高考数学集合专题复习
2023届高考复习数学易错题专题(集合)汇编 (附答案)
2023届高考复习数学易错题专题(集合)汇编1.若22{1,1,1}a a ∈++,则a =( )A .2B .1或-1C .1D .-12.若集合{1,1}A =-,{|1}B x mx ==,且A B A ⋃=,则m 的值为( )A .1或0B .1-或0C .1或1-或0D .1或1-或23.(多选题)已知集合{}22,4,A m=,{}2,B m =,A B A ⋃=,则实数m 的值可能为( ) A .0 B .1 C .2 D .44.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围为( )A .[]3,3-B .(],2-∞C .(][),33,-∞-+∞D .(],3-∞ 5.下列集合中表示同一集合的是( )A .{(3,2)}M =,{(2,3)}N =B .{2,3}M =,{3,2}N =C .{(,)1}M x y x y =+=∣,{1}N y x y =+=∣ D .{2,3}M =,{(2,3)}N = 6.若集合{}2|1,{|1}A x x B x mx ====且B A ⊆,则实数m 的集合为( ) A .{1,0,1}- B .{1,1}- C .{1,0}- D .{0,1} 7.已知集合A ={x |y =log 2(x 3-1)},B ={y |y =x -2},则A ∩B =( )A .(1,+∞)B .(-1,2]C .[2,+∞)D .∅8.(多选题)已知集合{}23180A x R x x =∈--<,{}22270B x R x ax a =∈++-<,则下列命题中正确的是( )A .若AB =,则3a =-B .若A B ⊆,则3a =-C .若B =∅,则6a ≤-或6a ≥D .若3a =,则{}36A B x x ⋂=-<< 9.用列举法可以将集合{A a a =使方程221=0ax x ++有唯一实数解}表示为( )A .{}1A =B .{}0A =C .{}0,1A =D .{}0A =或{}110.(多选题)已知集合2{|log 0}A x x =≤,集合1{|0}1y B y y +=≥-,集合1{|3}9z D z =≥,则( ) A .A D R ⋃=B .A B =∅C .()R A B ⋃ðD D .R D ð B11.已知{}22,25,12A a a a =-+其3A -∈,则由a 的值构成的集合是( )A .∅B .31,2⎧⎫--⎨⎬⎩⎭ C .{}-1 D .32⎧⎫-⎨⎬⎩⎭12.已知集合A ={x |-1≤x ≤3},集合B ={x |1-m ≤x ≤1+m }.若B ⊆A ,则m 的取值范围是( ) A .(-∞,2]B .[-1,3]C .[-3,1]D .[0,2]13.已知集合{}20,,32A m m m =-+,且2A ∈,则实数m 的值为 ( )A .3B .2C .0或3D .0或2或3 14.含有三个实数的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则20192020+a b 的值是________.15.已知集合{1A x x =<-或}4x >,{}23B x a x a =≤≤+,若B A ⊆,则实数a 的取值范围是________. 16.设集合A ={x ∣2x −3x +2=0},B ={x ∣2x +2(a +1)x +2a −5=0},若U =R ,A ∩(∁ B )=A ,求实数a 的取值范围.17.已知集合A ={x |0<ax +1≤5},集合B ={x |-12<x ≤2}.若B ⊆A ,求实数a 的取值范围. 18.(1)设集合A ={a 2,a +1,-1},B ={2a -1,|a -2|,3a 2+4},A ∩B ={-1},求实数a 的值.(2)设集合{}2,21,4A x x =--,{}5,1,9B x x =--,若{}9A B ⋂=,求实数x 的值. 19.已知集合{}24A x x =<<,()(){}30B x x a x a =--<.(1)若A B =∅ ,求实数a 的取值范围;(2)若{}34A B x x ⋂=<<,求实数a 的取值范围. 20.设集合{}2|320A x x x =-+=,{}22|2(1)50B x x a x a =+++-=.(1)若{2}A B = ,求实数a 的值;(2)若A B A ⋃=,求实数a 的取值范围;答案解析1.若22{1,1,1}a a ∈++,则a =( )A .2B .1或-1C .1D .-1 【参考答案】D【答案解析】当212a +=时,1a =±,当1a =时,2112a a +=+=,不满足互异性,舍去,当1a =-时,集合为{1,2,0},满足;当12a +=时,1a =,不满足互异性,舍去.综上1a =-. 2.若集合{1,1}A =-,{|1}B x mx ==,且A B A ⋃=,则m 的值为( )A .1或0B .1-或0C .1或1-或0D .1或1-或2 【参考答案】C【答案解析】,A B A B A ⋃=⊆ ∴,B ∴=∅;{1}B =-;{1}B =,当B =∅时,0m =;当{1}B =-时,1m =-,当{1}B =时,1m =,故m 的值是0;1;1-。
【高中数学】《集合》高考常考题型(后附解析)
《集合》常考题型题型一.通过集合的关系求参数范围1.已知集合2{|320}A x x x =−+=,22{|2(1)(5)0}B x x a x a =−++−=,A B A =,实数a 的取值范围是 . 2.已知全集U R =,集合{|25}A x x =−,{|121}B x a x a =+−,且U A B ⊆,实数a 的取值范围是 . 3.已知集合2{|10}A x R x ax =∈++=和{1B =,2},且A B ⊆,则实数a 的取值范围是 . 题型二.子集个数问题4.用d (A )表示集合A 中的元素个数,若集合22{|()(1)0}A x x ax x ax =−−+=,{0B =,1},且|d (A )d−(B )|1=.设实数a 的所有可能取值构成集合M ,则()(d M = )A .3B .2C .1D .4 题型三.集合与元素的关系5.设A 是非空数集,0A ∉,1A ∉,且满足条件:若a A ∈,则11A a∈−. 证明:(1)若2A ∈,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集;(3)集合A 中至少有三个不同的元素.参考答案1.已知集合2{|320}A x x x =−+=,22{|2(1)(5)0}B x x a x a =−++−=,AB A =,求实数a 的取值范围.【解答】解:由2320x x −+=解得1x =,2.{1A ∴=,2}.A B A =,B A ∴⊆. 1B ︒=∅,△8240a =+<,解得3a <−.2︒若{1}B =或{2},则△0=,解得3a =−,此时{2}B =−,不符合题意.3︒若{1B =,2},∴2122(1)125a a +=+⎧⎨⨯=−⎩,此方程组无解. 综上:3a <−.∴实数a 的取值范围是(,3)−∞−.2.已知全集U R =,集合{|25}A x x =−,{|121}B x a x a =+−,且U A B ⊆,求实数a 的取值范围. 【解答】解:{|121}B x a x a =+−,且U A B ⊆,B ∴=∅,或211a a −>+,解得2a >, ①{|1U B x x a =<+,或21}x a >−,∴251a a ⎧⎨<+⎩或2212a a ⎧⎨−<−⎩, 解得4a >或a ∈∅.此时实数a 的取值范围为4a >.②当B =∅,U B R =,满足U A B ⊆,121a a ∴+>−,解得2a <.综上可得:实数a 的取值范围为4a >或2a <.3.已知集合2{|10}A x R x ax =∈++=和{1B =,2},且A B ⊆,则实数a 的取值范围是[2−,2). 【解答】解:因为A B ⊆,所以A =∅或{1}A =,{2}A =或{1A =,2}. 若A =∅,则△240a =−<,解得22a −<<.若{1}A =应有△240a =−=且110a ++=,解得2a =−.若{2}A =时,应有△240a =−=且4210a ++=,此时无解. 若{1A =,2},则1,2是方程210x ax ++=的两个根,所以由根与系数的关系得121⨯=,显然不成立.综上满足条件的实数a 的取值范围是22a −<.故答案为:[2−,2).4.用d (A )表示集合A 中的元素个数,若集合22{|()(1)0}A x x ax x ax =−−+=,{0B =,1},且|d (A )d−(B )|1=.设实数a 的所有可能取值构成集合M ,则()(d M = )A .3B .2C .1D .4【解答】解:由题意,d (B )2=,|d (A )d −(B )|1=,d ∴(A )1=或3, 方程22()(1)0x ax x ax −−+=可化为20x ax −=或210x ax −+=, 即0x =或x a =或210x ax −+=,①若d (A )1=,则方程22()(1)0x ax x ax −−+=有且只有一个解,故0a =,此时方程22(1)0x x +=有且只有一个解;②若d (A )3=,则方程22()(1)0x ax x ax −−+=有三个不同的解,则2040a a ≠⎧⎨−=⎩,解得,2a =±, 经检验,2a =±时,方程22()(1)0x ax x ax −−+=有三个不同的解,综上所述,{0M =,2−,2},故()3d M =, 故选:A .5.设A 是非空数集,0A ∉,1A ∉,且满足条件:若a A ∈,则11A a ∈−. 证明:(1)若2A ∈,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集;(3)集合A 中至少有三个不同的元素.【解答】解:(1)若2A ∈,则1112A =−∈−,于是()11112A =∈−−, 故集合A 中还含有1−,12两个元素. (2)若A 为单元素集,则11a a =−,即210a a −+=,此方程无实数解,∴11a a≠−, ∴a 与11a−都为集合A 的元素,则A 不可能是单元素集. (3)由A 是非空集合知存在1111111a a A A A a a a−∈⇒∈⇒=∈−−−−. 现只需证明a 、11a −、1a a−−三个数互不相等. ①若21101a a a a =⇒−+=−,方程无解,∴11a a≠−; ②若2110a a a a a −=⇒−+=−,方程无解;∴1a a a−≠−; ③若211101a a a a a −=⇒−+=−−,方程无解,∴111a a a −≠−−, 故集合A 中至少有三个不同的元素.。
集 合_高考数学复习专题
集合_高考数学复习专题集合——高考数学复习专题在高考数学中,集合是一个基础而重要的概念,它不仅是后续学习其他数学知识的基石,也是高考中经常考查的内容。
对于同学们来说,掌握好集合的相关知识,对于提高数学成绩、建立良好的数学思维有着至关重要的作用。
集合是什么呢?简单来说,集合就是把一些确定的、不同的对象汇集在一起组成的一个整体。
比如,咱们班所有同学就可以组成一个集合,学校里所有的老师也能组成一个集合。
集合通常用大写字母来表示,比如 A、B、C 等等。
集合中的元素则用小写字母表示,比如a、b、c 。
如果一个元素x 属于某个集合A,我们就记作 x ∈ A ,如果不属于,就记作 x ∉ A 。
集合的表示方法有好几种。
列举法,就是把集合中的元素一个一个地列出来,像{1, 2, 3, 4, 5},这就清楚地表示了一个由 1 到 5 这几个数字组成的集合。
描述法呢,是通过描述元素所具有的共同特征来表示集合,比如{x | x 是小于 10 的正整数},这就表示了由 1 到 9 这些正整数组成的集合。
高考中常常考查集合之间的关系。
集合与集合之间,有子集、真子集和相等这几种关系。
如果集合 A 中的所有元素都在集合 B 中,那 A就是 B 的子集,记作 A ⊆ B 。
要是 A 是 B 的子集,并且 B 中还有 A没有的元素,那 A 就是 B 的真子集,记作 A ⊂ B 。
如果 A 和 B 中的元素完全一样,那它们就相等,记作 A = B 。
集合的运算也是重点。
交集,就是两个集合中共同的元素组成的新集合,记作A ∩ B 。
并集,则是把两个集合中的所有元素合在一起组成的新集合,记作 A ∪ B 。
补集呢,是在一个给定的全集 U 中,集合A 的补集就是由不属于 A 但属于 U 的元素组成的集合,记作 C U A 。
比如说,集合 A ={1, 2, 3},集合 B ={2, 3, 4},那么A ∩ B ={2, 3},A ∪ B ={1, 2, 3, 4}。
2023年高考数学真题实战复习(2022高考+模考题)专题01 集合问题(解析版)
专题01 集合问题【高考真题】1.(2022·全国乙理)设全集U ={1,3,4,5},集合M 满足∁U M ={1,3},则( )A .2∈MB .3∈MC .4∉MD .5∉M1.答案 A 解析 由题知M ={2,4,5},对比选项知,A 正确.故选A .2.(2022·全国乙文)集合M ={2,4,6,8,10},N ={x |-1<x <6},则M ∩N =( )A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}2.答案 A 解析 因为M ={2,4,6,8,10},N ={x |-1<x <6},所以M ∩N ={2,4}.故选A .3.(2022·全国甲理)设全集U ={-2,-1,0,1,2,3},集合A ={-1,2},B ={x |x 2-4x +3=0},则 ∁U (A ∪B )=( )A .{1,3}B .{0,3}C .{-2,1}D .{-2,0}3.答案 D 解析 由题意,B ={x |x 2-4x +3=0}={1,3},所以A ∪B ={-1,1,2,3},所以∁U (A ∪B )={-2,0}.故选D .4.(2022·全国甲文)设集合A ={-2,-1,0,1,2},B ={x |0≤x <52},则A ∩B =( ) A .{0,1,2} B .{-2,-1,0} C .{0,1} D .{1,2}4.答案 A 解析 因为A ={-2,-1,0,1,2},B ={x |0≤x <52},所以A ∩B ={0,1,2}.故选A . 5.(2022·新高考Ⅰ)若集合M ={x |x <4},N ={x |3x ≥1},则M ∩N =( )A .{x |0≤x <2}B .{x |13≤x <2}C .{x |3≤x <16}D .{x |13≤x <16} 5.答案 D 解析 M ={x |0≤x <16},N ={x |x ≥13},则M ∩N ={x |13≤x <16}.故选D . 6.(2022·新高考Ⅱ)已知集合A ={-1,1,2,4},B ={x ||x -1|≤1},则A ∩B =( )A .{-1,2}B .{1,2}C .{1,4}D .{-1,4}6.答案 B 解析 B ={x |0≤x ≤2},故A ∩B ={1,2}.故选B .7.(2022·北京)已知全集U ={x |-3<x <3},集合A ={x |-2<x ≤1},则∁U A =( )A .(-2,1]B .(-3,-2)∪[1,3)C .[-2,1)D .(-3,-2]∪(1,3)7.答案 D 解析 由补集定义可知,∁U A ={x |-3<x ≤-2或1<x <3},即∁U A =(-3,-2]∪(1,3).故 选D .8.(2022·浙江)设集合A ={1,2},B ={2,4,6},则A ∪B =( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}8.答案 D 解析 A ∪B ={1,2,4,6}.故选D .【知识总结】1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法2.集合间的基本关系3.集合的基本运算【同类问题】1.(2021·新高考Ⅰ)设集合A ={x |-2<x <4},B ={2,3,4,5},则A ∩B =( )A .{2}B .{2,3}C .{3,4}D .{2,3,4}1.答案 B 解析 因为A ={x |-2<x <4},B ={2,3,4,5},所以A ∩B ={2,3},故选B .2.(2021·新高考Ⅱ)设集合U ={1,2,3,4,5,6},A ={1,3,6},B ={2,3,4},则A ∩(∁U B )=( )A .{3}B .{1,6}C .{5,6}D .{1,3}2.答案 B 解析 由题设可得∁U B ={1,5,6},故A ∩(∁U B )={1,6}.3.(2021·全国甲)设集合M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪ 13≤x ≤5,则M ∩N 等于( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪0<x ≤13B .⎩⎨⎧⎭⎬⎫x ⎪⎪ 13≤x <4 C .{x |4≤x <5} D .{x |0<x ≤5} 3.答案 B 解析 因为M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪ 13≤x ≤5,所以M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x <4. 4.(2021·全国乙)已知集合S ={s |s =2n +1,n ∈Z },T ={t |t =4n +1,n ∈Z },则S ∩T =( )A .∅B .SC .TD .Z4.答案 C 解析 法一 在集合T 中,令n =k (k ∈Z ),则t =4n +1=2(2k )+1(k ∈Z ),而集合S 中,s =2n +1(n ∈Z ),所以必有T ⊆S ,所以S ∩T =T ,故选C .法二 S ={…,-3,-1,1,3,5,…},T ={…,-3,1,5,…},观察可知,T ⊆S ,所以S ∩T =T ,故选C .5.(2021·天津)设集合A ={-1,0,1},B ={1,3,5},C ={0,2,4},则(A ∩B )∪C =( )A .{0}B .{0,1,3,5}C .{0,1,2,4}D .{0,2,3,4}5.答案 C 解析 ∵A ={-1,0,1},B ={1,3,5},C ={0,2,4},∴A ∩B ={1},∴(A ∩B )∪C ={0,1,2,4}.6.(2021·北京)已知集合A ={x |-1<x <1},B ={x |0≤x ≤2},则A ∪B =( )A .{x |0≤x <1}B .{x |-1<x ≤2}C .{x |1<x ≤2}D .{x |0<x <1}6.答案 B 解析 由集合并集的定义可得A ∪B ={x |-1<x ≤2},故选B .7.(2020·全国Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .67.答案 C 解析 A ∩B ={(x ,y )|x +y =8,x ,y ∈N *,且y ≥x }={(1,7),(2,6),(3,5),(4,4)}.8.设全集为R ,集合A ={y |y =2x ,x <1},B ={x |y =x 2-1},则A ∩(∁R B )=( )A .{x |-1<x <2}B .{x |0<x <1}C .D .{x |0<x <2}8.答案 B 解析 由题意知A ={y |0<y <2},B ={x |x ≤-1或x ≥1},所以∁R B ={x |-1<x <1},所以A ∩(∁RB )={x |0<x <1},故选B .9.设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N 等于( )A .[0,1]B .(0,1]C .[0,1)D .(-∞,1]9.答案 A 解析 ∵M ={0,1},N ={x |0<x ≤1},∴M ∪N ={x |0≤x ≤1}.10.集合A ={x |x 2-3x -4≥0},B ={x |1<x <5},则集合(∁R A )∪B 等于( )A .[-1,5)B .(-1,5)C .(1,4]D .(1,4)10.答案 B 解析 因为集合A ={x |x 2-3x -4≥0}={x |x ≤-1或x ≥4},又B ={x |1<x <5},所以∁R A=(-1,4),则集合(∁R A )∪B =(-1,5).11.设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},则满足M ⊆(A ∩B )的集合M 的个数是( )A .0B .1C .2D .311.答案 C 解析 由⎩⎪⎨⎪⎧x +y =1,x -y =3,得⎩⎪⎨⎪⎧x =2,y =-1,∴A ∩B ={(2,-1)}.由M ⊆(A ∩B ),知M =∅或M ={(2, -1)}.12.(2020·全国Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2 B .3 C .4 D .612.答案 C 解析 A ∩B ={(x ,y )|x +y =8,x ,y ∈N *,y ≥x }={(1,7),(2,6),(3,5),(4,4)},共4个元素.13.若全集U =R ,A ={x |-1≤x ≤6},B ={x |0<x ≤8},则图中阴影部分所表示的集合为________.13.答案 {x |0<x ≤6} 解析 由题图知阴影部分所表示的集合为A ∩B ={x |0<x ≤6}.14.已知全集U =R ,集合M ={x ∈Z ||x -1|<3},N ={-4,-2,0,1,5},则下列Venn 图中阴影部分的集合为________.14.答案 {-1,2,3} 解析 集合M ={x ∈Z ||x -1|<3}={x ∈Z |-3<x -1<3}={x∈Z |-2<x <4}={-1,0,1,2,3},Venn 图中阴影部分表示的集合是M ∩(∁R N )={-1,2,3}.15.(2021·上海)已知集合A ={x |x >-1,x ∈R },B ={x |x 2-x -2≥0,x ∈R },则下列关系中,正确的是( )A .A ⊆B B .∁R A ⊆∁R BC .A ∩B =D .A ∪B =R15.答案 D 解析 ∵A =(-1,+∞),B =(-∞,-1]∪[2,+∞),∴A ∪B =R ,D 正确,其余选项均错误.16.(多选)已知集合A ={x |-1<x ≤3},集合B ={x ||x |≤2},则下列关系式正确的是( )A .A ∩B = B .A ∪B ={x |-2≤x ≤3}C .A ∪∁R B ={x |x ≤-1或x >2}D .A ∩∁R B ={x |2<x ≤3}16.答案 BD 解析 ∵A ={x |-1<x ≤3},B ={x ||x |≤2}={x |-2≤x ≤2},∴A ∩B ={x |-1<x ≤2},A错误;A ∪B ={x |-2≤x ≤3},B 正确;∵∁R B ={x |x <-2或x >2},∴A ∪∁R B ={x |x <-2或x >-1},C 错误;A ∩∁R B ={x |2<x ≤3},D 正确.17.(多选)已知集合P ={(x ,y )|x +y =1},Q ={(x ,y )|x 2+y 2=1},则下列说法正确的是( )A .P ∪Q =RB .P ∩Q ={(1,0),(0,1)}C .P ∩Q ={(x ,y )|x =0或1,y =0或1}D .P ∩Q 的真子集有3个17.答案 BD 解析 联立⎩⎪⎨⎪⎧ x +y =1,x 2+y 2=1,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =1,∴P ∩Q ={(1,0),(0,1)},故B 正 确,C 错误;又P ,Q 为点集,∴A 错误;又P ∩Q 有两个元素,∴P ∩Q 有3个真子集,∴D 正确.18.(多选)已知全集U 的两个非空真子集A ,B 满足(∁U A )∪B =B ,则下列关系一定正确的是( )A .A ∩B =∅ B .A ∩B =BC .A ∪B =UD .(∁U B )∪A =A18.答案 CD 解析 令U ={1,2,3,4},A ={2,3,4},B ={1,2},满足(∁U A )∪B =B ,但A ∩B ≠∅, A ∩B ≠B ,故A ,B 均不正确;由(∁U A )∪B =B ,知∁U A ⊆B ,∴U =A ∪(∁U A )⊆(A ∪B ),∴A ∪B =U ,由∁U A ⊆B ,知∁U B ⊆A ,∴(∁U B )∪A =A ,故C ,D 均正确.19.(多选)已知全集U ={x ∈N |log 2x <3},A ={1,2,3},∁U (A ∩B )={1,2,4,5,6,7},则集合B 可能为( )A .{2,3,4}B .{3,4,5}C .{4,5,6}D .{3,5,6}19.答案 BD 解析 由log 2x <3得0<x <23,即0<x <8,于是得全集U ={1,2,3,4,5,6,7},因为∁U (A ∩B )={1,2,4,5,6,7},则有A ∩B ={3},3∈B ,C 不正确;对于A 选项,若B ={2,3,4},则A ∩B ={2,3},∁U (A ∩B )={1,4,5,6,7},矛盾,A 不正确;对于B 选项,若B ={3,4,5},则A ∩B ={3},∁U (A ∩B )={1,2,4,5,6,7},B 正确;对于D 选项,若B ={3,5,6},则A ∩B ={3},∁U (A ∩B )={1,2,4,5,6,7},D 正确.20.已知集合A ={m 2,-2},B ={m ,m -3},若A ∩B ={-2},则A ∪B =________.20.答案 {-5,-2,4} 解析 ∵A ∩B ={-2},∴-2∈B ,若m =-2,则A ={4,-2},B ={-2,-5},∴A ∩B ={-2},A ∪B ={-5,-2,4};若m -3=-2,则m =1,∴A ={1,-2},B ={1,-2},∴A ∩B ={1,-2}(舍去),综上,有A ∪B ={-5,-2,4}.21.已知集合A ={x ∈Z |x 2-4x -5<0},B ={x |4x >2m },若A ∩B 中有三个元素,则实数m 的取值范围是( )A .[3,6)B .[1,2)C .[2,4)D .(2,4]21.答案 C 解析 集合A ={x ∈Z |x 2-4x -5<0}={0,1,2,3,4},B ={x |4x >2m }=⎩⎨⎧⎭⎬⎫x |x >m 2,∵A ∩B 中有三个元素,∴1≤m 2<2,解得2≤m <4. 22.集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},U =R .若M ∩(∁U N )=,则a 的取值范围是( )A .(1,+∞)B .[1,+∞)C .(-∞,1)D .(-∞,1]22.答案 B 解析 易得M ={x |2x 2-x -1<0}=⎩⎨⎧⎭⎬⎫x |-12<x <1.∵N ={x |2x +a >0}=⎩⎨⎧⎭⎬⎫x |x >-a 2,∴∁U N =⎩⎨⎧⎭⎬⎫x |x ≤-a 2.由M ∩(∁U N )=,则-a 2≤-12,得a ≥1. 23.已知集合A ={x |y =log 2(x 2-8x +15)},B ={x |a <x <a +1},若A ∩B =,则实数a 的取值范围是( )A .(-∞,3]B .(-∞,4]C .(3,4)D .[3,4]23.答案 D 解析 易知A ={x |x 2-8x +15>0}={x |x <3或x >5},由A ∩B =,可得⎩⎪⎨⎪⎧a ≥3,a +1≤5,所以 3≤a ≤4.24.已知集合A ={x |-5<x <1},B ={x |(x -m )(x -2)<0},若A ∩B =(-1,n ),则m +n =________.24.答案 0 解析 ∵A ∩B =(-1,n ),∴m =-1,n =1,∴m +n =0.25.已知集合A ={x |1<x <3},B ={x |2m <x <1-m },若A ∩B =,则实数m 的取值范围是________.25.答案 [0,+∞) 解析 ①当2m ≥1-m ,即m ≥13时,B =,符合题意;②当2m <1-m ,即m <13时,需满足⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,所以0≤m <13.综上,实数m 的取值范围是[0,+∞).26.已知集合A ={x |3x 2-2x -1≤0},B ={x |2a <x <a +3},若A ∩B =∅,则实数a 的取值范围是( )A .a <-103或a >12B .a ≤-103或a ≥12C .a <-16或a >2D .a ≤-16或a ≥2 26.答案 B 解析 A ={x |3x 2-2x -1≤0}=⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤1,①B =∅,2a ≥a +3⇒a ≥3,符合题意; ②B ≠∅,⎩⎪⎨⎪⎧ a <3,a +3≤-13或⎩⎪⎨⎪⎧a <3,2a ≥1,解得a ≤-103或12≤a <3.∴a 的取值范围是a ≤-103或a ≥12. 27.已知集合A ={1,a },B ={x |log 2x <1},且A ∩B 有2个子集,则实数a 的取值范围为( )A .(-∞,0]B .(0,1)∪(1,2]C .[2,+∞)D .(-∞,0]∪[2,+∞)27.答案 D 解析 由题意得,B ={x |log 2x <1}={x |0<x <2},∵A ∩B 有2个子集,∴A ∩B 中的元素个数为1;∵1∈(A ∩B ),∴a ∉(A ∩B ),即a ∉B ,∴a ≤0或a ≥2,即实数a 的取值范围为(-∞,0]∪[2,+∞).28.已知A ={x |x ≤0或x ≥3},B ={x |x ≤a -1或x ≥a +1},若A ∩(∁R B )≠∅,则实数a 的取值范围是( )A .1≤a ≤2B .1<a <2C .a ≤1或a ≥2D .a <1或a >228.答案 D 解析 A ={x |x ≤0或x ≥3},B ={x |x ≤a -1或x ≥a +1},所以∁R B ={x |a -1<x <a +1};又A ∩(∁RB )≠∅,所以a -1<0或a +1>3,解得a <1或a >2,所以实数a 的取值范围是a <1或a >2.29.已知集合A ={x |y =lg(a -x )},B ={x |1<x <2},且(∁R B )∪A =R ,则实数a 的取值范围是________.29.答案 [2,+∞) 解析 由已知可得A =(-∞,a ),∁R B =(-∞,1]∪[2,+∞),∵(∁R B )∪A =R ,∴a ≥2.30.已知集合A ={x |8<x <10},设集合U ={x |0<x <9},B ={x |a <x <2a -1},若(∁U B )∩A ={x |8<x <9},则实数a 的取值范围是________________.30.答案 ⎝⎛⎦⎤-∞,92 解析 当B =∅时,2a -1≤a ,解得a ≤1,此时∁U B =U ,(∁U B )∩A =U ∩A ={x |8<x <9}, 符合题意;当B ≠∅时,2a -1>a ,解得a >1,因为集合U ={x |0<x <9},B ={x |a <x <2a -1},所以∁U B ={x |0<x ≤a 或2a -1≤x <9},因为(∁U B )∩A ={x |8<x <9},所以2a -1≤8,解得a ≤92,所以B ≠∅时,1<a ≤92,综上所述,实数a 的取值范围是⎝⎛⎦⎤-∞,92.。
2023年新高考数学大一轮复习专题01 集合(原卷版)
专题01 集合【考点预测】 1、元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系:属于 或 不属于,数学符号分别记为:∈和∉. (3)集合的表示方法:列举法、描述法、韦恩图(venn 图). (4)常见数集和数学符号①确定性:给定的集合,它的元素必须是确定的;也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.给定集合{1,2,3,4,5}A =,可知1A ∈,在该集合中,6A ∉,不在该集合中; ②互异性:一个给定集合中的元素是互不相同的;也就是说,集合中的元素是不重复出现的. 集合{,,}A a b c =应满足a b c ≠≠.③无序性:组成集合的元素间没有顺序之分。
集合{1,2,3,4,5}A =和{1,3,5,2,4}B =是同一个集合. ④列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.⑤描述法用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征. 2、集合间的基本关系(1)子集(subset ):一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集 ,记作A B ⊆(或B A ⊇),读作“A 包含于B ”(或“B 包含A ”).(2)真子集(proper subset ):如果集合A B ⊆,但存在元素x B ∈,且x A ∉,我们称集合A 是集合B 的真子集,记作AB (或B A ⊃≠).读作“A 真包含于B ”或“B 真包含A ”.(3)相等:如果集合A 是集合B 的子集(A B ⊆,且集合B 是集合A 的子集(B A ⊆),此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作A B =.(4)空集的性质: 我们把不含任何元素的集合叫做空集,记作∅;∅是任何集合的子集,是任何非空集合的真子集. 3、集合的基本运算(1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A B ,即{|,}AB x x A x B =∈∈且.(2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A B ,即{|,}AB x x A x B =∈∈或.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且. 4、集合的运算性质 (1)A A A =,A ∅=∅,A B B A =. (2)A A A =,A A ∅=,A B BA =.(3)()U AC A =∅,()U A C A U =,()U U C C A A =.【方法技巧与总结】(1)若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有21n -个,非空子集有21n -个,非空真子集有22n -个.(2)空集是任何集合A 的子集,是任何非空集合B 的真子集. (3)U U A B A B A A B B C B C A ⊆⇔=⇔=⇔⊆.(4)()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.【题型归纳目录】题型一:集合的表示:列举法、描述法 题型二:集合元素的三大特征 题型三:集合与集合之间的关系 题型四:集合的交、并、补运算 题型五:集合与排列组合的密切结合 题型六:集合的创新定义【题型一】集合的表示:列举法、描述法 【典例例题】例1.(2022·安徽·芜湖一中三模(理))已知集合{}24A x x =≤,集合{}*1B x x N x A =∈-∈且,则B =( )A .{}0,1B .{}0,1,2C .{}1,2,3D .{}1,2,3,4【方法技巧与总结】1.列举法,注意元素互异性和无序性,列举法的特点是直观、一目了然.2.描述法,注意代表元素.例2.(2022·山东聊城·二模)已知集合{}0,1,2A =,{},B ab a A b A =∈∈,则集合B 中元素个数为( ) A .2B .3C .4D .5例3.(2022·安徽·寿县第一中学高三阶段练习(理))设集合{}2|60A x x x x =--<∈Z ,,(){}2|ln 1B y y x x A ==+∈,,则集合B 中元素个数为( )A .2B .3C .4D .无数个例4.(2022·湖南·岳阳一中一模)定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==-∈∈,若{}1,0A =-,{}1,2B =,则A B ⊗中的元素个数为( ) A .1B .2C .3D .4例5.(2022·山东济南·二模)已知集合{}1,2A =,{}2,4B =,{},,y C z z x x A y B ==∈∈ ,则C 中元素的个数为( ) A .1B .2C .3D .4例6.(2022·全国·高三专题练习)用()C A 表示非空集合A 中元素的个数,定义()(),()()()(),()()C A C B C A C B A B C B C A C A C B -≥⎧*=⎨-<⎩,已知集合{}2|0A x x x =+=,()(){}22|10B x x ax x ax =+++=,且1A B *=,设实数a 的所有可能取值构成集合S ,则()C S =( ) A .0 B .1C .2D .3【题型二】 集合元素的三大特征 【典例例题】例7.(2022·重庆南开中学模拟预测)已知集合{}1,0,1A =-,{},B a b a A b A =+∈∈,则集合B =( ) A .{}1,1- B .{}1,0,1-C .{}2,1,1,2--D .{}2,1,0,1,2--【方法技巧与总结】1.研究集合问题,看元素是否满足集合的特征:确定性、互异性、无序性。
2023年高考数学一轮复习考点微专题(新高考地区专用) 考向01 集合(重点)- (解析版)
考向01 集合【2022年新高考全国Ⅰ卷】若集合{4},{31}M xx N x x =<=≥∣∣,则M N =( )A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D 【解析】 【分析】求出集合,M N 后可求M N ⋂. 【详解】1{16},{}3M x x N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:D【2022年新高考全国II 卷】已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B =( ) A .{1,2}- B .{1,2} C .{1,4} D .{1,4}-【答案】B 【解析】 【分析】求出集合B 后可求A B . 【详解】{}|02B x x =≤≤,故{}1,2A B =,故选:B.(1)离散型数集或抽象集合间的运算,常借用Venn 图求解.(2)集合中的元素若是连续的实数,常借助数轴求解,但要注意端点值能否取到. (3)根据集合的运算求参数,先把符号语言译成文字语言,然后适时应用数形结合求解.(1)集合运算的相关结论交集 A B A ⊆ A B B ⊆ A A A = A ∅=∅ A B B A = 并集 A B A ⊇A B B ⊇A A A =A A ∅=A B BA =补集()UU A A =UU =∅UU ∅= ()U A A =∅()U A A U =(2)(.)UUU A B A B A A B B A B A B ⊆⇔=⇔=⇔⊇=⇔∅易错题【01】对集合中元素的类型理解不到位集合问题是高考必考问题,一般作为容易题出现,求解集合问题的关键是理解集合中元素的类型,特别是用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是连续数集、离散数集、点集或其他类型的集合.易错题【02】忽略集合中元素互异性利用元素与集合的关系或两集合之间的关系求参数的值,集合中元素的互异性常常容易忽略,求解问题时要特别注意,求出以后一定要代入检验,看看是否满足元素的互异性.易错题【03】忽略空集空集是任何集合的子集,在涉及集合关系,如根据,A B ⊆求参数的值或范围要注意A 是否可以为∅,根据A B =∅求参数的值或范围必须优先考虑空集的情况,否则会造成漏解.易错题【04】忽视集合转化的等价性把用描述法表示的集合转化为用列举法表述的集合或化简集合容易忽略等价性,如去分母忽略分母不为零,解含有对数式的不等式要保证对数式有意义,要注意集合中的限制条件等.1.(2022·全国·模拟预测)若集合{}24M xy x x ==-∣,{}222x N x -=>∣,则M N =( )A .{}01xx ≤≤∣ B .{01}x x ≤<∣ C .{14}x x <<∣ D .{1}∣<xx 【答案】B 【解析】 【分析】根据集合的定义,先对集合进行化简,再利用交运算即可求解. 【详解】由题意知{}04M xx =≤≤∣,{1}N x x =<∣,所以{01}M N x x ⋂=≤<∣. 故选:B .2.(2022·江苏·常州高级中学模拟预测)已知集合{}22(,)4A x y x y =+=,(){},34B x y y x ==+,则A B中元素的个数为( ) A .0 B .1 C .2 D .3【答案】B 【解析】 【分析】把34y x =+代入224x y +=,根据方程的根的个数分析即可 【详解】集合{}22(,)4A x y x y =+=,{}(,)34B x y y x ==+,把34y x =+代入224x y +=,得22330x x ++=,即3x =有唯一解,故集合A B 中元素的个数为1. 故选:B3.(2022·全国·南京外国语学校模拟预测)已知集合{}2670A x x x =--<,{}3,1x B y y x ==<,则()R A B ⋂=( ) A .[)3,7 B .(][)1,03,7-⋃C .[)7,+∞D .()[),17,-∞-⋃+∞【答案】B 【解析】 【分析】先化简集合A 、B ,再去求R B ,进而求得()RA B【详解】{}()26701,7A x x x =--<=-,{}()3,10,3x B y y x ==<=, 所以(][)R ,03,B =-∞⋃+∞,所以()(][)R 1,03,7A B ⋂=-⋃. 故选:B .1.(2022·江苏·苏州市第六中学校三模)设集合{}{}220,1,1,2,3A x N x x B =∈--≤=-,则A B =( )A .{1,0}-B .{1,2}C .{1,2,3}D .{0,1,2,3}【答案】B 【解析】 【分析】化简集合A ,根据交集运算求解. 【详解】{}{}{}220120,1,2A x N x x x N x =∈--≤=∈-≤≤=,{}1,1,2,3B =-, {1,2}A B ∴=,故选:B2.(2022·全国·模拟预测(文))如图,三个圆的内部区域分别代表集合A ,B ,C ,全集为I ,则图中阴影部分的区域表示( )A .ABC ⋂⋂ B .()I A C B ⋂⋂ C .()I A B C ⋂⋂D .()I B C A ⋂⋂【答案】B 【解析】 【分析】找到每一个选项对应的区域即得解. 【详解】 解:如图所示,A. A B C ⋂⋂对应的是区域1;B. ()I A C B ⋂⋂对应的是区域2;C. ()I A B C ⋂⋂对应的是区域3;D. ()I B C A ⋂⋂对应的是区域4. 故选:B3.(2022·浙江·镇海中学模拟预测)已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R ( ) A .[2,2]- B .(2,2]- C .[0,2] D .(0,2]【答案】B 【解析】【分析】利用对数不等式及分式不等式的解法求出集合,P Q ,结合集合的补集及交集的定义即可求解. 【详解】由2log 1x >,得2x >,所以{}2,P x x =>{}R2P x x =≤.由302x x -≤+,得23x -<≤,所以{}23x x Q =-<≤, 所以(){}{}{}R 23222P Q x x x x x x -<=≤=≤-<≤,故选:B.4.(2022·湖北·黄冈中学模拟预测)设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R ( ) A .(1,2) B .(1,2] C .(,2]-∞ D .(,2)-∞【答案】C 【解析】 【分析】利用对数函数的单调性求得集合A ,解一元二次不等式求得B ,即可根据集合的补集以及并集运算求得答案. 【详解】由题意得{}2|log ,4{|2}A y y x x y x ==>=>,则{|2}A y y =≤R,而{}2|320{|12}B x x x x x =-+<=<<,故()(,2]A B =-∞R , 故选:C.5.(2022·云南师大附中模拟预测(理))已知集合(){}2,A x y y x ==,(){},21B x y y x ==-,则集合AB的子集个数为( ) A .2 B .4 C .8 D .16【答案】B 【解析】 【分析】 求出抛物线2y x 和曲线2||1y x =-的交点,确定集合A B 的元素个数,即可确定答案.【详解】由题意得21,02121,0x x y x x x -≥⎧=-=⎨--<⎩,当0x ≥时,21y x =- 联立2y x ,解得11x y =⎧⎨=⎩ ;当0x <时,21y x =-- 联立2yx ,解得11x y =-⎧⎨=⎩;故抛物线2yx 与曲线2||1y x =-有两个公共点,分别为(11)-,,(11),, 则集合A B 有两个元素,所以A B 的子集个数为224=, 故选:B .6.(2022·河北·沧县中学模拟预测)若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=( ) A .(2,1)- B .{1,0}- C .(2,1]{2}-⋃ D .{1,0,1,2}-【答案】D 【解析】 【分析】根据已知条件求出集合A ,再利用并集的定义即可求解. 【详解】由题意可知{}}{211,0A x Z x =∈-<<=-,又{}0,1,2B =, 所以}{{}1,00,1,2{1,0,1,2}A B =-=-.故选:D .7.(2022·黑龙江·哈尔滨三中模拟预测(文))已知集合()22,1,,42x y A x y x Z y Z ⎧⎫=+≤∈∈⎨⎬⎩⎭,则A 中元素的个数为( ) A .9 B .10C .11D .12【答案】C 【解析】 【分析】由椭圆的性质得22,x y -≤≤≤. 【详解】解:由椭圆的性质得22,x y -≤≤≤又,x Z y Z ∈∈,所以集合()()()()()()()()()()(){}=2,0,2,0,1,0,1,0,0,1,0,1,0,0,1,1,1,1,1,1,1,1A ------- 共有11个元素. 故选:C8.(2022·陕西·模拟预测(理))已知集合234|0A x x x ,{}2|B x a x a =<<,若A B =∅,则实数a 的取值范围是( ) A .(],1-∞- B .[)4,+∞ C .()(),12,4-∞-⋃ D .[][)1,24,-⋃+∞【答案】D 【解析】 【分析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可. 【详解】解:由题知{}{}2|3401,4A x x x =--==-,因为A B =∅, 所以,当{}2|B x a x a=<<=∅时,2a a≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞,综上,实数a 的取值范围是[][)1,24,-⋃+∞. 故选:D9.(2022·江苏·南京市第一中学三模)非空集合{|03}A x N x =∈<<,2{|10,}B y N y my m R =∈-+<∈,A B A B =,则实数m 的取值范围为( ) A .510,23⎛⎤ ⎥⎝⎦B .170,4⎛⎤ ⎥⎝⎦C .102,3⎛⎤ ⎥⎝⎦D .517,24⎛⎤ ⎥⎝⎦【答案】A 【解析】 【分析】由题知{}1,2A B ==,进而构造函数()21f x x mx =-+,再根据零点存在性定理得()()()302010f f f ⎧≥⎪<⎨⎪<⎩,解不等式即可得答案. 【详解】解:由题知{}0{|}13,2A x N x =∈<=<, 因为A B A B =,所以A B =,所以{}2{|10,}1,2B y N y my m R =∈-+<∈=,故令函数()21f x x mx =-+,所以,如图,结合二次函数的图像性质与零点的存在性定理得: ()()()302010f f f ⎧≥⎪<⎨⎪<⎩,即103052020m m m -≥⎧⎪-<⎨⎪-<⎩,解得51023m <≤,所以,实数m 的取值范围为510,23⎛⎤⎥⎝⎦.故选:A10.(2022·四川攀枝花·三模(理))设集合{}A x x a =>,{}2320B x x x =-+>,若A B ⊆,则实数a 的取值范围是( ). A .(),1-∞ B .(],1-∞ C .()2,+∞ D .[)2,+∞【答案】D 【解析】 【分析】先求出集合B ,再由A B ⊆求出实数a 的范围. 【详解】{}{23202B x x x x x =-+>=>或}1x <.因为集合{}A x x a =>,A B ⊆,所以2a ≥. 故选:D11.(2022·安徽黄山·二模(文))若集合2{|60}A x x x =--+>,5{|1}3B x x =≤--,则A B 等于( ) A .()3,3- B .[2,3)-C .(2,2)-D .[2,2)-【答案】D 【解析】 【分析】解不等式化简集合A ,B ,再利用交集的定义直接求解作答. 【详解】不等式260x x --+>化为:260x x +-<,解得:32x -<<,则(3,2)A =-, 不等式513x ≤--,即203x x +≤-,整理得:(2)(3)030x x x +-≤⎧⎨-≠⎩,解得23x -≤<,则[2,3)B =-,所以[2,2)A B ⋂=-. 故选:D1.(2022·全国·高考真题(文))集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N =( )A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A 【解析】 【分析】根据集合的交集运算即可解出. 【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4MN =.故选:A. 2.(2022·全国·高考真题(理))设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =,则( )A .2M ∈B .3M ∈C .4M ∉D .5M ∉【答案】A【解析】【分析】先写出集合M ,然后逐项验证即可【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误故选:A 3.(2022·全国·高考真题(理))设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B xx x =-=-+=∣,则()U A B ⋃=( )A .{1,3}B .{0,3}C .{2,1}-D .{2,0}-【答案】D【解析】【分析】 解方程求出集合B ,再由集合的运算即可得解.【详解】 由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-, 所以(){}U 2,0A B ⋃=-.故选:D.4.(2022·浙江·高考真题)设集合{1,2},{2,4,6}A B ==,则A B ⋃=( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}【答案】D【解析】【分析】利用并集的定义可得正确的选项.{}1,2,4,6A B =,故选:D.5.(2022·北京·高考真题)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则U A ( ) A .(2,1]-B .(3,2)[1,3)--C .[2,1)-D .(3,2](1,3)-- 【答案】D【解析】【分析】利用补集的定义可得正确的选项.【详解】由补集定义可知:{|32U A x x =-<≤-或13}x <<,即(3,2](1,3)U A =--,故选:D .6.(2022·全国·高考真题(文))设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B =( ) A .{}0,1,2B .{2,1,0}--C .{0,1}D .{1,2}【答案】A【解析】【分析】 根据集合的交集运算即可解出.【详解】因为{}2,1,0,1,2A =--,502B x x ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B =. 故选:A.7.(2021·全国·高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U AB =( )A .{3}B .{1,6}C .{5,6}D .{1,3} 【答案】B【解析】【分析】根据交集、补集的定义可求()U A B ⋂.由题设可得{}U 1,5,6B =,故(){}U 1,6A B ⋂=,故选:B. 8.(2021·全国·高考真题(文))设集合{}{}1,3,5,7,9,27M N x x ==>,则M N =( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B【解析】【分析】求出集合N 后可求M N ⋂.【详解】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=,故选:B.9.(2021·全国·高考真题(理))已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ( )A .∅B .SC .TD .Z【答案】C【解析】【分析】分析可得T S ⊆,由此可得出结论.【详解】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T =.故选:C.10.(2021·全国·高考真题(理))设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N =( ) A .103x x ⎧⎫<≤⎨⎬⎩⎭ B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤【解析】【分析】根据交集定义运算即可【详解】 因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭, 故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.11.(2021·全国·高考真题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4 【答案】B【解析】【分析】利用交集的定义可求A B .【详解】由题设有{}2,3A B ⋂=,故选:B .12.(2020·浙江·高考真题)设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足: ①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T②对于任意x ,y ∈T ,若x <y ,则y x∈S ; 下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素【答案】A【解析】分别给出具体的集合S 和集合T ,利用排除法排除错误选项,然后证明剩余选项的正确性即可.【详解】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8S T =,包含4个元素,排除选项 C ;若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项D ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128S T =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈, 若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍.若12p ≥,则32311p p p p p <<,故322111,p p p p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆.若q T ∈, 则31q S p ∈,故131,1,2,3,4i q p i p ==,故31,1,2,3,4i q p i +==, 即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =, 此时{}234456*********,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确.故选:A .【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝. 13.(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( ) A .{4,1}-B .{1,5}C .{3,5}D .{1,3} 【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.14.(2020·浙江·高考真题)已知集合P ={|14}<<x x ,{|23}Q x x =<<,则PQ =( ) A .{|12}x x <≤B .{|23}x x <<C .{|34}x x ≤<D .{|14}<<x x【答案】B【解析】【分析】根据集合交集定义求解.【详解】(1,4)(2,3)(2,3)P Q == 故选:B【点睛】本题考查交集概念,考查基本分析求解能力,属基础题.。
集合-高考数学复习专题 PPT课件 图文
[例题](2018-全国卷-理Ⅱ)2.已知集合 A {(x, y) | x2
则 A 中元素的个数为( )
A.9
B.8
C.5
D.4
[解析]集合 A 为点集,其中元素为坐标平面上圆 x2 y2
及其内部的整点,分别为下列各点:(-1,-1),(-1,0)
(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),
高考培优增分课题研
高考复习专题篇
高考数学复习专题
集合与命题 2018-6
概要
知识建构 考点问题
Ⅰ.集合基本概念 Ⅱ.集合元素的特征形 Ⅲ.集合间关系 Ⅳ.集合间运算 Ⅴ.集合中的新定义问
知识建构一 集合的基本概念
1.集合的有关概念 (1)集合元素的特性: 确定性 、互异性 、无序性. (2)集合与元素的关系:若 a 属于集合 A,记作 a∈A
且 AB A, A C C ,分别求 a, m 的取值集合.
问题探究三 集合间关系与含参数问题 3
[解析] A {1,3},由 A B A 得 B A ,
方程 x2 ax a 1 0 的判别式 1 (a 2)2 0 ,且 x1 1,或x2
所以: a 1 3 ,即 a 4 ,此时 B {1,3};或 a 11,即 a
1.设集合 P={x|x2- 2x≤0},m=30.5,则下列关系正确的
A.m P B.m∈P C.m∉P
D.m⊆P
解析:由已知得:P={x|0≤x≤ 2},而 m=30.5= 3> ∴m∉P,故选 C.
答案:C
2.已知集合 A={1,2,4},则集合 B={(x,y)|x∈A,y∈A
数为 ( )
高中数学必修一《集合》高考专题复习
专题二 集 合1.集合的基本概念(1)集合中元素的三大特性:确定性、互异性、无序性. (2)元素与集合的关系:a ∈A 或a ∉A . (3)常见集合的符号表示(4)2.集合间的关系(1)两个集合A ,B 之间的关系(2)空集规定:①空集是任何集合的子集;②空集是任何非空集合的真子集. (3)子集的个数集合的子集、真子集个数的规律为:含n 个元素的集合有2n 个子集,有2n -1个真子集(除集合本身),有2n -1个非空子集,有2n -2个非空真子集(除集合本身和空集,此时n ≥1).遇到形如A ⊆B 的问题,务必优先考虑A =∅是否满足题意. 3.集合间的运算考向一 集合的基本概念1、(2013·江西,2)若集合A={}x ∈R |ax 2+ax +1=0中只有一个元素,则a =( )A .4 B .2 C .0 D .0或42、(2014·福建,16)已知集合{a ,b ,c }={0,1,2},且下列三个关系:①a ≠2;②b =2;③c ≠0有且只有一个正确,则100a +10b +c 等于________.3、(2016·山东济南一模,3)若集合A={-1,1},B={0,2},则集合z={z|z=x+y,x∈A,y∈B}中元素的个数为()A.5 B.4 C.3 D.2考向二集合的基本关系4、(2013·福建,3)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2 B.3 C.4 D.165、(2012·大纲全国,2)已知集合A={1,3,m},B={1,m},A∪B=A,则m=()A.0或 3 B.0或3 C.1或 3 D.1或36、(2013·课标Ⅰ,1)已知集合A={x|x2-2x>0},B={x|-5<x<5},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B 考向三集合的基本运算7、(2015·福建,2)若集合M={x|-2≤x<2},N={0,1,2},则M∩N等于()A.{0} B.{1} C.{0,1,2} D.{0,1}变式7.1:设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|-1<x<3} B.{x|-1<x<1} C.{x|1<x<2} D.{x|2<x<3}变式7.2:已知全集R,集合A=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪⎝⎛⎭⎪⎫12x≤1,B={x|x2-6x+8≤0},则A∩(∁R B)=()A{x|x≤0} C.{x|0≤x<2或x>4} B.{x|2≤x≤4} D.{x|0<x≤2或x≥4}考向四集合的新定义9、(2015·湖北,10)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.30能力提高:1.(2016·课标Ⅰ)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}2.(2016·课标Ⅲ)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=()A.{4,8} B.{0,2,6} C.{0,2,6,10} D.{0,2,4,6,8,10}3.(2016·天津)已知集合A={1,2,3},B={y|y =2x-1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}4.(2016·山东)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=() A.{2,6} B.{3,6} C.{1,3,4,5} D.{1,2,4,6}5.(2016·北京)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5} B.{x|x<4或x>5} C.{x|2<x<3} D.{x|x<2或x>5}6.(2016·四川)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6 B.5 C.4 D.37.(2016·浙江,1,易)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5}8.(2015·课标Ⅰ,1,易)已知集合A={x|x=3n +2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.29.(2015·安徽,2,易)设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁U B)=()A.{1,2,5,6} B.{1} C.{2} D.{1,2,3,4}10.(2015·山东,1,易)已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)11.(2015·课标Ⅱ,1,易)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=() A.(-1,3) B.(-1,0) C.(0,2) D.(2,3)12.(2015·陕西,1,易)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1] C.[0,1) D.(-∞,1]13.(2013·山东,2,中)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A.{3} B.{4} C.{3,4} D.∅14.(2012·湖北,1,中)已知集合A={x|x2-3x +2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1 B.2 C.3 D.415.(2015·江苏,1,易)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为________.16.(2015·湖南,11,易)已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=________.。
高考数学《集合》专题复习题
高考数学《集合》专题复习题1.设,集合,则__________。
2.设A是整数集的一个非空子集,对于,则k是A的一个“孤立元”,给定,由S的3个元素构成的所有集合中,不含“孤立元”的集合共有________个。
3.如果平面点集,则用列举法表示__________。
4.已知集合,且关于x的方程有唯一实数解,用列举法表示集合为__________。
5.用列举法表示集合:=__________。
6.集合,如果,那么的取值范围是_______。
7.如果集合与集合的元素个数相同,则的取值集合为__________。
8.已知非空集合,则实数的取值范围是__________。
9.已知集合至多有一个元素,则的取值范围________;若至少有一个元素,则的取值范围________。
10.已知集合满足:若,当时,集合__________。
(用列举法写出集合中的元素)11.已知集合,则实数a的取值范围是__________。
12.已知集合,则的值为__________。
13.已知非空集合,则的取值范围是__________。
14.集合A=至多含有一个元素,则的取值范围是_____。
15.已知时,集合有且只有3个整数,则的取值范围是________。
16.用列举法表示:大于0且不超过6的全体偶数的集合__________。
17.已知集合,若,则的值为__________。
18.若集合,且,则实数的取值是__________。
19.集合,若A={0},则实数的值为__________。
20.已知全集U=R,集合,则集合=__________。
21.已知集合,则用列举法表示集合=__________。
22.关于的不等式的解集是,若,则实数的取值范围是__________。
23.给定实数集合满足(其中表示不超过的最大整数,),,设,分别为集合的元素个数,则,的大小关系为__________。
24.若且,则__________。
高考数学集合复习知识点
《高考数学集合复习知识点全攻略》引言:高考,是千军万马过独木桥的征程,而数学作为其中的重要科目,往往起着关键作用。
在高考数学中,集合是一个基础且重要的知识点,它贯穿于整个高中数学的学习。
掌握好集合的相关知识,不仅有助于我们在高考中取得优异成绩,更能为后续的数学学习奠定坚实的基础。
那么,让我们一同深入探索高考数学集合复习的知识点吧。
一、集合的概念1. 集合的定义集合是由一些确定的、不同的对象所组成的整体。
这些对象称为集合的元素。
例如,“所有小于 10 的正整数”就可以组成一个集合。
2. 集合的表示方法(1)列举法:将集合中的元素一一列举出来,用花括号括起来。
例如,{1,2,3,4,5}。
(2)描述法:用集合中元素的共同特征来表示集合。
例如,{x|x 是小于 10 的正整数}。
二、集合的关系1. 子集如果集合 A 中的所有元素都属于集合 B,那么称集合 A 是集合 B 的子集,记作 A⊆B。
特别地,任何集合都是它自身的子集。
2. 真子集如果集合 A 是集合 B 的子集,且存在元素属于集合 B 但不属于集合 A,那么称集合 A 是集合 B 的真子集,记作 A⊂B。
3. 相等如果集合 A 和集合 B 的元素完全相同,那么称集合 A 与集合B 相等,记作 A=B。
三、集合的运算1. 交集由既属于集合 A 又属于集合 B 的所有元素组成的集合,称为集合 A 与集合 B 的交集,记作A∩B。
例如,设 A={1,2,3,4},B={3,4,5,6},则A∩B={3,4}。
2. 并集由属于集合 A 或属于集合 B 的所有元素组成的集合,称为集合 A 与集合 B 的并集,记作A∪B。
例如,对于上述集合 A 和 B,A∪B={1,2,3,4,5,6}。
3. 补集设全集为 U,集合 A 是 U 的子集,由 U 中所有不属于集合 A 的元素组成的集合,称为集合 A 在全集 U 中的补集,记作∁UA。
四、集合中元素的性质1. 确定性对于一个给定的集合,它的元素是确定的。
高考数学专题复习-集合真题练习(附答案)
专题一集合与常用逻辑用语1.1集合考点一集合及其关系1.(2013山东理,2,5分)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.9答案C因为x∈A,y∈A,所以=0,=0或=0,=1或=0,=2或=1,=0或=1,=1或=1,=2或=2,=0或=2,=1或=2,=2,所以B={0,-1,-2,1,2},所以集合B中有5个元素,故选C.2.(2013江西文,2,5分)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=()A.4B.2C.0D.0或4答案A若a=0,则A=Ø⌀,不符合要求;若a≠0,则Δ=a2-4a=0,得a=4,故选A.3.(2012课标理,1,5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为()A.3B.6C.8D.10答案D解法一:由x-y∈A及A={1,2,3,4,5}得x>y,当y=1时,x可取2,3,4,5,有4个;当y=2时,x可取3,4,5,有3个;当y=3时,x可取4,5,有2个;当y=4时,x可取5,有1个.故共有1+2+3+4=10(个),选D.解法二:因为A中元素均为正整数,所以从A中任取两个元素作为x,y,满足x>y的(x,y)即为集合B中的元素,故共有C52=10个,选D.4.(2011福建理,1,5分)i是虚数单位,若集合S={-1,0,1},则()A.i∈SB.i2∈SC.i3∈SD.2i∈S答案B i2=-1,-1∈S,故选B.5.(2015重庆理,1,5分)已知集合A={1,2,3},B={2,3},则()A.A=BB.A∩B=Ø⌀C.A⫋BD.B⫋A答案D∵A={1,2,3},B={2,3},∴A≠B,A∩B={2,3}≠Ø;又1∈A且1∉B,∴A不是B的子集,故选D.6.(2013课标Ⅰ理,1,5分)已知集合A={x|x2-2x>0},B={x|-5<x<5},则()A.A∩B=ØB.A∪B=RC.B⊆AD.A⊆B答案B化简A={x|x>2或x<0},而B={x|-5<x<5},所以A∩B={x|-5<x<0或2<x<5},A项错误;A∪B=R,B项正确;A与B没有包含关系,C项与D项均错误.故选B.7.(2012课标文,1,5分)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()A.A⫋BB.B⫋AC.A=BD.A∩B=Ø答案B A={x|-1<x<2},B={x|-1<x<1},则B⫋A,故选B.8.(2012大纲全国文,1,5分)已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x 是菱形},则()A.A⊆BB.C⊆BC.D⊆CD.A⊆D答案B由已知x是正方形,则x必是矩形,所以C⊆B,故选B.9.(2012湖北文,1,5分)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C 的个数为()A.1B.2C.3D.4答案D A={1,2},B={1,2,3,4},所以满足条件的集合C的个数为24-2=22=4,即C={1,2},{1,2,3},{1,2,4},{1,2,3,4}.故选D.评析本题考查集合之间的关系.10.(2016四川,1,5分)设集合A={x|-2≤x≤2},Z为整数集,则集合A∩Z中元素的个数是()A.3B.4C.5D.6答案C A中包含的整数元素有-2,-1,0,1,2,共5个,所以A∩Z中的元素个数为5.11.(2012天津文,9,5分)集合A={x∈R||x-2|≤5}中的最小整数为.答案-3解析由|x-2|≤5,得-5≤x-2≤5,即-3≤x≤7,所以集合A中的最小整数为-3.12.(2013江苏,4,5分)集合{-1,0,1}共有个子集.答案8解析集合{-1,0,1}的子集有Ø,{-1},{0},{1},{-1,0},{-1,1},{0,1},{-1,0,1},共8个.评析本题考查子集的概念,忽视Ø是学生出错的主要原因.考点二集合的基本运算1.(2021北京,1,4分)已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案B因为集合A={x|-1<x<1},B={x|0≤x≤2},所以用数轴表示两集合中元素如图,可知A∪B={x|-1<x≤2},故选B.2.(2021浙江,1,4分)设集合A={x|x≥1},B={x|-1<x<2},则A∩B=()A.{x|x>-1}B.{x|x≥1}C.{x|-1<x<1}D.{x|1≤x<2}答案D利用数轴可得A∩B={x|1≤x<2}.3.(2022浙江,1,4分)设集合A={1,2},B={2,4,6},则A∪B=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}答案D由题意得A∪B={1,2,4,6}.故选D.4.(2022全国乙文,1,5分)集合M={2,4,6,8,10},N={x|-1<x<6},则M∩N=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}答案A由题意知M∩N={2,4},故选A.5.(2022全国甲文,1,5分)设集合A={-2,-1,0,1,2},B=U0≤<A∩B=()A.{0,1,2}B.{-2,-1,0}C.{0,1}D.{1,2}答案A集合A中的元素只有0,1,2属于集合B,所以A∩B={0,1,2}.故选A.6.(2022全国乙理,1,5分)设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈MB.3∈MC.4∉MD.5∉M答案A由题意知M={2,4,5},故选A.7.(2022新高考Ⅱ,1,5分)已知集合A={-1,1,2,4},B={x||x-1|≤1},则A∩B=()A.{-1,2}B.{1,2}C.{1,4}D.{-1,4}答案B由|x-1|≤1得0≤x≤2,则B={x|0≤x≤2},∴A∩B={1,2},故选B.8.(2022北京,1,4分)已知全集U={x|-3<x<3},集合A={x|-2<x≤1},则∁U A=()A.(-2,1]B.(-3,-2)∪[1,3)C.[-2,1)D.(-3,-2]∪(1,3)答案D在数轴上作出全集U及集合A,如图所示,可知∁U A=(-3,-2]∪(1,3).故选D.易错警示:集合A中含有元素1,不含元素-2,故∁U A中含有元素-2,不含元素1,注意区间的开闭.9.(2022天津,1,5分)设全集U={-2,-1,0,1,2},集合A={0,1,2},B={-1,2},则A∩(∁U B)=()A.{0,1}B.{0,1,2}C.{-1,1,2}D.{0,-1,1,2}答案A∵U={-2,-1,0,1,2},B={-1,2},∴∁U B={-2,0,1},又A={0,1,2},∴A∩(∁U B)={0,1}.故选A.10.(2022新高考Ⅰ,1,5分)若集合M={x|<4},N={x|3x≥1},则M∩N=()A.{x|0≤x<2}B.U13≤<2C.{x|3≤x<16}D.U13≤<16答案D由题意知M={x|0≤x<16},N=U≥M∩N=U13≤<16,故选D.11.(2022全国甲理,3,5分)设全集U={-2,-1,0,1,2,3},集合A={-1,2},B={x|x2-4x+3=0},则∁U(A∪B)=() A.{1,3} B.{0,3} C.{-2,1} D.{-2,0}答案D因为B={x|x2-4x+3=0}={1,3},所以A∪B={-1,1,2,3},所以∁U(A∪B)={-2,0},故选D. 12.(2021全国甲理,1,5分)设集合M={x|0<x<4},N=U13≤≤5,则M∩N=()A.U0<≤B.U13≤<4C.{x|4≤x<5}D.{x|0<x≤5}答案B<<4,≤5,得13≤x<4,故选B.13.(2021全国甲文,1,5分)设集合M={1,3,5,7,9},N={x|2x>7},则M∩N=()A.{7,9}B.{5,7,9}C.{3,5,7,9}D.{1,3,5,7,9}答案B解题指导:对可化简的集合,先化成最简形式;注意仔细审题,利用“∩”的含义,进行基本运算.解析N={x|2x>7}=U M∩N={5,7,9},故选B.易错警示:区分“∩”与“∪”.14.(2021新高考Ⅰ,1,5分)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}答案B在数轴上表示出集合A,如图,由图知A∩B={2,3}.15.(2021全国乙理,2,5分)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.ØB.SC.TD.Z答案C解题指导:首先结合集合S、T的元素特征得到T⫋S,然后依据集合的交集运算得出结果.解析依题知T⫋S,则S∩T=T,故选C.16.(2021全国乙文,1,5分)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}答案A解题指导:先求M∪N,再求∁U(M∪N),即可得出结果.解析由题意得M∪N={1,2,3,4},则∁U(M∪N)={5},故选A.易错警示学生易因混淆交集和并集的运算而出错.17.(2020新高考Ⅰ,1,5分)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}答案C已知A={x|1≤x≤3},B={x|2<x<4},在数轴上表示出两个集合,由图易知A∪B={x|1≤x<4}.故选C.18.(2020新高考Ⅰ,5,5分)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是() A.62% B.56% C.46% D.42%答案C用Venn图表示学生参加体育锻炼的情况,A+B表示喜欢游泳的学生数占该校学生总数的比例,B+C表示喜欢足球的学生数占该校学生总数的比例,A+B+C表示喜欢足球或游泳的学生数占该校学生总数的比例,即A+B=82%,B+C=60%,A+B+C=96%,B表示既喜欢足球又喜欢游泳的学生数占该校学生总数的比例,故B=82%+60%-96%=46%.故选C.19.(2020北京,1,4分)已知集合A={-1,0,1,2},B={x|0<x<3},则A∩B=()A.{-1,0,1}B.{0,1}C.{-1,1,2}D.{1,2}答案D集合A与集合B的公共元素为1,2,由交集的定义知A∩B={1,2},故选D.20.(2019课标Ⅱ理,1,5分)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=()A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)答案A本题考查了集合的运算;以集合的交集为载体,考查运算求解能力,旨在考查数学运算的素养要求.由题意得A={x|x<2或x>3},B={x|x<1},∴A∩B={x|x<1}.21.(2019课标Ⅱ文,1,5分)已知集合A={x|x>-1},B={x|x<2},则A∩B=()A.(-1,+∞)B.(-∞,2)C.(-1,2)D.Ø答案C本题主要考查集合的交集运算;考查数学运算的核心素养.∵A={x|x>-1},B={x|x<2},∴A∩B={x|-1<x<2},即A∩B=(-1,2).故选C.22.(2019课标Ⅲ理,1,5分)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=()A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}答案A本题考查集合的运算,通过集合的不同表示方法考查学生对知识的掌握程度,考查了数学运算的核心素养.由题意可知B={x|-1≤x≤1},又∵A={-1,0,1,2},∴A∩B={-1,0,1},故选A.23.(2019北京文,1,5分)已知集合A={x|-1<x<2},B={x|x>1},则A∪B=()A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)答案C本题主要考查集合的并集运算,考查学生运算求解的能力,考查的核心素养是数学运算.∵A={x|-1<x<2},B={x|x>1},∴A∪B={x|x>-1},故选C.A)∩B=()24.(2019浙江,1,4分)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁UA.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}答案A本题考查补集、交集的运算;旨在考查学生的运算求解的能力;以列举法表示集合为背景体现数学运算的核心素养.∵∁U A={-1,3},∴(∁U A)∩B={-1},故选A.25.(2018课标Ⅰ文,1,5分)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}答案A本题主要考查集合的基本运算.∵A={0,2},B={-2,-1,0,1,2},∴A∩B={0,2},故选A.26.(2018课标Ⅱ文,2,5分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}答案C本题主要考查集合的运算.由题意得A∩B={3,5},故选C.27.(2018课标Ⅲ理,1,5分)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}答案C本题考查集合的运算.∵A={x|x≥1},B={0,1,2},∴A∩B={1,2},故选C.28.(2018北京理,1,5分)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=()A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}答案A本题主要考查集合的运算.化简A={x|-2<x<2},∴A∩B={0,1},故选A.29.(2018天津文,1,5分)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=()A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}答案C本题主要考查集合的运算.由题意得A∪B={1,2,3,4,-1,0},∴(A∪B)∩C={1,2,3,4,-1,0}∩{x∈R|-1≤x<2}={-1,0,1}.故选C.A=()30.(2018浙江,1,4分)已知全集U={1,2,3,4,5},A={1,3},则∁UA.Ø⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}答案C本题考查集合的运算.∵U={1,2,3,4,5},A={1,3},∴∁U A={2,4,5}.31.(2017课标Ⅱ理,2,5分)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3}B.{1,0}C.{1,3}D.{1,5}答案C本题主要考查集合的运算.∵A∩B={1},∴1∈B,∴1-4+m=0,∴m=3.由x2-4x+3=0,解得x=1或x=3.∴B={1,3}.经检验符合题意.故选C.32.(2017课标Ⅰ文,1,5分)已知集合A={x|x<2},B={x|3-2x>0},则()A.A∩B=<B.A∩B=ØC.A∪B=<D.A∪B=R答案A本题考查集合的运算.由3-2x>0得x<32,则B=<所以A∩B=<故选A.33.(2017课标Ⅱ文,1,5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}答案A本题考查集合的并集.A∪B={1,2,3}∪{2,3,4}={1,2,3,4}.故选A.34.(2017课标Ⅲ文,1,5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.4答案B因为集合A和集合B有共同元素2,4,所以A∩B={2,4},所以A∩B中元素的个数为2.35.(2017天津理,1,5分)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6}D.{x∈R|-1≤x≤5}答案B本题主要考查集合的表示和集合的运算.因为A={1,2,6},B={2,4},所以A∪B={1,2,4,6},又C={x∈R|-1≤x≤5},所以(A∪B)∩C={1,2,4}.故选B.36.(2017北京理,1,5分)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1}D.{x|1<x<3}答案A本题考查集合的交集运算,考查运算求解能力.由集合的交集运算可得A∩B={x|-2<x<-1},故选A.37.(2017北京文,1,5分)已知全集U=R,集合A={x|x<-2或x>2},则∁A=()UA.(-2,2)B.(-∞,-2)∪(2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)答案C本题考查集合的补集运算.根据补集的定义可知,∁U A={x|-2≤x≤2}=[-2,2].故选C.38.(2016课标Ⅰ理,1,5分)设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=()A.−3,−B.C.1,3答案D因为A={x|x2-4x+3<0}={x|1<x<3},B=>所以A∩B={x|1<x<3}∩>=< x<3.故选D.思路分析通过不等式的求解分别得出集合A和集合B,然后根据交集的定义求得A∩B的结果,从而得出正确选项.方法总结集合的运算问题通常是先化简后运算,可借助数轴或韦恩图解决.39.(2016课标Ⅱ理,2,5分)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=()A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}答案C由(x+1)(x-2)<0⇒-1<x<2,又x∈Z,∴B={0,1},∴A∪B={0,1,2,3}.故选C.40.(2016课标Ⅲ理,1,5分)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)答案D S={x|(x-2)(x-3)≥0}={x|x≤2或x≥3},在数轴上表示出集合S,T,如图所示:由图可知S∩T=(0,2]∪[3,+∞),故选D.评析本题主要考查了集合的运算,数轴是解决集合运算问题的“利器”.41.(2016课标Ⅰ文,1,5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}答案B∵A={1,3,5,7},B={x|2≤x≤5},∴A∩B={3,5},故选B.42.(2016课标Ⅱ文,1,5分)已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}答案D由已知得B={x|-3<x<3},∵A={1,2,3},∴A∩B={1,2},故选D.B=()43.(2016课标Ⅲ文,1,5分)设集合A={0,2,4,6,8,10},B={4,8},则∁AA.{4,8}B.{0,2,6}C.{0,2,6,10}D.{0,2,4,6,8,10}答案C由补集定义知∁A B={0,2,6,10},故选C.44.(2016天津理,1,5分)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}答案D由题易知B={1,4,7,10},所以A∩B={1,4},故选D.45.(2016山东理,2,5分)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=()A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)答案C∵A=(0,+∞),B=(-1,1),∴A∪B=(-1,+∞).故选C.Q)=()46.(2016浙江,1,5分)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁RA.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)答案B∵Q=(-∞,-2]∪[2,+∞),∴∁R Q=(-2,2),∴P∪(∁R Q)=(-2,3],故选B.47.(2015课标Ⅱ,1,5分)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=()A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}答案A因为B={x|(x-1)(x+2)<0}={x|-2<x<1},A={-2,-1,0,1,2},故A∩B={-1,0}.选A.48.(2015课标Ⅰ文,1,5分)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2答案D由已知得A={2,5,8,11,14,17,…},又B={6,8,10,12,14},所以A∩B={8,14}.故选D.49.(2015课标Ⅱ文,1,5分)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=()A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)答案A因为A=(-1,2),B=(0,3),所以A∪B=(-1,3),故选A.50.(2015陕西文,1,5分)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]答案A由题意知M={0,1},N={x|0<x≤1},所以M∪N=[0,1].故选A.51.(2014课标Ⅰ理,1,5分)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=()A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)答案A由不等式x2-2x-3≥0解得x≥3或x≤-1,因此集合A={x|x≤-1或x≥3},又集合B={x|-2≤x<2},所以A∩B={x|-2≤x≤-1},故选A.52.(2014课标Ⅱ理,1,5分)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}答案D由已知得N={x|1≤x≤2},∵M={0,1,2},∴M∩N={1,2},故选D.53.(2014课标Ⅱ文,1,5分)已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=()A.⌀B.{2}C.{0}D.{-2}答案B∵集合A={-2,0,2},B={x|x2-x-2=0}={2,-1},∴A∩B={2},故选B.54.(2013课标Ⅱ理,1,5分)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=()A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}答案A化简得M={x|-1<x<3},所以M∩N={0,1,2},故选A.55.(2013课标Ⅰ文,1,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}答案A∵B={x|x=n2,n∈A}={1,4,9,16},∴A∩B={1,4},故选A.56.(2013课标Ⅱ文,1,5分)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0}D.{-3,-2,-1}答案C由题意得M∩N={-2,-1,0}.选C.57.(2013上海理,15,5分)设常数a∈R,集合A={x|(x-1)(x-a)≥0},B={x|x≥a-1},若A∪B=R,则a的取值范围为()A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)答案B当a=1时,集合A=R,满足A∪B=R.当a>1时,A=(-∞,1]∪[a,+∞),由A∪B=R,得a-1≤1,所以1<a≤2;当a<1时,A=(-∞,a]∪[1,+∞),由A∪B=R,得a-1≤a,所以a<1.综上所述,a≤2.58.(2012大纲全国理,2,5分)已知集合A={1,3,},B={1,m},A∪B=A,则m=()A.0或3B.0或3C.1或3D.1或3答案B由A∪B=A得B⊆A,则m∈A,所以有m=或m=3,所以m=3或m=1或m=0,又由集合中元素的互异性知m≠1,故选B.59.(2011课标文,1,5分)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个答案B由题意得P=M∩N={1,3},∴P的子集为⌀,{1},{3},{1,3},共4个,故选B.M=⌀,则M∪N=() 60.(2011辽宁理,2,5分)已知M,N为集合I的非空真子集,且M,N不相等,若N∩∁IA.MB.NC.ID.⌀答案A∵N∩∁I M=⌀,∴N⊆M.又M≠N,∴N⫋M,∴M∪N=M.故选A.61.(2020江苏,1,5分)已知集合A={-1,0,1,2},B={0,2,3},则A∩B=.答案{0,2}解析∵A={-1,0,1,2},B={0,2,3},∴A∩B={0,2}.62.(2018江苏,1,5分)已知集合A={0,1,2,8},B={-1,1,6,8},那么A∩B=.答案{1,8}解析本题考查集合的运算.∵A={0,1,2,8},B={-1,1,6,8},∴A∩B={1,8}.。
2024年高考数学 高三大一轮复习专题01 集合
专题01 集合【知识精讲】一、集合的基本概念 1.元素与集合的关系:a A a A∈⎧⎨∉⎩属于,记为不属于,记为.2.集合中元素的特征:即一个集合一旦3.集合的分类:有限集与无限集,特别地,我们把不含有任何元素的集合叫做空集,记作∅.4.常用数集及其记法:注意:实数集R 不能表示为{x |x 为所有实数}或{R },因为“{ }”包含“所有”“全体”的含义.5.集合的表示方法:自然语言、列举法、描述法、图示法. 二、集合间的基本关系或集合A ∅⊆,必记结论:(1)若集合A 中含有n 个元素,则有2n 个子集,有21n −个非空子集,有21n −个真子集,有22n −个非空真子集.(2)子集关系的传递性,即,A B B C A C ⊆⊆⇒⊆. 注意:空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解. 三、集合的基本运算 1.集合的基本运算{|B x x =|{B x x ={|UA x =2.集合运算的相关结论B A ⊆ B B ⊆ A A A = ∅=∅B A ⊇B B ⊇A A =A ∅=()UU A A =UU =∅ UU ∅=()U A A =∅()U A A U =3.必记结论(.)UUU A B A B A A B B A B A B ⊆⇔=⇔=⇔⊇=⇔∅【题型精讲】题型一 集合的基本概念【例1-1】设集合{}22,2,1A a a a =−+−,若4A ∈,则a 的值为( ).A .1−,2B .3−C .1−,3−,2D .3−,2【答案】D 【解析】 【分析】由集合中元素确定性得到:1a =−,2a =或3a =−,通过检验,排除掉1a =−. 【详解】由集合中元素的确定性知224a a −+=或14a −=.当224a a −+=时,1a =−或2a =;当14a −=时,3a =−.当1a =−时,{}2,4,2A =不满足集合中元素的互异性,故1a =−舍去; 当2a =时,{}2,4,1A =−满足集合中元素的互异性,故2a =满足要求; 当3a =−时,{}2,14,4A =满足集合中元素的互异性,故3a =−满足要求. 综上,2a =或3a =−. 故选:D .【例1-2】(多选题)设集合{}22,,Z M a a x y x y ==−∈,则下列是集合M 中的元素的有( ) A .4n ,Z n ∈ B .41n +,Z n ∈ C .42n +,Z n ∈ D .43n +,Z n ∈【答案】ABD 【解析】 【分析】分别对x ,y 取整数,1x n =+,1y n =−可判断A ;由21x n =+,2y n =可判断B ;令()()42n x y x y +=+−,通过验证不成立可判断C ;由22x n =+,21y n =+可判断D ,进而可得正确选项. 【详解】对于A :因为()()22411n n n =+−−,Z n ∈,1Z n +∈,1Z n −∈,所以4n M ,故选项A正确;对于B :因为()()2241212n n n +=+−,Z n ∈,21Z n +∈,2Z n ∈,所以41n M ,故选项B 正确;对于C :若()42Z n n M +∈∈,则存在x ,Z y ∈使得2242x y n ,则()()42n x y x y +=+−,易知x y +和x y −同奇或同偶,若x y +和x y −都是奇数,则()()x y x y +−为奇数,而42n +是偶数,矛盾;若x y +和x y −都是偶数,则()()x y x y +−能被4整除,而42n +不能被4整除,矛盾,所以42nM ,故选项C 不正确;对于D :()()22432221n n n +=+−+,22Z n +∈,21Z n +∈,所以43n M ,故选项D正确; 故选:ABD.【例1-3】集合*83A x NN x ⎧⎫=∈∈⎨⎬−⎩⎭,用列举法可以表示为A =_________. 【答案】{1,2}、{2,1} 【解析】【分析】根据集合元素属性特征进行求解即可. 【详解】 因为83N x*∈−,所以31,2,4,8−=x ,可得2,1,1,5=−−x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}【练习1-1】已知集合 {}20,,32A m m m =−+,且 2A ∈,则实数m 的值为( )A .3B .2C .0或3D .0或2或3【答案】A 【解析】 【分析】依题意可得2m =或2322m m −+=,求出方程的根,再代入集合中检验即可; 【详解】解:因为{}20,,32A m m m =−+,且2A ∈,所以2m =或2322m m −+=,解得2m =或0m =或3m =,当2m =时2320m m −+=,即集合A 不满足集合元素的互异性,故2m ≠,当0m =时集合A 不满足集合元素的互异性,故0m ≠,当3m =时{}0,3,2A =满足条件; 故选:A【练习1-2】已知集合{}220A x x x a =−+>,且1A ∉,则实数a 的所有取值构成的集合是________. 【答案】(],1−∞ 【解析】 【分析】根据集合与元素见的关系直接列不等式,进而得解. 【详解】由1A ∉,得21210a −⨯+≤, 解得1a ≤,故答案为:(],1−∞.【练习1-3】已知,x y 均为非零实数,则代数式xy x yx y xy++的值所组成的集合的元素个数是______. 【答案】2 【解析】 【分析】 分析题意知代数式xy x yx y xy++的值与,x y 的符号有关,按其符号的不同分3种情况讨论,分别求出代数式的值,即可得解. 【详解】根据题意分2种情况讨论: 当,x y 全部为负数时,xy 为正数,则1111xyx y x y xy++=−−+=−; 当,x y 全部为正数时,xy 为正数,则1113xy x y x y xy++=++=; 当,x y 一正一负时,xy 为负数,则1111xy x y x y xy++=−−=−; 综上可知,xy x yx y xy++的值为1−或3,即代数式的值所组成的集合的元素个数是2 故答案为:2题型二 集合的基本关系【例2-1】若集合1|(21),9A x x k k Z ⎧⎫==+∈⎨⎬⎩⎭,41|,99B x x k k Z ⎧⎫==±∈⎨⎬⎩⎭,则集合,A B 之间的关系为( ) A .A B B .B A C .A B = D .A B ≠【答案】C 【解析】【分析】根据子集的定义证得A B ⊆和B A ⊆,即可得出结论. 【详解】设任意1x A ∈,则1111(21),9x k k Z =+∈,当12,k n n Z =∈时1141(41)999x n n =+=+, 所以1x B ∈;当121,k n n Z =−∈时,1141(41)999x n n =−=−,所以1x B ∈.所以A B ⊆又设任意2x B ∈,则2222414(41),999x k k k Z =±=±∈ 因为22412(2)1k k +=+,22412(21)1k k −=−+, 且22k 表示所有的偶数,221k −表示所有的奇数.所以2241k k Z ±∈()与21()n n Z +∈都表示所有的奇数.所以2x A ∈. 所以B A ⊆故A B =. 故选:C.【例2-2】已知集合{}2230A x x x =−−=,{}20B x ax =−=,且B A ⊆,则实数a 的值为___________. 【答案】2a =−或23a =或0 【解析】 【分析】先求得集合A ,分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=−==⎨⎬⎩⎭,因为B A ⊆,故得到21a =−或23a =,解出即可.【详解】解:已知集合{}{}22301,3A x x x =−−==−,{}20B x ax =−=,当0,a B ==∅,满足B A ⊆;当0a ≠时,{}220B x ax a ⎧⎫=−==⎨⎬⎩⎭,因为B A ⊆,故得到21a =−或23a=,解得2a =−或23a =;故答案为:2a =−或23a =或0.【例2-3】已知{}(){}22240,2110A xx x B x x a x a =+==+++−=∣∣. (1)若A 是B 的子集,求实数a 的值; (2)若B 是A 的子集,求实数a 的取值范围. 【答案】(1)1a =; (2)1a −或1a =. 【解析】 【分析】(1)由题得{}4,0B A ==−,解2Δ0402(1)401a a >⎧⎪−+=−+⎨⎪−⨯=−⎩即得解;(2)由题得B A ⊆,再对集合B 分三种情况讨论得解. (1)解:由题得{}4,0A =−.若A 是B 的子集,则{}4,0B A ==−,所以2Δ0402(1),1401a a a >⎧⎪−+=−+∴=⎨⎪−⨯=−⎩.(2)解:若B 是A 的子集,则B A ⊆.①若B 为空集,则()22Δ4(1)41880a a a =+−−=+<,解得1a <−; ②若B 为单元素集合,则()22Δ4(1)41880a a a =+−−=+=,解得1a =−. 将1a =−代入方程()222110x a x a +++−=,得20x =,即{}0,0x B ==,符合要求; ③若B 为双元素集合,{}4,0B A ==−,则1a =. 综上所述,1a −或1a =.【练习2-1】设集合18045,Z 2k M x x k ⎧⎫==⋅︒+︒∈⎨⎬⎩⎭,18045,Z 4kN x x k ⎧⎫==⋅︒+︒∈⎨⎬⎩⎭,则两集合间的关系是( ) A .MNB .M NC .N MD .M N ⋂=∅【答案】B 【解析】 【分析】变形(){}2145,Z M x x k k ==+⨯︒∈,(){}145,Z N x x k k =+⨯︒∈,分析比较即可得解. 【详解】由题意可(){}18045,Z 2145,Z 2kM x x k x x k k ⎧⎫==⋅︒+︒∈==+⨯︒∈⎨⎬⎩⎭即M 为45︒的奇数倍构成的集合,又(){}18045,Z 145,Z 4kN x x k x x k k ⎧⎫==⋅︒+︒∈==+⨯︒∈⎨⎬⎩⎭,即N 为45︒的整数倍构成的集合,M N ∴⊆,即M N 故选:B【练习2-2】已知集合{|4A x x =≥或}5x <−,{}|13B x a x a =+≤≤+,若B A ⊆,则实数a 的取值范围_________.【答案】{|8a a <−或}3a ≥ 【解析】 【分析】根据B A ⊆,利用数轴,列出不等式组,即可求出实数a 的取值范围. 【详解】用数轴表示两集合的位置关系,如上图所示,或要使B A ⊆,只需35a +<−或14a +≥,解得8a <−或3a ≥. 所以实数a 的取值范围{|8a a <−或}3a ≥. 故答案为:{|8a a <−或}3a ≥【练习2-3】满足{}1A ⊆ {1,2,3}的所有集合A 是___________. 【答案】{1}或{1,2}或{1,3} 【解析】 【分析】由题意可得集合A 中至少有一个元素1,且为集合{1,2,3}的真子集,从而可求出集合A 【详解】因为{}1A ⊆ {1,2,3},所以集合A 中至少有一个元素1,且为集合{1,2,3}的真子集, 所以集合A 是{1}或{1,2}或{1,3}, 故答案为:{1}或{1,2}或{1,3}题型三 集合的基本运算【例3-1】已知集合{}21A x x =−≤≤,集合{}2log 1B x x =<,则A B =( ) A .∅ B .(0,1] C .[2,1]− D .(0,2)【答案】B 【解析】 【分析】先求解集合B ,再利用交集运算即可. 【详解】解:由题得集合{|02}B x x =<<,所以{|01}A B x x =<≤. 故选:B .【例3-2】已知U=R 是实数集,21M x x ⎧⎫=>⎨⎬⎩⎭,{N x y ==,则()N M =R ( )A .(),0∞−B .(),1−∞C .(]0,1D .()0,1【答案】D【解析】【分析】 先求得集合M 、N ,再运用集合的交集、补集运算求得答案.【详解】解:∵{}221002x M x x x x x x ⎧⎫⎧⎫−=>=<=<<⎨⎬⎨⎬⎩⎭⎩⎭,{{}1N x y x x ===≥, ∴(){}{}{}10201R N M x x x x x x ⋂=<⋂<<=<<,故选:D.【例3-3】已知集合{2}A xa x a =<<∣,{4B x x =≤−或}3x ≥. (1)当2a =时,求()R A B ⋃;(2)若R A B ⊆,求a 的取值范围.【答案】(1){44}xx −<<∣ (2)3,2⎛⎤−∞ ⎥⎝⎦ 【解析】【分析】(1)由补集和并集的定义可运算求得结果;(2)分别在A =∅和A ≠∅两种情况下,根据交集为空集可构造不等式求得结果.(1) 由题意得{}24A x x =<<,{4B x x =≤−或}3x ≥, {}R 43B x x ∴=−<<,故(){}R 44A B x x ⋃=−<<.(2)当0a ≤时,A =∅,符合题意,当0a >时,由23a ≤,得302<≤a , 故a 的取值范围为3,2⎛⎤−∞ ⎥⎝⎦.【练习3-1】已知集合{}1,0,1,2A =−,集合{}lg 0B x x =>,则() AB =R ( ) A .{}1,0,1−B .{}1,0−C .{}0,1D .(],1−∞ 【答案】A【解析】【分析】解不等式后由补集与交集的概念运算【详解】 因为集合{}{}lg 01B x x x x =>=>,所以{}1R B x x =≤,又集合{}1,0,1,2A =−,所以(){} 1,0,1A B =−R ,故选:A 【练习3-2】设全集为R ,{|1A x x =<−或}4x >,{}123B x a x a =−≤≤+.(1)若1a =,求A B ,()R A B .(2)已知A B =∅,求实数a 的取值范围.【答案】(1){}45A B xx ⋂=<≤∣,(){}R 15A B x x ⋃=−≤≤∣; (2)12a ≤. 【解析】【分析】(1)当1a =时求出集合B ,再进行交集,补集,并集运算即可求解;(2)讨论B =∅和B ≠∅两种情况,列不等式解不等式即可求解.(1)因为1a =,所以{}05B x x =≤≤∣,{}R |14A x x =−≤≤,所以{}45A B xx ⋂=<≤∣,(){}R 15A B x x ⋃=−≤≤∣. (2)因为A B =∅,当B =∅时,满足A B =∅,所以123a a −>+,得23a <−;当B ≠∅时,因为A B =∅,所以23111234a a a a +≥−⎧⎪−≥−⎨⎪+≤⎩,解得2132a −≤≤, 综上实数a 的取值范围为:12a ≤. 题型四 Venn 图及其应用【例4-1】如图,三个圆的内部区域分别代表集合A ,B ,C ,全集为I ,则图中阴影部分的区域表示( )A .ABC ⋂⋂B .()I AC B ⋂⋂ C .()I A B C ⋂⋂D .()I B C A ⋂⋂【答案】B【解析】【分析】找到每一个选项对应的区域即得解.【详解】解:如图所示,A. A B C ⋂⋂对应的是区域1;B. ()I A C B ⋂⋂对应的是区域2;C. ()I A B C ⋂⋂对应的是区域3;D. ()I B C A ⋂⋂对应的是区域4.故选:B【例4-2】已知全集R U =,集合{}|2,1x A y y x ==>,{}|24B x x =−<<,则图中阴影部分表示的集合为( )A .[2,2]−B .(2,2)−C .(2,2]−D .[2,2)−【答案】C【解析】【分析】求出集合A ,阴影部分表示为:()U B A ⋂,再分析求解即可.【详解】因为{}|2,1x A y y x ==>,所以()2,A =+∞,又{}|24B x x =−<<,全集R U =, 所以图中阴影部分表示的集合为()(2,2]U B A =−.故选:C.【练习4-1】已知M ,N 为R 的两个不相等的非空子集,若M N M ⋂=,则( )A .M N =RB .M N ⋃=R RC .N M ⋃=R RD .M N ⋃=R R R【答案】C【解析】【分析】依题意可得M N ,结合韦恩图即可判断;【详解】解:依题意M N M ⋂=,所以M N ,则集合M ,N 与R 的关系如下图所示:所以N M ⋃=R R ;故选:C【练习4-2】已知全集U =R ,集合{}290A x x =−>,122x B x ⎧⎫⎪⎪⎛⎫=≥⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则图中阴影部分所表示的集合为( )A .{}3x x <B .{}13x x −<<C .{}1x x >−D .{}11x x −<≤【答案】B【解析】【分析】根据不等式的解法和指数函数的性质,分别求得集合,A B ,结合题意和集合的运算法则,即可求解.【详解】由不等式290−>x ,解得33x −<<,即集合{}33A x x =−<<, 又由122x ⎛⎫≥ ⎪⎝⎭,解得1x ≤−,即集合{}1B x x =≤−,则{}|1U B x x =>−, 又因为图中阴影部分表示的集合为()U A B ∩,所以(){}|13U AB x x =−<<.故选:B.题型五 集合中的创新型问题【例5-1】定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==−∈∈,若{}1,0A =−,{}1,2B =,则A B ⊗中的元素个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据集合的新定义确定集合中的元素.【详解】因为2{|,,}A B x x a b a A b B ⊗==−∈∈,{}1,0A =−,{}1,2B =,所以{0,1,2}A B ⊗=−−,故集合A B ⊗中的元素个数为3,故选:C.【例5-2】(多选题)设P 是一个数集,且至少含有两个元素.若对任意的a b P ∈,,都有a ab a b ab P b+−∈,,,(除数0b ≠),则称P 是一个数域.则关于数域的理解正确的是( )A .有理数集Q 是一个数域B .整数集是数域C .若有理数集Q M ⊆,则数集M 必为数域D .数域必为无限集【答案】AD【解析】【分析】根据数域的定义逐项进行分析即可求解.【详解】对于A ,若Q a b ∈,,则()Q Q Q Q 0aa b a b ab b b+∈−∈∈∈≠,,,,所以有理数集Q 是一个数域,故A 正确;对于B ,因为1Z Z,∈∈,2所以1Z 2∉,所以整数集不是数域,故B 不正确;对于C,令数集}{Q 2M =,则1,M M ∈但1M ,故C 不正确;对于D ,根据定义,如果()0a b b ≠,在数域中,那么,2,,a b a b a kb +++(k 为整数),都在数域中,故数域必为无限集,故D 正确.故选:AD.【例5-3】已知有限集合{}123,,,,n A a a a a =⋅⋅⋅,定义集合{}1,,i j B a a i j n i j *=+≤<≤∈N 中的元素的个数为集合A 的“容量”,记为()L A .若集合{}13A x x *=∈≤≤N ,则()L A =______;若集合{}1A x x n *=∈≤≤N ,且()4041L A =,则正整数n 的值是______. 【答案】 3 2022【解析】【分析】化简A ,可得()L A ;根据“容量”定义可得{}1A x x n *=∈≤≤N 的()4041L A =,解方程即可.【详解】{}{}131,2,3A x x *=∈≤≤=N ,则集合{}3,4,5B =,所以()3L A =.若集合{}1A x x n *=∈≤≤N , 则集合(){}{}3,4,,13,4,,21B n n n =⋅⋅⋅−+=⋅⋅⋅−,故()212234041L A n n =−−=−=,解得2022n =.故答案为:3;2022【练习5-1】设集合{}3,4,5P =,{}6,7Q =,定义(){},|,P Q a b a P b Q ⊗=∈∈,则P Q ⊗中元素的个数为( )A .3B .4C .5D .6【答案】D【解析】【分析】用列举法表示出集合,即可得到结论.【详解】因为集合{}3,4,5P =,{}6,7Q =,定义(){},|,P Q a b a P b Q ⊗=∈∈,所以(){}()()()()()(){},|,3,6,3,7,4,6,4,7,5,6,5,7P Q a b a P b Q ⊗=∈∈=.一共6个元素.故选:D【练习5-2】若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”,对于集合1,2A ,{}22,0B x ax a ==≥,若这两个集合构成“鲸吞”或“蚕食”,则a 的取值集合为_____. 【答案】10,,22⎧⎫⎨⎬⎩⎭ 【解析】【分析】分“鲸吞”或“蚕食”两种情况分类讨论求出a 值,即可求解【详解】当0a =时,B =∅,此时满足B A ⊆,当0a >时,B ⎧⎪=⎨⎪⎩,此时,A B 集合只能是“蚕食”关系,所以当,A B 集合有公共元素1=−时,解得2a =,当,A B 2=时,解得12a =, 故a 的取值集合为10,,22⎧⎫⎨⎬⎩⎭. 故答案为:10,,22⎧⎫⎨⎬⎩⎭。
高考数学复习典型题型专题讲解与练习1 集合的概念(解析版)
高考数学复习典型题型专题讲解与练习专题1 集合的概念题型一判断元素与集合的关系1.下面有四个语句:①集合N*中最小的数是0;②-a∉N,则a∈N;③a∈N,b∈N,则a+b的最小值是2;④x2+1=2x的解集中含有两个元素.其中说法正确的个数是()A.0B.1C.2D.3【答案】A【解析】因为N*是不含0的自然数,所以①错误;取a=2,则-2∉N,2∉N,所以②错误;对于③,当a=b=0时,a+b取得最小值是0,而不是2,所以③错误;对于④,解集中只含有元素1,故④错误.故选:A2.下列四个命题:①{0}是空集;②若a∈N,则-a∉N;③集合{x∈R|x2-2x+1=0}含有两个元素;④集合6|x Q Nx⎧⎫∈∈⎨⎬⎩⎭是有限集.其中正确命题的个数是()A.1B.2 C.3D.0 【答案】D【解析】①{0}是含有一个元素0的集合,不是空集,所以①不正确; ②当a =0时,0∈N ,所以②不正确;③因为由x 2-2x +1=0,得x 1=x 2=1,所以{x ∈R |x 2-2x +1=0}={1},所以③不正确;④当x 为正整数的倒数时,6x∈N ,所以6|x Q N x⎧⎫∈∈⎨⎬⎩⎭是无限集,所以④不正确.故选:D3.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5k n k n Z =+∈,0,1,2,3,4k =,给出如下四个结论:①[]20111∈;②[]33-∈;③若整数,a b 属于同一“类”,则[]0a b -∈;④若[]0a b -∈,则整数,a b 属于同一“类”.其中,正确结论的个数是( ). A .1B .2C .3D .4 【答案】C【解析】对于①,201154021÷=⋅⋅⋅,[]20111∴∈,①正确; 对于②,352-=-+,即3-被5除余2,[]33∴-∉,②错误; 对于③,设15a n k =+,25b n k =+,()125a b n n ∴-=-,能被5整除,[]0a b ∴-∈,③正确;对于④,设5a b n -=,n Z ∈,即5a n b =+,n Z ∈, 不妨令5b m k =+,m Z ∈,0,1,2,3,4k =,则()555a n m k m n k =++=++,m Z ∈,n Z ∈,0,1,2,3,4k =,,a b ∴属于同一“类”, ④正确;综上所述:正确结论的个数为3个. 故选:C .4.已知集合{10}A x x =,23a =+,则a 与集合A 的关系是( ) A .a A ∈B .a A ∉C .a A =D .{}a A ∈ 【答案】A【解析】解:{|10}A x x =,23224a =+<+=,10a <,a A ∴∈,故选:A .5.下列三个命题:①集合N 中最小的数是1;②a N -∉,则a N ∈;③a N ∈,N b ∈,则+a b 的最小值是2.其中正确命题的个数是( ) A .0B .1C .2D .3 【答案】A【解析】①N 表示自然数集,最小的数为0,①错误; ②若32a N -=-∉,则32a N =∉,②错误; ③若0a =,1b =,则1a b +=,③错误.∴正确命题的个数为0个故选:A6.用符号“∈”或“∉”填空: (1)0________N *,5________Z ;(2)23________{x |x <11},32________{x |x >4};(3)(-1,1)________{y |y =x 2},(-1,1)________{(x ,y )|y =x 2}. 【答案】∉ ∉ ∉ ∈ ∉ ∈ 【解析】(1)*0N ∉5Z ;(2)22(23)(11)>,2311∴>,∴23{|11}∉<x x ;22(32)4>,即324>,∴32{|4}∈>x x ;(3)(-1,1)为点,{y |y =x 2}中元素为数,故(-1,1) ∉{y |y =x 2}. 又∵(-1)2=1,∴(-1,1)∈{(x ,y )|y =x 2}. 故答案为:∉;∉;∉;∈;∉;∈ 题型二 根据元素与集合的关系求参数1.若由a 2,2019a 组成的集合M 中有两个元素,则a 的取值可以是( ) A .0B .2019 C .1D .0或2019 【答案】C【解析】若集合M 中有两个元素,则a 2≠2 019a .即a ≠0且a ≠2 019.故选:C. 2.若集合2{|320}A x R ax x =∈-+=中只有一个元素,则(a =) A .92B .98C .0D .0或98【答案】D【解析】解:集合2{|320}A x R ax x =∈-+=中只有一个元素, 当0a =时,可得23x =,集合A 只有一个元素为:23. 当0a ≠时:方程2320ax x -+=只有一个解:即980a ∆=-=, 可得:98a =. 故选:D .3.已知集合A 是由a ﹣2,2a 2+5a ,12三个元素组成的,且﹣3∈A ,求a =________. 【答案】32-【解析】解:由﹣3∈A ,可得﹣3=a ﹣2,或﹣3=2a 2+5a , 由﹣3=a ﹣2,解得a =﹣1,经过验证a =﹣1不满足条件,舍去.由﹣3=2a 2+5a ,解得a =﹣1或32-,经过验证:a =﹣1不满足条件,舍去. ∴a =32-.故答案为:﹣32.4.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为________. 【答案】3 【解析】∵2{0,,32}A m m m =-+,且2A ∈,∴2m =或2322m m -+=,即2m =或0m =或3m =,当2m =时,与元素的互异性相矛盾,舍去;当0m =时,与元素的互异性相矛盾,舍去;当3m =时,{}032A =,,满足题意,∴3m =,故答案是3. 5.已知集合2{|320}A x ax x =-+=,其中a 为常数,且a R ∈. (1)若A 中至少有一个元素,求a 的取值范围; (2)若A 中至多有一个元素,求a 的取值范围. 【答案】(1)89≤a ;(2)89≤a 或0=a 【解析】解:(1)0a =,由320x -+=,解得23x =,满足题意,因此0a =.0a ≠时,A 中至少有一个元素,∴980a ∆=-,解得89≤a ,0a ≠. 综上可得:a 的取值范围是89≤a .(2)0a =,由320x -+=,解得23x =,满足题意,因此0a =.0a ≠时,A 中至多有一个元素,∴980a ∆=-,解得89≤a . 综上可得:a 的取值范围是89≤a 或0=a . 题型三 利用集合互异性求参数1.含有三个实数的集合既可表示为{,,0}b b a,也可表示为{,,1}a a b +,则+a b 的值为____. 【答案】0【解析】由题意{,,0}{,,1}bb a a b a=+,可得0a ≠,根据集合相等和元素的互异性,可得0a b +=且1b =,解得1,1a b =-=, 此时集合{,,0}{1,1,0},{,,1}{1,1,0}b b a a b a=-+=- 所以0a b +=. 故答案为0. 2.已知集合22{2,(1),33}Aa a a =+++,且1A ∈,则实数a 的值为________.【答案】1-或0【解析】若()211,a +=则0a =或2,a =- 当0a =时,{}2,1,3A =,符合元素的互异性; 当2a =-时,{}2,1,1A =,不符合元素的互异性,舍去 若2a 3a 31,++=则1a =-或2,a =-当1a =-时,{}2,0,1A =,符合元素的互异性;当2a =-时,{}2,1,1A =,不符合元素的互异性,舍去; 故答案为:1-或0.3.已知集合{}2411A a a a =+++,,{}2|0B x x px q =++=,若1A ∈.(1)求实数a 的值;(2)如果集合A 是集合B 的列举表示法,求实数p q ,的值. 【答案】(1)4a =-;(2)23p q ==-,.【解析】解:(1)∵1A ∈,∴2411a a ++=或者11a += 得4a =-或0a =,验证当0a = 时,集合{}11A =,,集合内两个元素相同,故舍去0a = ∴4a =-(2)由上4a =-得{}13A =-,,故集合B 中,方程20x px q ++=的两根为1、-3. 由一元二次方程根与系数的关系,得[1(3)]21(3)3p q =-+-==⨯-=-,.4.已知{}20,1,1a a a ∈--,求a 的值.【答案】1a =-【解析】由已知条件得:若a =0,则集合为{0,﹣1,﹣1},不满足集合元素的互异性,∴a ≠0; 若a ﹣1=0,a =1,则集合为{1,0,0},显然a ≠1;若a 2﹣1=0则a =±1,由上面知a =1不符合条件;a =﹣1时,集合为{﹣1,﹣2,0}; ∴a =﹣1.5.含有三个实数元素的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成2{,,0}a a b +,求20172018a b +的值. 【答案】-1【解析】由题意得,,1ba a ⎧⎫⎨⎬⎩⎭与2{,,0}a a b +表示同一个集合,所以0b a=且0a ≠,1a ≠,即0b =,则有{,0,1}a 与2{,,0}a a 表示同一个集合,所以21a =,解得1a =-,所以()2017201720182018101a b +=-+=-,故答案为:1-题型四 集合的描述方法 1.给出下列说法:①集合{}3x x x ∈=N 用列举法表示为{}1,0,1-;②实数集可以表示为{|x x 为实数}或{}R ; ③方程组3,1x y x y +=⎧⎨-=-⎩的解组成的集合为{}1,2x y ==.其中不正确的有______.(把所有不正确说法的序号都填上) 【答案】①②③【解析】①由3x x =,即()210x x -=,得0x =或1x =或1x =-.因为1-∉N ,所以集合{}3x xx ∈=N 用列举法表示为{}0,1.②实数集正确的表示为{|x x 为实数}或R .③方程组3,1x y x y +=⎧⎨-=-⎩的解组成的集合正确的表示应为(){}1,2或()1,,2x x y y ⎧⎫=⎧⎪⎪⎨⎨⎬=⎩⎪⎪⎩⎭.故①②③均不正确. 2.定义集合运算(){}|,,A B z z xy x y x A y B ==+∈∈,集合{}{}0,1,2,3A B ==,则集合A B 所有元素之和为________ 【答案】18【解析】当0,2,0==∴=x y z 当1,2,6==∴=x y z 当0,3,0==∴=x y z当1,3,12==∴=x y z 和为0+6+12=18 故答案为:183.设数集A 由实数构成,且满足:若x A ∈(1x ≠且0x ≠),则11A x∈- . (1)若2A ∈,试证明集合A 中有元素1-,12; (2)判断集合A 中至少有几个元素,并说明理由; (3)若集合A 中的元素个数不超过8,所有元素的和为143,且集合A 中有一个元素的平方等于所有元素的积,求集合A .【答案】(1)证明见解析;(2)至少有3个元素.理由见解析(3)112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭【解析】(1)由题意,因为2A ∈,可得1112A =-∈-. 因为1A -∈,则()11112A =-∈-.所以集合A 中有元素1-,12.(2)由题意,可知若x A ∈(1x ≠且0x ≠), 则11A x ∈-,1x A x -∈,且11x x ≠-,111x x x -≠-,1x x x-≠, 故集合A 中至少有3个元素.(3)由集合A 中的元素个数不超过8,所以由(2)知A 中有6个元素. 设1111,,,,,11x m A x m x x m m --⎧⎫=⎨⎬--⎩⎭,m x ≠,1x ≠且0x ≠,1m ≠且0m ≠, 因为集合A 中所有元素的积为1,不妨设21x =,或2111x ⎛⎫= ⎪-⎝⎭,或211x x -⎛⎫= ⎪⎝⎭.当21x =时,1x =(舍去)或1x =-;若1x =-,则1,22A ∈. ∵集合A 中所有元素的和为143,∴1111421213m m m m -+-+++=-, ∴3261960m m m -++=,即()32261860m m m m ----=,即()()23620m m m ---=,即()()()321320m m m -+-=,∴12m =-或3或23,∴112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭.当2111x ⎛⎫= ⎪-⎝⎭或211x x -⎛⎫= ⎪⎝⎭时,同理可得112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭. 综上,112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭.题型五 元素个数的求解及参数问题1.用()d A 表示集合A 中的元素个数,若集合()(){}2210A x x ax x ax =--+=,{}0,1B =,且()()1d A d B -=.设实数a 的所有可能取值构成集合M ,则()d M =( )A .3B .2C .1D .4 【答案】A【解析】由题意,()()1d A d B -=,()2d B =,可得()d A 的值为1或3,若()1d A =,则20x ax -=仅有一根,必为0,此时a =0,则22110x ax x -+=+=无根,符合题意若()3d A =,若20x ax -=仅有一根,必为0,此时a =0,则22110x ax x -+=+=无根,不合题意,故20x ax -=有二根,一根是0,另一根是a ,所以210x ax -+=必仅有一根,所以2Δ40a =-=,解得2a =±,此时210x ax -+=的根为1或1-,符合题意,综上,实数a 的所有可能取值构成集合{0,2,2}M =-,故()3d M =. 故选:A .2.已知集合{}2,,M m m a b a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( ) ①12π+;②1162+;③122+;④2323-++ A .4B .3C .2D .1【答案】C【解析】①当212a b π+=+时,可得1,a b π==,这与,a b Q ∈矛盾,②()211623232+=+=+232a b ∴+=+ ,可得3,1a b == ,都是有理数,所以正确,③122212222-==-+, 2212a b ∴+=-,可得11,2a b ==-,都是有理数,所以正确, ④()22323426-++=+= 而()2222222a b a b ab +=++ ,,a b Q ∈,()22a b ∴+是无理数,2323∴-++不是集合M 中的元素,只有②③是集合M 的元素.故选:C3.已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .30【答案】C【解析】因为集合,所以集合中有5个元素(即5个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.4.选择适当的方法表示下列集合:(1)被5除余1的正整数组成的集合;(2)由直线y =-x +4上的横坐标和纵坐标都是自然数的点组成的集合;(3)方程(x 2-9)x =0的实数解组成的集合;(4)三角形的全体组成的集合.【答案】(1){x|x=5k+1,k ∈N };(2){(x ,y )|y =-x +4,x ∈N ,y ∈N };(3){-3,0,3};(4){x|x 是三角形}或{三角形}. 【解析】(1){|51,}x x k k N =+∈;(2){(,)|4,,}x y y x x N y N =-+∈∈;(3)2(9)00x x x -=⇒=或3x =±,解集为{3,0,3}-,(4){|x x 是三角形}或写成{三角形}.5.设A 是由一些实数构成的集合,若a ∈A ,则11a- ∈A ,且1∉A ,(1)若3∈A,求A.(2)证明:若a∈A,则11Aa-∈.【答案】(1)123,,23A⎧⎫=-⎨⎬⎩⎭;(2)证明见解析.【解析】(1)因为3∈A,所以11132A=-∈-,所以12131()2A=∈--,所以13213A=∈-,所以123,,23A⎧⎫=-⎨⎬⎩⎭.(2)因为a∈A,所以11Aa∈-,所以1111111aAa aa-==-∈---.。
高中数学高考专题复习《集合》含试题与详细解答
高中数学高考专题复习《集合》含试题与详细解答1.已知∈b a ,R ,则“b a =”是“ab b a =+2”的 A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件2.已知命题b a p >若:,则b a 11<,那么“p ⌝”是( ) A 、若b a >,则b a 11≥ B 、若b a >,则不一定有ba 11< C 、若b a ≤,则b a 11< D 、若b a ≤,则ba 11≥ 3.如果22{|0,},{|0,}A x x x x R B x x x x R =-=∈=+=∈,那么AB =( ) A. 0 B. ∅ C. {0} D. {1,0,1}-4.对于集合N M ,,定义:M x x N M ∈=-|{且}N x ∉,)()(M N N M N M --=⊕ ,设A =),3|{2R x x x y y ∈-=,{})(log 2x y x B -==,则B A ⊕=( )A .0]B .0)C ..5.非零向量,a b 使得||||||a b a b -=+成立的一个充分非必要条件是A . //a b B. a b = C. ||||a b a b = D. 20a b += 6.已知集合{}0=A y y A B B =∣≥,,则集合B 可能是( )(A ){}=0y y x ∣≥ (B ){}1=2x y y x ⎛⎫∈ ⎪⎝⎭R ∣, (C ){}=ln 0y y x x ∣,> (D )R7.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定形式是 ( )A.任意多面体没有一个是三角形或四边形或五边形的面B.任意多面体没有一个是三角形的面C.任意多面体没有一个是四边形的面D.任意多面体没有一个是五边形的面8.已知集合2{|1}M x x ==,{|1,}N a ax x M ==∈,则下列关于集合M 、N 之间关系的判断中,正确的是A .N M Ø B.M N =∅ C. M N = D. M N =∅9.已知集合A={x ︱x>-2}且AB A = ,则集合B 可以是( )A. {x ︱x 2>4 }B. {x ︱y =C. {y ︱22,y x x R =-∈ }D.(-1,0,1,2,3)10.下列选项中,p 是q 的必要不充分条件的是( )A.p:a c +>b+d , q:a >b 且c >dB.p:a >1,b>1, q:()(01)x f x a b a a =->≠,且的图象不过第二象限C.p: x=1, q:2x x =D.p:a >1, q: ()log (01)a f x x a a =>≠,且在(0,)+∞上为增函数11.已知集合{}1|2==x x P ,集合{}1|==ax x Q ,若P Q ⊆,那么a 的值是( )A .1B .-1C .1或-1D .0,1或-112.若集合{}0A x x =≥,且A B B =,则集合B 可能是( )A .{}1,2B .{}1x x ≤C .{}1,0,1-D .R13.定义}|{B x A x x B A ∉∈=-且,已知}4,3,1{},3,2{==B A 。
集合-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版
2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第01练集合(精练)1.了解集合的含义,体会元素与集合的属于关系,能用自然语言、图形语言、集合语言列举法或描述法描述不同的具体问题.2.理解集合间包含与相等的含义,能识别给定集合的子集.在具体情境中,了解全集与空集的含义.3.理解两个集合的并集、交集与补集的含义,会求两个简单集合的并集、交集与补集.能使用Venn 图表示集合间的基本关系及集合的基本运算.一、单选题1.(2023·全国·高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð()A .{}0,2,4,6,8B .{}0,1,4,6,8C .{}1,2,4,6,8D .U2.(2023·全国·高考真题)已知集合{}2,1,0,1,2M =--,260N x x x =--≥,则M N ⋂=()A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C【分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出.方法二:将集合M 中的元素逐个代入不等式验证,即可解出.-3.(2023·全国·高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ().A .2B .1C .23D .1-4.(2023·全国·高考真题)设全集Z U =,集合{31,},{32,}M xx k k Z N x x k k Z ==+∈==+∈∣∣,()U M N ⋃=ð()A .{|3,}x x k k =∈Z B .{31,}xx k k Z =-∈∣C .{32,}xx k k Z =-∈∣D .∅【答案】A【分析】根据整数集的分类,以及补集的运算即可解出.【详解】因为整数集{}{}{}|3,|31,|32,x x k k x x k k x x k k ==∈=+∈=+∈Z Z Z Z ,U Z =,所以,(){}|3,U M N x x k k ==∈Z ð.故选:A .5.(2023·全国·高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A .-1B .12-C .0D .126.(2022·全国·高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M ∈C .4M ∉D .5M∉【答案】A【分析】先写出集合M ,然后逐项验证即可【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误故选:A7.(2022·全国·高考真题)若集合{4},{31}M x N x x ==≥∣,则M N ⋂=()8.(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ()A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【A 级基础巩固练】一、单选题1.(2024·北京丰台·一模)已知集合{}220A x x x =-≤,{}10B x x =->,则A B ⋃=()A .{}0x x ≥B .{}01x x ≤<C .{}1x x >D .{}12x x <≤2.(2024·北京顺义·二模)设集合24U x x =∈≤Z ,{}1,2A =,则U A =ð()A .[]2,0-B .{}0C .{}2,1--D .{}2,1,0--【答案】DA .(]0,2B .31,2⎛⎤ ⎥C .()0,2D .30,2⎛⎤4.(23-24高三下·四川成都·阶段练习)已知集合{}{}1,2,2,3A B ==,则集合{},,C z z x y x A y B ==+∈∈的子集个数为()A .5B .6C .7D .85.(2024·陕西安康·模拟预测)已知集合{}{}3N 0log 2,21,Z A x x B x x k k =∈<<==+∈∣∣,则A B = ()A .{}1,3,5,7B .{}5,6,7C .{}3,5D .{}3,5,7【答案】D【分析】先求出集合A ,再根据交集的定义即可得解.【详解】{}{}{}3N0log 2N192,3,4,5,6,7,8A x x x x =∈<<=∈<<=∣∣,所以{}3,5,7A B = .故选:D.6.(23-24高三下·四川雅安·阶段练习)若集合{}2,1,4,8A =-,{}2,B x y x A y A =-∈∈∣,则B 中元素的最大值为()A .4B .5C .7D .10【答案】C【分析】根据B 中元素的特征,只需满足()2max minx y-即可得解.【详解】由题意,()()222max maxmin817x y x y -=-=-=.故选:C7.(2024·四川成都·三模)设全集{}1,2,3,4,5U =,若集合M 满足{}1,4U M ⊆ð,则()A .4M ÎB .1M ∉C .2M ∈D .3M∉8.(2024·河北沧州·模拟预测)已知集合{}4A x x =∈<N ,{}21,B x x n n A ==-∈,P A B =⋂,则集合P 的子集共有()A .2个B .3个C .4个D .8个9.(2024·全国·模拟预测)若集合{}()(){}28,158A x x B x x x =∈<=+->-Z ,则()A B ⋂=R ð()A .{}0,1,2B .{0x x ≤<C .{1x x ≤≤D .{}1,210.(2024·四川泸州·三模)已知集合2230A x x x =--<,{}0,B a =,若A B ⋂中有且仅有一个元素,则实数a 的取值范围为()A .()1,3-B .(][),13,-∞-+∞C .()3,1-D .(][),31,-∞-⋃+∞11.(2024·北京东城·一模)如图所示,U 是全集,,A B 是U 的子集,则阴影部分所表示的集合是()A .AB ⋂B .A B⋃C .()U A B ⋂ðD .()U A B ⋃ð【答案】D【分析】由给定的韦恩图分析出阴影部分所表示的集合中元素满足的条件,再根据集合运算的定义即可得解.【详解】由韦恩图可知阴影部分所表示的集合是()U A B ð.二、多选题12.(2024·甘肃定西·一模)设集合{}{}26,,A x x x B xy x A y A =-≤=∈∈∣∣,则()A .AB B= B .Z B ⋂的元素个数为16C .A B B⋃=D .A Z I 的子集个数为64取值可能是()A .3-B .1C .1-D .014.(2024·广西·二模)若集合M 和N 关系的Venn 图如图所示,则,M N 可能是()A .{}{}0,2,4,6,4M N ==B .{}21,{1}M xx N x x =<=>-∣∣C .{}{}lg ,e 5x M xy x N y y ====+∣∣D .(){}(){}22,,,M x y x y N x y y x ====∣∣三、填空题15.(2024高一上·全国·专题练习)已知集合{}22,4,10A a a a =-+,且3A -∈,则=a .【答案】3-【分析】根据题意,列出方程,求得a 的值,结合集合元素的互异性,即可求解.【详解】因为3A -∈,所以23a -=-或243a a +=-,解得1a =-或3a =-,当1a =-时,23a -=,243a a +=-,集合A 不满足元素的互异性,所以1a =-舍去;当3a =-时,经检验,符合题意,所以3a =-.故答案为:3-.16.(2024高三下·全国·专题练习)集合(){}22,2,,x y x y x y +<∈∈Z Z 的真子集的个数是.17.(23-24高一上·辽宁大连·期中)设{}50A x x =-=,{}10B x ax =-=,若A B B = ,则实数a 的值为.18.(2024·安徽合肥·一模)已知集合{}{}24,11A x x B x a x a =≤=-≤≤+∣∣,若A B ⋂=∅,则a 的取值范围是.【答案】()(),33,-∞-+∞ 【分析】利用一元二次不等式的解法及交集的定义即可求解.【详解】由24x ≤,得()()220x x -+≤,解得22x -≤≤,所以{}22A xx =-≤≤∣.因为A B ⋂=∅,所以12a +<-或12a ->,解得3a <-或3a >,所以a 的取值范围是()(),33,-∞-+∞ .故答案为:()(),33,-∞-+∞ .19.(2024高三·全国·专题练习)设集合(){}2|1A x x a =-<,且2A ∈,3A ∉,则实数a 的取值范围为.【答案】(]1,2【分析】首先解一元二次不等式求出集合A ,再根据2A ∈且3A ∉得到不等式组,解得即可.【详解】由()21x a -<,即11x a -<-<,解得11a x a -<<+,即(){}{}2|11|1A x x a x a x a =-<=-<<+,因为2A ∈且3A ∉,所以121213a a a -<⎧⎪+>⎨⎪+≤⎩,解得12a <≤,即实数a 的取值范围为(]1,2.故答案为:(]1,2四、解答题20.(23-24高一上·广东湛江·期末)已知集合()(){}230A x x x =-+≤,{}11B x a x a =-<<+,定义两个集合P ,Q 的差运算:{},P Q x x P x Q -=∈∉且.(1)当1a =时,求A B -与B A -;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.21.(2024高三·全国·专题练习)设M 是由直线0Ax By C ++=上所有点构成的集合,即{}(,)0M x y Ax By C =++=,在点集M 上定义运算“⊗”:对任意()11,,x y M ∈()22,,x y M ∈则()()11221212,,x y x y x x y y ⊗=+.(1)若M 是直线230x y -+=上所有点的集合,计算()()1,52,1⊗--的值.(2)对(1)中的点集M ,能否确定(3,)(,5)a b ⊗(其中,a b ∈R )的值?(3)对(1)中的点集M ,若(3,)(,)0a b c ⊗<,请你写出实数a ,b ,c 可能的值.【B 级能力提升练】一、单选题1.(2024·全国·模拟预测)已知集合{}{}2210,2log 10M x x P x x =->=-<,则M P ⋂=()A .12x x ⎧<<⎨⎩B .142x x ⎧⎫<<⎨⎬⎩⎭C .{}4x <<D .{}24x x <<2.(2024·宁夏银川·一模)设全集{0,1,2,3,4,5,6},{1,2,3,4,5},{Z 2}U A B x ===∈<,则集合{4,5}=()A .()U AB ⋂ðB .()U A B ⋂ðC .()U A B ∩ðD .()()U U A B ⋂痧所以{}{}Z |041,2,3B x x =∈<<=,所以{}0,4,5,6U B =ð,所以(){}4,5U A B Ç=ð,故ABD 错误,故C 正确;故选:C3.(23-24高三上·内蒙古赤峰·阶段练习)已知集合{}24xA x =>,集合{}B x x a =<∣,若A B ⋃=R ,则实数a 的取值范围为()A .(],2-∞B .[)2,+∞C .(),2-∞D .()2,+∞【答案】D【分析】先求出集合A ,然后根据A B ⋃=R ,即可求解.【详解】由24x >,得2x >,所以()2,A =+∞,因为(),B a =-∞,A B ⋃=R ,所以2a >,故D 正确.故选:D.4.(23-24高一上·全国·期末)已知m ∈R ,n ∈R ,若集合{}2,,1,,0n m m m n m ⎧⎫=+⎨⎬⎩⎭,则20232023m n +的值为()A .2-B .1-C .1D .25.(23-24高三下·湖南长沙·阶段练习)已知全集{}N |010U A B x x =⋃=∈≤≤,(){}1,3,5,7U A B ⋂=ð,则集合B 的元素个数为()A .6B .7C .8D .不确定【答案】B【分析】由已知求出全集,再由(){}U 1,3,5,7A B ⋂=ð可知A 中肯定有1,3,5,7,B 中肯定没有1,3,5,7,从而可求出B 中的元素.【详解】因为全集{}{}N |0100,1,2,3,4,5,6,7,8,9,10U A B x x =⋃=∈≤≤=,(){}1,3,5,7U A B ⋂=ð,所以A 中肯定有1,3,5,7,B 中肯定没有1,3,5,7,A 和B 中都有可能有0,2,4,6,8,9,10,且除了1,3,5,7,A 中有的其他数字,B 中也一定会有,A 中没有的数字,B 中也一定会有,所以{}0,2,4,6,8,9,10B =,故选:B6.(23-24高三下·甘肃·阶段练习)如果集合U 存在一组两两不交(两个集合交集为空集时,称为不交)的非空子集()*122,,,,k A A A k k ≥∈N ,且满足12k A A A U =U U L U ,那么称子集组12,,,k A A A 构成集合U 的一个k 划分.若集合I 中含有4个元素,则集合I 的所有划分的个数为()A .7个B .9个C .10个D .14个二、多选题7.(2024·江苏泰州·模拟预测)对任意,A B ⊆R ,记{},A B x x A B x A B ⊕=∈⋃∉⋂,并称A B ⊕为集合,A B的对称差.例如:若{}{}1,2,3,2,3,4A B ==,则{}1,4A B ⊕=.下列命题中,为真命题的是()A .若,AB ⊆R 且A B B ⊕=,则A =∅B .若,A B ⊆R 且A B ⊕=∅,则A B =C .若,A B ⊆R 且A B A ⊕⊆,则A B ⊆D .存在,A B ⊆R ,使得A B A B⊕≠⊕R R痧三、填空题8.(2024·浙江绍兴·二模)已知集合{}20A x x mx =+≤,1,13B m ⎧⎫=--⎨⎬⎩⎭,且A B ⋂有4个子集,则实数m 的最小值是.9.(2024·湖南·二模)对于非空集合P ,定义函数()1,,P f x x P ⎧=⎨∈⎩已知集合{01},{2}A x x B x t x t=<<=<<∣∣,若存在x ∈R ,使得()()0A B f x f x +>,则实数t 的取值范围为.【C 级拓广探索练】一、单选题1.(2023·上海普陀·一模)设1A 、2A 、3A 、L 、7A 是均含有2个元素的集合,且17A A ⋂=∅,()11,2,3,,6i i A A i +⋂=∅= ,记1237B A A A A =⋃⋃⋃⋃ ,则B 中元素个数的最小值是()A .5B .6C .7D .8【答案】A【分析】设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,分析可知4n ≥,然后对n 的取值由小到大进行分析,验证题中的条件是否满足,即可得解.【详解】解:设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,若3n =,则12A A ⋂≠∅,不合乎题意.①假设集合B 中含有4个元素,可设{}112,A x x =,则{}24634,A A A x x ===,{}35712,A A A x x ===,这与17A A ⋂=∅矛盾;②假设集合B 中含有5个元素,可设{}1612,A A x x ==,{}2734,A A x x ==,{}351,A x x =,{}423,A x x =,{}545,A x x =,满足题意.综上所述,集合B 中元素个数最少为5.故选:A.【点睛】关键点点睛:本题考查集合元素个数的最值的求解,解题的关键在于对集合元素的个数由小到大进行分类,对集合中的元素进行分析,验证题中条件是否成立即可.二、多选题2.(2024·浙江宁波·二模)指示函数是一个重要的数学函数,通常用来表示某个条件的成立情况.已知U 为全集且元素个数有限,对于U 的任意一个子集S ,定义集合S 的指示函数()()U 1,1,10,S S x Sx x x S∈⎧=⎨∈⎩ð若,,A B C U ⊆,则()注:()x Mf x ∈∑表示M 中所有元素x 所对应的函数值()f x 之和(其中M 是()f x 定义域的子集).A .1()1()A A x Ax Ux x ∈∈<∑∑B .1()1()1()A B A A B x x x ⋂⋃≤≤C .()1()1()1()1()1()A B A B A B x Ux Ux x x x x ⋃∈∈=+-∑∑D .()()()11()11()11()1()1()A B C U A B C x Ux Ux Ux x x x x ⋃⋃∈∈∈---=-∑∑∑【答案】BCD【分析】根据()1S x 的定义()U 1,10,S x Sx x S ∈⎧=⎨∈⎩ð,即可结合选项逐一求解.【详解】对于A ,由于A U ⊆,所以1()1()1()1(),uA A A A x U x A x A x Ax x x x ∈∈∈∈=+=∑∑∑∑ð故1()1()A A x Ax Ux x ∈∈=∑∑,故A 错误,对于B ,若x A B ∈ ,则1()1,1()1,1()1A B A A B x x x ⋂⋃===,此时满足1()1()1()A B A A B x x x ⋂⋃≤≤,若x A ∈且x B ∉时,1()0,1()1,1()1A B A A B x x x ⋂⋃===,若x B ∈且x A ∉时,1()0,1()0,1()1A B A A B x x x ⋂⋃===,若x A ∉且x B ∉时,1()0,1()0,1()0A B A A B x x x ⋂⋃===,综上可得1()1()1()A B A A B x x x ⋂⋃≤≤,故B 正确,对于C ,()()()()()1()1()1()1()1()1()1()1()1()1()1()1()U UAB A B AB A B AB A B x Ux A B x B A x x x x x x x x x x x x ∈∈⋂∈⋂+-=+-++-∑∑∑痧()()()()1()1()1()1()1()1()1()1()U ABABABABx A B x A Bx x x x x x x x ∈⋂∈⋃++-++-∑∑ð()()()()()()()1()1()1()1()1()1()1()1()1()1()1()1()0U U U ABABABABABABx A B x A B x A B x B A x x x x x x x x x x x x ∈⋂∈⋃∈⋂∈⋂=+-++-++-+∑∑∑∑ð痧()()1()1()1()1()ABABx A B x x x x ∈⋃=+-∑而()1()1()1()1()U A B A BA B A Bx Ux A Bx A Bx A Bx x x x ⋃⋃⋃⋃∈∈⋃∈⋃∈⋃=+=∑∑∑∑ð,由于()()()U 1,10,A B x A Bx x A B ⋃∈⋃⎧=⎨∈⋃⎩ð,所以1()1()1()1()1()A B A B A B x x x x x ⋃+-=故()1()1()1()1()1()A B AB A B x U x Ux x x x x ⋃∈∈=+-∑∑,C 正确,()1()1()1()U UA B C U x Ux Ux A B C x x x ⋃⋃∈∈∈⋃⋃-=∑∑∑ð,当x A B C ∈⋃⋃时,此时()()()1,1,1A B C x x x 中至少一个为1,所以()()()11()11()11()0A B C x x x ---=,当()x A B C ∉⋃⋃时,此时()()()1,1,1A B C x x x 均为0,所以()()()11()11()11()1A B C x x x ---=,故()()()()()()()()11()11()11()11()11()11()1()UU A B C A B C A B C U x U x x A B C x x x x x x x ⋃⋃∈∈∈⋃⋃---=---=∑∑∑痧,故D 正确,故选:BCD【点睛】关键点点睛:充分利用()1S x 的定义()U 1,10,S x Sx x S ∈⎧=⎨∈⎩ð以及()x M f x ∈∑的定义,由此可得()x A B C ∉⋃⋃时,此时1(),1(),I ()A B C x x x 均为0,x A B C ∈⋃⋃时,此时1(),1(),I ()A B C x x x 中至少一个为1,结合()1S x 的定义化简求解.三、填空题3.(23-24高三上·江西·期末)定义:有限集合{}++,,N ,N i A x x a i n i n ==≤∈∈,12n S a a a =+++ 则称S 为集合A 的“元素和”,记为A .若集合(){}+12,,N ,N i P x x i i n i n +==+≤∈∈,集合P 的所有非空子集分别为1P ,2P ,…,k P ,则12k P P P +++=.四、解答题4.(2024·浙江台州·二模)设A ,B 是两个非空集合,如果对于集合A 中的任意一个元素x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的元素y 和它对应,并且不同的x 对应不同的y ;同时B 中的每一个元素y ,都有一个A 中的元素x 与它对应,则称f :A B →为从集合A 到集合B 的一一对应,并称集合A 与B 等势,记作A B =.若集合A 与B 之间不存在一一对应关系,则称A 与B 不等势,记作A B ≠.例如:对于集合*N A =,{}*2N B n n =∈,存在一一对应关系()2,y x x A y B =∈∈,因此A B =.(1)已知集合(){}22,1C x y x y =+=,()22,|143x y D x y ⎧⎫=+=⎨⎬⎩⎭,试判断C D =是否成立?请说明理由;(2)证明:①()()0,1,=-∞+∞;②{}**N N x x ≠⊆.【答案】(1)成立,理由见解析(2)①证明见解析;②证明见解析5.(2024·北京延庆·一模)已知数列{}n a ,记集合()(){}*1,,...,1,,N i i j T S i j S i j a a a i j i j +==+++≤<∈.(1)若数列{}n a 为1,2,3,写出集合T ;(2)若2n a n =,是否存在*,N i j ∈,使得(),512S i j =?若存在,求出一组符合条件的,i j ;若不存在,说明理由;(3)若n a n =,把集合T 中的元素从小到大排列,得到的新数列为12,,...,,...m b b b ,若2024m b ≤,求m 的最大值.若正整数()221t h k =+,其中*N,N t k ∈∈,则当1221t k +>+时,由等差数列的性质可得:()()()()()()()22122...2221...21221...212t t t t t t t t t t t h k k k k k =+=+++=-+-+++-++++++-++,此时结论成立,当1221t k +<+时,由等差数列的性质可得:()()()()()()()()2121...2121...112...2t t h k k k k k k k k k =++++++=-+++-++++++++,此时结论成立,对于数列n a n =,此问题等价于数列1,2,3,...n 其相应集合T 中满足2024m b ≤有多少项,由前面证明可知正整数1,2,4,8,16,32,64,128,256,512,1024不是T 中的项,所以m 的最大值为2013.。
高考数学复习——第一题(集合)及解析(精选)
高考复习学考——第一题(集合)一.选择题(共25小题)1.已知集合A={4,5,6},B={3,5,7},则A∩B=()A.∅B.{5}C.{4,6}D.{3,4,5,6,7} 2.已知集合A={x∈R|1<x<3},则下列关系正确的是()A.1∈A B.2∉A C.3∈A D.4∉A3.已知集合A={x|x2=x},B={﹣1,0,1},则A∩B=()A.{1}B.{0,1}C.{﹣1,0}D.{﹣1,0,1} 4.设全集I={0,1,2,3},∁I M={0,2},则M=()A.{3}B.{1,3}C.{2,3}D.∅5.集合A={1,2,7,8},集合B={2,3,5,8},则A∩B=()A.{2}B.{3,5}C.{2,8}D.{1,2,3,5,7,8}6.设集合A={x|x≥﹣1},则下列四个关系中正确的是()A.1∈A B.1∉A C.{1}∈A D.1⊆A7.已知集合A={1,2,4},B={2,4,6},则A∪B=()A.{4}B.{1,6}C.{2,4}D.{1,2,4,6} 8.已知集合A={x∈Z|x2<2},B={x|2x>1},则A∩B=()A.{1}B.{1,2}C.{0,1}D.{﹣1,0,1} 9.已知集合S={0,1,2},T={2,3},则S∪T=()A.{0,1,2}B.{0,2}C.{0,1,2,3}D.{2}10.已知集合A={x|x>1},B={x|ax>1},若B⊆A,则实数a的取值范围为()A.(0,1)B.(0,1]C.[0,1]D.[0,1)11.已知集合A={1,2,3,4},B={x|x2﹣x﹣2=0},则A∩B=()A.{1}B.{2}C.{3}D.{1,2}12.若集合A={x|﹣1<x<2},B={﹣2,0,1,2},则A∩B=()A.∅B.{0,1}C.{0,1,2}D.{﹣2,0,1,2} 13.设集合A={x∈N|﹣1≤x≤3},B={y|y=x2,x∈R},则A∩B=()A.{0,1,2,3}B.{1,2,3}C.[1,3]D.[0,3]14.已知集合M={﹣1,0,1,2},N={1,2,3},则M∪N=()A.M B.N C.{﹣1,0,1,2,3}D.{1,2} 15.设全集U=R,集合P={x|﹣2≤x<3},则∁U P等于()A.{x|x<﹣2或x≥3} B.{x|x<﹣2且x≥3}C.{x|x≤﹣2或x>3}D.{x|x≤﹣2且x≥3}16.设集合M={0,1,2},则()A.1∈M B.2∉M C.3∈M D.{0}∈M17.下列表述正确的是()A.∅={0}B.∅⊆{0}C.∅⊇{0}D.∅∈{0}18.集合A={﹣1,0},B={0,1},C={1,2},则(A∩B)∪C等于()A.∅B.{1}C.{0,1,2}D.{﹣1,0,1,2} 19.设集合A={0,1,2},B={1,2,3},则A∩B=()A.{0,1,2,3}B.{0,3}C.{1,2}D.∅20.已知集合A={1,2,3},B={3,4,5,6},则A∩B=()A.{3}B.{1,2}C.{4,5,6}D.{1,2,3,4,5,6}21.已知集合A={1,3,5},B={3,5,7},则A∩B=()A.{1,3,5,7}B.{1,7}C.{3,5}D.{5}22.已知全集U={1,2,3,4,5},集合A={1,3,5},则∁U A=()A.{2,4}B.{1,3,5}C.{1,2,3,4,5}D.∅23.已知集合A={1,3,5,7},B={2,7,8},则A∩B=()A.{3,5,7}B.{1,5,8}C.{7}D.{5,7}24.集合U={0,1,2,3,4},M={0,3,4},N={1,2,3},则∁U M∩N=()A.{0,1,2,3,4}B.{1,2,3}C.{1,2}D.{3}25.若集合A={x|0≤x+1≤3,x∈N},集合B={0,2,4},则A∩B等于()A.{0}B.{0,2}C.{0,2,4}D.{0,1,2,4}参考答案与试题解析一.选择题(共25小题)1.已知集合A={4,5,6},B={3,5,7},则A∩B=()A.∅B.{5}C.{4,6}D.{3,4,5,6,7}【分析】由交集的定义,可求得A∩B.【解答】解:∵A={4,5,6},B={3,5,7},∴A∩B={5}.故选:B.【点评】本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.2.已知集合A={x∈R|1<x<3},则下列关系正确的是()A.1∈A B.2∉A C.3∈A D.4∉A【分析】根据元素与集合的关系进行判断即可.【解答】解:集合A={x∈R|1<x<3},则1∉A,所以选项A不对;2∈A,所以选项B不对;3∉A,所以选项C不对;4∉A,所以选项D对.故选:D.【点评】本题考查了元素与集合间关系的判断,比较基础.3.已知集合A={x|x2=x},B={﹣1,0,1},则A∩B=()A.{1}B.{0,1}C.{﹣1,0}D.{﹣1,0,1}【分析】可求出集合A,然后进行交集的运算即可.【解答】解:∵A={0,1},B={﹣1,0,1},∴A∩B={0,1}.故选:B.【点评】本题考查了描述法、列举法的定义,交集的定义及运算,考查了计算能力,属于基础题.4.设全集I={0,1,2,3},∁I M={0,2},则M=()A.{3}B.{1,3}C.{2,3}D.∅【分析】由全集U及∁I M,即可求解结论.【解答】解:∵全集I={0,1,2,3},∁I M={0,2},则M={1,3},故选:B.【点评】此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.5.集合A={1,2,7,8},集合B={2,3,5,8},则A∩B=()A.{2}B.{3,5}C.{2,8}D.{1,2,3,5,7,8}【分析】根据题意和交集的运算求解即可.【解答】解:∵集合A={1,2,7,8},集合B={2,3,5,8},则A∩B={2,8},故选:C.【点评】本题考查交集及其运算,属于基础题.6.设集合A={x|x≥﹣1},则下列四个关系中正确的是()A.1∈A B.1∉A C.{1}∈A D.1⊆A【分析】根据描述法表示集合的含义,1≥﹣1,可得1是集合A中的元素.【解答】解:∵集合A={x|x≥﹣1},是所有大于等于﹣1的实数组成的集合,∴1是集合中的元素,故1∈A,故选:A.【点评】本题考查了元素与集合关系的判断,元素与集合的关系是:“∈或∉”的关系.7.已知集合A={1,2,4},B={2,4,6},则A∪B=()A.{4}B.{1,6}C.{2,4}D.{1,2,4,6}【分析】利用并集定义直接求解.【解答】解:∵集合A={1,2,4},B={2,4,6},∴A∪B={1,2,4,6}.故选:D.【点评】本题考查并集的求法,考査并集定义等基础知识,考查运算求解能力,是基础题.8.已知集合A={x∈Z|x2<2},B={x|2x>1},则A∩B=()A.{1}B.{1,2}C.{0,1}D.{﹣1,0,1}【分析】求出集合A,B,由此能求出A∩B.【解答】解:∵集合A={x∈Z|x2<2}={x∈Z|﹣}={﹣1,0,1},B={x|2x>1}={x|x>0},∴A∩B={1}.故选:A.【点评】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.9.已知集合S={0,1,2},T={2,3},则S∪T=()A.{0,1,2}B.{0,2}C.{0,1,2,3}D.{2}【分析】进行并集的运算即可.【解答】解:S={0,1,2},T={2,3},∴S∪T={0,1,2,3}.故选:C.【点评】本题考查了列举法的定义,并集的定义及运算,考查了计算能力,属于基础题.10.已知集合A={x|x>1},B={x|ax>1},若B⊆A,则实数a的取值范围为()A.(0,1)B.(0,1]C.[0,1]D.[0,1)【分析】利用集合的子集关系,分类讨论a的范围可解得a,【解答】解:已知集合A={x|x>1},B={x|ax>1},若B⊆A,则A集合包含B集合的所以元素,解B集合时,当a<0时,不满足题设条件,当a=0时,x无实数解,B集合为空集,满足条件,当a>0时,x>,则≥1,a≤1,即0<a≤1,综上则实数a的取值范围为:[0,1],故选:C.【点评】本题的考点是集合的包含关系,考查两个集合的子集关系,解题的关键是正确判断集合的含义.11.已知集合A={1,2,3,4},B={x|x2﹣x﹣2=0},则A∩B=()A.{1}B.{2}C.{3}D.{1,2}【分析】可以求出集合B,然后进行交集的运算即可.【解答】解:∵A={1,2,3,4},B={﹣1,2},∴A∩B={2}.故选:B.【点评】本题考查了列举法、描述法的定义,交集的定义及运算,一元二次方程的解法,考查了计算能力,属于基础题.12.若集合A={x|﹣1<x<2},B={﹣2,0,1,2},则A∩B=()A.∅B.{0,1}C.{0,1,2}D.{﹣2,0,1,2}【分析】进行交集的运算即可.【解答】解:A={x|﹣1<x<2},B={﹣2,0,1,2},∴A∩B={0,1}.故选:B.【点评】考查描述法、列举法的定义,以及交集的运算.13.设集合A={x∈N|﹣1≤x≤3},B={y|y=x2,x∈R},则A∩B=()A.{0,1,2,3}B.{1,2,3}C.[1,3]D.[0,3]【分析】对集合A用列举法进行表示,对集合B用不等式描述集合元素特征,然后根据集合交集的运算法则,求出A∩B.【解答】解:因为A={x∈N|﹣1≤x≤3}={0,1,2,3},B={y|y=x2,x∈R}={y|y≥0},所以A∩B={0,1,2,3},故选:A.【点评】本题考查了集合交集的运算、集合的表示方法.本题易错的地方是认为自然数集不包括零.解决集合问题的关键是对集合元素属性特征的认识.14.已知集合M={﹣1,0,1,2},N={1,2,3},则M∪N=()A.M B.N C.{﹣1,0,1,2,3} D.{1,2}【分析】进行并集的运算即可.【解答】解:∵M={﹣1,0,1,2},N={1,2,3},∴M∪N={﹣1,0,1,2,3}.故选:C.【点评】本题考查了列举法的定义,并集的定义及运算,考查了计算能力,属于基础题.15.设全集U=R,集合P={x|﹣2≤x<3},则∁U P等于()A.{x|x<﹣2或x≥3} B.{x|x<﹣2且x≥3}C.{x|x≤﹣2或x>3} D.{x|x≤﹣2且x≥3}【分析】根据全集U及P,求出P的补集即可.【解答】解:∵全集U=R,集合P={x|﹣2≤x<3},∴∁U P={x|x<﹣2或x≥3}.故选:A.【点评】此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.16.设集合M={0,1,2},则()A.1∈M B.2∉M C.3∈M D.{0}∈M【分析】根据集合中元素的确定性解答.【解答】解:由题意,集合M中含有三个元素0,1,2.∴A选项1∈M,正确;B选项2∉M,错误;C选项3∈M,错误,D选项{0}∈M,错误;故选:A.【点评】本题考查了元素与集合关系的判定,一个元素要么属于集合,要么不属于这个集合,二者必居其一,这就是集合中元素的确定性.17.下列表述正确的是()A.∅={0}B.∅⊆{0}C.∅⊇{0}D.∅∈{0}【分析】直接利用空集与非空集合的关系判断选项即可.【解答】解:因为空集是非空集合的子集,所以B正确.故选:B.【点评】本题考查集合之间的关系,空集的定义,是基本知识题目.18.集合A={﹣1,0},B={0,1},C={1,2},则(A∩B)∪C等于()A.∅B.{1}C.{0,1,2}D.{﹣1,0,1,2}【分析】根据交集和并集的定义,结合已知的集合A、B、C进行求解.【解答】解:(A∩B)∪C=({﹣1,0}∩{0,1})∪{1,2}={0}∪{1,2}={0,1,2}故选:C.【点评】集合的运算一般难度较低,属于送分题,解答时一定要细心,“求稳不求快”.19.设集合A={0,1,2},B={1,2,3},则A∩B=()A.{0,1,2,3}B.{0,3}C.{1,2}D.∅【分析】集合A和集合B的公共元素构成A∩B,由此利用集合A={0,1,2},B={1,2,3},能求出A∩B.【解答】解:∵集合A={0,1,2},B={1,2,3},∴A∩B={1,2}.故选:C.【点评】本题考查集合的交集及其运算,是基础题.解题时要认真审题,仔细解答.20.已知集合A={1,2,3},B={3,4,5,6},则A∩B=()A.{3}B.{1,2}C.{4,5,6}D.{1,2,3,4,5,6}【分析】进行交集的运算即可.【解答】解:∵A={1,2,3},B={3,4,5,6},∴A∩B={3}.故选:A.【点评】考查列举法的定义,以及交集的运算.21.已知集合A={1,3,5},B={3,5,7},则A∩B=()A.{1,3,5,7}B.{1,7}C.{3,5}D.{5}【分析】利用交集定义直接求解.【解答】解:∵集合A={1,3,5},B={3,5,7},∴A∩B={3,5}.故选:C.【点评】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.22.已知全集U={1,2,3,4,5},集合A={1,3,5},则∁U A=()A.{2,4}B.{1,3,5}C.{1,2,3,4,5}D.∅【分析】数一下不属于集合A的元素即可得解【解答】解:∵全集U={1,2,3,4,5},集合A={1,3,5}∴∁U A={2,4}故选:A.【点评】本题考查集合运算,当集合是用列举法表示的且元素个数比较少时,可数一下元素,用观察法做题.属简单题23.已知集合A={1,3,5,7},B={2,7,8},则A∩B=()A.{3,5,7}B.{1,5,8}C.{7}D.{5,7}【分析】根据交集的定义可知,交集即为两集合的公共元素所组成的集合,求出即可.【解答】解:由集合A={1,3,5,7},集合B={2,7,8},得A∩B={7}故选:C.【点评】此题考查了两集合交集的求法,是一道基础题.24.集合U={0,1,2,3,4},M={0,3,4},N={1,2,3},则∁U M∩N=()A.{0,1,2,3,4}B.{1,2,3}C.{1,2}D.{3}【分析】由题设条件先求出∁U M,再求(∁U M)∩N.【解答】解:∵集合U={0,1,2,3,4},M={0,3,4},N={1,2,3},∴(∁U M)∩N={1,2}∩{1,2,3}={1,2}.故选:C.【点评】本题考查集合的交、并、补的混合运算,解题时要认真审题,仔细解答.25.若集合A={x|0≤x+1≤3,x∈N},集合B={0,2,4},则A∩B等于()A.{0}B.{0,2}C.{0,2,4}D.{0,1,2,4}【分析】可求出集合A,然后进行交集的运算即可.【解答】解:∵A={x|﹣1≤x≤2,x∈N}={0,1,2},B={0,2,4},∴A∩B={0,2}.故选:B.【点评】本题考查了描述法和列举法的定义,交集及其运算,考查了计算能力,属于基础题。
备考2024年新高考数学一轮复习专题1-1 集合含详解
专题1.1集合题型一利用集合元素的特征解决元素与集合的问题题型二集合与集合之间的关系题型三集合间的基本运算题型四集合间的交并补混合运算题型五Venn 图题型六集合的含参运算题型一利用集合元素的特征解决元素与集合的问题例1.(2022秋·湖南永州·高三校考阶段练习)若{}2122a a a ∈-+,,则实数a 的值为______.例2.(2022·上海·高一统考学业考试)“notebooks”中的字母构成一个集合,该集合中的元素个数是______________练习1.(2022秋·贵州·高三统考期中)若{}{},,101a a a =,则=a __________.练习2.(2022秋·天津南开·高三南开中学校考期中)已知集合{}1,2,3,4,5,6A =,(){},,,B x y x A y A xy A =∈∈∈,则集合B 中的元素个数为________.练习3.(2022秋·北京海淀·高三校考期中)设集合{},A x y =,{}20,B x=,若A B =,则2x y +=______.练习4.(2021秋·湖北·高三校联考阶段练习)已知集合2{,1,}A a b =,2{,,0}B a b =,若{1}A B ⋂=,则=a __________.练习5.(2023·全国·高三专题练习)含有3个实数的集合既可表示成,,1ba a⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则20222022a b +=_____.题型二集合与集合之间的关系例3.(2023·河南开封·统考三模)已知集合{}1,0,1A =-,{},,B x x ab a b A ==∈,则集合B 的真子集个数是()A .3B .4C .7D .8例4.(2021秋·高三课时练习)下列各式:①{}10,1,2⊆,②{}{}10,1,2∈,③{}{}0,1,20,1,2⊆,④{}0,1,2∅⊆,⑤{}{}2,1,00,1,2=,其中错误的个数是()A .1B .2C .3D .4练习6.(2023春·吉林长春·高二长春市第十七中学校考阶段练习)已知集合{}|15A x x =-<<,{}Z 18B x x =∈<<.(1)求R Að(2)求A B ⋂的子集个数练习7.(2023春·江西南昌·高三校考阶段练习)已知集合{A =第一象限的角},{B =锐角},{C =小于90°的角},给出下列四个命题;①A B C ==;②A C ⊆;③C A ⊆;④A C B ⊆=.其中正确的命题有()A .0个B .1个C .2个D .3个练习8.(2023·全国·高三专题练习)已知集合(){}22,|4A x y x y =+=,(){}|,0B x y x y =+=,则A ∩B 的子集个数()A .1B .2C .3D .4练习9.(2022秋·高三课时练习)设集合{|M x x A =∈,且}x B ∉,若{1,3,5,6,7}A =,{2,3,5}B =,则集合M 的非空真子集的个数为()A .4B .6C .7D .15练习10.(2021秋·高一课时练习)(多选)下列说法正确的是()A .空集没有子集B .{}{}21,2|320x x x ⊆-+=C .{}{}2|,R |,Ry y x x y y x x =∈⊆=∈D .非空集合都有真子集题型三集合间的基本运算例5.(2023·四川·四川省金堂中学校校联考三模)若集合{}10,lg 01x A x B x x x +⎧⎫=≤=≤⎨⎬-⎩⎭∣∣,则A B = ()A .[)1,1-B .(]0,1C .[)0,1D .()0,1例6.(2023·山东菏泽·统考二模)已知全集{}|0U x x =≥,集合(){}|20A x x x =-≤,则U A =ð()A .(2,)+∞B .[2,)+∞C .()(),02,-∞⋃+∞D .(,0][2,)-∞⋃+∞练习11.(2023·全国·模拟预测)已知集合{}215A x x =∈-<N ,{}320B x x =-≥,则A B = ()A .{}0,1,2,3B .{}1,2,3C .{}1,2D .{}2,3练习12.(江西省赣抚吉十一校联盟体2023届高三下学期4月联考数学(理)试卷)已知集合{2},{73}M x N x x =<=-<<∣∣,则M N ⋂=()A .{3}xx <∣B .{03}xx ≤<∣C .{73}xx -<<∣D .{74}xx -<<∣练习13.(2023·黑龙江齐齐哈尔·统考二模)设集合{}12A x x =-<,[]{}2,0,2xB y y x ==∈,则()A .()1,3AB ⋂=B .[)1,4A B =C .(]1,4A B =-D .(]1,3A B ⋃=-练习14.(2023·内蒙古呼和浩特·统考二模)已知全集{|33}U x x =-<<,集合{}2|20A x x x =+-<,则U A =ð()A .(2,1]-B .(3,2][1,3)--⋃C .[2,1)-D .(3,1)(1,3)-- 练习15.(2023·北京·人大附中校考模拟预测)已知集合(){}lg 2M x y x ==-,{}e 1x N y y ==+,则M N ⋃=()A .(),-∞+∞B .()1,+∞C .[)1,2D .()2,+∞题型四集合间的交并补混合运算例7.(四川省遂宁市2023届高三三诊考试数学(理)试卷)已知集合{}|12M x x =-≥,{}1,0,1,2,3N -=,则()RM N ⋂=ð()A .{}0,1,2B .{}1,2C .{}1,0,1,2-D .{}2,3例8.(山东省淄博市部分学校2023届高一下学期4月阶段性诊断考试数学试卷)已知集合{}21,{ln 1}x A x B x x =>=>∣∣,则下列集合为空集的是()A .()R A B ðB .()A BR ðC .A B⋂D .()()A B R RI痧练习16.(天津市部分区2023届高三二模数学试卷)设全集{}1,2,3,4,5,6U =,集合{}{}1,3,5,2,3,4A B ==,则()UB A ⋂=ð()A .{}3B .{}2,4C .{}2,3,4D .{}0,1,3练习17.(2023·江苏连云港·统考模拟预测)已知全集{}N |07U A B x x =⋃=∈≤≤,(){}1,3,5,7U A B = ð,则集合B =()A .{}0,2,4,6B .{}2,4,6C .{}0,2,4D .{}2,4练习18.(2023·河南·校联考模拟预测)已知全集{1,2,3,4,5}U =,集合{}2320M xx x =-+=∣,{}2Z 650N x x x =∈-+<∣,则集合()U M N ð中的子集个数为()A .1B .2C .16D .无数个练习19.(2023·福建·统考模拟预测)已知全集*2{N ,80}I x x x =∈|<,{1,3,4,7}A =,{4,5,6,7}B =,则()I A B ⋃=ð()A .{2,5,6}B .{1,2,3,8}C .{2,8}D .{1,3,4,5,6,7}练习20.(2023·广东·统考模拟预测)集合{}2xA y y ==,(){}2log 32B x y x ==-,则()R B A ⋂=ð()A .2,3⎛⎫+∞ ⎪⎝⎭B .20,3⎡⎤⎢⎥⎣⎦C .20,3⎛⎤ ⎥⎝⎦D .2,3⎛⎤-∞ ⎥⎝⎦题型五Venn 图例9.(2023·山东潍坊·统考二模)已知集合{}|10M x x =+≥,{}|21xN x =<,则下列Venn 图中阴影部分可以表示集合{}|10x x -≤<的是()A .B .C .D .例10.(2022秋·广东·高三统考阶段练习)已知全集U ,集合A 和集合B 都是U 的非空子集,且满足A B B ⋃=,则下列集合中表示空集的是()A .()U A B⋂ðB .A B⋂C .()()U UA B ⋂痧D .()U A B ∩ð练习21.(2023春·广东惠州·高三校考阶段练习)集合{}{}0,1,2,4,8,0,1,2,3A B ==,将集合,A B 分别用如下图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为2的是()A .B .C .D .练习22.(2023春·湖南·高二临澧县第一中学校联考期中)已知全集U =R ,集合{}02A x x =∈<≤Z ,{}1,0,1,2,3B =-,则图中阴影部分表示的集合为()A .{}2,0-B .{}2,3-C .{}2,0,2-D .{}2,0,3-练习23.(2022秋·高三单元测试)(多选)如图,U 为全集,M P S 、、是U 的三个子集,则阴影部分所表示的集合是()A .()U P S M ⎡⎤⋂⋂⎣⎦ðB .()M P SC .()U M P S⋂⋂ðD .()U M P S⋂⋃ð练习24.(2023·云南昆明·高三昆明一中校考阶段练习)某班一个课外调查小组调查了该班同学对物理和历史两门学科的兴趣爱好情况,其中该班同学对物理或历史感兴趣的同学占90%,对物理感兴趣的占56%,对历史感兴趣的占74%,则既对物理感兴趣又对历史感兴趣的同学占该班学生总数的比练习是()A .70%B .56%C .40%D .30%练习25.(2023春·湖南·高三校联考期中)设集合1Z 32A x x ⎧⎫=∈-<<⎨⎬⎩⎭,{}1,0,1,2B =-,能正确表示图中阴影部分的集合是()A .{}1,0,1-B .{}1,2C .{}0,1,2D .{}2题型六集合的含参运算例11.(广东省汕头市2023届高三二模数学试卷)已知集合{}21,3,A a =,{1,2}B a =+,且A B A ⋃=,则a 的取值集合为()A .{}1-B .{2}C .{1,2}-D .{1,1,2}-例12.(2020秋·安徽芜湖·高三校考阶段练习)若集合{}2|60A x x x =+-=,{|10}B x mx =+=,且BA ,求实数m 的值.练习26.(2022秋·山东菏泽·高三校联考期中)已知集合{}23A x a x a =≤≤+,{|1B x x =<-或5}x >.(1)若1a =-,求A B ⋃R ð;(2)若A B ⋂=∅,求a 的取值范围.练习27.(2023·河南开封·开封高中校考模拟预测)设集合{2A x x =<∣或{}4},1x B x a x a ≥=≤≤+∣,若()A B =∅R ð,则a 的取值范围是()A .1a ≤或4a >B .1a <或4a ≥C .1a <D .4a >练习28.(2023·全国·模拟预测)设集合{(1)(3)0}A xx x =+-≤∣,{}5B x a x a =-<<,若A B ⊆,则实数a 的取值范围是()A .[]3,4B .(3,4)C .(,4]-∞D .[3,)+∞练习29.(2023·全国·高三专题练习)设全集U =R ,{}|325M x a x a =<<+,{}|21P x x =-≤≤.(1)若0a =,求()UM P ⋂ð.(2)若U M P ⊆ð,求实数a 的取值范围.练习30.(2023·全国·高三专题练习)已知{}23A x x =-≤≤,{}23B x a x a =-<<,全集U =R (1)若2a =,求()U A B ∩ð;(2)若A B ⊇,求实数a 的取值范围.专题1.1集合题型一利用集合元素的特征解决元素与集合的问题题型二集合与集合之间的关系题型三集合间的基本运算题型四集合间的交并补混合运算题型五Venn 图题型六集合的含参运算题型一利用集合元素的特征解决元素与集合的问题例1.(2022秋·湖南永州·高三校考阶段练习)若{}2122a a a ∈-+,,则实数a 的值为______.【答案】2【分析】分1a =,222a a a =-+分别求解,再根据元素的互异性即可得答案.【详解】解:当1a =时,则2221a a -+=不满足元素的互异性,故1a ≠;所以222a a a -+=,解得:1a =(舍)或2a =,故实数a 的值为2.故答案为:2.例2.(2022·上海·高一统考学业考试)“notebooks”中的字母构成一个集合,该集合中的元素个数是______________【答案】7【分析】根据集合中元素的互异性知集合中不能出现相同的元素.【详解】根据集合中元素的互异性,“notebooks”中的不同字母为“n ,o ,t ,e ,b ,k ,s”,共7个,故该集合中的元素个数是7;故答案为:7.练习1.(2022秋·贵州·高三统考期中)若{}{},,101a a a =,则=a __________.【答案】101-.【分析】由集合相等和元素互异性,进行求解.【详解】由题意得101,101,a a ≠⎧⎨=⎩所以101a =-.故答案为:-101.练习2.(2022秋·天津南开·高三南开中学校考期中)已知集合{}1,2,3,4,5,6A =,(){},,,B x y x A y A xy A =∈∈∈,则集合B 中的元素个数为________.【答案】14【分析】根据元素特征,采用列举法表示出集合B ,由此可得元素个数.【详解】由题意得:()()()()()()()()()(){()1,1,1,2,1,3,1,4,1,5,1,6,2,1,2,2,2,3,3,1,3,2,B =()()()}4,1,5,1,6,1,B ∴中元素个数为14.故答案为:14.练习3.(2022秋·北京海淀·高三校考期中)设集合{},A x y =,{}20,B x =,若A B =,则2x y +=______.【答案】2【分析】根据集合相等可得出关于x 、y 的方程组,解出这两个未知数的值,即可得解.【详解】由集合元素的互异性可知20x ≠,则0x ≠,因为A B =,则200x x y x ⎧=⎪=⎨⎪≠⎩,解得10x y =⎧⎨=⎩,因此,22x y +=.故答案为:2.练习4.(2021秋·湖北·高三校联考阶段练习)已知集合2{,1,}A a b =,2{,,0}B a b =,若{1}A B ⋂=,则=a __________.【答案】1-【分析】根据集合相等及集合中元素的互异性求解即可.【详解】由集合2{,1,}A a b =,2{,,0}B a b =,若{1}A B ⋂=,则集合B 中21a =或1b =,若21a =,则1a =-或1(a =舍去),此时1b ≠±且0b ≠;若1b =,则集合A 中21b =,不符合集合中元素的互异性,不成立,综上, 1.a =-故答案为:1-练习5.(2023·全国·高三专题练习)含有3个实数的集合既可表示成,,1ba a⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则20222022a b +=_____.【答案】1【分析】根据集合相等,则元素完全相同,分析参数,列出等式,即可求得结果.【详解】因为{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,显然0a ≠,故0ba=,则0b =;此时两集合分别是{}{}2,1,0,,,0a a a ,则21a =,解得1a =或1-.当1a =时,不满足互异性,故舍去;当1a =-时,满足题意.所以2022202220222022(1)01a b +=-+=故答案为:1.题型二集合与集合之间的关系例3.(2023·河南开封·统考三模)已知集合{}1,0,1A =-,{},,B x x ab a b A ==∈,则集合B 的真子集个数是()A .3B .4C .7D .8【答案】C【分析】根据题意得到集合B ,然后根据集合B 中元素的个数求集合B 的真子集个数即可.【详解】由题意得{}1,0,1B =-,所以集合B 的真子集个数为3217-=.故选:C.例4.(2021秋·高三课时练习)下列各式:①{}10,1,2⊆,②{}{}10,1,2∈,③{}{}0,1,20,1,2⊆,④{}0,1,2∅⊆,⑤{}{}2,1,00,1,2=,其中错误的个数是()A .1B .2C .3D .4【答案】B【分析】由元素与集合的关系,集合与集合的关系考查所给式子是否正确即可.【详解】由元素与集合的关系可知{}10,1,2∈,故①错误;由集合与集合的关系可知{}{}10,1,2⊆,故②错误;任何集合都是自身的子集,故③正确;空集是任何非空集合的子集,故④正确;集合中的元素具有互异性和无序性,故⑤正确;综上可得,只有①②错误.故选B .练习6.(2023春·吉林长春·高二长春市第十七中学校考阶段练习)已知集合{}|15A x x =-<<,{}Z 18B x x =∈<<.(1)求R Að(2)求A B ⋂的子集个数【答案】(1){R 5A x x =≥ð或}1x ≤-(2)8【分析】(1)根据补集的定义即可得解;(2)根据交集的定义求出A B ⋂,再根据子集的定义即可得解.【详解】(1)因为{}|15A x x =-<<,所以{R 5A x x =≥ð或}1x ≤-;(2){}{}Z 182,3,4,5,6,7B x x =∈<<=,所以{}2,3,4A B = ,所以A B ⋂的子集个数有328=个.练习7.(2023春·江西南昌·高三校考阶段练习)已知集合{A =第一象限的角},{B =锐角},{C =小于90°的角},给出下列四个命题;①A B C ==;②A C ⊆;③C A ⊆;④A C B ⊆=.其中正确的命题有()A .0个B .1个C .2个D .3个【答案】A【分析】根据任意角的定义和集合的基本关系求解.【详解】A ={第一象限角},只需要终边落在第一象限的都是属于第一象限角.B ={锐角},是指大于0 而小于90 的角.C ={小于90 的角},小于90 的角包括锐角,零角和负角.根据集合的含义和基本运算判断:①A B C ==,①错误;②A C ⊆,比如,361A ∈ ,但361C ∉ ,②错误;③C A ⊆,比如0C ∈ ,但0A ∉ ,③错误;④A C B ⊆=,④错误;∴正确命题个数为0个.故选:A .练习8.(2023·全国·高三专题练习)已知集合(){}22,|4A x y x y =+=,(){}|,0B x y x y =+=,则A ∩B 的子集个数()A .1B .2C .3D .4【答案】D【分析】根据集合A 与集合B 中方程的几何意义,利用直线过圆心判断直线与圆的位置关系,确定交集中元素的个数,进而求解.【详解】集合(){}22,|4A x y x y =+=表示以(0,0)为圆心,2为半径的圆上的所有点,集合(){}|,0B x y x y =+=表示直线0x y +=上的所有点,因为直线0x y +=经过圆心(0,0),所以直线与圆相交,所以A B ⋂的元素个数有2个,则A B ⋂的子集个数为4个,故选:D .练习9.(2022秋·高三课时练习)设集合{|M x x A =∈,且}x B ∉,若{1,3,5,6,7}A =,{2,3,5}B =,则集合M 的非空真子集的个数为()A .4B .6C .7D .15【答案】B【分析】求得集合M ,即可求得结果.【详解】根据题意知,集合{M xx A =∈∣且}{1,6,7}x B ∉=,其非空真子集的个数为3226-=.故选:B练习10.(2021秋·高一课时练习)(多选)下列说法正确的是()A .空集没有子集B .{}{}21,2|320x x x ⊆-+=C .{}{}2|,R |,Ry y x x y y x x =∈⊆=∈D .非空集合都有真子集【答案】BD【分析】根据空集是任何集合的子集,是任何非空集合的真子集,可判断出选项AD 的正误;选项B ,通过解方程,可求出集合{}2|320x x x -+=中的元素,从而判断出选项B 正确;选项C ,通过求出两集合的元素满足的条件,从而判断出集合{}|,R y y x x =∈与{}2|,R y y x x =∈间的关系,从而判断出选项C 错误.【详解】对于选项A ,因为空集是任何集合的子集,所以空集也是它自身的子集,所以选项A 错误;对于选项B ,由2320x x -+=,得到1x =或2x =,所以{}{}2|3201,2x x x -+==,所以选项B 正确;对于选项C ,因为{}|,R R y y x x =∈=,{}{}2|,R |0y y x x y y =∈=≥,所以{}{}2|,R |,R y y x x y y x x =∈⊆=∈,所以选项C 错误;对于选项D ,因为空集是任何非空集合的真子集,所以选项D 正确.故选:BD题型三集合间的基本运算例5.(2023·四川·四川省金堂中学校校联考三模)若集合{}10,lg 01x A xB x x x +⎧⎫=≤=≤⎨⎬-⎩⎭∣∣,则A B = ()A .[)1,1-B .(]0,1C .[)0,1D .()0,1【答案】D【分析】先化简集合A ,B ,再利用交集运算求解.【详解】解:由题意得{11},{01}A xx B x x =-≤<=<≤∣∣,()0,1A B ∴= ,故选:D.例6.(2023·山东菏泽·统考二模)已知全集{}|0U x x =≥,集合(){}|20A x x x =-≤,则U A =ð()A .(2,)+∞B .[2,)+∞C .()(),02,-∞⋃+∞D .(,0][2,)-∞⋃+∞【答案】A【分析】解一元二次不等式化简集合A ,再利用补集的定义求解作答.【详解】集合(){}|20[0,2]A x x x =-≤=,而全集[0,)U =+∞,所以(2,)U A =+∞ð.故选:A练习11.(2023·全国·模拟预测)已知集合{}215A x x =∈-<N ,{}320B x x =-≥,则A B = ()A .{}0,1,2,3B .{}1,2,3C .{}1,2D .{}2,3【答案】C【分析】根据交集的定义求解即可.【详解】由条件可知,{}{}30,1,2A x x =∈<=N ,{}23203B x x x x ⎧⎫=-≥=≥⎨⎬⎩⎭,所以{1,2}A B = .故选:C.练习12.(江西省赣抚吉十一校联盟体2023届高三下学期4月联考数学(理)试卷)已知集合{2},{73}M x x N x x =<=-<<∣∣,则M N ⋂=()A .{3}xx <∣B .{03}xx ≤<∣C .{73}xx -<<∣D .{74}xx -<<∣【答案】B【分析】根据集合交集运算可得.【详解】因为{2}{04},{73}M x x x x N x x =<=≤<=-<<∣∣∣所以{|03}M N x x ⋂=≤<.故选:B练习13.(2023·黑龙江齐齐哈尔·统考二模)设集合{}12A x x =-<,[]{}2,0,2xB y y x ==∈,则()A .()1,3AB ⋂=B .[)1,4A B =C .(]1,4A B =-D .(]1,3A B ⋃=-【答案】C【分析】先解绝对值不等式得出集合,再根据交集并集概念计算求解即可.【详解】因为{}{}1213A x x x x =-<=-<<,[]{}{}2,0,214xB y y x y y ==∈=≤≤,所以[)1,3A B ⋂=,(]1,4A B =- .故选:C.练习14.(2023·内蒙古呼和浩特·统考二模)已知全集{|33}U x x =-<<,集合{}2|20A x x x =+-<,则U A =ð()A .(2,1]-B .(3,2][1,3)--⋃C .[2,1)-D .(3,1)(1,3)-- 【答案】B【分析】计算{}21A x x =-<<,再计算补集得到答案.【详解】{}{}2|2021A x x x x x =+-<=-<<,则(3,2][1,3)U A =--⋃ð.故选:B练习15.(2023·北京·人大附中校考模拟预测)已知集合(){}lg 2M x y x ==-,{}e 1x N y y ==+,则M N ⋃=()A .(),-∞+∞B .()1,+∞C .[)1,2D .()2,+∞【答案】B【分析】根据给定条件,求出函数的定义域、值域,再利用并集的定义求解作答.【详解】集合(){}{}{}lg 2202M x y x x x x x ==-=-=,即(2,)M =+∞,e 11x +>,则(1,)N =+∞,所以()1,M N =+∞U .故选:B题型四集合间的交并补混合运算例7.(四川省遂宁市2023届高三三诊考试数学(理)试卷)已知集合{}|12M x x =-≥,{}1,0,1,2,3N -=,则()RM N ⋂=ð()A .{}0,1,2B .{}1,2C .{}1,0,1,2-D .{}2,3【答案】A【分析】解出集合{|1M x x =≤-或}3x ≥,再根据补集和交集的含义即可得到答案.【详解】12x -≥,解得3x ≥或1x ≤-,则{|1M x x =≤-或}3x ≥,则()R 1,3M =-ð,故(){}R 0,1,2M N ⋂=ð,故选:A.例8.(山东省淄博市部分学校2023届高一下学期4月阶段性诊断考试数学试卷)已知集合{}21,{ln 1}x A x B x x =>=>∣∣,则下列集合为空集的是()A .()R AB ðB .()A BR ðC .A B⋂D .()()A B R RI痧【答案】B【分析】根据指数函数和对数函数的单调性分别求出集合,A B ,然后利用集合的运算逐项进行判断即可求解.【详解】集合{|21}{|0}x A x x x ==>>,集合{|ln 1}{|e}B x x x x =>=>,所以R {|0}A x x =≤ð,R {|e}B x x =≤ð,对于A ,()R {|0e}A B x x =<≤ ð,故选项A 不满足题意;对于B ,()A B =∅R I ð,故选项B 满足题意;对于C ,={|e}A B x x > ,故选项C 不满足题意;对于D ,()(){|0}A B x x =≤R R 痧,故选项D 不满足题意,故选:B .练习16.(天津市部分区2023届高三二模数学试卷)设全集{}1,2,3,4,5,6U =,集合{}{}1,3,5,2,3,4A B ==,则()UB A ⋂=ð()A .{}3B .{}2,4C .{}2,3,4D .{}0,1,3【答案】B【分析】由集合的运算求解.【详解】(){}{}{}2,4,62,42,3,4U A B ⋂==⋂ð.故选:B练习17.(2023·江苏连云港·统考模拟预测)已知全集{}N |07U A B x x =⋃=∈≤≤,(){}1,3,5,7U A B = ð,则集合B =()A .{}0,2,4,6B .{}2,4,6C .{}0,2,4D .{}2,4【答案】A【分析】由{}N |07U A B x x =⋃=∈≤≤可知集合U 中的元素,再由(){}1,3,5,7U A B = ð即可求得集合B .【详解】由(){}1,3,5,7U A B = ð知,{}{}1,3,5,71,3,5,,7U B A ⊆⊆ð又因为{}{}7017N 2356|04U A B x x =⋃=∈≤≤=,,,,,,,,所以B ={}0,2,4,6.故选:A.练习18.(2023·河南·校联考模拟预测)已知全集{1,2,3,4,5}U =,集合{}2320M xx x =-+=∣,{}2Z 650N x x x =∈-+<∣,则集合()U M N ð中的子集个数为()A .1B .2C .16D .无数个【答案】B【分析】首先求集合,M N ,再求集合的运算.【详解】先求{}1,2M =,{Z 1}5}2,4|,{3N x x =∈<<=,所以{}1,2,3,4M N =U ,则(){}5U M N = ð,所以子集的个数为122=.故选:B练习19.(2023·福建·统考模拟预测)已知全集*2{N ,80}I x x x =∈|<,{1,3,4,7}A =,{4,5,6,7}B =,则()I A B ⋃=ð()A .{2,5,6}B .{1,2,3,8}C .{2,8}D .{1,3,4,5,6,7}【答案】C【分析】利用集合的交并补运算即可求解.【详解】{1,2,3,4,5,6,7,8}I =,{1,3,4,5,6,7}A B = ,故(){}2,8I A B ⋃=ð.故选:C .练习20.(2023·广东·统考模拟预测)集合{}2x A y y ==,(){}2log 32B x y x ==-,则()R B A ⋂=ð()A .2,3⎛⎫+∞ ⎪⎝⎭B .20,3⎡⎤⎢⎥⎣⎦C .20,3⎛⎤ ⎥⎝⎦D .2,3⎛⎤-∞ ⎥⎝⎦【答案】C【分析】求出集合A 、B ,利用补集和交集的定义可求得集合()B A R ð.【详解】因为{}{}20xA y y y y ===>,(){}{}22log 323203B x y x x x x x ⎧⎫==-=->=>⎨⎬⎩⎭,则23B x x ⎧⎫=≤⎨⎬⎩⎭R ð,因此,()R 20,3B A ⎛⎤= ⎥⎝⎦ð.故选:C.题型五Venn 图例9.(2023·山东潍坊·统考二模)已知集合{}|10M x x =+≥,{}|21xN x =<,则下列Venn 图中阴影部分可以表示集合{}|10x x -≤<的是()A .B .C .D .【答案】A【分析】化简集合M ,N ,根据集合的运算判断{}|10x x -≤<为两集合交集即可得解.【详解】{}|10[1,)M x x =+≥=-+∞ ,{}|21(,0)xN x =<=-∞,{}|10M N x x ∴-=≤< ,由Venn 图知,A 符合要求.故选:A例10.(2022秋·广东·高三统考阶段练习)已知全集U ,集合A 和集合B 都是U 的非空子集,且满足A B B ⋃=,则下列集合中表示空集的是()A .()U AB ⋂ðB .A B⋂C .()()U UA B ⋂痧D .()U A B ∩ð【答案】D【分析】利用Venn 图表示集合,,U A B ,结合图像即可找出表示空集的选项.【详解】由Venn 图表示集合,,U A B 如下:,由图可得()U BA B A = 痧,A B A = ,()()U U UA B B ⋂=痧,()U A B =∅ ð,故选:D练习21.(2023春·广东惠州·高三校考阶段练习)集合{}{}0,1,2,4,8,0,1,2,3A B ==,将集合,A B 分别用如下图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为2的是()A .B .C .D .【答案】B【分析】利用图象求得正确答案.【详解】{}0,1,2A B = ,所以:A 选项,阴影部分表示{}0,1,2,不符合题意.B 选项,阴影部分表示{}4,8,符合题意.C 选项,阴影部分表示{}3,不符合题意.D 选项,阴影部分表示{}3,4,8,不符合题意.故选:B练习22.(2023春·湖南·高二临澧县第一中学校联考期中)已知全集U =R ,集合{}02A x x =∈<≤Z ,{}1,0,1,2,3B =-,则图中阴影部分表示的集合为()A .{}2,0-B .{}2,3-C .{}2,0,2-D .{}2,0,3-【答案】D【分析】根据集合的交并补运算即可求解.【详解】全集为U ,集合{}2,1,1,2A =--,{}1,0,1,2,3B =-,{}{}1,1,2,2,1,0,1,2,3A B A B ⋂=-⋃=--,图中阴影部分表示是A B ⋃去掉A B ⋂的部分,故表示的集合是{}2,0,3-.故选:D .练习23.(2022秋·高三单元测试)(多选)如图,U 为全集,M P S 、、是U 的三个子集,则阴影部分所表示的集合是()A .()U P S M⎡⎤⋂⋂⎣⎦ðB .()M P SC .()U M P S⋂⋂ðD .()U M P S⋂⋃ð【答案】AC 【分析】分析出阴影部分为M P 和U S ð的子集,从而选出正确答案.【详解】图中阴影部分是M P 的子集,不属于集合S ,属于集合S 的补集,即U S ð的子集,满足要求的为()()U U P S M M P S ⎡⎤=⎣⎦ 痧,均表示阴影部分,BD 不合要求.故选:AC练习24.(2023·云南昆明·高三昆明一中校考阶段练习)某班一个课外调查小组调查了该班同学对物理和历史两门学科的兴趣爱好情况,其中该班同学对物理或历史感兴趣的同学占90%,对物理感兴趣的占56%,对历史感兴趣的占74%,则既对物理感兴趣又对历史感兴趣的同学占该班学生总数的比练习是()A .70%B .56%C .40%D .30%【答案】C【分析】根据公式()()()()card A B card A card B card A B ⋃=+-⋂列方程求解即可.【详解】对物理感兴趣的同学占56%,对历史感兴趣的同学占74%,这两组的比练习数据都包含了既对物理感兴趣又对历史感兴趣的同学的比练习,设既对物理感兴趣又对历史感兴趣的同学占该班学生总数的比练习为x ,则对物理或历史感兴趣的同学的比练习是56%+74%-x ,所以56%+74%-x =90%,解得40x =%,故选:C.练习25.(2023春·湖南·高三校联考期中)设集合1Z 32A x x ⎧⎫=∈-<<⎨⎬⎩⎭,{}1,0,1,2B =-,能正确表示图中阴影部分的集合是()A .{}1,0,1-B .{}1,2C .{}0,1,2D .{}2【答案】B 【分析】先求得集合{}2,1,0A =--,结合题意及集合的运算,即可求解.【详解】由题意,集合{}1Z 32,1,02A x x ⎧⎫=∈-<<=--⎨⎬⎩⎭,根据图中阴影部分表示集合B 中元素除去集合A 中的元素,即为{}1,2.故选:B.题型六集合的含参运算例11.(广东省汕头市2023届高三二模数学试卷)已知集合{}21,3,A a =,{1,2}B a =+,且A B A ⋃=,则a 的取值集合为()A .{}1-B .{2}C .{1,2}-D .{1,1,2}-【答案】B 【分析】由集合和元素的关系及并集的定义讨论即可.【详解】由题意可得:23a +=或22a a +=若23a +=,此时211a a =⇒=,集合A 的元素有重复,不符合题意;若22a a +=,解得2a =或1a =-,显然2a =时符合题意,而211a a =-⇒=同上,集合A 的元素有重复,不符合题意;故2a =.故选:B例12.(2020秋·安徽芜湖·高三校考阶段练习)若集合{}2|60A x x x =+-=,{|10}B x mx =+=,且B A ,求实数m 的值.【答案】13m =或12m =-或0m =【分析】分0m =和0m ≠两种情况讨论,结合已知即可得解.【详解】{}{}2|603,2A x x x =+-==-,当0m =时,B =∅A ,当0m ≠时,1{|10}B x mx m ⎧⎫=+==-⎨⎬⎩⎭,因为B A ,所以13m -=-或12m-=,所以13m =或12-,综上所述,13m =或12m =-或0m =.练习26.(2022秋·山东菏泽·高三校联考期中)已知集合{}23A x a x a =≤≤+,{|1B x x =<-或5}x >.(1)若1a =-,求A B ⋃R ð;(2)若A B ⋂=∅,求a 的取值范围.【答案】(1){}25A C B x x ⋃=-≤≤R (2)1232x a a ⎧⎫-≤≤>⎨⎬⎩⎭或【分析】(1)根据题意,先求出集合A 的补集,再利用集合的并集运算求解即可;(2)根据集合的包含关系分A =∅和A ≠∅两种情况进行讨论即可求解.【详解】(1)若1a =-,则集合{}22A x x =-≤≤,所以{}15B x x =-≤≤R ð,所以{}25A C B x x ⋃=-≤≤R ;(2)因为集合{}23A x a x a =≤≤+,{|1B x x =<-或5}x >,因为A B ⋂=∅,所以分以下两种情况:若A =∅,即23a a >+,解得3a >,满足题意,若A ≠∅,则213523a a a a ≥-⎧⎪+≤⎨⎪≤+⎩解得122a -≤≤,综上所述a 的取值范围为1232x a a ⎧⎫-≤≤>⎨⎬⎩⎭或练习27.(2023·河南开封·开封高中校考模拟预测)设集合{2A x x =<∣或{}4},1x B x a x a ≥=≤≤+∣,若()A B =∅R ð,则a 的取值范围是()A .1a ≤或4a >B .1a <或4a ≥C .1a <D .4a >【答案】B【分析】先求出A R ð,根据()A B =∅R ð,可求得结果.【详解】由集合{2A x x =<∣或4}x ≥,得{24}A x x =≤<R ∣ð,又集合{}1B x a x a =≤≤+∣且()A B =∅R ð,则1a +<2或4a ≥,即1a <或4a ≥.故选:B.练习28.(2023·全国·模拟预测)设集合{(1)(3)0}A xx x =+-≤∣,{}5B x a x a =-<<,若A B ⊆,则实数a 的取值范围是()A .[]3,4B .(3,4)C .(,4]-∞D .[3,)+∞【答案】B 【分析】根据集合的包含关系列出关于a 的不等式组即可.【详解】由已知可得,集合{}13A xx =-≤≤∣,{}5B x a x a =-<<,因为A B ⊆,所以351a a >⎧⎨-<-⎩,(注意端点值是否能取到),解得34a <<,故选:B .练习29.(2023·全国·高三专题练习)设全集U =R ,{}|325M x a x a =<<+,{}|21P x x =-≤≤.(1)若0a =,求()UM P ⋂ð.(2)若U M P ⊆ð,求实数a 的取值范围.【答案】(1)(){}|20U M P x x =-≤≤ ð;(2)71,,23∞⎛⎤⎡⎫--+∞ ⎪⎥⎢⎝⎦⎣⎭.【分析】(1)利用集合的补集和交集的运算知识即可求解.(2)求出U P ð,U M P ⊆ð,分=∅≠∅,M M ,两种情况讨论,根据集合的运算求解即可.【详解】(1)当0a =时,{}|05=<<M x x ,{}|21P x x =-≤≤,所以{0U M x x =≤ð或5}x ³,(){}|20U M P x x ⋂=-≤≤ð;(2) 全集U =R ,{}|21P x x =-≤≤,{2U P x x ∴=<-ð或1}x >,⊆ U M P ð,∴分=∅≠∅,M M ,两种情况讨论.(1)当M 蛊时,如图可得,325252a a a <+⎧⎨+≤-⎩或32531a a a <+⎧⎨≥⎩,72a ∴≤-或153a ≤<;(2)当M =∅时,应有:325a a ≥+,解得5a ≥;综上可知,72a ∴≤-或13a ≥,故得实数a 的取值范围71,23∞⎛⎤⎡⎫--+∞ ⎪⎥⎢⎝⎦⎣⎭.练习30.(2023·全国·高三专题练习)已知{}23A x x =-≤≤,{}23B x a x a =-<<,全集U =R(1)若2a =,求()U A B ∩ð;(2)若A B ⊇,求实数a 的取值范围.【答案】(1)(){}20U A B x x ⋂=-≤≤ð(2)(][],10,1-∞-⋃【分析】(1)根据交集与补集的运算求解即可;(2)分B =∅与B ≠∅由条件列不等式求范围即可.【详解】(1)当2a =时,{}06B x x =<<,所以{0U B x x =≤ð或}6x ≥,又{}23A x x =-≤≤,所以(){}20U A B x x ⋂=-≤≤ð.(2)由题可得:当B =∅时,有23a a -≥,解得a 的取值范围为(],1-∞-;当B ≠∅时有232233a a a a -<⎧⎪-≥-⎨⎪≤⎩,解得a 的取值范围为[]0,1,综上所述a 的取值范围为(][],10,1-∞-⋃.。
集合-高考数学复习
C )
A. 1或2
B. -1或-2
C. 2
D. 1
∵A=B,
∴3 a -2= a 2,解得 a =1或 a =2.
当 a =1时,集合 A ={0,1,1},不满足集合中元素的互异性,故
舍去;
当 a =2时,集合 A ={0,1,4},集合 B ={1,0,4},符合题意,所以
a =2.
(2)(2023·新高考Ⅱ卷)设集合 A ={0,- a }, B ={1, a -2,2 a -2}.若
A ⊆ B ,则 a =(
A. 2
B )
B. 1
D. -1
若 a -2=0,则 a =2,此时 A ={0,-2}, B ={1,0,2},不满足 A ⊆
B ;若2 a -2=0,则 a =1,此时 A ={0,-1}, B ={1,-1,0},满
足 A ⊆ B ,所以 a =1.
(3)已知集合 A ={ x |-2≤ x≤5}, B ={ x | m +1≤ x ≤2 m -1}.若 B ⊆
已知 A ∩ B = A ,则 A ⊆ B .
∵ B ={ x || x -3|≤ m },
∴ B ={ x |3- m ≤ x ≤3+ m },
3 + ≥4,
∴ቊ
3 − ≤ − 2,
∴ m ≤ 5,∴ m min=5.
.
考点三
集合的基本运算
◉角度(一) 集合的基本运算
例3
(1)(2023·新高考Ⅰ卷)已知集合 M ={-2,-1,0,1,2}, N
方法总结
确定集合的注意点
1. 研究集合问题时,首先要明确构成集合的元素是数集、点集,还是
其他集合;然后再看集合的构成元素满足的限制条件,从而准确把握
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考总复习人教A版 · (文)
高考备考高考备考高考备考高考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考笨 缚笨缚 笨缚笨 缚备考 高考备 考高考 备考高 考备考 高考备 考 高考备考高考备考高考备考高考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考笨 缚笨缚 笨缚笨 缚备考 高考备 考高考 备考高 考备考 高考备 考 高考备考高考备考高考备考高考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考笨 缚笨缚 笨缚笨 缚备考 高考备 考高考 备考高 考备考 高考备 考 高考备考高考备考高考备考高考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考笨 缚笨缚 笨缚笨 缚备考 高考备 考高考 备考高 考备考 高考备 考 高考备考高考备考高考备考高考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考笨 缚笨缚 笨缚笨 缚备考 高考备 考高考 备考高 考备考 高考备 考 高考备考高考备考高考备考高考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考笨 缚笨缚 笨缚笨 缚备考 高考备 考高考 备考高 考备考 高考备 考 高考备考高考备考高考备考高考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考笨 缚笨缚 笨缚笨 缚备考 高考备 考高考 备考高 考备考 高考备 考 高考备考高考备考高考备考高考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考笨 缚笨缚 笨缚笨 缚备考 高考备 考高考 备考高 考备考 高考备 考 高考备考高考备考高考备考高考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考笨 缚笨缚 笨缚笨 缚备考 高考备 考高考 备考高 考备考 高考备 考 高考备考高考备考高考备考高考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考笨 缚笨缚 笨缚笨 缚备考 高考备 考高考 备考高 考备考 高考备 考 高考备考高考备考高考备考高考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考备 考高考 备考高 考备考 高考笨 缚笨缚 笨缚笨 缚备考 高考备 考高考 备考高 考备考 高考备 考 高考备考高考备考