巩固练】一、单选题1.(2024·北京丰台·一模)已知集合{}220A x x x =-≤,{}10B x x =->,则A B ⋃=()A .{}0x x ≥B .{}01x x ≤<C .{}1x x >D .{}12x x <≤2.(2024·北京顺义·二模)设集合24U x x =∈≤Z ,{}1,2A =,则U A =ð()A .[]2,0-B .{}0C .{}2,1--D .{}2,1,0--【答案】DA .(]0,2B .31,2⎛⎤ ⎥C .()0,2D .30,2⎛⎤4.(23-24高三下·四川成都·阶段练习)已知集合{}{}1,2,2,3A B ==,则集合{},,C z z x y x A y B ==+∈∈的子集个数为()A .5B .6C .7D .85.(2024·陕西安康·模拟预测)已知集合{}{}3N 0log 2,21,Z A x x B x x k k =∈<<==+∈∣∣,则A B = ()A .{}1,3,5,7B .{}5,6,7C .{}3,5D .{}3,5,7【答案】D【分析】先求出集合A ,再根据交集的定义即可得解.【详解】{}{}{}3N0log 2N192,3,4,5,6,7,8A x x x x =∈<<=∈<<=∣∣,所以{}3,5,7A B = .故选:D.6.(23-24高三下·四川雅安·阶段练习)若集合{}2,1,4,8A =-,{}2,B x y x A y A =-∈∈∣,则B 中元素的最大值为()A .4B .5C .7D .10【答案】C【分析】根据B 中元素的特征,只需满足()2max minx y-即可得解.【详解】由题意,()()222max maxmin817x y x y -=-=-=.故选:C7.(2024·四川成都·三模)设全集{}1,2,3,4,5U =,若集合M 满足{}1,4U M ⊆ð,则()A .4M ÎB .1M ∉C .2M ∈D .3M∉8.(2024·河北沧州·模拟预测)已知集合{}4A x x =∈<N ,{}21,B x x n n A ==-∈,P A B =⋂,则集合P 的子集共有()A .2个B .3个C .4个D .8个9.(2024·全国·模拟预测)若集合{}()(){}28,158A x x B x x x =∈<=+->-Z ,则()A B ⋂=R ð()A .{}0,1,2B .{0x x ≤<C .{1x x ≤≤D .{}1,210.(2024·四川泸州·三模)已知集合2230A x x x =--<,{}0,B a =,若A B ⋂中有且仅有一个元素,则实数a 的取值范围为()A .()1,3-B .(][),13,-∞-+∞C .()3,1-D .(][),31,-∞-⋃+∞11.(2024·北京东城·一模)如图所示,U 是全集,,A B 是U 的子集,则阴影部分所表示的集合是()A .AB ⋂B .A B⋃C .()U A B ⋂ðD .()U A B ⋃ð【答案】D【分析】由给定的韦恩图分析出阴影部分所表示的集合中元素满足的条件,再根据集合运算的定义即可得解.【详解】由韦恩图可知阴影部分所表示的集合是()U A B ð.二、多选题12.(2024·甘肃定西·一模)设集合{}{}26,,A x x x B xy x A y A =-≤=∈∈∣∣,则()A .AB B= B .Z B ⋂的元素个数为16C .A B B⋃=D .A Z I 的子集个数为64取值可能是()A .3-B .1C .1-D .014.(2024·广西·二模)若集合M 和N 关系的Venn 图如图所示,则,M N 可能是()A .{}{}0,2,4,6,4M N ==B .{}21,{1}M xx N x x =<=>-∣∣C .{}{}lg ,e 5x M xy x N y y ====+∣∣D .(){}(){}22,,,M x y x y N x y y x ====∣∣三、填空题15.(2024高一上·全国·专题练习)已知集合{}22,4,10A a a a =-+,且3A -∈,则=a .【答案】3-【分析】根据题意,列出方程,求得a 的值,结合集合元素的互异性,即可求解.【详解】因为3A -∈,所以23a -=-或243a a +=-,解得1a =-或3a =-,当1a =-时,23a -=,243a a +=-,集合A 不满足元素的互异性,所以1a =-舍去;当3a =-时,经检验,符合题意,所以3a =-.故答案为:3-.16.(2024高三下·全国·专题练习)集合(){}22,2,,x y x y x y +<∈∈Z Z 的真子集的个数是.17.(23-24高一上·辽宁大连·期中)设{}50A x x =-=,{}10B x ax =-=,若A B B = ,则实数a 的值为.18.(2024·安徽合肥·一模)已知集合{}{}24,11A x x B x a x a =≤=-≤≤+∣∣,若A B ⋂=∅,则a 的取值范围是.【答案】()(),33,-∞-+∞ 【分析】利用一元二次不等式的解法及交集的定义即可求解.【详解】由24x ≤,得()()220x x -+≤,解得22x -≤≤,所以{}22A xx =-≤≤∣.因为A B ⋂=∅,所以12a +<-或12a ->,解得3a <-或3a >,所以a 的取值范围是()(),33,-∞-+∞ .故答案为:()(),33,-∞-+∞ .19.(2024高三·全国·专题练习)设集合(){}2|1A x x a =-<,且2A ∈,3A ∉,则实数a 的取值范围为.【答案】(]1,2【分析】首先解一元二次不等式求出集合A ,再根据2A ∈且3A ∉得到不等式组,解得即可.【详解】由()21x a -<,即11x a -<-<,解得11a x a -<<+,即(){}{}2|11|1A x x a x a x a =-<=-<<+,因为2A ∈且3A ∉,所以121213a a a -<⎧⎪+>⎨⎪+≤⎩,解得12a <≤,即实数a 的取值范围为(]1,2.故答案为:(]1,2四、解答题20.(23-24高一上·广东湛江·期末)已知集合()(){}230A x x x =-+≤,{}11B x a x a =-<<+,定义两个集合P ,Q 的差运算:{},P Q x x P x Q -=∈∉且.(1)当1a =时,求A B -与B A -;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.21.(2024高三·全国·专题练习)设M 是由直线0Ax By C ++=上所有点构成的集合,即{}(,)0M x y Ax By C =++=,在点集M 上定义运算“⊗”:对任意()11,,x y M ∈()22,,x y M ∈则()()11221212,,x y x y x x y y ⊗=+.(1)若M 是直线230x y -+=上所有点的集合,计算()()1,52,1⊗--的值.(2)对(1)中的点集M ,能否确定(3,)(,5)a b ⊗(其中,a b ∈R )的值?(3)对(1)中的点集M ,若(3,)(,)0a b c ⊗<,请你写出实数a ,b ,c 可能的值.【B 级能力提升练】一、单选题1.(2024·全国·模拟预测)已知集合{}{}2210,2log 10M x x P x x =->=-<,则M P ⋂=()A .12x x ⎧<<⎨⎩B .142x x ⎧⎫<<⎨⎬⎩⎭C .{}4x <<D .{}24x x <<2.(2024·宁夏银川·一模)设全集{0,1,2,3,4,5,6},{1,2,3,4,5},{Z 2}U A B x ===∈<,则集合{4,5}=()A .()U AB ⋂ðB .()U A B ⋂ðC .()U A B ∩ðD .()()U U A B ⋂痧所以{}{}Z |041,2,3B x x =∈<<=,所以{}0,4,5,6U B =ð,所以(){}4,5U A B Ç=ð,故ABD 错误,故C 正确;故选:C3.(23-24高三上·内蒙古赤峰·阶段练习)已知集合{}24xA x =>,集合{}B x x a =<∣,若A B ⋃=R ,则实数a 的取值范围为()A .(],2-∞B .[)2,+∞C .(),2-∞D .()2,+∞【答案】D【分析】先求出集合A ,然后根据A B ⋃=R ,即可求解.【详解】由24x >,得2x >,所以()2,A =+∞,因为(),B a =-∞,A B ⋃=R ,所以2a >,故D 正确.故选:D.4.(23-24高一上·全国·期末)已知m ∈R ,n ∈R ,若集合{}2,,1,,0n m m m n m ⎧⎫=+⎨⎬⎩⎭,则20232023m n +的值为()A .2-B .1-C .1D .25.(23-24高三下·湖南长沙·阶段练习)已知全集{}N |010U A B x x =⋃=∈≤≤,(){}1,3,5,7U A B ⋂=ð,则集合B 的元素个数为()A .6B .7C .8D .不确定【答案】B【分析】由已知求出全集,再由(){}U 1,3,5,7A B ⋂=ð可知A 中肯定有1,3,5,7,B 中肯定没有1,3,5,7,从而可求出B 中的元素.【详解】因为全集{}{}N |0100,1,2,3,4,5,6,7,8,9,10U A B x x =⋃=∈≤≤=,(){}1,3,5,7U A B ⋂=ð,所以A 中肯定有1,3,5,7,B 中肯定没有1,3,5,7,A 和B 中都有可能有0,2,4,6,8,9,10,且除了1,3,5,7,A 中有的其他数字,B 中也一定会有,A 中没有的数字,B 中也一定会有,所以{}0,2,4,6,8,9,10B =,故选:B6.(23-24高三下·甘肃·阶段练习)如果集合U 存在一组两两不交(两个集合交集为空集时,称为不交)的非空子集()*122,,,,k A A A k k ≥∈N ,且满足12k A A A U =U U L U ,那么称子集组12,,,k A A A 构成集合U 的一个k 划分.若集合I 中含有4个元素,则集合I 的所有划分的个数为()A .7个B .9个C .10个D .14个二、多选题7.(2024·江苏泰州·模拟预测)对任意,A B ⊆R ,记{},A B x x A B x A B ⊕=∈⋃∉⋂,并称A B ⊕为集合,A B的对称差.例如:若{}{}1,2,3,2,3,4A B ==,则{}1,4A B ⊕=.下列命题中,为真命题的是()A .若,AB ⊆R 且A B B ⊕=,则A =∅B .若,A B ⊆R 且A B ⊕=∅,则A B =C .若,A B ⊆R 且A B A ⊕⊆,则A B ⊆D .存在,A B ⊆R ,使得A B A B⊕≠⊕R R痧三、填空题8.(2024·浙江绍兴·二模)已知集合{}20A x x mx =+≤,1,13B m ⎧⎫=--⎨⎬⎩⎭,且A B ⋂有4个子集,则实数m 的最小值是.9.(2024·湖南·二模)对于非空集合P ,定义函数()1,,P f x x P ⎧=⎨∈⎩已知集合{01},{2}A x x B x t x t=<<=<<∣∣,若存在x ∈R ,使得()()0A B f x f x +>,则实数t 的取值范围为.【C 级拓广探索练】一、单选题1.(2023·上海普陀·一模)设1A 、2A 、3A 、L 、7A 是均含有2个元素的集合,且17A A ⋂=∅,()11,2,3,,6i i A A i +⋂=∅= ,记1237B A A A A =⋃⋃⋃⋃ ,则B 中元素个数的最小值是()A .5B .6C .7D .8【答案】A【分析】设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,分析可知4n ≥,然后对n 的取值由小到大进行分析,验证题中的条件是否满足,即可得解.【详解】解:设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,若3n =,则12A A ⋂≠∅,不合乎题意.①假设集合B 中含有4个元素,可设{}112,A x x =,则{}24634,A A A x x ===,{}35712,A A A x x ===,这与17A A ⋂=∅矛盾;②假设集合B 中含有5个元素,可设{}1612,A A x x ==,{}2734,A A x x ==,{}351,A x x =,{}423,A x x =,{}545,A x x =,满足题意.综上所述,集合B 中元素个数最少为5.故选:A.【点睛】关键点点睛:本题考查集合元素个数的最值的求解,解题的关键在于对集合元素的个数由小到大进行分类,对集合中的元素进行分析,验证题中条件是否成立即可.二、多选题2.(2024·浙江宁波·二模)指示函数是一个重要的数学函数,通常用来表示某个条件的成立情况.已知U 为全集且元素个数有限,对于U 的任意一个子集S ,定义集合S 的指示函数()()U 1,1,10,S S x Sx x x S∈⎧=⎨∈⎩ð若,,A B C U ⊆,则()注:()x Mf x ∈∑表示M 中所有元素x 所对应的函数值()f x 之和(其中M 是()f x 定义域的子集).A .1()1()A A x Ax Ux x ∈∈<∑∑B .1()1()1()A B A A B x x x ⋂⋃≤≤C .()1()1()1()1()1()A B A B A B x Ux Ux x x x x ⋃∈∈=+-∑∑D .()()()11()11()11()1()1()A B C U A B C x Ux Ux Ux x x x x ⋃⋃∈∈∈---=-∑∑∑【答案】BCD【分析】根据()1S x 的定义()U 1,10,S x Sx x S ∈⎧=⎨∈⎩ð,即可结合选项逐一求解.【详解】对于A ,由于A U ⊆,所以1()1()1()1(),uA A A A x U x A x A x Ax x x x ∈∈∈∈=+=∑∑∑∑ð故1()1()A A x Ax Ux x ∈∈=∑∑,故A 错误,对于B ,若x A B ∈ ,则1()1,1()1,1()1A B A A B x x x ⋂⋃===,此时满足1()1()1()A B A A B x x x ⋂⋃≤≤,若x A ∈且x B ∉时,1()0,1()1,1()1A B A A B x x x ⋂⋃===,若x B ∈且x A ∉时,1()0,1()0,1()1A B A A B x x x ⋂⋃===,若x A ∉且x B ∉时,1()0,1()0,1()0A B A A B x x x ⋂⋃===,综上可得1()1()1()A B A A B x x x ⋂⋃≤≤,故B 正确,对于C ,()()()()()1()1()1()1()1()1()1()1()1()1()1()1()U UAB A B AB A B AB A B x Ux A B x B A x x x x x x x x x x x x ∈∈⋂∈⋂+-=+-++-∑∑∑痧()()()()1()1()1()1()1()1()1()1()U ABABABABx A B x A Bx x x x x x x x ∈⋂∈⋃++-++-∑∑ð()()()()()()()1()1()1()1()1()1()1()1()1()1()1()1()0U U U ABABABABABABx A B x A B x A B x B A x x x x x x x x x x x x ∈⋂∈⋃∈⋂∈⋂=+-++-++-+∑∑∑∑ð痧()()1()1()1()1()ABABx A B x x x x ∈⋃=+-∑而()1()1()1()1()U A B A BA B A Bx Ux A Bx A Bx A Bx x x x ⋃⋃⋃⋃∈∈⋃∈⋃∈⋃=+=∑∑∑∑ð,由于()()()U 1,10,A B x A Bx x A B ⋃∈⋃⎧=⎨∈⋃⎩ð,所以1()1()1()1()1()A B A B A B x x x x x ⋃+-=故()1()1()1()1()1()A B AB A B x U x Ux x x x x ⋃∈∈=+-∑∑,C 正确,()1()1()1()U UA B C U x Ux Ux A B C x x x ⋃⋃∈∈∈⋃⋃-=∑∑∑ð,当x A B C ∈⋃⋃时,此时()()()1,1,1A B C x x x 中至少一个为1,所以()()()11()11()11()0A B C x x x ---=,当()x A B C ∉⋃⋃时,此时()()()1,1,1A B C x x x 均为0,所以()()()11()11()11()1A B C x x x ---=,故()()()()()()()()11()11()11()11()11()11()1()UU A B C A B C A B C U x U x x A B C x x x x x x x ⋃⋃∈∈∈⋃⋃---=---=∑∑∑痧,故D 正确,故选:BCD【点睛】关键点点睛:充分利用()1S x 的定义()U 1,10,S x Sx x S ∈⎧=⎨∈⎩ð以及()x M f x ∈∑的定义,由此可得()x A B C ∉⋃⋃时,此时1(),1(),I ()A B C x x x 均为0,x A B C ∈⋃⋃时,此时1(),1(),I ()A B C x x x 中至少一个为1,结合()1S x 的定义化简求解.三、填空题3.(23-24高三上·江西·期末)定义:有限集合{}++,,N ,N i A x x a i n i n ==≤∈∈,12n S a a a =+++ 则称S 为集合A 的“元素和”,记为A .若集合(){}+12,,N ,N i P x x i i n i n +==+≤∈∈,集合P 的所有非空子集分别为1P ,2P ,…,k P ,则12k P P P +++=.四、解答题4.(2024·浙江台州·二模)设A ,B 是两个非空集合,如果对于集合A 中的任意一个元素x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的元素y 和它对应,并且不同的x 对应不同的y ;同时B 中的每一个元素y ,都有一个A 中的元素x 与它对应,则称f :A B →为从集合A 到集合B 的一一对应,并称集合A 与B 等势,记作A B =.若集合A 与B 之间不存在一一对应关系,则称A 与B 不等势,记作A B ≠.例如:对于集合*N A =,{}*2N B n n =∈,存在一一对应关系()2,y x x A y B =∈∈,因此A B =.(1)已知集合(){}22,1C x y x y =+=,()22,|143x y D x y ⎧⎫=+=⎨⎬⎩⎭,试判断C D =是否成立?请说明理由;(2)证明:①()()0,1,=-∞+∞;②{}**N N x x ≠⊆.【答案】(1)成立,理由见解析(2)①证明见解析;②证明见解析5.(2024·北京延庆·一模)已知数列{}n a ,记集合()(){}*1,,...,1,,N i i j T S i j S i j a a a i j i j +==+++≤<∈.(1)若数列{}n a 为1,2,3,写出集合T ;(2)若2n a n =,是否存在*,N i j ∈,使得(),512S i j =?若存在,求出一组符合条件的,i j ;若不存在,说明理由;(3)若n a n =,把集合T 中的元素从小到大排列,得到的新数列为12,,...,,...m b b b ,若2024m b ≤,求m 的最大值.若正整数()221t h k =+,其中*N,N t k ∈∈,则当1221t k +>+时,由等差数列的性质可得:()()()()()()()22122...2221...21221...212t t t t t t t t t t t h k k k k k =+=+++=-+-+++-++++++-++,此时结论成立,当1221t k +<+时,由等差数列的性质可得:()()()()()()()()2121...2121...112...2t t h k k k k k k k k k =++++++=-+++-++++++++,此时结论成立,对于数列n a n =,此问题等价于数列1,2,3,...n 其相应集合T 中满足2024m b ≤有多少项,由前面证明可知正整数1,2,4,8,16,32,64,128,256,512,1024不是T 中的项,所以m 的最大值为2013.。
高考数学一轮复习第一章集合与常用逻辑用语第1节集合科市赛课公开课一等奖省名师优质课获奖PPT课件
则(
)
A.A=B
B.A∩B=Ø
C.A B
D.B A
[解析] ∵A={1,2,3},B={2,3},∴B A.
[答案] D
11/61
4.(2016·北京东城期末统测)已知集合 A={x|0<x<2},B
={x|(x-1)(x+1)>0},则 A∪B=(
)
A.(0,1)
B.(1,2)
C.(-∞,-1)∪(0,+∞)
1)·(x-2)<0,x∈Z},则 A∪B=(
)
A.{1}
B.{1,2}
C.{0,1,2,3}
D.{-1,0,1,2,3}
[解析] ∵B={x|-1<x<2,x∈Z}={0,1},
∴A∪B={0,1,2,3}.
[答案] C
10/61
3.(2015·重庆卷)已知集合 A={1,2,3},B={2,3},
{x|ax+1=0},若 S⊆P,则实数 a 的取值组成的集合是(
)
1 A.3 C.13,-12
B.-12 D.0,13,-12
30/61
[解析] 由题意得,P={-3,2}. 当 a=0 时,S=Ø,满足 S⊆P; 当 a≠0 时,方程 ax+1=0 的解为 x=-1a, 为满足 S⊆P,可使-1a=-3,或-1a=2, 即 a=13,或 a=-12. 故所求集合为0,13,-12. [答案] D
B={x|y=lg(x2+x)},设 U=R,则 A∩(∁UB)等于(
)
A.[3,+∞)
B.(-1,0]解析] 解不等式|x-1|<2 得-1<x<3,所以 A={x|-
1<x<3}.要使函数 y=lg(x2+x)有意义,须 x2+x>0,解得 x<
2024年高考数学第一轮复习重点总结(2篇)
2024年高考数学第一轮复习重点总结一、函数与方程1. 函数的概念与性质- 函数的定义:给定一个集合X和Y,如果对于集合X中的每个元素x,都有唯一一个元素y与之对应,那么就称这个对应关系为函数,记作y = f(x)。
- 函数的性质:定义域、值域、图像、奇偶性、单调性等。
2. 一次函数与二次函数- 一次函数:y = kx + b,其中k为斜率,b为截距。
掌握一次函数的图像、性质和应用。
- 二次函数:y = ax^2 + bx + c,其中a ≠ 0。
掌握二次函数的图像、性质和应用,包括顶点坐标、对称轴、开口方向、零点等。
3. 指数与对数函数- 指数函数:y = a^x,其中a>0且a≠1。
掌握指数函数的图像、性质和应用,包括定义域、值域、增减性等。
- 对数函数:y = loga(x),其中a>0且a≠1。
掌握对数函数的图像、性质和应用,包括定义域、值域、增减性等,以及常用对数函数的特殊性质。
4. 复合函数与反函数- 复合函数:由两个或多个函数通过代数运算得到的新函数。
掌握复合函数的性质和计算方法。
- 反函数:函数f(x)的反函数记作f^(-1)(x),满足f(f^(-1)(x)) = f^(-1)(f(x)) = x。
掌握反函数的概念、性质和计算方法。
5. 方程与不等式- 方程的解:使方程两边相等的未知数的值。
掌握一元一次方程、一元二次方程的解法,以及应用题中方程的建立和解题方法。
- 不等式的解:使不等式左边大于、小于或等于右边的未知数的值。
掌握一元一次不等式、一元二次不等式的解法,以及应用题中不等式的建立和解题方法。
二、数与数量关系1. 数列与数列求和- 数列的概念与表示:数列是按照一定规律排列起来的一组数。
掌握等差数列、等比数列的概念与表示方法,以及常见数列的性质。
- 数列的通项公式:根据数列的规律,确定数列的通项公式。
掌握等差数列、等比数列的通项公式,以及应用题中数列的建立和求解方法。
2025年高考数学一轮复习(新高考版)第1章 §1.1 集 合
C.集合P={x|x=3k,k∈Z}为数域
√D.有理数集为数域
对于A,若a∈F,则a-a=0∈F,故A正确; 对于 B,若 a∈F 且 a≠0,则 1=aa∈F,2=1+1∈F,3=1+2∈F, 依此类推,可得 2 023∈F,故 B 正确; 对于 C,P={x|x=3k,k∈Z},3∈P,6∈P,但36∉P,故 P 不是数域,故 C 错误; 对于 D,若 a,b 是两个有理数,则 a+b,a-b,ab,ab(b≠0)都是有 理数,所以有理数集是数域,故 D 正确.
命题点2 利用集合的运算求参数的值(范围)
例4 (2023·衡水模拟)已知集合A={x|y=ln(1-x2)},B={x|x≤a},若
(∁RA)∪B=R,则实数a的取值范围为
A.(1,+∞)
√B.[1,+∞)
C.(-∞,1)
D.(-∞,1]
由题可知A={x|y=ln(1-x2)}={x|-1<x<1}, ∁RA={x|x≤-1或x≥1}, 所以由(∁RA)∪B=R,得a≥1.
(2)设全集U=R,A={x|-2≤x<4},B={x|y= x+2},则图中阴影部分 表示的集合为 A.{x|x≤-2} B.{x|x>-2}
√C.{x|x≥4}
D.{x|x≤4}
观察Venn图,可知阴影部分的元素由属于B而不属于A的元素构成, 所以阴影部分表示的集合为(∁UA)∩B. ∵A={x|-2≤x<4},U=R, ∴∁UA={x|x<-2或x≥4}, 又B={x|y= x+2 }⇒B={x|x≥-2}, ∴(∁UA)∩B={x|x≥4}.
√A.[1,4)
C.[4,+∞)
高考数学集合知识点第一轮复习
高考数学集合知识点第一轮复习:在高三的同学们进行第一轮复习的重要阶段,精品的高三频道为大家准备了高考数学集合知识点第一轮复习希望帮助同学们复习高三数学重要的必考知识点,欢迎大家积极参考!集合是近代数学中的一个重要概念,它不仅与高中数学的许多内容有着紧密的联系,而且已经渗透到自然科学的众多领域,应用十分广泛。
掌握好集合的知识既是数学学习本身的需要,也是全面提高数学素养的一个必不可少的内容。
进入高中,学习数学的第一课,就是集合。
由于集合单元的概念抽象,符号术语多,研究方法跟学习初中数学时有着明显的差异,致使部分同学初学集合时,感到难以适应,常常因为这样那样的原因造成解题失误,形成思维障碍,甚至影响整个高中数学的学习。
为了帮助同学们解决这一问题,本文谈谈在集合学习中值得注意的几个事项,供大家参考。
一、准确地把握集合的概念,熟练地运用集合与集合的关系解决具体问题概念抽象、符号术语多是集合单元的一个显著特点,例如交集、并集、补集的概念及其表示方法,集合与元素的关系及其表示方法,集合与集合的关系及其表示方法,子集、真子集和集合相等的定义等等。
这些概念、关系和表示方法,都可以作为求解集合问题的依据、出发点甚至是突破口。
因此,要想学好集合的内容,就必须在准确地把握集合的概念,熟练地运用集合与集合的关系解决具体问题上下功夫。
二、注意弄清集合元素的性质,学会运用元素分析法审视集合的有关问题众所周知,集合可以看成是一些对象的全体,其中的每一个对象叫做这个集合的元素。
集合中的元素具有三性:(1)、确定性:集合中的元素应该是确定的,不能模棱两可。
(2)、互异性:集合中的元素应该是互不相同的,相同的元素在集合中只能算作一个。
(3)、无序性:集合中的元素是无次序关系的。
集合的关系、集合的运算等等都是从元素的角度予以定义的。
因此,求解集合问题时,抓住元素的特征进行分析,就相当于牵牛抓住了牛鼻子。
三、体会集合问题中蕴含的数学思想方法,掌握解决集合问题的基本规律布鲁纳说过,掌握数学思想可使得数学更容易理解和记忆,领会数学思想是通向迁移大道的光明之路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学(集合)第一轮复习资料知识点总结123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩试题讲解第一节 集合的含义、表示及基本关系A 组1.已知A ={1,2},B ={x |x ∈A },则集合A 与B 的关系为________.解析:由集合B ={x |x ∈A }知,B ={1,2}.答案:A =B2.若{x |x 2≤a ,a ∈R }非空,则实数a 的取值范围是________.解析:由题意知,x 2≤a 有解,故a ≥0.答案:a ≥03.已知集合A ={y |y =x 2-2x -1,x ∈R },集合B ={x |-2≤x <8},则集合A 与B 的关系是________.解析:y =x 2-2x -1=(x -1)2-2≥-2,∴A ={y |y ≥-2},∴B A .答案:B A4.(2009年高考广东卷改编)已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是________.解析:由N={x|x 2+x=0},得N ={-1,0},则N M .答案:②5.(2010年苏、锡、常、镇四市调查)已知集合A ={x |x >5},集合B ={x |x >a },若命题“x ∈A ”是命题“x ∈B ”的充分不必要条件,则实数a 的取值范围是________.解析:命题“x ∈A ”是命题“x ∈B ” 的充分不必要条件,∴A B ,∴a <5.答案:a <56.(原创题)已知m ∈A ,n ∈B ,且集合A ={x |x =2a ,a ∈Z },B ={x |x =2a +1,a ∈Z },又C ={x |x =4a +1,a ∈Z },判断m +n 属于哪一个集合?解:∵m ∈A ,∴设m =2a 1,a 1∈Z ,又∵n ∈B ,∴设n =2a 2+1,a 2∈Z ,∴m +n =2(a 1+a 2)+1,而a 1+a 2∈Z ,∴m +n ∈B .B 组1.设a ,b 都是非零实数,y =a |a |+b |b |+ab |ab |可能取的值组成的集合是________. 解析:分四种情况:(1)a >0且b >0;(2)a >0且b <0;(3)a <0且b >0;(4)a <0且b <0,讨论得y =3或y =-1.答案:{3,-1}2.已知集合A ={-1,3,2m -1},集合B ={3,m 2}.若B ⊆A ,则实数m =________.解析:∵B ⊆A ,显然m 2≠-1且m 2≠3,故m 2=2m -1,即(m -1)2=0,∴m =1.答案:13.设P ,Q 为两个非空实数集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是________个.解析:依次分别取a =0,2,5;b =1,2,6,并分别求和,注意到集合元素的互异性,∴P +Q ={1,2,6,3,4,8,7,11}.答案:84.已知集合M ={x |x 2=1},集合N ={x |ax =1},若N M ,那么a 的值是________.解析:M ={x |x =1或x =-1},N M ,所以N =∅时,a =0;当a ≠0时,x =1a=1或-1,∴a =1或-1.答案:0,1,-15.满足{1}A ⊆{1,2,3}的集合A 的个数是________个.解析:A 中一定有元素1,所以A 有{1,2},{1,3},{1,2,3}.答案:36.已知集合A ={x |x =a +16,a ∈Z },B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z },则A 、B 、C 之间的关系是________.解析:用列举法寻找规律.答案:A B =C7.集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的________.解析:结合数轴若A ⊆B ⇔a ≥4,故“A ⊆B ”是“a >5”的必要但不充分条件.答案:必要不充分条件8.(2010年江苏启东模拟)设集合M ={m |m =2n ,n ∈N ,且m <500},则M 中所有元素的和为________.解析:∵2n <500,∴n =0,1,2,3,4,5,6,7,8.∴M 中所有元素的和S =1+2+22+…+28=511.答案:5119.(2009年高考北京卷)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:依题可知,由S 的3个元素构成的所有集合中,不含“孤立元”,这三个元素一定是相连的三个数.故这样的集合共有6个.答案:610.已知A ={x ,xy ,lg(xy )},B ={0,|x |,y },且A =B ,试求x ,y 的值.解:由lg(xy )知,xy >0,故x ≠0,xy ≠0,于是由A =B 得lg(xy )=0,xy =1.∴A ={x,1,0},B ={0,|x |,1x}. 于是必有|x |=1,1x=x ≠1,故x =-1,从而y =-1. 11.已知集合A ={x |x 2-3x -10≤0},(1)若B ⊆A ,B ={x |m +1≤x ≤2m -1},求实数m 的取值范围;(2)若A ⊆B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围;(3)若A =B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围.解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5},(1)∵B ⊆A ,∴①若B =∅,则m +1>2m -1,即m <2,此时满足B ⊆A .②若B ≠∅,则⎩⎪⎨⎪⎧ m +1≤2m -1,-2≤m +1,2m -1≤5.解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3].(2)若A ⊆B ,则依题意应有⎩⎪⎨⎪⎧ 2m -1>m -6,m -6≤-2,2m -1≥5.解得⎩⎪⎨⎪⎧ m >-5,m ≤4,m ≥3.故3≤m ≤4,∴m 的取值范围是[3,4].(3)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5,解得m ∈∅.,即不存在m 值使得A =B . 12.已知集合A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}.(1)若A 是B 的真子集,求a 的取值范围;(2)若B 是A 的子集,求a 的取值范围;(3)若A =B ,求a 的取值范围.解:由x 2-3x +2≤0,即(x -1)(x -2)≤0,得1≤x ≤2,故A ={x |1≤x ≤2},而集合B ={x |(x -1)(x -a )≤0},(1)若A 是B 的真子集,即A B ,则此时B ={x |1≤x ≤ a },故a >2.(2)若B 是A 的子集,即B ⊆A ,由数轴可知1≤a ≤2.(3)若A =B ,则必有a =2第二节 集合的基本运算A 组1.(2009年高考浙江卷改编)设U =R ,A ={x |x >0},B ={x |x >1},则A ∩∁U B =____.解析:∁U B ={x |x ≤1},∴A ∩∁U B ={x |0<x ≤1}.答案:{x |0<x ≤1}2.(2009年高考全国卷Ⅰ改编)设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有________个.解析:A ∩B ={4,7,9},A ∪B ={3,4,5,7,8,9},∁U (A ∩B )={3,5,8}.答案:33.已知集合M ={0,1,2},N ={x |x =2a ,a ∈M },则集合M ∩N =________.解析:由题意知,N ={0,2,4},故M ∩N ={0,2}.答案:{0,2}4.(原创题)设A ,B 是非空集合,定义A ⓐB ={x |x ∈A ∪B 且x ∉A ∩B },已知A ={x |0≤x ≤2},B ={y |y ≥0},则A ⓐB =________.解析:A ∪B =[0,+∞),A ∩B =[0,2],所以A ⓐB =(2,+∞).答案:(2,+∞)5.(2009年高考湖南卷)某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设两项运动都喜欢的人数为x ,画出韦恩图得到方程15-x +x +10-x +8=30x =3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12(人).答案:126.(2010年浙江嘉兴质检)已知集合A ={x |x >1},集合B ={x |m ≤x ≤m +3}.(1)当m =-1时,求A ∩B ,A ∪B ;(2)若B ⊆A ,求m 的取值范围.解:(1)当m =-1时,B ={x |-1≤x ≤2},∴A ∩B ={x |1<x ≤2},A ∪B ={x |x ≥-1}.(2)若B ⊆A ,则m >1,即m 的取值范围为(1,+∞)B 组1.若集合M ={x ∈R |-3<x <1},N ={x ∈Z |-1≤x ≤2},则M ∩N =________.解析:因为集合N ={-1,0,1,2},所以M ∩N ={-1,0}.答案:{-1,0}2.已知全集U ={-1,0,1,2},集合A ={-1,2},B ={0,2},则(∁U A )∩B =________.解析:∁U A ={0,1},故(∁U A )∩B ={0}.答案:{0}3.(2010年济南市高三模拟)若全集U =R ,集合M ={x |-2≤x ≤2},N ={x |x 2-3x ≤0},则M ∩(∁U N )=________.解析:根据已知得M ∩(∁U N )={x |-2≤x ≤2}∩{x |x <0或x >3}={x |-2≤x <0}.答案:{x |-2≤x <0}4.集合A ={3,log 2a },B ={a ,b },若A ∩B ={2},则A ∪B =________.解析:由A ∩B ={2}得log 2a =2,∴a =4,从而b =2,∴A ∪B ={2,3,4}.答案:{2,3,4}5.(2009年高考江西卷改编)已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为________.解析:U =A ∪B 中有m 个元素,∵(∁U A )∪(∁U B )=∁U (A ∩B )中有n 个元素,∴A ∩B 中有m -n 个元素.答案:m -n6.(2009年高考重庆卷)设U ={n |n 是小于9的正整数},A ={n ∈U |n 是奇数},B ={n ∈U |n 是3的倍数},则∁U (A ∪B )=________.解析:U ={1,2,3,4,5,6,7,8},A ={1,3,5,7},B ={3,6},∴A ∪B ={1,3,5,6,7},得∁U (A ∪B )={2,4,8}.答案:{2,4,8}7.定义A ⊗B ={z |z =xy +x y,x ∈A ,y ∈B }.设集合A ={0,2},B ={1,2},C ={1},则集合(A ⊗B )⊗C 的所有元素之和为________.解析:由题意可求(A ⊗B )中所含的元素有0,4,5,则(A ⊗B )⊗C 中所含的元素有0,8,10,故所有元素之和为18.答案:188.若集合{(x ,y )|x +y -2=0且x -2y +4=x ,y )|y =3x +b },则b =________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧ x =0,y =2.点(0,2)在y =3x +b 上,∴b =2. 9.设全集I ={2,3,a 2+2a -3},A ={2,|a +1|},∁I A ={5},M ={x |x =log 2|a |},则集合M 的所有子集是________.解析:∵A ∪(∁I A )=I ,∴{2,3,a 2+2a -3}={2,5,|a +1|},∴|a +1|=3,且a 2+2a -3=5,解得a =-4或a =2,∴M ={log 22,log 2|-4|}={1,2}.答案:∅,{1},{2},{1,2}10.设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.解:由x 2-3x +2=0得x =1或x =2,故集合A ={1,2}.(1)∵A ∩B ={2},∴2∈B ,代入B 中的方程,得a 2+4a +3=0⇒a =-1或a =-3;当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件;综上,a 的值为-1或-3.(2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3).∵A ∪B =A ,∴B ⊆A ,①当Δ<0,即a <-3时,B =∅满足条件;②当Δ=0,即a =-3时,B ={2}满足条件;③当Δ>0,即a >-3时,B =A ={1,2}才能满足条件,则由根与系数的关系得⎩⎪⎨⎪⎧ 1+2=-2(a +1)1×2=a 2-5⇒⎩⎪⎨⎪⎧a =-52,a 2=7,矛盾.综上,a 的取值范围是a ≤-3. 11.已知函数f (x )= 6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解:A ={x |-1<x ≤5}.(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},∴有-42+2×4+m =0,解得m =8,此时B ={x |-2<x <4},符合题意.12.已知集合A ={x ∈R |ax 2-3x +2=0}.(1)若A =∅,求实数a 的取值范围;(2)若A 是单元素集,求a 的值及集合A ;(3)求集合M ={a ∈R |A ≠∅}.解:(1)A 是空集,即方程ax 2-3x +2=0无解.若a =0,方程有一解x =23,不合题意. 若a ≠0,要方程ax 2-3x +2=0无解,则Δ=9-8a <0,则a >98. 综上可知,若A =∅,则a 的取值范围应为a >98. (2)当a =0时,方程ax 2-3x +2=0只有一根x =23,A ={23}符合题意. 当a ≠0时,则Δ=9-8a =0,即a =98时, 方程有两个相等的实数根x =43,则A ={43}. 综上可知,当a =0时,A ={23};当a =98时,A ={43}. (3)当a =0时,A ={23}≠∅.当a ≠0时,要使方程有实数根, 则Δ=9-8a ≥0,即a ≤98. 综上可知,a 的取值范围是a ≤98,即M ={a ∈R |A ≠∅}={a |a ≤98}。