高考数学专题:集合

合集下载

高考数学必备集合知识点

高考数学必备集合知识点

高考数学必备集合知识点高考数学必备集合学问点一.学问归纳:1.集合的有关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素留意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必需符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N_.子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈A都有x∈B,则A B(或A B);2)真子集:A B且存在x0∈B但x0 A;记为A B(或,且 )3)交集:A∩B={x| x∈A且x∈B}4)并集:A∪B={x| x∈A或x∈B}5)补集:CUA={x| x A但x∈U}留意:①? A,若A≠?,则? A ;②若,,则 ;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,把握有关的术语和符号,特殊要留意以下的符号:(1) 与、?的区分;(2) 与的区分;(3) 与的区分。

4.有关子集的几个等价关系①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;④A∩CuB = 空集CuA B;⑤CuA∪B=I A B。

5.交、并集运算的性质①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n1个非空子集,2n2个非空真子集。

二.例题讲解:【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},则M,N,P满意关系A) M=N P B) M N=P C) M N P D) N P M分析一:从推断元素的共性与区分入手。

高考数学第一题集合

高考数学第一题集合

高考数学第一题集合题目:高考数学第一题集合正文:一、集合的基础概念集合是数学中的一种基本概念,它是由若干确定的元素组成的总体。

在高考数学中,我们常常会遇到关于集合的问题。

下面,就让我们一起来了解一些关于集合的基础知识。

1.1 集合的定义与表示法集合是由若干确定的元素组成的总体,我们通常用大写字母A、B等来表示集合。

而集合中的元素则用小写字母a、b等表示。

例如,我们可以表示一个集合A={1, 2, 3, 4},其中元素1、2、3、4都属于集合A。

1.2 集合的性质集合有一些基本性质,包括空集、全集、子集、真子集等。

空集是不包含任何元素的集合,用符号∅表示;全集则是指某一给定范围内的元素构成的集合,用符号U表示;而子集是指一个集合中的所有元素都是另一个集合的元素,用符号⊆表示。

如果一个集合是另一个集合的子集,并且两个集合不相等,则称这个子集为真子集。

1.3 常见的集合运算在高考数学中,我们会遇到一些常见的集合运算,包括并、交、差、补等。

集合的并是指包含两个或更多个集合中的所有元素的新集合,用符号∪表示;集合的交则是指两个或更多个集合中共有的元素构成的新集合,用符号∩表示;而集合的差是指从一个集合中减去另一个集合的所有元素所构成的新集合,用符号−表示;集合的补是指给定集合中不属于另一个集合的元素所构成的新集合,用符号'表示。

二、高考数学集合题的解题方法在高考数学中,集合题是一种常见的考点。

下面,我们来了解一些常用的解题方法。

2.1 集合图示法集合图示法是一种直观的解题方法,它通过用图形的方式表示集合,帮助我们更清晰地理解和解题。

例如,我们可以通过用圆形来表示集合,用交叉部分表示集合的交,用圆周上未填充的部分表示集合的差等。

2.2 元素法元素法是一种逐个检查集合元素的解题方法。

通过逐个检查集合元素是否符合给定条件,我们可以确定一个集合的内容。

例如,当解决集合的并、交、差等问题时,我们可以逐个检查集合中的元素,再通过运算规则得出结果。

高考数学专题知识突破:考点1 集合的概念与运算

高考数学专题知识突破:考点1 集合的概念与运算

考点一集合的概念与运算知识梳理1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N+(或N*)Z Q R(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.2.集合间的基本关系关系自然语言符号语言V enn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A B(或B A)集合相等集合A,B中元素完全相同或集合A,B互为子集A=B3.全集与补集(1)如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U表示;(2) 对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.4.集合的运算集合的并集集合的交集集合的补集图形符号A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}∁U A={x|x∈U,且x∉A} 5.集合关系与运算的常用结论(1)子集个数公式:若有限集A中有n个元素,则A的子集个数为2n个,非空子集个数为2n -1个,真子集有2n-1个.(2) A∩B=A⇔A⊆B,A∪B=B⇔A⊆B.(3)(∁U A)∩(∁U B)=∁U(A∪B),(∁U A)∪(∁U B)=∁U(A∩B) .典例剖析题型一集合的基本概念例1已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是答案 5解析列表根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个.变式训练已知集合A={0,1,2},B={(x,y)|x∈A,y∈A,x-y∈A},则集合B中有________个元素.答案 6解析因为x-y∈A,∴x≥y.当x=0时,y=0;当x=1时,y=0或y=1;当x=2时,y=0,1,2.故集合B={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)},即集合B中有6个元素.解题要点研究集合问题,通常从代表元素入手,考查其所代表的是数还是点,如果代表元素是数x,则是数集,如果代表元素是数对(x,y),则是点集.在列举集合的元素时可借助表格,或根据元素特征分类列举,列举时应做到不重不漏.例2 设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.答案 2解析 因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,且由a 在分母的位置可知a ≠0,所以a +b =0,则ba =-1,所以a =-1,b =1.所以b -a =2.变式训练 已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 答案 -32解析 因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不符合题意,舍去; 当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意,所以m =-32.解题要点 对于含字母参数的集合,应准确进行分类讨论,列出方程或方程组求出字母参数的值.需要特别注意的是,求出字母参数值后,还要检验是否违反了集合中元素的互异性. 题型二 集合间的基本关系例3 集合A ={-1,0,1},A 的子集中,含有元素0的子集共有 个 答案 4解析 根据题意,在集合A 的子集中,含有元素0的子集有{0}、{0,1}、{0,-1}、{-1,0,1},共四个.变式训练 设M 为非空的数集,M ⊆{1,2,3},且M 中至少含有一个奇数元素,则这样的集合M 共有 个 答案 6解析 集合{1,2,3}的所有子集共有23=8(个),其中一个奇数元素也没有的集合有两个:∅和{2},故满足要求的集合M 共有8-2=6(个).解题要点 解题关键是弄清符合题意的集合其元素应满足的条件.在元素较少时可以采取穷举法列出所有满足条件的集合. 例4 设,若,则a 的取值范围是 .答案解析 根据题意作图:由图可知,,则只要即可,即a 的取值范围是.变式训练 已知集合()2{|540},,,A x x x B a A B =-+≤=-∞⊆,则a 的取值范围是 . 答案 (4,)+∞解析 []2{|540}1,4A x x x =-+≤=,∵,根据题意作图:由图可知,只要即可,即a 的取值范围(4,)+∞.解题要点 对于这类用不等式表示的数集之间的包含关系时,常常借助数轴进行求解.在解题时应注意端点是否可以取到. 题型三 集合的基本运算例5 已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中元素的个数为________. 答案 5解析 A ∪B ={1,2,3,4,5},共有5个元素.变式训练 已知集合A ={x |x 2-x -2≤0},集合B 为整数集,则A ∩B 等于________. 答案 {-1,0,1,2}解析 A ={x |x 2-x -2≤0}={x |-1≤x ≤2},B 为整数集,A ∩B ={-1,0,1,2}.解题要点 求解集合交、并首先应对各个集合进行化简,准确弄懂集合中的元素,求并集时相同的元素只算一个.例6 已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B ) =________. 答案 {x |0<x <1}解析 ∵A ={x |x ≤0},B ={x |x ≥1}, ∴A ∪B ={x |x ≤0或x ≥1}, 在数轴上表示如图.∴∁U (A ∪B )={x |0<x <1}.变式训练 已知集合A ={x |x 2-2x >0},B ={x |-<x <},则A ∪B =________.答案 R解析 ∵x (x -2)>0,∴x <0或x >2. ∴集合A 与B 可用数轴表示为:由图象可以看出A ∪B =R .解题要点 集合的基本运算是历年高考的热点,常与不等式的解集、函数的定义域、值域相结合命题,解题时先求出各个集合,然后借助数轴求交并是基本方法.当堂练习1. 已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()UA B =________.2.若集合M ={-1,0,1},N ={0,1,2},则M ∩N 等于________. 3.已知{菱形},{正方形},{平行四边形},则之间的关系为_______4.已知集合A ={(x ,y )|-1≤x ≤1,0≤y <2,x 、y ∈Z },用列举法可以表示集合A 为________. 5.设集合M ={0,1,2},N ={x |x 2-3x +2≤0},则M ∩N = .课后作业1.已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B 等于________. 2.设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-2x =0,x ∈R },则M ∪N =________. 3.已知集合M ={x |-3<x ≤5},N ={x |x <-5或x >4},则M ∪N 等于________. 4.若集合A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则a =________. 5.已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则UA B ()= ________.6.已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则AB =________.7.满足条件{0,2}∪M ={0,1,2}的所有集合M 的个数为________. 8.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =________. 9.设全集U ={1,2,3,4,5,6},A ={1,2},B ={2,3,4},则A ∩(∁U B )等于________.10.已知A ={3,5,6,8}且集合B 满足A ∩B ={5,8},A ∪B ={2,3,4,5,6,7,8},则这样的集合B 有________个.11.若集合A ={x |-5<x <2},B ={x |-3<x <3},则A ∩B 等于 .12.已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为 13. 已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},若A ∪B =R , 则a 的取值范围是________.当堂练习答案1. 答案 {4}解析 因为A ∪B ={1,2,3},全集U ={1,2,3,4},所以U (A ∪B )={4}.2.答案 {0,1}解析 由集合M ={-1,0,1},N ={0,1,2},得到M ∩N ={0,1}. 3.答案4.答案 {(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1)}解析 集合A 表示不等式组⎩⎪⎨⎪⎧-1≤x ≤1,x ∈Z ,0≤y <2,y ∈Z 确定的平面区域上的格点集合,所以用列举法表示集合A 为{(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1)}. 5.答案 {1,2}解析 由x 2-3x +2=(x -1)(x -2)≤0,解得1≤x ≤2,故N ={x |1≤x ≤2},∴M ∩N ={1,2}.课后作业答案1.答案 (2,3)解析 ∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3}, ∴A ∩B ={x |2<x <3}=(2,3). 2.答案 {-2,0,2}解析 先确定两个集合的元素,再进行并集运算.集合M ={0,-2},N ={0,2}, 故M ∪N ={-2,0,2}. 3.答案 {x |x <-5或x >-3}解析 在数轴上表示集合M 和N ,如图所示,则数轴上方所有“线”下面的部分就是M ∪N ={x |x <-5或x >-3}. 4.答案 4解析 a =0时,ax 2+ax +1=0无解,此时,A =∅,不合题意;a ≠0时,由题意得方程ax 2+ax +1=0有两个相等实根,则⎩⎪⎨⎪⎧Δ=a 2-4a =0a ≠0,解得a =4.5.答案 {0,2,4}解析 ∵UA ={0,4},U AB ()={0, 2,4}.6.答案 {1,4}解析 ∵x =n 2,n ∈A ,∴x =1,4,9,16. ∴B ={1,4,9,16}.∴A ∩B ={1,4}. 7.答案 4解析 由题可知集合M 中必有1,满足条件的M 可以为{1},{0,1},{2,1},{0,1,2}共4个. 8.答案 0或3解析 ∵A ∪B =A ,∴B ⊆A ,∵A ={1,3,m },B ={1,m },∴m ∈A ,故m =m 或m =3,解得m =0或m =3或m =1,又根据集合元素的互异性m ≠1,所以m =0或m =3. 9.答案 {1}解析 ∵∁U B ={1,5,6},∴A ∩(∁U B )={1,2}∩{1,5,6}={1}. 10.答案 4解析 ∵A ∩B ={5,8},∴5,8∈B ,又∵A ∪B ={2,3,4,5,6,7,8}而A ={3,5,6,8}, ∴2,4,7∈B ,∴3,6可以属于B ,也可不属于B . ∴这样的B 有22=4(个). 11.答案 {x |-3<x <2}解析 由题意,得A ∩B ={x |-5<x <2}∩{x |-3<x <3}={x |-3<x <2}. 12.答案 2解析 A ={…,5,8,11,14,17…},B ={6,8,10,12,14},集合A ∩B 中有两个元素. 13. 答案 -3≤a <-12解析 ∵B ={x |x <-1或x >5},A ∪B =R , ∴⎩⎪⎨⎪⎧2a <-1,a +8≥5, 解得-3≤a <-12.。

【高中数学】《集合》高考常考题型(后附解析)

【高中数学】《集合》高考常考题型(后附解析)

《集合》常考题型题型一.通过集合的关系求参数范围1.已知集合2{|320}A x x x =−+=,22{|2(1)(5)0}B x x a x a =−++−=,A B A =,实数a 的取值范围是 . 2.已知全集U R =,集合{|25}A x x =−,{|121}B x a x a =+−,且U A B ⊆,实数a 的取值范围是 . 3.已知集合2{|10}A x R x ax =∈++=和{1B =,2},且A B ⊆,则实数a 的取值范围是 . 题型二.子集个数问题4.用d (A )表示集合A 中的元素个数,若集合22{|()(1)0}A x x ax x ax =−−+=,{0B =,1},且|d (A )d−(B )|1=.设实数a 的所有可能取值构成集合M ,则()(d M = )A .3B .2C .1D .4 题型三.集合与元素的关系5.设A 是非空数集,0A ∉,1A ∉,且满足条件:若a A ∈,则11A a∈−. 证明:(1)若2A ∈,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集;(3)集合A 中至少有三个不同的元素.参考答案1.已知集合2{|320}A x x x =−+=,22{|2(1)(5)0}B x x a x a =−++−=,AB A =,求实数a 的取值范围.【解答】解:由2320x x −+=解得1x =,2.{1A ∴=,2}.A B A =,B A ∴⊆. 1B ︒=∅,△8240a =+<,解得3a <−.2︒若{1}B =或{2},则△0=,解得3a =−,此时{2}B =−,不符合题意.3︒若{1B =,2},∴2122(1)125a a +=+⎧⎨⨯=−⎩,此方程组无解. 综上:3a <−.∴实数a 的取值范围是(,3)−∞−.2.已知全集U R =,集合{|25}A x x =−,{|121}B x a x a =+−,且U A B ⊆,求实数a 的取值范围. 【解答】解:{|121}B x a x a =+−,且U A B ⊆,B ∴=∅,或211a a −>+,解得2a >, ①{|1U B x x a =<+,或21}x a >−,∴251a a ⎧⎨<+⎩或2212a a ⎧⎨−<−⎩, 解得4a >或a ∈∅.此时实数a 的取值范围为4a >.②当B =∅,U B R =,满足U A B ⊆,121a a ∴+>−,解得2a <.综上可得:实数a 的取值范围为4a >或2a <.3.已知集合2{|10}A x R x ax =∈++=和{1B =,2},且A B ⊆,则实数a 的取值范围是[2−,2). 【解答】解:因为A B ⊆,所以A =∅或{1}A =,{2}A =或{1A =,2}. 若A =∅,则△240a =−<,解得22a −<<.若{1}A =应有△240a =−=且110a ++=,解得2a =−.若{2}A =时,应有△240a =−=且4210a ++=,此时无解. 若{1A =,2},则1,2是方程210x ax ++=的两个根,所以由根与系数的关系得121⨯=,显然不成立.综上满足条件的实数a 的取值范围是22a −<.故答案为:[2−,2).4.用d (A )表示集合A 中的元素个数,若集合22{|()(1)0}A x x ax x ax =−−+=,{0B =,1},且|d (A )d−(B )|1=.设实数a 的所有可能取值构成集合M ,则()(d M = )A .3B .2C .1D .4【解答】解:由题意,d (B )2=,|d (A )d −(B )|1=,d ∴(A )1=或3, 方程22()(1)0x ax x ax −−+=可化为20x ax −=或210x ax −+=, 即0x =或x a =或210x ax −+=,①若d (A )1=,则方程22()(1)0x ax x ax −−+=有且只有一个解,故0a =,此时方程22(1)0x x +=有且只有一个解;②若d (A )3=,则方程22()(1)0x ax x ax −−+=有三个不同的解,则2040a a ≠⎧⎨−=⎩,解得,2a =±, 经检验,2a =±时,方程22()(1)0x ax x ax −−+=有三个不同的解,综上所述,{0M =,2−,2},故()3d M =, 故选:A .5.设A 是非空数集,0A ∉,1A ∉,且满足条件:若a A ∈,则11A a ∈−. 证明:(1)若2A ∈,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集;(3)集合A 中至少有三个不同的元素.【解答】解:(1)若2A ∈,则1112A =−∈−,于是()11112A =∈−−, 故集合A 中还含有1−,12两个元素. (2)若A 为单元素集,则11a a =−,即210a a −+=,此方程无实数解,∴11a a≠−, ∴a 与11a−都为集合A 的元素,则A 不可能是单元素集. (3)由A 是非空集合知存在1111111a a A A A a a a−∈⇒∈⇒=∈−−−−. 现只需证明a 、11a −、1a a−−三个数互不相等. ①若21101a a a a =⇒−+=−,方程无解,∴11a a≠−; ②若2110a a a a a −=⇒−+=−,方程无解;∴1a a a−≠−; ③若211101a a a a a −=⇒−+=−−,方程无解,∴111a a a −≠−−, 故集合A 中至少有三个不同的元素.。

集 合_高考数学复习专题

集 合_高考数学复习专题

集合_高考数学复习专题集合——高考数学复习专题在高考数学中,集合是一个基础而重要的概念,它不仅是后续学习其他数学知识的基石,也是高考中经常考查的内容。

对于同学们来说,掌握好集合的相关知识,对于提高数学成绩、建立良好的数学思维有着至关重要的作用。

集合是什么呢?简单来说,集合就是把一些确定的、不同的对象汇集在一起组成的一个整体。

比如,咱们班所有同学就可以组成一个集合,学校里所有的老师也能组成一个集合。

集合通常用大写字母来表示,比如 A、B、C 等等。

集合中的元素则用小写字母表示,比如a、b、c 。

如果一个元素x 属于某个集合A,我们就记作 x ∈ A ,如果不属于,就记作 x ∉ A 。

集合的表示方法有好几种。

列举法,就是把集合中的元素一个一个地列出来,像{1, 2, 3, 4, 5},这就清楚地表示了一个由 1 到 5 这几个数字组成的集合。

描述法呢,是通过描述元素所具有的共同特征来表示集合,比如{x | x 是小于 10 的正整数},这就表示了由 1 到 9 这些正整数组成的集合。

高考中常常考查集合之间的关系。

集合与集合之间,有子集、真子集和相等这几种关系。

如果集合 A 中的所有元素都在集合 B 中,那 A就是 B 的子集,记作 A ⊆ B 。

要是 A 是 B 的子集,并且 B 中还有 A没有的元素,那 A 就是 B 的真子集,记作 A ⊂ B 。

如果 A 和 B 中的元素完全一样,那它们就相等,记作 A = B 。

集合的运算也是重点。

交集,就是两个集合中共同的元素组成的新集合,记作A ∩ B 。

并集,则是把两个集合中的所有元素合在一起组成的新集合,记作 A ∪ B 。

补集呢,是在一个给定的全集 U 中,集合A 的补集就是由不属于 A 但属于 U 的元素组成的集合,记作 C U A 。

比如说,集合 A ={1, 2, 3},集合 B ={2, 3, 4},那么A ∩ B ={2, 3},A ∪ B ={1, 2, 3, 4}。

高中数学必修一《集合》高考专题复习

高中数学必修一《集合》高考专题复习

专题二 集 合1.集合的基本概念(1)集合中元素的三大特性:确定性、互异性、无序性. (2)元素与集合的关系:a ∈A 或a ∉A . (3)常见集合的符号表示(4)2.集合间的关系(1)两个集合A ,B 之间的关系(2)空集规定:①空集是任何集合的子集;②空集是任何非空集合的真子集. (3)子集的个数集合的子集、真子集个数的规律为:含n 个元素的集合有2n 个子集,有2n -1个真子集(除集合本身),有2n -1个非空子集,有2n -2个非空真子集(除集合本身和空集,此时n ≥1).遇到形如A ⊆B 的问题,务必优先考虑A =∅是否满足题意. 3.集合间的运算考向一 集合的基本概念1、(2013·江西,2)若集合A={}x ∈R |ax 2+ax +1=0中只有一个元素,则a =( )A .4 B .2 C .0 D .0或42、(2014·福建,16)已知集合{a ,b ,c }={0,1,2},且下列三个关系:①a ≠2;②b =2;③c ≠0有且只有一个正确,则100a +10b +c 等于________.3、(2016·山东济南一模,3)若集合A={-1,1},B={0,2},则集合z={z|z=x+y,x∈A,y∈B}中元素的个数为()A.5 B.4 C.3 D.2考向二集合的基本关系4、(2013·福建,3)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2 B.3 C.4 D.165、(2012·大纲全国,2)已知集合A={1,3,m},B={1,m},A∪B=A,则m=()A.0或 3 B.0或3 C.1或 3 D.1或36、(2013·课标Ⅰ,1)已知集合A={x|x2-2x>0},B={x|-5<x<5},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B 考向三集合的基本运算7、(2015·福建,2)若集合M={x|-2≤x<2},N={0,1,2},则M∩N等于()A.{0} B.{1} C.{0,1,2} D.{0,1}变式7.1:设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|-1<x<3} B.{x|-1<x<1} C.{x|1<x<2} D.{x|2<x<3}变式7.2:已知全集R,集合A=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪⎝⎛⎭⎪⎫12x≤1,B={x|x2-6x+8≤0},则A∩(∁R B)=()A{x|x≤0} C.{x|0≤x<2或x>4} B.{x|2≤x≤4} D.{x|0<x≤2或x≥4}考向四集合的新定义9、(2015·湖北,10)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.30能力提高:1.(2016·课标Ⅰ)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}2.(2016·课标Ⅲ)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=()A.{4,8} B.{0,2,6} C.{0,2,6,10} D.{0,2,4,6,8,10}3.(2016·天津)已知集合A={1,2,3},B={y|y =2x-1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}4.(2016·山东)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=() A.{2,6} B.{3,6} C.{1,3,4,5} D.{1,2,4,6}5.(2016·北京)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5} B.{x|x<4或x>5} C.{x|2<x<3} D.{x|x<2或x>5}6.(2016·四川)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6 B.5 C.4 D.37.(2016·浙江,1,易)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5}8.(2015·课标Ⅰ,1,易)已知集合A={x|x=3n +2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.29.(2015·安徽,2,易)设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁U B)=()A.{1,2,5,6} B.{1} C.{2} D.{1,2,3,4}10.(2015·山东,1,易)已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)11.(2015·课标Ⅱ,1,易)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=() A.(-1,3) B.(-1,0) C.(0,2) D.(2,3)12.(2015·陕西,1,易)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1] C.[0,1) D.(-∞,1]13.(2013·山东,2,中)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A.{3} B.{4} C.{3,4} D.∅14.(2012·湖北,1,中)已知集合A={x|x2-3x +2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1 B.2 C.3 D.415.(2015·江苏,1,易)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为________.16.(2015·湖南,11,易)已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=________.。

高考数学《集合》专项练习

高考数学《集合》专项练习

高考数学《集合》专项练习1.给定集合A={1,3,5,7},B={x|2≤x≤5},求A∩B。

解析:A与B的公共元素为3和5,因此A∩B={3,5},故选B。

2.给定集合A={1,2,3},B={x|x^2<9},求A∩B。

解析:由x^2<9得-3<x<3,因此B={x|-3<x<3}。

因为A={1,2,3},所以A∩B={1,2},故选D。

3.给定集合A={0,2,4,6,8,10},B={4,8},求A-B。

解析:根据补集的概念,得到A-B={0,2,6,10},故选C。

4.给定集合A={x|x-4x+30},求A∩B。

解析:对于集合A,解方程x-4x+30,得到x>3/2,因此B={x|x>3/2}。

因此A∩B={x|3/2<x<3},故选D。

5.已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是()。

解析:要使复数z对应的点在第四象限,应满足m+3<0且m-1<0,解得-3<m<1,故选A。

6.给定集合S={x(x-2)(x-3)≥0},T={x|x>0},求S∩T。

解析:S表示x在2和3之间或者小于等于0的实数,T表示x大于0的实数,因此S∩T=[2,3],故选A。

7.已知集合A={x|25},求AB。

解析:AB表示既属于A又属于B的元素,因此AB={x|2<x<3},故选C。

已知集合$A=\{x\mid |x|<2\}$,$B=\{-1,0,1,2,3\}$,则$A\cap B$的元素为$-1,0,1$,因此选项$\textbf{(C)}$正确。

解析:对于不等式$x-3<1$,两边加上$3$得$x<4$,因此不等式$x-3<1$的解集为$(\textbf{2},4)$。

因此选项$\textbf{(A)}$正确。

设集合$U=\{1,2,3,4,5,6\}$,$A=\{1,3,5\}$,$B=\{3,4,5\}$,则$AB=\{3,5\}$,因此$U-AB=\{1,2,4,6\}$,即选项$\textbf{(D)}$正确。

2024全国高考真题数学汇编:集合

2024全国高考真题数学汇编:集合

2024全国高考真题数学汇编集合一、单选题1.(2024全国高考真题)已知集合{}355,{3,1,0,2,3}A x x B =-<<=--∣,则A B = ()A .{1,0}-B .{2,3}C .{3,1,0}--D .{1,0,2}-2.(2024天津高考真题)集合{}1,2,3,4A =,{}2,3,4,5B =,则A B = ()A .{}1,2,3,4B .{}2,3,4C .{}2,4D .{}13.(2024全国高考真题)若集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A .{}1,3,4B .{}2,3,4C .{}1,2,3,4D .{}0,1,2,3,4,94.(2024北京高考真题)已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=()A .{}11x x -≤<B .{}3x x >-C .{}|34x x -<<D .{}4x x <5.(2024全国高考真题)已知集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð()A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,5参考答案1.A【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.B【分析】根据集合交集的概念直接求解即可.【详解】因为集合{}1,2,3,4A =,{}2,3,4,5B =,所以{}2,3,4A B = ,故选:B3.C【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=.故选:C4.C【分析】直接根据并集含义即可得到答案.【详解】由题意得{}|34M x x N ⋃=-<<.故选:C.5.D【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【详解】因为{}{}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =,则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D。

高考数学《集合》专题复习题

高考数学《集合》专题复习题

高考数学《集合》专题复习题1.设,集合,则__________。

2.设A是整数集的一个非空子集,对于,则k是A的一个“孤立元”,给定,由S的3个元素构成的所有集合中,不含“孤立元”的集合共有________个。

3.如果平面点集,则用列举法表示__________。

4.已知集合,且关于x的方程有唯一实数解,用列举法表示集合为__________。

5.用列举法表示集合:=__________。

6.集合,如果,那么的取值范围是_______。

7.如果集合与集合的元素个数相同,则的取值集合为__________。

8.已知非空集合,则实数的取值范围是__________。

9.已知集合至多有一个元素,则的取值范围________;若至少有一个元素,则的取值范围________。

10.已知集合满足:若,当时,集合__________。

(用列举法写出集合中的元素)11.已知集合,则实数a的取值范围是__________。

12.已知集合,则的值为__________。

13.已知非空集合,则的取值范围是__________。

14.集合A=至多含有一个元素,则的取值范围是_____。

15.已知时,集合有且只有3个整数,则的取值范围是________。

16.用列举法表示:大于0且不超过6的全体偶数的集合__________。

17.已知集合,若,则的值为__________。

18.若集合,且,则实数的取值是__________。

19.集合,若A={0},则实数的值为__________。

20.已知全集U=R,集合,则集合=__________。

21.已知集合,则用列举法表示集合=__________。

22.关于的不等式的解集是,若,则实数的取值范围是__________。

23.给定实数集合满足(其中表示不超过的最大整数,),,设,分别为集合的元素个数,则,的大小关系为__________。

24.若且,则__________。

全国高考数学真题分类汇编(2013-2022)——集合专题(附解析)

全国高考数学真题分类汇编(2013-2022)——集合专题(附解析)

全国高考数学真题分类汇编(2013-2022)集合专题(附解析)1.【2022年全国甲卷理科·第3题】设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B xx x =-=-+=∣,则()U A B ⋃=ð()A.{1,3}B.{0,3}C.{2,1}-D.{2,0}-2.【2022年全国乙卷理科·第1题】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A.2M ∈B.3M ∈C.4M ∉D.5M∉3.【2022新高考全国II 卷·第1题】已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ()A.{1,2}-B.{1,2}C.{1,4}D.{1,4}-4.【2022新高考全国I 卷·第1题】若集合{4},{31}M x N x x =<=≥∣,则M N = ()A.{}02x x ≤<B.123x x ⎧⎫≤<⎨⎬⎩⎭C.{}316x x ≤<D.1163x x ⎧⎫≤<⎨⎬⎩⎭5.【2021年新高考全国Ⅱ卷·第2题】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A.{3}B.{1,6}C.{5,6}D.{1,3}6.【2021年新高考Ⅰ卷·第1题】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ()A.{}2B.{}2,3C.{}3,4D.{}2,3,47.【2020年新高考I 卷(山东卷)·第1题】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =()A.{x |2<x ≤3}B.{x |2≤x ≤3}C.{x |1≤x <4}D.{x |1<x <4}8.【2020新高考II 卷(海南卷)·第1题】设集合A={2,3,5,7},B ={1,2,3,5,8},则A B =()A.{1,3,5,7}B.{2,3}C.{2,3,5}D.{1,2,3,5,7,8}9.【2021年高考全国乙卷理科·第2题】已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A.∅B.S C.T D.Z 10.【2021年高考全国甲卷理科·第1题】设集合{}104,53M x x N xx ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ()A.103x x ⎧⎫<≤⎨⎬⎩⎭B.143x x ⎧⎫≤<⎨⎬⎩⎭C.{}45x x ≤<D.{}05x x <≤11.【2020年高考数学课标Ⅰ卷理科·第2题】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A.–4B.–2C.2D.412.【2020年高考数学课标Ⅱ卷理科·第1题】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=ð()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}13.【2020年高考数学课标Ⅲ卷理科·第1题】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为()A.2B.3C.4D.614.【2019年高考数学课标Ⅲ卷理科·第1题】已知集合{}1,0,1,2A =-,2{|1}B x x =≤,则A B = ()A.{}1,0,1-B.{}0,1C.{}1,1-D.{}0,1,215.【2019年高考数学课标全国Ⅱ卷理科·第1题】设集合{}2560A x x x =-+>,{}10B x x =-<,则A B = ()A.(),1-∞B.()2,1-C.()3,1--D.()3,+∞16.【2019年高考数学课标全国Ⅰ卷理科·第1题】已知集合{42}M x =-<<,2{|60}N x x x =--<,则M N = ().{|43}A x x -<<.{|42}B x x -<<-.{|22}C x x -<<.{|23}D x x <<17.【2018年高考数学课标Ⅲ卷(理)·第1题】已知集合{}|10A x x =-≥,{}0,1,2B =,则A B = ()A.{}0B.{}1C.{}1,2D.{}0,1,218.【2018年高考数学课标Ⅱ卷(理)·第2题】已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为()A.9B.8C.5D.419.【2018年高考数学课标卷Ⅰ(理)·第2题】己知集合{}220A x x x =-->,则R A =ð()A.{}12x x -<<B.{}12x x -≤≤C.{}{}12x x x x <-> D.{}{}12x x x x ≤-≥ 20.【2017年高考数学新课标Ⅰ卷理科·第1题】已知集合{}|1A x x =<,{}|31x B x =<,则()A.{|0}A B x x =< B.A B =R C.{|1}A B x x => D.A B =∅21.【2017年高考数学课标Ⅲ卷理科·第1题】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为().A.3B.2C.1D.022.【2017年高考数学课标Ⅱ卷理科·第2题】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B = ,则B =()A.{}1,3-B.{}1,0C.{}1,3D.{}1,523.【2016高考数学课标Ⅲ卷理科·第1题】设集合{}(2)(3)0S x x x =--≥,{}0T x x =>,则S T = ()A.[]2,3B.(][),23,-∞+∞ C.[)3,+∞D.(][)0,23,+∞ 24.【2016高考数学课标Ⅱ卷理科·第2题】已知集合{1,2,3}A =,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = ()A.{1}B.{12},C.{0123},,,D.{10123}-,,,,25.【2016高考数学课标Ⅰ卷理科·第1题】设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B = ()(A)3(3,)2--(B)3(3,2-(C)3(1,2(D)3(,3)226.【2015高考数学新课标2理科·第1题】已知集合21,0,1,2A =--{,},{}(1)(20B x x x =-+<,则A B = ()A.{}1,0A =-B.{}0,1C.{}1,0,1-D.{}0,1,227.【2014高考数学课标2理科·第1题】设集合0,1,2M ={},2{|320}N x x x =-+≤,则M N = ()A.{1}B.{2}C.{0,1}D.{1,2}28.【2014高考数学课标1理科·第1题】已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=()A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)29.【2013高考数学新课标2理科·第1题】已知集合=2{|(1)4,},N {1,0,1,2,3}M x x x R -<∈=-,则M N ⋂=()A.{0,1,2}B.{1,0,1,2}-C.{1,0,2,3}-D.{0,1,2,3}30.【2013高考数学新课标1理科·第1题】已知集合A=2{|20}x x x ->,B={|x x <<,则()A.A B =∅ B.A B R = C.B A ⊆D.A B ⊆参考解析1.【答案】D 解析:由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-,所以(){}U 2,0A B ⋃=-ð.故选:D.2.【答案】A 解析:由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误3.【答案】B 解析:{}|02B x x =≤≤,故{}1,2A B = .故选B.4.【答案】D 解析:1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D 5.【答案】B 解析:由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选B.6.【答案】B 解析:由题设有{}2,3A B ⋂=,故选B.7.【答案】C 解析:[1,3](2,4)[1,4)A B ==U U 故选:C8.【答案】C 解析:因为{2,3,5,7},{1,2,3,5,8}A B ==,所以{2,3,5}A B = ,故选:C9.【答案】C 解析:任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.10.【答案】B 解析:因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.11.【答案】B 解析:求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-.故选:B.12.【答案】A 解析:由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选:A .13.【答案】C 解析:由题意,A B 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选:C.14.【答案】A 解析:因为{}1,0,1,2A =-,{}11B x x =-≤≤,所以{}1,0,1A B =- ,故选A.15.【答案】A 解析:{}{25602A x x x x x =-+>=≤或}3x ≥,{}{}101B x x x x =-<=<,故{}1A B x x =< ,故选A.16.【答案】C 解析:2{|60}{|(2)(3)0}{|23},{|22}N x x x x x x x x M N x x =--<=+-<=-<<∴=-<< 故选C.17.【答案】C 解析:{}{}|10|1A x x x x =-≥=≥,{}0,1,2B =,故{}1,2A B = ,故选C.18.【答案】A 解析:(){}{}223(1,1),(1,0),(1,1),(0,1),(0,0),(0,1),(1,1),(1,0),(1,1)A x y x y x y =+∈∈=-------Z Z ,≤,,,故选A.19.【答案】B 解析:集合{}220A x x x =+->,可得{}12A x x x =<->或,则{}-12R A x x =≤≤ð,故选:B.20.【答案】A 解析:由31x <得033x <,所以0x <,故{|1}{|0}{|0}A B x x x x x x ⋂=<⋂<=<,故选A.21.【答案】B 解析:法1:集合中的元素为点集,由题意,结合A 表示以(0,0)为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有点组成的集合,联立圆与直线的方程,可得圆221x y +=与直线y x =相交于两点,22⎫⎪⎪⎝⎭,,22⎛⎫-- ⎪ ⎪⎝⎭,所以A B 中有两个元素.法2:结合图形,易知交点个数为2,即A B 的元素个数为2.故选B22.【答案】C 解析:法1:常规解法∵{}1A B = ∴1是方程240x x m -+=的一个根,即3m =,∴{}2430B x x x =-+=故{}1,3B =法2:韦达定理法∵{}1A B = ∴1是方程240x x m -+=的一个根,∴利用伟大定理可知:114x +=,解得:13x =,故{}1,3B =法3:排除法∵集合B 中的元素必是方程方程240x x m -+=的根,∴124x x +=,从四个选项A﹑B﹑C ﹑D看只有C 选项满足题意.23.【答案】D 解析:由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{}23S x x x =或≤≥,所以{}023S T x x x =< 或≤≥,故选D.24.【答案】C 解析:{|(1)(2)0,}={0,1}B x x x x Z =+-<∈,又{1,}A =2,3,所以{0,1,2,3}A B =,故选C.25.【答案】D 解析:{}{}243013A x x x x x =-+<=<<,{}32302B x x x x ⎧⎫=->=>⎨⎩⎭.故332A B x x ⎧⎫=<<⎨⎬⎩⎭ .故选D.26.【答案】A 解析:由已知得{}21B x x =-<<,故{}1,0A B =- ,故选A.27.【答案】D 解析:因为N ={x|1x 2}≤≤,所以M N={12},⋂,故选D.28.【答案】A 解析:∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<,∴A B ⋂={}21x x -≤≤,选A.29.【答案】A 解析:化简集合M 得{|13,}M x x x R =-<<∈,则{0,1,2}M N ⋂=.30.【答案】D 解析:(,0)(2,),A A B R =-∞+∞∴= ,故选B。

2024年高考数学 高三大一轮复习专题01 集合

2024年高考数学 高三大一轮复习专题01 集合

专题01 集合【知识精讲】一、集合的基本概念 1.元素与集合的关系:a A a A∈⎧⎨∉⎩属于,记为不属于,记为.2.集合中元素的特征:即一个集合一旦3.集合的分类:有限集与无限集,特别地,我们把不含有任何元素的集合叫做空集,记作∅.4.常用数集及其记法:注意:实数集R 不能表示为{x |x 为所有实数}或{R },因为“{ }”包含“所有”“全体”的含义.5.集合的表示方法:自然语言、列举法、描述法、图示法. 二、集合间的基本关系或集合A ∅⊆,必记结论:(1)若集合A 中含有n 个元素,则有2n 个子集,有21n −个非空子集,有21n −个真子集,有22n −个非空真子集.(2)子集关系的传递性,即,A B B C A C ⊆⊆⇒⊆. 注意:空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解. 三、集合的基本运算 1.集合的基本运算{|B x x =|{B x x ={|UA x =2.集合运算的相关结论B A ⊆ B B ⊆ A A A = ∅=∅B A ⊇B B ⊇A A =A ∅=()UU A A =UU =∅ UU ∅=()U A A =∅()U A A U =3.必记结论(.)UUU A B A B A A B B A B A B ⊆⇔=⇔=⇔⊇=⇔∅【题型精讲】题型一 集合的基本概念【例1-1】设集合{}22,2,1A a a a =−+−,若4A ∈,则a 的值为( ).A .1−,2B .3−C .1−,3−,2D .3−,2【答案】D 【解析】 【分析】由集合中元素确定性得到:1a =−,2a =或3a =−,通过检验,排除掉1a =−. 【详解】由集合中元素的确定性知224a a −+=或14a −=.当224a a −+=时,1a =−或2a =;当14a −=时,3a =−.当1a =−时,{}2,4,2A =不满足集合中元素的互异性,故1a =−舍去; 当2a =时,{}2,4,1A =−满足集合中元素的互异性,故2a =满足要求; 当3a =−时,{}2,14,4A =满足集合中元素的互异性,故3a =−满足要求. 综上,2a =或3a =−. 故选:D .【例1-2】(多选题)设集合{}22,,Z M a a x y x y ==−∈,则下列是集合M 中的元素的有( ) A .4n ,Z n ∈ B .41n +,Z n ∈ C .42n +,Z n ∈ D .43n +,Z n ∈【答案】ABD 【解析】 【分析】分别对x ,y 取整数,1x n =+,1y n =−可判断A ;由21x n =+,2y n =可判断B ;令()()42n x y x y +=+−,通过验证不成立可判断C ;由22x n =+,21y n =+可判断D ,进而可得正确选项. 【详解】对于A :因为()()22411n n n =+−−,Z n ∈,1Z n +∈,1Z n −∈,所以4n M ,故选项A正确;对于B :因为()()2241212n n n +=+−,Z n ∈,21Z n +∈,2Z n ∈,所以41n M ,故选项B 正确;对于C :若()42Z n n M +∈∈,则存在x ,Z y ∈使得2242x y n ,则()()42n x y x y +=+−,易知x y +和x y −同奇或同偶,若x y +和x y −都是奇数,则()()x y x y +−为奇数,而42n +是偶数,矛盾;若x y +和x y −都是偶数,则()()x y x y +−能被4整除,而42n +不能被4整除,矛盾,所以42nM ,故选项C 不正确;对于D :()()22432221n n n +=+−+,22Z n +∈,21Z n +∈,所以43n M ,故选项D正确; 故选:ABD.【例1-3】集合*83A x NN x ⎧⎫=∈∈⎨⎬−⎩⎭,用列举法可以表示为A =_________. 【答案】{1,2}、{2,1} 【解析】【分析】根据集合元素属性特征进行求解即可. 【详解】 因为83N x*∈−,所以31,2,4,8−=x ,可得2,1,1,5=−−x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}【练习1-1】已知集合 {}20,,32A m m m =−+,且 2A ∈,则实数m 的值为( )A .3B .2C .0或3D .0或2或3【答案】A 【解析】 【分析】依题意可得2m =或2322m m −+=,求出方程的根,再代入集合中检验即可; 【详解】解:因为{}20,,32A m m m =−+,且2A ∈,所以2m =或2322m m −+=,解得2m =或0m =或3m =,当2m =时2320m m −+=,即集合A 不满足集合元素的互异性,故2m ≠,当0m =时集合A 不满足集合元素的互异性,故0m ≠,当3m =时{}0,3,2A =满足条件; 故选:A【练习1-2】已知集合{}220A x x x a =−+>,且1A ∉,则实数a 的所有取值构成的集合是________. 【答案】(],1−∞ 【解析】 【分析】根据集合与元素见的关系直接列不等式,进而得解. 【详解】由1A ∉,得21210a −⨯+≤, 解得1a ≤,故答案为:(],1−∞.【练习1-3】已知,x y 均为非零实数,则代数式xy x yx y xy++的值所组成的集合的元素个数是______. 【答案】2 【解析】 【分析】 分析题意知代数式xy x yx y xy++的值与,x y 的符号有关,按其符号的不同分3种情况讨论,分别求出代数式的值,即可得解. 【详解】根据题意分2种情况讨论: 当,x y 全部为负数时,xy 为正数,则1111xyx y x y xy++=−−+=−; 当,x y 全部为正数时,xy 为正数,则1113xy x y x y xy++=++=; 当,x y 一正一负时,xy 为负数,则1111xy x y x y xy++=−−=−; 综上可知,xy x yx y xy++的值为1−或3,即代数式的值所组成的集合的元素个数是2 故答案为:2题型二 集合的基本关系【例2-1】若集合1|(21),9A x x k k Z ⎧⎫==+∈⎨⎬⎩⎭,41|,99B x x k k Z ⎧⎫==±∈⎨⎬⎩⎭,则集合,A B 之间的关系为( ) A .A B B .B A C .A B = D .A B ≠【答案】C 【解析】【分析】根据子集的定义证得A B ⊆和B A ⊆,即可得出结论. 【详解】设任意1x A ∈,则1111(21),9x k k Z =+∈,当12,k n n Z =∈时1141(41)999x n n =+=+, 所以1x B ∈;当121,k n n Z =−∈时,1141(41)999x n n =−=−,所以1x B ∈.所以A B ⊆又设任意2x B ∈,则2222414(41),999x k k k Z =±=±∈ 因为22412(2)1k k +=+,22412(21)1k k −=−+, 且22k 表示所有的偶数,221k −表示所有的奇数.所以2241k k Z ±∈()与21()n n Z +∈都表示所有的奇数.所以2x A ∈. 所以B A ⊆故A B =. 故选:C.【例2-2】已知集合{}2230A x x x =−−=,{}20B x ax =−=,且B A ⊆,则实数a 的值为___________. 【答案】2a =−或23a =或0 【解析】 【分析】先求得集合A ,分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=−==⎨⎬⎩⎭,因为B A ⊆,故得到21a =−或23a =,解出即可.【详解】解:已知集合{}{}22301,3A x x x =−−==−,{}20B x ax =−=,当0,a B ==∅,满足B A ⊆;当0a ≠时,{}220B x ax a ⎧⎫=−==⎨⎬⎩⎭,因为B A ⊆,故得到21a =−或23a=,解得2a =−或23a =;故答案为:2a =−或23a =或0.【例2-3】已知{}(){}22240,2110A xx x B x x a x a =+==+++−=∣∣. (1)若A 是B 的子集,求实数a 的值; (2)若B 是A 的子集,求实数a 的取值范围. 【答案】(1)1a =; (2)1a −或1a =. 【解析】 【分析】(1)由题得{}4,0B A ==−,解2Δ0402(1)401a a >⎧⎪−+=−+⎨⎪−⨯=−⎩即得解;(2)由题得B A ⊆,再对集合B 分三种情况讨论得解. (1)解:由题得{}4,0A =−.若A 是B 的子集,则{}4,0B A ==−,所以2Δ0402(1),1401a a a >⎧⎪−+=−+∴=⎨⎪−⨯=−⎩.(2)解:若B 是A 的子集,则B A ⊆.①若B 为空集,则()22Δ4(1)41880a a a =+−−=+<,解得1a <−; ②若B 为单元素集合,则()22Δ4(1)41880a a a =+−−=+=,解得1a =−. 将1a =−代入方程()222110x a x a +++−=,得20x =,即{}0,0x B ==,符合要求; ③若B 为双元素集合,{}4,0B A ==−,则1a =. 综上所述,1a −或1a =.【练习2-1】设集合18045,Z 2k M x x k ⎧⎫==⋅︒+︒∈⎨⎬⎩⎭,18045,Z 4kN x x k ⎧⎫==⋅︒+︒∈⎨⎬⎩⎭,则两集合间的关系是( ) A .MNB .M NC .N MD .M N ⋂=∅【答案】B 【解析】 【分析】变形(){}2145,Z M x x k k ==+⨯︒∈,(){}145,Z N x x k k =+⨯︒∈,分析比较即可得解. 【详解】由题意可(){}18045,Z 2145,Z 2kM x x k x x k k ⎧⎫==⋅︒+︒∈==+⨯︒∈⎨⎬⎩⎭即M 为45︒的奇数倍构成的集合,又(){}18045,Z 145,Z 4kN x x k x x k k ⎧⎫==⋅︒+︒∈==+⨯︒∈⎨⎬⎩⎭,即N 为45︒的整数倍构成的集合,M N ∴⊆,即M N 故选:B【练习2-2】已知集合{|4A x x =≥或}5x <−,{}|13B x a x a =+≤≤+,若B A ⊆,则实数a 的取值范围_________.【答案】{|8a a <−或}3a ≥ 【解析】 【分析】根据B A ⊆,利用数轴,列出不等式组,即可求出实数a 的取值范围. 【详解】用数轴表示两集合的位置关系,如上图所示,或要使B A ⊆,只需35a +<−或14a +≥,解得8a <−或3a ≥. 所以实数a 的取值范围{|8a a <−或}3a ≥. 故答案为:{|8a a <−或}3a ≥【练习2-3】满足{}1A ⊆ {1,2,3}的所有集合A 是___________. 【答案】{1}或{1,2}或{1,3} 【解析】 【分析】由题意可得集合A 中至少有一个元素1,且为集合{1,2,3}的真子集,从而可求出集合A 【详解】因为{}1A ⊆ {1,2,3},所以集合A 中至少有一个元素1,且为集合{1,2,3}的真子集, 所以集合A 是{1}或{1,2}或{1,3}, 故答案为:{1}或{1,2}或{1,3}题型三 集合的基本运算【例3-1】已知集合{}21A x x =−≤≤,集合{}2log 1B x x =<,则A B =( ) A .∅ B .(0,1] C .[2,1]− D .(0,2)【答案】B 【解析】 【分析】先求解集合B ,再利用交集运算即可. 【详解】解:由题得集合{|02}B x x =<<,所以{|01}A B x x =<≤. 故选:B .【例3-2】已知U=R 是实数集,21M x x ⎧⎫=>⎨⎬⎩⎭,{N x y ==,则()N M =R ( )A .(),0∞−B .(),1−∞C .(]0,1D .()0,1【答案】D【解析】【分析】 先求得集合M 、N ,再运用集合的交集、补集运算求得答案.【详解】解:∵{}221002x M x x x x x x ⎧⎫⎧⎫−=>=<=<<⎨⎬⎨⎬⎩⎭⎩⎭,{{}1N x y x x ===≥, ∴(){}{}{}10201R N M x x x x x x ⋂=<⋂<<=<<,故选:D.【例3-3】已知集合{2}A xa x a =<<∣,{4B x x =≤−或}3x ≥. (1)当2a =时,求()R A B ⋃;(2)若R A B ⊆,求a 的取值范围.【答案】(1){44}xx −<<∣ (2)3,2⎛⎤−∞ ⎥⎝⎦ 【解析】【分析】(1)由补集和并集的定义可运算求得结果;(2)分别在A =∅和A ≠∅两种情况下,根据交集为空集可构造不等式求得结果.(1) 由题意得{}24A x x =<<,{4B x x =≤−或}3x ≥, {}R 43B x x ∴=−<<,故(){}R 44A B x x ⋃=−<<.(2)当0a ≤时,A =∅,符合题意,当0a >时,由23a ≤,得302<≤a , 故a 的取值范围为3,2⎛⎤−∞ ⎥⎝⎦.【练习3-1】已知集合{}1,0,1,2A =−,集合{}lg 0B x x =>,则() AB =R ( ) A .{}1,0,1−B .{}1,0−C .{}0,1D .(],1−∞ 【答案】A【解析】【分析】解不等式后由补集与交集的概念运算【详解】 因为集合{}{}lg 01B x x x x =>=>,所以{}1R B x x =≤,又集合{}1,0,1,2A =−,所以(){} 1,0,1A B =−R ,故选:A 【练习3-2】设全集为R ,{|1A x x =<−或}4x >,{}123B x a x a =−≤≤+.(1)若1a =,求A B ,()R A B .(2)已知A B =∅,求实数a 的取值范围.【答案】(1){}45A B xx ⋂=<≤∣,(){}R 15A B x x ⋃=−≤≤∣; (2)12a ≤. 【解析】【分析】(1)当1a =时求出集合B ,再进行交集,补集,并集运算即可求解;(2)讨论B =∅和B ≠∅两种情况,列不等式解不等式即可求解.(1)因为1a =,所以{}05B x x =≤≤∣,{}R |14A x x =−≤≤,所以{}45A B xx ⋂=<≤∣,(){}R 15A B x x ⋃=−≤≤∣. (2)因为A B =∅,当B =∅时,满足A B =∅,所以123a a −>+,得23a <−;当B ≠∅时,因为A B =∅,所以23111234a a a a +≥−⎧⎪−≥−⎨⎪+≤⎩,解得2132a −≤≤, 综上实数a 的取值范围为:12a ≤. 题型四 Venn 图及其应用【例4-1】如图,三个圆的内部区域分别代表集合A ,B ,C ,全集为I ,则图中阴影部分的区域表示( )A .ABC ⋂⋂B .()I AC B ⋂⋂ C .()I A B C ⋂⋂D .()I B C A ⋂⋂【答案】B【解析】【分析】找到每一个选项对应的区域即得解.【详解】解:如图所示,A. A B C ⋂⋂对应的是区域1;B. ()I A C B ⋂⋂对应的是区域2;C. ()I A B C ⋂⋂对应的是区域3;D. ()I B C A ⋂⋂对应的是区域4.故选:B【例4-2】已知全集R U =,集合{}|2,1x A y y x ==>,{}|24B x x =−<<,则图中阴影部分表示的集合为( )A .[2,2]−B .(2,2)−C .(2,2]−D .[2,2)−【答案】C【解析】【分析】求出集合A ,阴影部分表示为:()U B A ⋂,再分析求解即可.【详解】因为{}|2,1x A y y x ==>,所以()2,A =+∞,又{}|24B x x =−<<,全集R U =, 所以图中阴影部分表示的集合为()(2,2]U B A =−.故选:C.【练习4-1】已知M ,N 为R 的两个不相等的非空子集,若M N M ⋂=,则( )A .M N =RB .M N ⋃=R RC .N M ⋃=R RD .M N ⋃=R R R【答案】C【解析】【分析】依题意可得M N ,结合韦恩图即可判断;【详解】解:依题意M N M ⋂=,所以M N ,则集合M ,N 与R 的关系如下图所示:所以N M ⋃=R R ;故选:C【练习4-2】已知全集U =R ,集合{}290A x x =−>,122x B x ⎧⎫⎪⎪⎛⎫=≥⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则图中阴影部分所表示的集合为( )A .{}3x x <B .{}13x x −<<C .{}1x x >−D .{}11x x −<≤【答案】B【解析】【分析】根据不等式的解法和指数函数的性质,分别求得集合,A B ,结合题意和集合的运算法则,即可求解.【详解】由不等式290−>x ,解得33x −<<,即集合{}33A x x =−<<, 又由122x ⎛⎫≥ ⎪⎝⎭,解得1x ≤−,即集合{}1B x x =≤−,则{}|1U B x x =>−, 又因为图中阴影部分表示的集合为()U A B ∩,所以(){}|13U AB x x =−<<.故选:B.题型五 集合中的创新型问题【例5-1】定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==−∈∈,若{}1,0A =−,{}1,2B =,则A B ⊗中的元素个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据集合的新定义确定集合中的元素.【详解】因为2{|,,}A B x x a b a A b B ⊗==−∈∈,{}1,0A =−,{}1,2B =,所以{0,1,2}A B ⊗=−−,故集合A B ⊗中的元素个数为3,故选:C.【例5-2】(多选题)设P 是一个数集,且至少含有两个元素.若对任意的a b P ∈,,都有a ab a b ab P b+−∈,,,(除数0b ≠),则称P 是一个数域.则关于数域的理解正确的是( )A .有理数集Q 是一个数域B .整数集是数域C .若有理数集Q M ⊆,则数集M 必为数域D .数域必为无限集【答案】AD【解析】【分析】根据数域的定义逐项进行分析即可求解.【详解】对于A ,若Q a b ∈,,则()Q Q Q Q 0aa b a b ab b b+∈−∈∈∈≠,,,,所以有理数集Q 是一个数域,故A 正确;对于B ,因为1Z Z,∈∈,2所以1Z 2∉,所以整数集不是数域,故B 不正确;对于C,令数集}{Q 2M =,则1,M M ∈但1M ,故C 不正确;对于D ,根据定义,如果()0a b b ≠,在数域中,那么,2,,a b a b a kb +++(k 为整数),都在数域中,故数域必为无限集,故D 正确.故选:AD.【例5-3】已知有限集合{}123,,,,n A a a a a =⋅⋅⋅,定义集合{}1,,i j B a a i j n i j *=+≤<≤∈N 中的元素的个数为集合A 的“容量”,记为()L A .若集合{}13A x x *=∈≤≤N ,则()L A =______;若集合{}1A x x n *=∈≤≤N ,且()4041L A =,则正整数n 的值是______. 【答案】 3 2022【解析】【分析】化简A ,可得()L A ;根据“容量”定义可得{}1A x x n *=∈≤≤N 的()4041L A =,解方程即可.【详解】{}{}131,2,3A x x *=∈≤≤=N ,则集合{}3,4,5B =,所以()3L A =.若集合{}1A x x n *=∈≤≤N , 则集合(){}{}3,4,,13,4,,21B n n n =⋅⋅⋅−+=⋅⋅⋅−,故()212234041L A n n =−−=−=,解得2022n =.故答案为:3;2022【练习5-1】设集合{}3,4,5P =,{}6,7Q =,定义(){},|,P Q a b a P b Q ⊗=∈∈,则P Q ⊗中元素的个数为( )A .3B .4C .5D .6【答案】D【解析】【分析】用列举法表示出集合,即可得到结论.【详解】因为集合{}3,4,5P =,{}6,7Q =,定义(){},|,P Q a b a P b Q ⊗=∈∈,所以(){}()()()()()(){},|,3,6,3,7,4,6,4,7,5,6,5,7P Q a b a P b Q ⊗=∈∈=.一共6个元素.故选:D【练习5-2】若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”,对于集合1,2A ,{}22,0B x ax a ==≥,若这两个集合构成“鲸吞”或“蚕食”,则a 的取值集合为_____. 【答案】10,,22⎧⎫⎨⎬⎩⎭ 【解析】【分析】分“鲸吞”或“蚕食”两种情况分类讨论求出a 值,即可求解【详解】当0a =时,B =∅,此时满足B A ⊆,当0a >时,B ⎧⎪=⎨⎪⎩,此时,A B 集合只能是“蚕食”关系,所以当,A B 集合有公共元素1=−时,解得2a =,当,A B 2=时,解得12a =, 故a 的取值集合为10,,22⎧⎫⎨⎬⎩⎭. 故答案为:10,,22⎧⎫⎨⎬⎩⎭。

高考数学复习《集合》知识点

高考数学复习《集合》知识点

集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件. 考试要求:(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾: (一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集.④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集.②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅) 4. ①n 个元素的子集有2n个. ②n 个元素的真子集有2n-1个. ③n 个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②且21≠≠y x 3≠+y . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.x(自右向左正负相间) 则不等式)0)(0(0022110><>++++--a a x a xa x a n n n n的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;2原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互2.分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0) (1)根的“零分布”:根据判别式和韦达定理分析列式解之. (2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

高考数学专项:集合的概念(讲义)-解析版

高考数学专项:集合的概念(讲义)-解析版

1.1集合的概念1.定义一般地,我们把研究对象统称为元素,把一些元素组成的整体叫做集合(简称集)2.集合与元素的表示集合通常用大写字母A,B,C, 表示,元素用小写字母a,b,c, 表示3.元素与集合的关系元素与集合的关系记法读法a是集合A的元素Aa a属于集合Aa不是集合A的元素Aa a不属于集合A4.常用数集及其记法数集记法非负整数集(自然数集)NN或*N正整数集整数集Z有理数集Q实数集R例1.下列各组对象不能构成集合的是()y x=上的所有点A.所有直角三角形B.抛物线2C.某中学高一年级开设的所有课程D【答案】D【分析】根据集合所具有的性质逐一判断即可得出结论.【详解】A ,B ,C 中的对象具备互异性、无序性、确定性,而D 中的对象不具备确定性.故选:D .变式1-1.下列元素的全体不能组成集合的是()A .中国古代四大发明B .地球上的小河流C .方程210x -=的实数解D .周长为10的三角形【答案】B【分析】根据集合中的元素的三要素即可判断各个选项的正误.【详解】中国古代四大发明可以构成一个集合,故A 正确;地球上的小河流不满足集合元素的确定性,即没有标准说多小的河流算小河流,故B 错误;方程210x -=的实数解是1x ,可以构成一个集合,故C 正确;周长为10的所有三角形可以构成一个集合,故D 正确;故选:B.变式1-2.下列叙述能够组成集合的是()A .我校所有体质好的同学B .我校所有800米达标的女生C .全国所有优秀的运动员D .全国所有环境优美的城市【答案】B【分析】根据集合元素的确定性,逐一分析可得答案.【详解】A 中,我校所有体质好的同学不具有确定性,不能组成集合;B 中,我校所有800米达标的女生具有确定性,能组成集合;C 中,全国所有优秀的运动员不具有确定性,不能组成集合;D 中,全国所有环境优美的城市不具有确定性,不能组成集合,故选:B .变式1-3.下列各组对象不能构成集合的是()A .上课迟到的学生B .2022年高考数学难题C .所有有理数D .小于x 的正整数【答案】B【分析】集合中元素具有确定性,对于每一个元素要么属于集合,要么不属于集合,构成集合的元素必要是确定的.【详解】对于B 中难题没有一个确定的标准,对同一题有人觉得难,但有人觉得不难,故2022年高考数学难题不能构成集合,组成它的元素是不确定的.其它选项的对象都可以构成集合.故选:B例2.下列元素与集合的关系中,正确的是()A .1 NB .*0N C QD .2R5【答案】B【分析】根据常用数集的范围判断即可.【详解】N 表示自然数集,-1不是自然数,故A 错;N 表示正整数集,0不是正整数,故B 正确;Q C 错;R 表示实数集,25是实数,故D 错.故选:B.变式2-1.(多选)下列关系中,正确的是().A .14R B QC .3 ND Z【答案】AB【分析】根据各数集的概念直接判断即可.【详解】14R ,故A 正确;Q ,故B 正确;N 为自然数集,所以3 N ,故C 错误;Z ,故D 错误;故选:AB .变式2-2.用符号“ ”或“ ”填空:0______Z ,π______Q .【答案】【详解】 =3,2,1,0,1,2,30 Z Z∵ Q ∵为有理数集合,π Q故答案为:,变式2-3.用符号“ ”或“ ”N N .【答案】【分析】根据元素和集合的关系求解即可.【详解】因为集合N 代表自然数集(非负整数集),N 4N ,故答案为: , 5.集合中元素的性质(1)确定性给定的集合,它的元素必须是确定的;也就是说,给定一个集合,那么任何元素在不在这个集合中就确定了。

高中数学高考专题复习《集合》含试题与详细解答

高中数学高考专题复习《集合》含试题与详细解答

高中数学高考专题复习《集合》含试题与详细解答1.已知∈b a ,R ,则“b a =”是“ab b a =+2”的 A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件2.已知命题b a p >若:,则b a 11<,那么“p ⌝”是( ) A 、若b a >,则b a 11≥ B 、若b a >,则不一定有ba 11< C 、若b a ≤,则b a 11< D 、若b a ≤,则ba 11≥ 3.如果22{|0,},{|0,}A x x x x R B x x x x R =-=∈=+=∈,那么AB =( ) A. 0 B. ∅ C. {0} D. {1,0,1}-4.对于集合N M ,,定义:M x x N M ∈=-|{且}N x ∉,)()(M N N M N M --=⊕ ,设A =),3|{2R x x x y y ∈-=,{})(log 2x y x B -==,则B A ⊕=( )A .0]B .0)C ..5.非零向量,a b 使得||||||a b a b -=+成立的一个充分非必要条件是A . //a b B. a b = C. ||||a b a b = D. 20a b += 6.已知集合{}0=A y y A B B =∣≥,,则集合B 可能是( )(A ){}=0y y x ∣≥ (B ){}1=2x y y x ⎛⎫∈ ⎪⎝⎭R ∣, (C ){}=ln 0y y x x ∣,> (D )R7.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定形式是 ( )A.任意多面体没有一个是三角形或四边形或五边形的面B.任意多面体没有一个是三角形的面C.任意多面体没有一个是四边形的面D.任意多面体没有一个是五边形的面8.已知集合2{|1}M x x ==,{|1,}N a ax x M ==∈,则下列关于集合M 、N 之间关系的判断中,正确的是A .N M Ø B.M N =∅ C. M N = D. M N =∅9.已知集合A={x ︱x>-2}且AB A = ,则集合B 可以是( )A. {x ︱x 2>4 }B. {x ︱y =C. {y ︱22,y x x R =-∈ }D.(-1,0,1,2,3)10.下列选项中,p 是q 的必要不充分条件的是( )A.p:a c +>b+d , q:a >b 且c >dB.p:a >1,b>1, q:()(01)x f x a b a a =->≠,且的图象不过第二象限C.p: x=1, q:2x x =D.p:a >1, q: ()log (01)a f x x a a =>≠,且在(0,)+∞上为增函数11.已知集合{}1|2==x x P ,集合{}1|==ax x Q ,若P Q ⊆,那么a 的值是( )A .1B .-1C .1或-1D .0,1或-112.若集合{}0A x x =≥,且A B B =,则集合B 可能是( )A .{}1,2B .{}1x x ≤C .{}1,0,1-D .R13.定义}|{B x A x x B A ∉∈=-且,已知}4,3,1{},3,2{==B A 。

高考数学专题复习:子集、全集与补集

高考数学专题复习:子集、全集与补集

高考数学专题复习:子集、全集与补集一、单选题1.已知集合P ={2,4,6,8},则集合P 的真子集的个数是( ) A .4B .14C .15D .162.集合M =}|1,2n x x n Z⎧=+∈⎨⎩,N =}1|,2x x m m Z ⎧=+∈⎨⎩,则两集合M ,N 的关系为( )A .M ∩N =∅B .M =NC .M ⊆ND .N ⊆M3.下列六个关系式:①{}{},,a b b a =;②{}{},,a b b a ⊆;③{}∅=∅;④{}0=∅;⑤{}0∅⊆;⑥{}00∈.其中正确的个数是( ) A .1B .3C .4D .64.已知a R ∈,b R ∈,若集合{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20212021a b +的值为( )A .2-B .1-C .1D .25.集合6{|}6x N N x∈∈-的子集个数为( ) A .2B .4C .8D .166.已知集合{}2,3,1A =-,集合{}23,B m =.若B A ⊆,则实数m 的取值集合为( ) A .{}1B .{}3C .{}1,1-D .{}3,3-7.已知集合{}{}2|560,,|04,,A x x x x R B x x x N =-+=∈=<≤∈则满足条件A C B ⊆⊆的集合C 的个数( ) A .1B .2C .3D .48.已知全集U R =,那么正确表示集合{}1,0,1,2M =-和{}2|0N x x x =-=的关系的韦恩图是( )A .B .C .D .二、多选题9.已知集合{1,1},{|1}M N x mx =-==,且N M ⊆,则实数m 的值可以为( ) A .1B .1-C .2D .010.下列四个选项中正确的是( ) A .{}{},a b ∅⊆ B .(){}{},,a b a b = C .{}{},,a b b a ⊆D .{}0∅⊆11.若集合2{|60}M x x x =+-=,{|10}N x ax =-=,且N M ⊆,则实数a 的值为( )A .13-B .0C .12D .112.已知全集U 的两个非空真子集A ,B 满足()U A B B =,则下列关系一定正确的是( ) A .A B =∅ B .A B B = C .A B U ⋃= D .()U B A A =三、填空题13.如果{}{},1,2a b =,则ab=________. 14.所有满足{}{},,,a Ma b c d ⊆的集合M 的个数为________;15.已知集合2{|9140}A x x x =-+=,集合{|20}B x ax =+=,若B A ,则实数a 的取值集合为________.16.已知集合{|04}A x x =<≤,{|}B x x a =<.当A ⊆B 时实数a 的取值范围为a c >,则c =________.四、解答题17.已知集合A ={x ||x -a |=4},B ={1,2,b }.(1)是否存在实数a ,使得对于任意的实数b ,都有A ⊆B ?若存在,求出a 的值;若不存在,请说明理由;(2)若A ⊆B 成立,求出对应的实数对(a ,b ).18.已知集合A ={x |x 2﹣3x +2=0},B ={x |ax ﹣2=0},C ={x |x 2﹣mx +2=0}. (1)若B ⊆A ,求实数a 构成的集合; (2)若A ∩C =C ,求实数m 的取值范围.19.已知集合{}{},|325,|21U R M x a x a P x x ==<<+=-≤≤,若M ⫋U C P ,求实数a 的取值范围.20.已知22{|}}240|2{0A x x x B x x ax a =+-==++-=,,若B A ⊆,求实数a 的值.21.设全集{}22,3,23U m m =+-,{}1,2A m =+,{}5UA =,求m 的值.22.已知集合A {}25x x =-≤≤.(1)若{}621B x m x m =-≤≤-,A B ⊆,求实数m 的取值范围; (2)若{}121B x m x m =+≤≤-,B A ⊆,求实数m 的取值范围.参考答案1.C 【分析】根据集合P 元素的个数确定正确选项. 【详解】集合P 元素有4个,故其真子集的个数为42115-=个. 故选:C 2.D 【分析】根据子集的定义判断. 【详解】由题意,对于集合M ,当n 为偶数时,设n =2k (k ∈Z ),则x =k +1(k ∈Z ), 当n 为奇数时,设n =2k +1(k ∈Z ),则x =k +1+12(k ∈Z ), ∴N ⊆M , 故选:D. 3.C 【分析】利用集合相等的概念可判定①,③,④;利用集合之间的包含关系可判定②,⑤,利用元素与集合的关系可判定⑥. 【详解】①正确,集合中元素具有无序性; ②正确,任何集合是自身的子集;③错误,∅表示空集,而{}∅表示的是含∅这个元素的集合,所以{}∅=∅不成立. ④错误,∅表示空集,而{}0表示含有一个元素0的集合,并非空集,所以{}0=∅不成立; ⑤正确,空集是任何非空集合的真子集; ⑥正确,由元素与集合的关系知,{}00∈. 故选:C.4.B 【分析】先利用集合相等列式201b a a a b a ⎧=⎪⎪=+⎨⎪=⎪⎩,解得a ,b ,再验证集合元素的互异性,代入计算即得结果.【详解】因为{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,所以201b a a a b a ⎧=⎪⎪=+⎨⎪=⎪⎩,解得01b a =⎧⎨=⎩或01b a =⎧⎨=-⎩,当1a =时,不满足集合元素的互异性, 故1a =-,0b =,即()2021202120212021101a b +=-+=-.故选:B. 5.D 【分析】先化简集合,得到集合元素的个数n ,再由子集的个数为2n 求解. 【详解】6{|}{0,3,4,5}6x N N x ∈∈=-, ∴6{|}6x N N x ∈∈-的子集的个数为4216=.故选:D. 6.C 【分析】根据题意可得21m =或22m =-,解方程即可求解. 【详解】因为B A ⊆,所以21m =或22m =- 因为22m =-无解,所以22m =-不成立,由21m =得1m =±,所以实数m 的取值集合为{}1,1-.故选:C. 7.D 【分析】先求得集合A ,再由集合的包含关系求得集合C 得选项. 【详解】由已知得,{}{}2,3,1,2,3,4A B ==.因为A C B ⊆⊆,所以满足条件的集合C 有{}2,3,{}1,2,3,{}2,3,4,{}1,2,3,4,共4个.故选:D. 8.B 【分析】根据,M N 之间的关系进行判断即可. 【详解】因为{}{}1,0,1,2,1,0M N =-=,所以N ⫋M . 故选:B . 9.ABD 【分析】根据给定条件利用集合包含关系按m 值是否为0分类即可得解. 【详解】因N M ⊆,{1,1},{|1}M N x mx =-==, 则当0m =时,N M =∅⊆,符合题意,当0m ≠时,1{}N m =,于是得11m =-或11m =,解得1m =-或1m =,所以m 的值为1或1-或0. 故选:ABD 10.CD 【分析】注意到空集和由空集构成的集合的不同,可以判定AD ;注意到集合元素的无序性,可以判定C ;注意到集合的元素的属性不同,可以否定B. 【详解】对于A 选项,集合{}∅的元素是∅,集合{},a b 的元素是,a b ,故没有包含关系,A 选项错误;对于B 选项,集合(){},a b 的元素是点,集合{},a b 的元素是,a b ,故两个集合不相等,B 选项错误;对于C 选项,由集合的元素的无序性可知两个集合是相等的集合,故C 选项正确; 对于D 选项,空集是任何集合的子集,故D 选项正确. 故选:CD. 11.ABC 【分析】根据子集的定义求解,注意空集是任何集合的子集. 【详解】{}2{|60}{|(2)(3)0}3,2M x x x x x x =+-==-+==-,{|10}N x ax =-=,当0a =时,N =∅,N M ⊆,可取, 当0a ≠时,1x a =,令13a =-,13a =-,可取, 令12a=,12a =,可取,综上13a =-、0a =或12a =,故选:ABC. 12.CD 【分析】采用特值法,可设{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,根据集合之间的基本关系,对选项,,,A B C D 逐项进行检验,即可得到结果. 【详解】令{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,满足()U A B B =,但A B ⋂≠∅,A B B ≠,故A ,B 均不正确;由()U A B B =,知U A B ⊆,∴()()UU A A A B =⊆,∴A B U ⋃=,由U A B ⊆,知UB A ⊆,∴()U B A A =,故C ,D 均正确.13.12或2【分析】根据已知条件可得出a 、b 的值,即可得出结果. 【详解】因为{}{},1,2a b =,则12a b =⎧⎨=⎩或21a b =⎧⎨=⎩,因此,12a b =或2.故答案为:12或2. 14.7 【分析】列举出满足条件的集合M ,即可得到答案. 【详解】 满足{}{},,,a M a b c d ⊆的集合M 有{}{}{}{}{}{}{},,,,,,,,,,,,,,,a a b a c a d a b c a b d a c d ,共7个.故答案为:7 15.71,,02⎧⎫--⎨⎬⎩⎭【分析】先确定集合{2A =,7},然后利用B A ,得到集合B 的元素和A 的关系,分类讨论,即可得出结论. 【详解】2{|9140}{2A x x x =-+==,7},因为BA ,所以若0a =,即B =∅时,满足条件. 若0a ≠,则2B a ⎧⎫=-⎨⎬⎩⎭,若B A ,则22a-=或7-,解得1a =-或72-.则实数a 的取值的集合为71,,02⎧⎫--⎨⎬⎩⎭.故答案为:71,,02⎧⎫--⎨⎬⎩⎭.16.4利用数轴分析,可得实数a的取值范围,从而得到c的值.【详解】{|04}A x x=<≤,{|}B x x a=<,如上图所示,由A⊆B,得4a>.所以4c=.故答案为:4.17.(1)不存在,理由见解析;(2)(5,9),(6,10),(-3,-7),(-2,-6).【分析】(1)根据已知条件列方程组,根据方程组的解的情况作出结论.(2)根据A B⊆列方程组,解方程组求得对应的实数对.【详解】(1)由题意,知当且仅当集合A中的元素为1,2时,对于任意的实数b,都有A⊆B. 因为A={a-4,a+4},所以4142aa-=⎧⎨+=⎩或4241aa-=⎧⎨+=⎩,方程组均无解,所以不存在实数a,使得对于任意的实数b都有A⊆B. (2)结合(1),知若A⊆B,则有414aa b-=⎧⎨+=⎩或424aa b-=⎧⎨+=⎩或441a ba-=⎧⎨+=⎩或442a ba-=⎧⎨+=⎩,解得59ab=⎧⎨=⎩或610ab=⎧⎨=⎩或37ab=-⎧⎨=-⎩或26ab=-⎧⎨=-⎩,所以所求实数对(a,b)为(5,9),(6,10),(-3,-7),(-2,-6).18.(1){0,1,2};(2)2222m-<<m=3.【分析】(1)对a进行分类讨论,根据包含关系求解;(2)根据C⊆A,分类讨论求解.(1)∵A ={x |x 2﹣3x +2=0}={1,2}, ①若a =0,则B =∅,满足题意.②若a ≠0,则B =2a ⎧⎫⎨⎬⎩⎭,由B ⊆A 得:2a =1或2a =2,∴a =1或a =2,∴实数a 构成的集合为{0,1,2}; (2)若A ∩C =C ,则C ⊆A ,若△=m 2﹣8<0,即m -<<若△=m 2﹣8=0,则C ={,或C =}不满足条件, 若△=m 2﹣8>0,则C =A ,则m =3,综上所述m -<m =3, 19.7|2a a ⎧≤-⎨⎩或13a ⎫≥⎬⎭.【分析】先由题意,得到{C 2U P x x =<-或}1x >,根据M ⫋U C P ,分别讨论分M =∅,M 两种情况讨论,即可得出结果. 【详解】由题意得,{|2U C P x x =<-或}1x >,M ⫋U C P ,∴分M =∅和M两种情况讨论.①当M =∅时,有325a a ≥+,即5a ≥. ②当M时,由M ⫋U C P ,可得325252a a a <+⎧⎨+≤-⎩,或32531a a a <+⎧⎨≥⎩,即72a ≤-或153a ≤<,综上可知,实数a 的取值范围是7|2a a ⎧≤-⎨⎩或13a ⎫≥⎬⎭.【点睛】本题主要考查由集合的包含关系求参数,熟记集合基本运算的概念即可,属于常考题型. 20.1或4. 【分析】先求出A ,然后对集合B 分四种情况讨论,利用韦达定理即可求解. 【详解】解:由已知可得{2,1}A =-,因为B A ⊆,则B =∅或{2}-或{}1或{2,1}-,当B =∅时,()224248160a a a a ∆=-=+-<-,无解,当{2}B =-时,则()()222224a a --=-⎧⎨-⨯-=-⎩,解得4a =, 当{}1B =时,则111124a a +=-⎧⎨⨯=-⎩,无解, 当{2,1}B =-时,则212124a a -+=-⎧⎨-⨯=-⎩,解得1a =, 综上,实数a 的值为1或4.21.2或4-【分析】本题可通过{}5U A =得出213235m m m ⎧+=⎨+-=⎩,然后通过计算即可得出结果. 【详解】因为{}5U A =,所以集合A 中有元素3,全集U 中有元素5, 即213235m m m ⎧+=⎨+-=⎩,解得2m =或4m =-,通过检验满足题意, 故m 的值为2或4-.22.(1)[3,4];(2)(﹣∞,3].【分析】(1)先判断出B ≠∅,由A B ⊆,列不等式62215m m -≤-⎧⎨-≥⎩即可解得实数m 的取值范围; (2)对B 是否为∅进行分类讨论,解出实数m 的取值范围.【详解】集合A {}25x x =-≤≤,(1)∵A ⊆B ,A ≠∅,∴B ≠∅∴62215m m -≤-⎧⎨-≥⎩,解得3≤m ≤4,∴实数m的取值范围为[3,4];(2)∵B⊆A,①当B=∅时,m+1>2m﹣1,即m<2,②当B≠∅时,+12112215m mmm≤-⎧⎪+≥-⎨⎪-≤⎩,解得2≤m≤3,综上所述,实数m的取值范围为(﹣∞,3].。

高考数学集合专题卷(附答案)

高考数学集合专题卷(附答案)

高考数学集合专题卷(附答案) 高考数学集合专题卷(附答案)一、单选题(共10题;共20分)1.已知集合A={x|x=2k+1,k∈N},B={x|x=3k,k∈N},则集合的子集个数为()A。

3.B。

4.C。

7.D。

8改写:集合A由所有奇数组成,集合B由所有3的倍数组成,则集合的子集个数为()答案:D2.已知集合A={x|x=2k,k∈N},B={x|x=3k,k∈N},则B中元素个数为()A。

2.B。

3.C。

4.D。

7改写:集合A由所有偶数组成,集合B由所有3的倍数组成,则B中元素个数为()答案:B3.已知集合A={x|x=2k,k∈N},B={x|x=3k,k∈N},C={x|x=5k,k∈N},则A∩B∩C的元素的个数为()改写:集合A由所有偶数组成,集合B由所有3的倍数组成,集合C由所有5的倍数组成,则A、B、C的交集中元素的个数为()答案:04.已知集合A={x|x=2k,k∈N},B={x|x=3k,k∈N},C={x|x=5k,k∈N},求A∪B∪C的元素的个数。

A。

4.B。

5.C。

6.D。

7改写:集合A由所有偶数组成,集合B由所有3的倍数组成,集合C由所有5的倍数组成,则A、B、C的并集中元素的个数为()答案:75.已知集合A={x|x1},C={x|x=2},求A-B-C的元素的个数。

A。

0.B。

1.C。

2.D。

3改写:集合A由所有小于3的数组成,集合B由所有大于1的数组成,集合C只包含2,则A-B-C中元素的个数为()答案:16.已知集合A={x|x2},C={x|x=1或x=3},求A∩B∩C。

A。

∅。

B。

{1}。

C。

{3}。

D。

{1,3}改写:集合A由所有小于1的数组成,集合B由所有大于2的数组成,集合C只包含1和3,则A、B、C的交集为()答案:∅7.已知集合A={x|x4},C={x|x=2或x=4},求A∪B∪C。

A。

(-∞,2)∪(4,+∞)。

B。

(-∞,2)∪(2,4)∪(4,+∞)。

高考数学专题《集合》习题含答案解析

高考数学专题《集合》习题含答案解析

专题1.1 集合1.(2020·海南高考真题)设集合A {2,3,5,7},B ={1,2,3,5,8},则AB =( ) A .{1,3,5,7} B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8}【答案】C【解析】根据集合交集的运算可直接得到结果.【详解】因为A {2,3,5,7},B ={1,2,3,5,8},所以{}2,3,5A B =故选:C2.(2021·河北邯郸市·高三二模)已知集合{}5U x x =∈≤N ,{1,2}A =,则U A ()A .{}0,3,5B .{}0,3,4C .{}3,4,5D .{}0,3,4,5【答案】D【解析】由补集的定义可得.【详解】因为全集{0,1,2,3,4,5}U =,{1,2}A =,所以{0,3,4,5}U A =.故选: D3.(2020·全国高一课时练习)下列集合中,结果是空集的是( )A .{x ∈R |x 2-1=0}B .{x |x >6或x <1}C .{(x ,y )|x 2+y 2=0}D .{x |x >6且x <1}【答案】D【解析】分析是否有元素在各选项的集合中,再作出判断.【详解】 练基础A 选项:21{|10}x R x ±∈∈-=,不是空集;B 选项:7∃∈{x |x >6或x <1},不是空集;C 选项:(0,0)∈{(x ,y )|x 2+y 2=0},不是空集;D 选项:不存在既大于6又小于1的数,即:{x |x >6且x <1}=∅.故选:D4.(2020·北京高考真题)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则AB =( ).A .{1,0,1}-B .{0,1}C .{1,1,2}-D .{1,2} 【答案】D【解析】根据交集定义直接得结果.【详解】 {1,0,1,2}(0,3){1,2}A B =-=,故选:D.5.【多选题】(2020·江苏省通州高级中学高一月考)已知集合{}22133A a aa =+++,,,且1A ∈,则实数a 的可能值为( ) A .0B .1-C .1D .2- 【答案】ABD【解析】由已知条件可得出关于实数a 的等式,结合集合中的元素满足互异性可得出实数a 的值.【详解】已知集合{}22133A a a a =+++,,且1A ∈,则11a +=或2331a a ++=,解得0a =或1a =-或2a =-.若0a =,则{}2,1,3A =,合乎题意;若1a =-,则{}2,0,1A =,合乎题意;若2a =-,则{}2,1,1A =-,合乎题意.综上所述,0a =或1a =-或2a =-.故选:ABD.6.(2021·云南昆明市·昆明一中高三其他模拟(文))已知集合{}1,0,1,2,3,4,5,6U =-,{}1,2,3,6A =,{}1,0,1,4,6B =-,则()U A B =( )A .{}1,0,4,5-B .{}1,0,4-C .{}0,4D .{}4【答案】B【解析】首先求出U A ,然后可得答案.【详解】因为{}1,0,4,5U A =-,所以(){}1,0,4U A B =-,故选:B7.(2018·天津高考真题(理))设全集为R ,集合,,则() A . B . C . D .【答案】B【解析】分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B 选项.8.(2017·全国高考真题(理))已知集合A ={x |x <1},B ={x |},则( )A .B .C .D .【答案】A【解析】∵集合∴ {}02A x x =<<{}1B x x =≥()A B =R {}01x x <≤{}01x x <<{}12x x ≤<{}02x x <<R C B {}|1R C B x x =<(){}01R A C B x ⋂=<<31x <{|0}A B x x =<A B R ={|1}A B x x =>A B =∅{|31}x B x =<{}|0B x x =<∵集合∴,故选A9.(2010·湖南省高考真题)已知集合,,则下列式子正确的是( ) A .B .C .D . 【答案】C【解析】因为集合,所以选C.10.(2019·安徽省高三二模(理))已知集合{}|21,A x x x Z =-<≤∈,则集合A 中元素的个数为( )A .0B .1C .2D .3【答案】D【解析】 {}{}|21,1,0,1A x x x Z =-<≤∈=-,所以集合A 中元素的个数为3.故选:D.1.(2020·陕西省高三三模(文))设集合{}|31A x x m =-<,若1A ∈且2A ∉,则实数m 的取值范围是( )A .25m <<B .25m ≤<C .25<≤mD .25m ≤≤【答案】C【解析】因为集合{|31}A x x m =-<,而1A ∈且2A ∉, 311m ∴⨯-<且321m ⨯-≥,解得25<≤m .故选:C .2.(2019·凤阳县第二中学高三期中(文))下列五个写法:①{0}{1,2,3}∈;②{0}∅⊆;③{0,1,2}{1,2,0}⊆;{|1}A x x =<{}|0A B x x ⋂=<{}|1A B x x ⋃=<{1,2,3}M ={2,3,4}N=M N ⊆N M ⊆{,}M N 23={1,4}M N ={1,2,3}M ={2,3,4}N ={}2,3,N M ⋂=∴练提升④0∈∅;⑤0∅=∅,其中错误写法的个数为( ) A .1B .2C .3D .4【答案】C【解析】 对①:{0}是集合,{1,2,3}也是集合,所以不能用∈这个符号,故①错误.对②:∅是空集,{0}也是集合,由于空集是任何集合的子集,故②正确.对③:{0,1,2}是集合,{1,2,0}也是集合,由于一个集合的本身也是该集合的子集,故③正确.对④:0是元素,∅是不含任何元素的空集,所以0∉∅,故④错误.对⑤:0是元素,∅是不含任何元素的空集,所以两者不能进行取交集运算,故⑤错误.故选:C.3.(2021·浙江高一期末)已知集合{}0,1,2,3,4M =,{}2,4,6N =,P M N =⋂,则满足条件的P 的非空子集有( )A .3个B .4个C .7个D .8个【答案】A【解析】由交集定义可得集合P ,由P 的元素个数计算得到结果.【详解】 {}2,4P MN ==,P ∴的非空子集有2213-=个.故选:A. 4.(2021·辽宁高三二模(理))定义集合运算:{},,A B z z xy x A y B *==∈∈,设{1,2}A =,{1,2,3}B =,则集合A B *的所有元素之和为( )A .16B .18C .14D .8 【答案】A【解析】由题设,列举法写出集合A B *,根据所得集合,加总所有元素即可.【详解】由题设知:{1,2,3,4,6}A B *=,∴所有元素之和1234616++++=.故选:A.5.(2020·浙江省高三其他)设全集[]0,3U =,[]0,2P =,[]1,3Q =,则()U C P Q ⋂=( )A .(]2,3B .()1,2C .[)0,1D .[)(]0.12,3 【答案】A【解析】∵[][]0,3,0,2U P ==,∴(]2,3U C P =,又[]1,3Q =,∴()(]2,3U C P Q =, 故选:A .6.(2020·江西省高三其他(理))已知集合{}2,,0A a a =,{}1,2B =,若{}1A B ⋂=,则实数a 的值为( )A .1-B .0C .1D .±1 【答案】A【解析】因为{}1A B ⋂=,所以1A ∈,又2a a ≠,所以0a ≠且1a ≠,所以21a =,所以1a =-(1a =已舍),此时满足{}1A B ⋂=.故选:A7.(2020·黑龙江省佳木斯一中高一期中(理))已知集合2{|430}A x x x =-+<,{|24}B x x =<<,则A B =( )A .(1,3)B .(1,4)C .(2,3)D .(2,4) 【答案】C【解析】由()()2430130x x x x -+<⇒--<所以13x <<,所以()1,3A =又(){|24}2,4B x x =<<=,所以(2,3)A B ⋂=故选:C8.(2019·北京临川学校高二期末(文))已知集合A ={−1,3},B ={2,a 2},若A ∪B ={−1,3,2,9},则实数a 的值为( )A .±1B .±3C .−1D .3 【答案】B【解析】∵集合A ={−1,3},B ={2,a 2},且A ∪B ={−1,3,2,9},∴a 2=9,因此,a =±3,故选:B.9.(2021·全国高三月考(理))已知集合(){},1A x y y ==,(){}22,2B x y x y =+≤,则集合A B 中含有的元素有( )A .零个B .一个C .两个D .无数个 【答案】D【解析】确定集合A 、B 的几何意义,数形结合可得结果.【详解】集合A 表示直线1y =上的点,集合B 为半径的圆及其内部的点, 如图所示.A B 表示两图形的交点的集合,该集合有无数个元素.故选:D.10.(2020·全国高三一模(理))已知集合{}2220A x x ax a =++≤,若A 中只有一个元素,则实数a 的值为( )A .0B .0或2-C .0或2D .2【答案】C【解析】若A 中只有一个元素,则只有一个实数满足2220x ax a ++≤,即抛物线222y x ax a =++与x 轴只有一个交点,∴2480a a =-=△,∴0a =或2.故选:C1.(2020·全国高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.2.(2020·海南高考真题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C【解析】根据集合并集概念求解. 练真题【详解】[1,3](2,4)[1,4)A B ==故选:C3.(2020·天津高考真题)设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B =( )A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}--- 【答案】C【解析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果.【详解】由题意结合补集的定义可知:{}U 2,1,1B =--,则(){}U 1,1A B =-.故选:C.4.(2020·全国高考真题(文))已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2B .3C .4D .5 【答案】B【解析】采用列举法列举出A B 中元素的即可.【详解】 由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B 5.(2017·全国高考真题(理))已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为( )A .3B .2C .1D .0 【答案】B【解析】 集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22⎛⎫ ⎪ ⎪⎝⎭,,22⎛-- ⎝⎭,则A B 中有2个元素.故选B.。

集 合:高考数学复习

集 合:高考数学复习

a<0, 则需要-1a≥3,
解得-13≤a<0,
综上,实数 a 的取值范围是-13,1.
思维升华
(1)空集是任何集合的子集,在涉及集合关系问题时,必须考虑空 集的情况,否则易造成漏解. (2)已知两个集合间的关系求参数时,关键是将条件转化为元素或 区间端点间的关系,进而转化为参数所满足的关系,常用数轴、 Venn图等来直观解决这类问题.
C.5
D.6
因为集合A={1,2,3},B={4,5},C={x+y|x∈A,y∈B},所以C= {5,6,7,8}.即C中元素的个数为4.
(2)若含有3个实数的集合既可表示成 a,ba,1,又可表示成{a2,a+b,0}, 则a2 024+b2 024=____1____.
因为a,ba,1={a2,a+b,0}, 显然 a≠0,所以ba=0,即 b=0; 此时两集合分别是{a,1,0},{a,a2,0}, 则a2=1,解得a=1或a=-1. 当a=1时,不满足互异性,故舍去; 当a=-1时,满足题意. 所以a2 024+b2 024=(-1)2 024+02 024=1.
整数集
有理 数集
实数集
符号
_N__
N*(或N+)
_Z__
_Q__
Hale Waihona Puke _R__知识梳理2.集合的基本关系 (1)子集:一般地,对于两个集合A,B,如果集合A中 任意一个元素 都 是集合B中的元素,就称集合A为集合B的子集,记作 A⊆B (或B⊇A). (2)真子集:如果集合A⊆B,但存在元素x∈B,且 x∉A ,就称集合A是集 合B的真子集,记作 A B (或B A). (3)相等:若A⊆B,且 B⊆A ,则A=B. (4)空集:不含任何元素的集合叫做空集,记为∅.空集是 任何集合 的子 集,是 任何非空集合 的真子集.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学专题:集合最新考纲 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.知识梳理1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A.(2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A B或B A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B 若全集为U,则集合A的补集为∁U A图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}4.(1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B.(4)∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)任何集合都有两个子集.( )(2)已知集合A ={x |y =x 2},B ={y |y =x 2},C ={(x ,y )|y =x 2},则A =B =C .( ) (3)若{x 2,1}={0,1},则x =0,1.( ) (4)若A ∩B =A ∩C ,则B =C .( )解析 (1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.集合A 是函数y =x 2的定义域,即A =(-∞,+∞);集合B 是函数y =x 2的值域,即B =[0,+∞);集合C 是抛物线y =x 2上的点集.因此A ,B ,C 不相等. (3)错误.当x =1,不满足互异性. (4)错误.当A =∅时,B ,C 可为任意集合. 答案 (1)× (2)× (3)× (4)×2.(必修1P7练习2改编)若集合A ={x ∈N |x ≤10},a =22,则下列结论正确的是( ) A.{a }⊆AB.a ⊆AC.{a }∈AD.a ∉A解析 由题意知A ={0,1,2,3},由a =22,知a ∉ A . 答案 D3.(·全国Ⅰ卷)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =________. A.⎝ ⎛⎭⎪⎫-3,-32 B.⎝ ⎛⎭⎪⎫-3,32 C.⎝ ⎛⎭⎪⎫1,32D.⎝ ⎛⎭⎪⎫32,3 解析 易知A =(1,3),B =⎝ ⎛⎭⎪⎫32,+∞,所以A ∩B =⎝ ⎛⎭⎪⎫32,3.答案 D4.(·石家庄模拟)设全集U ={x |x ∈N *,x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( ) A.{1,4} B.{1,5} C.{2,5}D.{2,4}解析 由题意得A ∪B ={1,3}∪{3,5}={1,3,5}.又U ={1,2,3,4,5},∴∁U (A ∪B )={2,4}. 答案 D5.已知集合A ={(x ,y )|x ,y ∈R ,且x 2+y 2=1},B ={(x ,y )|x ,y ∈R ,且y =x },则A ∩B 的元素个数为________.解析 集合A 表示圆心在原点的单位圆,集合B 表示直线y =x ,易知直线y =x 和圆x 2+y 2=1相交,且有2个交点,故A ∩B 中有2个元素. 答案 2考点一 集合的基本概念【例1】 (1)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( ) A.1B.3C.5D.9(2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A.92B.98C.0D.0或98解析 (1)当x =0,y =0,1,2时,x -y =0,-1,-2; 当x =1,y =0,1,2时,x -y =1,0,-1; 当x =2,y =0,1,2时,x -y =2,1,0.根据集合中元素的互异性可知,B 的元素为-2,-1,0,1,2,共5个.(2)若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根. 当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0,得a =98, 所以a 的取值为0或98. 答案 (1)C (2)D规律方法 (1)第(1)题易忽视集合中元素的互异性误选D.第(2)题集合A 中只有一个元素,要分a =0与a ≠0两种情况进行讨论,此题易忽视a =0的情形.(2)用描述法表示集合,先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.【训练1】 (1)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba ,b ,则b -a =________.(2)已知集合A ={x ∈R |ax 2+3x -2=0},若A =∅,则实数a 的取值范围为________.解析(1)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0, 所以a +b =0,且b =1,所以a =-1,b =1,所以b -a =2. (2)由A =∅知方程ax 2+3x -2=0无实根, 当a =0时,x =23不合题意,舍去; 当a ≠0时,Δ=9+8a <0,∴a <-98. 答案 (1)2 (2)⎝ ⎛⎭⎪⎫-∞,-98考点二 集合间的基本关系【例2】 (1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A.A B B.B A C.A ⊆B D.B =A(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.解析 (1)易知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}. 因此B A .(2)当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎨⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为(-∞,4]. 答案 (1)B (2)(-∞,4]规律方法 (1)若B ⊆A ,应分B =∅和B ≠∅两种情况讨论.(2)已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常要合理利用数轴、Venn 图,化抽象为直观进行求解.【训练2】 (1)(·长郡中学质检)若集合A ={x |x >0},且B ⊆A ,则集合B 可能是( )A.{1,2}B.{x|x≤1}C.{-1,0,1}D.R(2)(·郑州调研)已知集合A={x|x=x2-2,x∈R},B={1,m},若A⊆B,则m的值为()A.2B.-1C.-1或2D.2或2解析(1)因为A={x|x>0},且B⊆A,再根据选项A,B,C,D可知选项A正确.(2)由x=x2-2,得x=2,则A={2}.因为B={1,m}且A⊆B,所以m=2.答案(1)A(2)A考点三集合的基本运算【例3】(1)(·全国Ⅰ卷)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2(2)(·浙江卷)设集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2)∪[1,+∞)解析(1)集合A中元素满足x=3n+2,n∈N,即被3除余2,而集合B中满足这一要求的元素只有8和14.共2个元素.(2)易知Q={x|x≥2或x≤-2}.∴∁R Q={x|-2<x<2},又P={x|1≤x≤3},故P∪(∁R Q)={x|-2<x≤3}.答案(1)D(2)B规律方法(1)在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.(2)一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.【训练3】(1)(·石家庄模拟)设集合M={-1,1},N={x|x2-x<6},则下列结论正确的是() A.N⊆M B.N∩M=∅C.M⊆ND.M∩N=R(2)(·山东卷)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=()A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}解析(1)易知N=(-2,3),且M={-1,1},∴M⊆N.(2)∵A={1,3,5},B={3,4,5},∴A∪B={1,3,4,5},又全集U={1,2,3,4,5,6},因此∁U(A∪B)={2,6}.答案(1)C(2)A[思想方法]1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的又一体现.[易错防范]1.集合问题解题中要认清集合中元素的属性(是数集、点集还是其他类型集合),要对集合进行化简.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.基础巩固题组(建议用时:25分钟)一、选择题1.(·全国Ⅱ卷)已知集合A={1,2,3},B={2,3},则()A.A=BB.A∩B=∅C.A BD.B A解析∵A={1,2,3},B={2,3},∴2,3∈A且2,3∈B,1∈A但1∉B,∴B A.答案 D2.(·全国Ⅱ卷)已知集合A={1,2,3},B={x|(x+1)·(x-2)<0,x∈Z},则A∪B=()A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}解析由(x+1)(x-2)<0,得-1<x<2,又x∈Z,所以B={0,1},因此A∪B={0,1,2,3}. 答案 C3.(·肇庆模拟)已知集合A={x|lg x>0},B={x|x≤1},则()A.A∩B≠∅B.A∪B=RC.B⊆AD.A⊆B解析由B={x|x≤1},且A={x|lg x>0}=(1,+∞),∴A∪B=R.答案 B4.已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是()A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1]∪[1,+∞)解析因为P∪M=P,所以M⊆P,即a∈P,得a2≤1,解得-1≤a≤1,所以a的取值范围是[-1,1].答案 C5.(·山东卷)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=()A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)解析由y=2x,x∈R,知y>0,则A=(0,+∞).又B={x|x2-1<0}=(-1,1).因此A∪B=(-1,+∞).答案 C6.(·浙江卷)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q =()A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}解析∵U={1,2,3,4,5,6},P={1,3,5},∴∁U P={2,4,6},∵Q={1,2,4},∴(∁U P )∪Q ={1,2,4,6}. 答案 C7.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( ) A.1 B.3 C.7D.31解析 具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.答案 B8.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A.{x |x ≥0} B.{x |x ≤1} C.{x |0≤x ≤1}D.{x |0<x <1}解析 ∵A ={x |x ≤0},B ={x |x ≥1},∴A ∪B ={x |x ≤0或x ≥1},在数轴上表示如图. ∴∁U (A ∪B )={x |0<x <1}. 答案 D 二、填空题9.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是________. 解析 ∵1∉{x |x 2-2x +a >0}, ∴1∈{x |x 2-2x +a ≤0}, 即1-2+a ≤0,∴a ≤1. 答案 (-∞,1]10.(·天津卷)已知集合A ={1,2,3},B ={y |y =2x -1,x ∈A },则A ∩B =________. 解析 由A ={1,2,3},B ={y |y =2x -1,x ∈A },∴B ={1,3,5},因此A ∩B ={1,3}. 答案 {1,3}11.集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x ∉B },则A -B =________. 解析 由x (x +1)>0,得x <-1或x >0, ∴B =(-∞,-1)∪(0,+∞),∴A -B =[-1,0). 答案 [-1,0)12.(·石家庄质检)已知集合A ={x |x 2-2 016x -2 017≤0},B ={x |x <m +1},若A ⊆B ,则实数m 的取值范围是________.解析 由x 2-2 016x -2 017≤0,得A =[-1,2 017], 又B ={x |x <m +1},且A ⊆B , 所以m +1>2 017,则m >2 016. 答案 (2 016,+∞)能力提升题组 (建议用时:10分钟)13.(·全国Ⅲ卷改编)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则(∁R S )∩T =( ) A.[2,3] B.(-∞,-2)∪[3,+∞) C.(2,3)D.(0,+∞)解析 易知S =(-∞,2]∪[3,+∞),∴∁R S =(2,3), 因此(∁R S )∩T =(2,3). 答案 C14.(·黄山模拟)集合U =R ,A ={x |x 2-x -2<0},B ={x |y =ln(1-x )},则图中阴影部分所表示的集合是( ) A.{x |x ≥1} B.{x |1≤x <2} C.{x |0<x ≤1}D.{x |x ≤1}解析 易知A =(-1,2),B =(-∞,1),∴∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}. 答案 B15.(·南昌十所省重点中学模拟)设集合A =⎩⎨⎧⎭⎬⎫x ∈N |14≤2x ≤16,B ={x |y =ln(x 2-3x )},则A ∩B中元素的个数是________. 解析 由14≤2x ≤16,x ∈N ,∴x =0,1,2,3,4,即A ={0,1,2,3,4}. 又x 2-3x >0,知B ={x |x >3或x <0}, ∴A ∩B ={4},即A ∩B 中只有一个元素.答案 116.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m +n=________.解析A={x∈R||x+2|<3}={x∈R|-5<x<1},由A∩B=(-1,n)可知m<1,则B={x|m<x<2},画出数轴,可得m=-1,n=1.所以m+n=0.答案0。

相关文档
最新文档