江苏高考数学专题复习集合及其应用
2023年新高考数学大一轮复习专题01 集合(原卷版)

专题01 集合【考点预测】 1、元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系:属于 或 不属于,数学符号分别记为:∈和∉. (3)集合的表示方法:列举法、描述法、韦恩图(venn 图). (4)常见数集和数学符号①确定性:给定的集合,它的元素必须是确定的;也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.给定集合{1,2,3,4,5}A =,可知1A ∈,在该集合中,6A ∉,不在该集合中; ②互异性:一个给定集合中的元素是互不相同的;也就是说,集合中的元素是不重复出现的. 集合{,,}A a b c =应满足a b c ≠≠.③无序性:组成集合的元素间没有顺序之分。
集合{1,2,3,4,5}A =和{1,3,5,2,4}B =是同一个集合. ④列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.⑤描述法用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征. 2、集合间的基本关系(1)子集(subset ):一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集 ,记作A B ⊆(或B A ⊇),读作“A 包含于B ”(或“B 包含A ”).(2)真子集(proper subset ):如果集合A B ⊆,但存在元素x B ∈,且x A ∉,我们称集合A 是集合B 的真子集,记作AB (或B A ⊃≠).读作“A 真包含于B ”或“B 真包含A ”.(3)相等:如果集合A 是集合B 的子集(A B ⊆,且集合B 是集合A 的子集(B A ⊆),此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作A B =.(4)空集的性质: 我们把不含任何元素的集合叫做空集,记作∅;∅是任何集合的子集,是任何非空集合的真子集. 3、集合的基本运算(1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A B ,即{|,}AB x x A x B =∈∈且.(2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A B ,即{|,}AB x x A x B =∈∈或.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且. 4、集合的运算性质 (1)A A A =,A ∅=∅,A B B A =. (2)A A A =,A A ∅=,A B BA =.(3)()U AC A =∅,()U A C A U =,()U U C C A A =.【方法技巧与总结】(1)若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有21n -个,非空子集有21n -个,非空真子集有22n -个.(2)空集是任何集合A 的子集,是任何非空集合B 的真子集. (3)U U A B A B A A B B C B C A ⊆⇔=⇔=⇔⊆.(4)()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.【题型归纳目录】题型一:集合的表示:列举法、描述法 题型二:集合元素的三大特征 题型三:集合与集合之间的关系 题型四:集合的交、并、补运算 题型五:集合与排列组合的密切结合 题型六:集合的创新定义【题型一】集合的表示:列举法、描述法 【典例例题】例1.(2022·安徽·芜湖一中三模(理))已知集合{}24A x x =≤,集合{}*1B x x N x A =∈-∈且,则B =( )A .{}0,1B .{}0,1,2C .{}1,2,3D .{}1,2,3,4【方法技巧与总结】1.列举法,注意元素互异性和无序性,列举法的特点是直观、一目了然.2.描述法,注意代表元素.例2.(2022·山东聊城·二模)已知集合{}0,1,2A =,{},B ab a A b A =∈∈,则集合B 中元素个数为( ) A .2B .3C .4D .5例3.(2022·安徽·寿县第一中学高三阶段练习(理))设集合{}2|60A x x x x =--<∈Z ,,(){}2|ln 1B y y x x A ==+∈,,则集合B 中元素个数为( )A .2B .3C .4D .无数个例4.(2022·湖南·岳阳一中一模)定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==-∈∈,若{}1,0A =-,{}1,2B =,则A B ⊗中的元素个数为( ) A .1B .2C .3D .4例5.(2022·山东济南·二模)已知集合{}1,2A =,{}2,4B =,{},,y C z z x x A y B ==∈∈ ,则C 中元素的个数为( ) A .1B .2C .3D .4例6.(2022·全国·高三专题练习)用()C A 表示非空集合A 中元素的个数,定义()(),()()()(),()()C A C B C A C B A B C B C A C A C B -≥⎧*=⎨-<⎩,已知集合{}2|0A x x x =+=,()(){}22|10B x x ax x ax =+++=,且1A B *=,设实数a 的所有可能取值构成集合S ,则()C S =( ) A .0 B .1C .2D .3【题型二】 集合元素的三大特征 【典例例题】例7.(2022·重庆南开中学模拟预测)已知集合{}1,0,1A =-,{},B a b a A b A =+∈∈,则集合B =( ) A .{}1,1- B .{}1,0,1-C .{}2,1,1,2--D .{}2,1,0,1,2--【方法技巧与总结】1.研究集合问题,看元素是否满足集合的特征:确定性、互异性、无序性。
(江苏专用)高考数学总复习 专题1.1 集合试题(含解析)-人教版高三全册数学试题

专题1.1 集合【三年高考】1.【2017高考某某1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ . 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】集合的运算、元素的互异性【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误. (3)防X 空集.在解决有关,AB A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.2.【2016高考某某1】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B . 【答案】{}1,2- 【解析】 试题分析:{}{}{}1,2,3,6231,2AB x x =--<<=-.故答案应填:{}1,2-【考点】集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难度不大.一要注意培养良好的答题习惯,避免出现粗心而出错,二是明确某某高考对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解.2.【2015高考某某1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 【答案】5【解析】{123}{245}{12345}A B ==,,,,,,,,,,,则集合B A 中元素的个数为5个. 【考点定位】集合运算3.【2014某某1】已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B ⋂=. 【答案】{1,3}- 【解析】由题意得{1,3}AB =-.4.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=。
2020高考数学(文,江苏教育版)一轮复习课件第1讲 集合及其运算 .ppt

返回目录
第1讲 集合及其运算
双
向
固 基
2.已知集合 A={2a,3},B={2,3}.若 A∪B={1,2,
础 3},则实数 a 的值为________.
[答案] 0 [解析] 由题意知 2a=1,解得 a=0.
返回目录
第1讲 集合及其运算
双 向
2.集合问题中的两个难点
固
(1)1∈{x|x2+ax+1=0}和{x|x2+ax+1=0}={1}的含
基 础
义相同.(
)
(2)一般地,由所有属于集合 A 或属于集合 B 的元素
所组成的集合,称为集合 A 与 B 的并集.这里的“或”与
生活中的“或”意思相同.( ) [答案] (1)× (2) ×
第1讲 集合及其运算
双
向
固
基
(5)集合的代表元素
础
集 合
{x|f(x)=0}
{x|f(x)>0}
{x|y=f(x)} {y|y=f(x)} {(x,y)|y=f(x)}
集 方程f(x)=
函数y=
合 含
0的___解__集___
不等式 f(x) >0 的解集
f_(_x)_的__定___ 义域
义
函数y=f(x)
(3)对于含有 n 个元素的有限集合 M,其子集、真子集、
非空子集、非空真子集的个数依次为 2n,2n-1,2n-1,2n
-2.
返回目录
第1讲 集合及其运算
双
向
—— 链接教材 ——
固
基 础
1.设 A={(x,y)|y=-4x+6},B={(x,y)|y=5x-3},
2024届新高考数学复习:专项(集合及其运算)好题练习(附答案)

2024届新高考数学复习:专项(集合及其运算)好题练习[基础巩固]一、选择题1.[2023ꞏ新课标Ⅰ卷]已知集合M ={-2,-1,0,1,2},N ={x |x 2-x -6≥0},则M ∩N =( )A .{-2,-1,0,1}B .{0,1,2}C .{-2}D .22.[2023ꞏ新课标Ⅱ卷]设集合A ={0,-a },B ={1,a -2,2a -2},若A ⊆B ,则a =( )A .2B .1C .23D .-13.[2023ꞏ全国甲卷(文)]设全集U ={1,2,3,4,5},集合M ={1,4},N ={2,5},则N ∪∁U M =( )A .{2,3,5}B .{1,3,4}C .{1,2,4,5}D .{2,3,4,5}4.[2023ꞏ全国统一考试模拟演练]已知M ,N 均为R 的子集,且(∁R M )⊆N ,则M ∪(∁R N )=( )A .∅B .MC .ND .R5.[2022ꞏ新高考Ⅰ卷,1]若集合M ={x |x <4},N ={x |3x ≥1},则M ∩N =( )A .{x |0≤x <2}B .⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x <2 C .{x |3≤x <16} D .⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x <166.[2022ꞏ全国甲卷(理),3]设全集U ={-2,-1,0,1,2,3},集合A ={-1,2},B ={x |x 2-4x +3=0},则∁U (A ∪B )=( )A .{1,3}B .{0,3}C .{-2,1}D .{-2,0}7.设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=()A.{x|0<x≤1} B.{x|0<x<1}C.{x|1≤x<2} D.{x|0<x<2}8.[2023ꞏ全国乙卷(文)]设全集U={0,1,2,4,6,8},集合M={0,4,6},N={0,1,6},则M∪∁U N=()A.{0,2,4,6,8} B.{0,1,4,6,8}C.{1,2,4,6,8} D.U9.[2023ꞏ全国甲卷(理)]设全集U=Z,集合M={x|x=3k+1,k∈Z},N={x|x=3k+2,k∈Z},则∁U(M∪N)=()A.{x|x=3k,k∈Z}B.{x|x=3k-1,k∈Z}C.{x|x=3k-2,k∈Z}D.∅二、填空题10.已知U={1,2,a2-2a-3},A={|a-2|,2},∁U A={0},则a的值为________.11.[2023ꞏ衡水一中测试]已知集合M={x|1-a<x<2a},N=(1,4),且M∩N=M,则实数a的取值范围是________.12.集合A={x|2≤x≤6-m},B={x|m-1≤x≤2m+1},若A∩B≠∅,则实数m的取值范围为________.[强化练习]13.[2023ꞏ全国乙卷(理)]设集合U=R,集合M={x|x<1},N={x|-1<x<2},则{x|x≥2}=()A.∁U(M∪N) B.N∪∁U MC.∁U(M∩N) D.M∪∁U N14.(多选)[2023ꞏ武汉部分重点中学联考]已知集合A={1,3,m2},B={1,m},若A∪B =A,则实数m的值可能为()A.0 B.1C.2 D.315.若集合A={x|ax2+ax+1=0,x∈R}不含任何元素,则实数a的取值范围是________.16.已知集合A={x|(x+1)(x-6)≤0},B={x|m-1≤x≤2m+1},若B⊆A,则实数m 的取值范围是________________________________________________.参考答案1.C 方法一 因为N ={x |x 2-x -6≥0}={x |x ≥3或x ≤-2},所以M ∩N ={-2},故选C.方法二 由于1∈/N ,所以1∈/M ∩N ,排除A ,B ;由于2∈/N ,所以2∈/M ∩N ,排除D.故选C.2.B 依题意,有a -2=0或2a -2=0.当a -2=0时,解得a =2,此时A ={0,-2},B ={1,0,2},不满足A ⊆B ;当2a -2=0时,解得a =1,此时A ={0,-1},B ={-1,0,1},满足A ⊆B .所以a =1,故选B.3.A 由题意知,∁U M ={2,3,5},又N ={2,5},所以N ∪∁U M ={2,3,5},故选A.4.B 方法一 由(∁R M )⊆N ,得(∁R N )⊆M ,所以M ∪(∁R N )=M ,故选B.方法二 根据题意作出集合M ,N ,如图所示,集合M 为图中阴影部分,集合N 为图中除内部小圆之外的部分,显然满足(∁R M )⊆N ,由图易得(∁R N )⊆M ,所以M ∪(∁R N )=M ,故选B.5.D 由x <4,得0≤x <16,即M ={x |0≤x <16}.易得N =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥13 ,所以M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x <16 .故选D. 6.D 因为方程x 2-4x +3=0的解为x =1或x =3,所以B ={1,3}.又A ={-1,2},所以A ∪B ={-1,1,2,3}.因为U ={-2,-1,0,1,2,3},所以∁U (A ∪B )={-2,0}.故选D.7.B ∵∁R B ={x |x <1},∴A ∩∁R B ={x |0<x <2}∩{x |x <1}={x |0<x <1}.8.A 由题意知,∁U N ={2,4,8},所以M ∪∁U N ={0,2,4,6,8}.故选A.9.A 方法一 M ={…,-2,1,4,7,10,…},N ={…,-1,2,5,8,11,…},所以M ∪N ={…,-2,-1,1,2,4,5,7,8,10,11,…},所以∁U (M ∪N )={…,-3,0,3,6,9,…},其元素都是3的倍数,即∁U (M ∪N )={x |x =3k ,k ∈Z },故选A.方法二 集合M ∪N 表示被3除余1或2的整数集,则它在整数集中的补集是恰好被3整除的整数集,故选A.10.3答案解析:由U ={1,2,a 2-2a -3},∁U A ={0}可得a 2-2a -3=0.又A ={|a -2|,2},故|a -2|=1,所以⎩⎪⎨⎪⎧a 2-2a -3=0,|a -2|=1 得⎩⎪⎨⎪⎧(a -3)(a +1)=0,a -2=±1, 解得a =3. 11.⎝⎛⎦⎤-∞,13 答案解析:因为M ∩N =M ,所以M ⊆N .当M =∅时,1-a ≥2a ,解得a ≤13 ;当M ≠∅时,a >13 且⎩⎪⎨⎪⎧2a ≤4,1-a ≥1, 无解.综上,实数a 的取值范围为⎝⎛⎦⎤-∞,13 . 12.⎣⎡⎦⎤12,72答案解析:因为A ∩B ≠∅,所以A ,B 为非空集合,所以⎩⎪⎨⎪⎧2≤6-m m -1≤2m +1 ,解得-2≤m ≤4.同时,要使A ∩B ≠∅,则需⎩⎪⎨⎪⎧m -1≤22m +1≥2 或⎩⎪⎨⎪⎧m -1≤6-m 6-m ≤2m +1,解得12 ≤m ≤3或53 ≤m ≤72 ,即12 ≤m ≤72 .综上,12 ≤m ≤72 .13.A M ∪N ={x |x <2},所以∁U (M ∪N )={x |x ≥2},故选A.14.AD 因为A ∪B =A ,所以B ⊆A .因为A ={1,3,m 2},B ={1,m },所以m 2=m 或m =3,解得m =0或m =1或m =3.当m =0时,A ={1,3,0},B ={1,0},符合题意;当m =1时,集合A 中元素不满足互异性,不符合题意;当m =3时,A ={1,3,9},B ={1,3},符合题意.综上,m =0或3.故选AD.15.[0,4)答案解析:当a =0时,原方程无解.当a ≠0时,方程ax 2+ax +1=0无解,则需Δ=a 2-4a <0,解得0<a <4.综上,0≤a <4.16.(-∞,-2)∪⎣⎡⎦⎤0,52 答案解析:显然A ={x |-1≤x ≤6},当B =∅时,m -1>2m +1,即m <-2符合题意;当B ≠∅时,⎩⎪⎨⎪⎧m -1≤2m +1,m -1≥-1,2m +1≤6,得0≤m ≤52 . 综上得m <-2或0≤m ≤52 .。
十年高考分类江苏高考数学试卷精校版含详解1集合部分

十年高考分类江苏高考数学试卷精校版含详解1集合部分一、选择题(共3小题;共15分)1. 设集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=( )A. {1,2,3}B. {1,2,4}C. {2,3,4}D. {1,2,3,4}2. 已知全集U=Z,A={−1,0,1,2},B={x∣ x2=x},则A∩∁U B为( )A. {−1,2}B. {−1,0}C. {0,1}D. {1,2}3. 若A,B,C为三个集合,A∪B=B∩C,则一定有( )A. A⊆CB. C⊆AC. A≠CD. A=∅二、填空题(共10小题;共50分)4. 已知集合A={−1,2,3,6},B={x∣ −2<x<3},则A∩B=.5. 已知集合A={−2,−1,3,4},B={−1,2,3},则A∩B=.6. 集合{−1,0,1}共有个子集.7. 已知集合A={−1,1,2,4},B={−1,0,2},则A∩B=.8. 已知集合A={1,2,4},B={2,4,6},则A∪B=.9. 设集合A={x∣(x−1)2<3x+7,x∈R},则集合A∩Z中有个元素.10. 设集合A={−1,1,3},B={a+2,a2+4},A∩B={3},则实数a = .11. 已知集合A={x∣log2x≤2},B=(−∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=.12. 已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.13. 设集合A={(x,y)∣ m2≤(x−2)2+y2≤m2,x,y∈R},B={(x,y)∣ 2m≤x+y≤2m+1,x,y∈R},若A∩B≠∅,则实数m的取值范围是.三、解答题(共2小题;共26分)14. 设集合P n={1,2,⋯,n},n∈N∗.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A,则2x∉A;③若x∈∁Pn A,则2x∉∁PnA.(1)求f(4);(2)求f(n)的解析式(用n表示).15. 记U={1,2,⋯,100}.对数列{a n}(n∈N∗)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,⋯,t k},定义S T=a t1+a t2+⋯+a tk.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N∗)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,⋯,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.答案第一部分1. D 【解析】因为A∩B={1,2},所以(A∩B)∪C={1,2,3,4}.2. A3. A第二部分4. {−1,2}【解析】由交集的定义可得A∩B={−1,2}.5. {−1,3}6. 87. {−1,2}8. {1,2,4,6}9. 6【解析】集合A={x∣x2−5x−6<0}={x∣−1<x<6},所以A∩Z的元素的个数为6.10. 111. 412. 113. [12,2+√2]【解析】因为A∩B≠∅,所以A≠∅,则m2≥m 2 ,即m≥12或m≤0;显然B≠∅.因为圆(x−2)2+y2=m2(m≠0)与直线x+y=2m或x+y=2m+1有交点时,需√2≤∣m∣√2≤∣m∣,所以2−√22≤m≤2+√2,①当m<0时,圆(x−2)2+y2=m2与x+y=2m和x+y=2m+1均没有交点,且圆(x−2)2+y2=m2在直线x+y=2m和x+y=2m+1的同侧,此时A∩B=∅;②当m=0时,点(2,0)不在0≤x+y≤1内,此时A∩B=∅.③当12≤m≤2+√2时,圆(x−2)2+y2=m2与直线x+y=2m或x+y=2m+1有交点,此时A∩B≠∅;④当m>2+√2时,圆(x−2)2+y2=m2与x+y=2m和x+y=2m+1均没有交点,且圆(x−2)2+y2=m2在直线x+y=2m和x+y=2m+1的同侧,此时A∩B=∅.综上所述,满足条件的m的取值范围为[12,2+√2].第三部分14. (1) 当 n =4 时,P 4={1,2,3,4},符合条件的集合 A 为 {2},{1,4},{2,3},{1,3,4},故 f (4)=4.(2) 任取偶数 x ∈P n ,将 x 除以 2,若商仍为偶数,再除以 2⋯,经过 k 次以后,商必为奇数,此时记商为 m ,于是 x =m ⋅2k ,其中 m 为奇数,k ∈N ∗.由条件知, 若 m ∈A ,则 x ∈A ⇔k 为偶数;若 m ∉A ,则 x ∈A ⇔k 为奇数.于是 x 是否属于 A 由 m 是否属于 A 确定.设 Q n 是 P n 中所有奇数的集合,因此 f (n ) 等于 Q n 的子集个数. 当 n 为偶数(或奇数)时,P n 中奇数的个数是 n 2(或 n+12), 所以f (n )={2n 2,n 为偶数,2n+12,n 为奇数.15. (1) 当 T ={2,4} 时,S T =a 2+a 4=a 2+9a 2=30, 解得 a 2=3,从而 a 1=a 23=1,a n =3n−1.(2)S T ≤a 1+a 2+⋯+a k=1+3+32+⋯+3k−1=3k −12<3k =a k+1.(3) 设 A =∁C (C ∩D ),B =∁D (C ∩D ),则 A ∩B =∅, S C =S A +S C∩D ,S D =S B +S C∩D ,S C +S C∩D −2S D =S A −2S B ,因此原题就等价于证明 S A ≥2S B . 由条件 S C ≥S D ,可知 S A ≥S B .① 若 B =∅,则 S B =0,所以 S A ≥2S B .② 若 B ≠∅,由 S A ≥S B 可知 A ≠∅.设 A 中最大元素为 l ,B 中最大元素为 m .若 m ≥l +1,则由第(2)小题,S A <a l+1≤a m ≤S B ,矛盾. 因为 A ∩B =∅,所以 l ≠m ,所以 l ≥m +1,S B ≤a 1+a 2+⋯+a m=1+3+32+⋯+3m−1=3m −12<a m+12≤a l ≤S A , 即 S A >2S B .综上所述,S A ≥2S B ,因此 S C +S C∩D ≥2S D .。
江苏省高考数学知识点归纳总结

江苏省高考数学知识点归纳总结一、不等式与方程组在高考数学中,不等式与方程组是一个重要的知识点。
它涉及到数学推理和解题的方法。
针对江苏省高考中常见的不等式与方程组题型,我们进行了归纳总结。
1. 不等式a. 一次不等式:如何确定解的范围、如何判断解集的性质等问题,可以通过绘制数轴、利用符号法等方法进行求解。
b. 二次不等式:常见的二次不等式包括开口向上和开口向下的情况。
根据二次不等式关于未知数 x 的性质,我们可以利用判别式、配方法等来求解。
c. 绝对值不等式:处理绝对值不等式时,需要将绝对值的含义进行分析,根据绝对值的非负性进行讨论,采用分段讨论法或利用性质进行求解。
2. 方程组a. 二元一次方程组:根据方程组的性质,我们可以采用消元法、代入法或加减法等方法求解。
在求解过程中,注意使用变量替换和整理方程的技巧,以简化计算。
b. 三元一次方程组:对于三元方程组,同样可以使用消元法和代入法进行求解。
如果方程组较为复杂,可以考虑转换为矩阵形式进行求解。
c. 二元二次方程组:对于二元二次方程组,我们可以利用消元法、代入法或配方法进行求解。
在使用配方法时,注意将方程组转化为完全平方的形式。
d. 三元二次方程组:解决三元二次方程组时,可以应用代数行列式法、高次系数法等方法进行求解。
将方程组转化为矩阵形式可以简化求解过程。
二、函数与图像函数与图像是高考数学中的一个重要内容,涉及到函数的概念、性质,以及函数的图像表达等。
1. 函数的概念与性质a. 函数定义与性质:函数是一个对应关系,它将某个集合中的元素映射到另一个集合中的元素。
在函数的定义中,需要关注定义域、值域以及函数的性质,如单调性、奇偶性等。
b. 反函数:反函数是函数的一种特殊形式。
通过交换函数的自变量和因变量,可以得到原函数的反函数。
反函数的存在与性质需要通过函数的单调性来判断。
2. 函数的图像表达a. 一次函数:一次函数的图像是一条直线。
根据函数的斜率和截距可以确定图像的斜率和截距。
江苏省高考数学知识点总结精华版

高中数学第一章-集合考试内容:集合、子集、补集、交集、并集. 逻辑联结词.四种命题.充分条件和必要条件.考试要求:(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③空集的补集是全集.④若集合A =集合B ,则C B A = ∅, C A B = ∅C S (C A B )= D ( 注:C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅) 4. ①n 个元素的子集有2n个.②n 个元素的真子集有2n-1个.③n 个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②,且21≠≠y x 3≠+y x . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小X 围推出大X 围;大X 围推不出小X 围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A ==分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A == 求补律:A ∩C U A =φ A ∪C U A =UC U U =φC U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card (UA )=card(U)-card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.+-+-x 1x 2x 3x m-3x m-2xm-1x mx(自右向左正负相间)则不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;20>∆0=∆ 0<∆2.分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. (2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布 一元二次方程ax 2+bx+c=0(a ≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
高考数学母题解密专题01 集合及其运算附解析(江苏专版)

专题01 集合及其运算【母题来源一】【2020年高考江苏】已知集合{1,0,1,2},{0,2,3}A B =-=,则AB =__▲___.【答案】{}0,2【解析】根据集合的交集即可计算.∵{}1,0,1,2A =-,{}0,2,3B =∴{}0,2A B =,故答案为:{}0,2.【名师点睛】本题考查了交集及其运算,是基础题型.【母题来源二】【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则 A B = ▲ .【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =.【名师点睛】本题主要考查交集的运算,属于基础题.【母题来源三】【2018年高考江苏】已知集合{}0,1,2,8A =,{}1,1,6,8B =-,那么A B = ▲ .【答案】{1,8}【解析】由题设和交集的定义可知:{}1,8A B =.【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.【命题意图】(1)了解集合的含义.(2)理解两个集合的交集的含义,会求两个简单集合的交集.(3)能够正确处理含有字母的讨论问题,掌握集合的交集运算和性质.【命题规律】 这类试题在考查题型上主要以填空题的形式出现,主要考查集合的基本运算,其中集合以描述法呈现.试题难度不大,多为低档题,从近几年江苏的高考试题来看,主要的命题角度有:(1)离散型或连续型数集间的交集运算;(2)已知集合的交集运算结果求参数.【答题模板】解答此类题目,一般考虑如下三步:第一步:看元素构成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键,即辨清是数集、点集还是图形集等;第二步:对集合化简,有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决;第三步:应用数形结合进行交、并、补等运算,常用的数形结合形式有数轴、坐标系和韦恩图(Venn).【方法总结】(一)集合的基本运算及其表示:(1)交集:由属于集合A 且属于集合B 的所有元素组成的集合,即{|}A B x x A x B =∈∈且.(2)并集:由所有属于集合A 或属于集合B 的元素组成的集合,即|}{A B x x A x B =∈∈或.(3)补集:由全集U 中不属于集合A 的所有元素组成的集合,即{|}U A x x U x A =∈∉且.(二)与集合元素有关问题的解题方略:(1)确定集合的代表元素;(2)看代表元素满足的条件;(3)根据条件列式求参数的值或确定集合元素的个数.但要注意检验集合中的元素是否满足互异性.(三)集合间的基本关系问题的解题方略:(1)判断集合间基本关系的方法有三种:①列举观察;②集合中元素特征法,首先确定集合中的元素是什么,弄清楚集合中元素的特征,再判断集合间的关系;③数形结合法,利用数轴或韦恩图求解.(2)求集合的子集:若集合A 中含有n 个元素,则其子集个数为2n 个,真子集个数为21n -个,非空真子集个数为22n -个.(3)根据两集合关系求参数:已知两集合的关系求参数时,关键是将两集合的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且经常要对参数进行讨论.注意区间端点的取舍.注意:空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(四)求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.(1)离散型数集或抽象集合间的运算,常借助Venn 图或交、并、补的定义求解;(2)点集的运算常利用数形结合的思想或联立方程组进行求解;(3)连续型数集的运算,常借助数轴求解;(4)已知集合的运算结果求集合,常借助数轴或Venn 图求解;(5)根据集合运算结果求参数,先把符号语言转化成文字语言,然后适时应用数形结合求解.1.(2020届江苏省苏州市吴江区高三下学期五月统考数学试题)已知集合{}1,2,3,4A =,集合{}4,5B =,则AB =______.【答案】{}4【解析】因为集合{}1,2,3,4A =,集合{}4,5B =,所以{}4A B ⋂=.故答案为:{}4.【点睛】本题主要考查集合的交集运算,熟记概念即可,属于基础题型.2.(江苏省无锡市、常州市2019-2020学年高三下学期5月联考数学试题)已知集合{}012M =,,,集合{}0,2,4N =,则M N ⋃=__________.【答案】{}0,1,2,4 【解析】集合{}012M =,,,集合{}0,2,4N =, ∴{}0,1,2,4M N ⋃=.故答案为:{}0,1,2,4.【点睛】本题考查并集及其运算,属于基础题.3.(江苏省盐城中学2020届高三下学期第一次模拟数学试题)已知集合{}13A x =-<<,{}|2=≤B x x ,则A B =_________ .【答案】(-1,2]【解析】由题意{|12}A B x x =-<≤故答案为:(1,2]-.【点睛】本题考查集合的交集运算,掌握交集概念是解题关键.4.(2020届江苏省七市(南通、泰州、扬州、徐州、淮安、连云港、宿迁)高三下学期第二次调研考试数学试题)已知集合{}1,4A =,{}5,7B a =-.若{}4A B ⋂=,则实数a 的值是______.【答案】9 【解析】集合{}1,4A =,{}5,7B a =-,{}4A B ⋂=,∴54a -=,则a 的值是9.故答案为:9【点睛】本题考查集合的交集,是基础题.5.(江苏省南京市金陵中学、南通市海安高级中学、南京市外国语学校2020届高三下学期第四次模拟数学试题)已知集合{}{}02,1,0,1,2M x x N =≤<=-,则MN =__________.【答案】{}0,1 【解析】因为{}{}02,1,0,1,2M x x N =≤<=-,所以{}0,1M N ⋂=. 6.(2020届江苏省高三高考全真模拟(六)数学试题)已知集合{1,0,2}A =-,{}0,1,2,3B =,则A B =______.【答案】{1,0,1,2,3}-【解析】由题意1,0,1{,2,}3A B =-.故答案为:{1,0,1,2,3}-.【点睛】本题考查集合的并集运算,属于简单题.7.(江苏省泰州市姜堰区、南通市如东县2020届高三下学期适应性考试数学试题)已知集合{1,3,}A a =,{4,5}B =.若{4}A B ⋂=,则实数a 的值为______.【答案】4【解析】{}4A B ⋂=4A ∴∈且4B ∈4a ∴=【点睛】本题考查了交集的定义,意在考查学生对交集定义的理解,属于基础题.8.(江苏省扬州中学2020届高三下学期6月模拟考试数学试题)集合{}0,3x A =,{}2,0,1B =-,若A B B ⋃=,则x =_________________.【答案】0【解析】∵A B B ⋃=,∴A B ⊆,又{}0,3x A =,{}2,0,1B =-,∴31x =,∴0x =,故答案为:0.【点睛】本题主要考查集合的并集运算的应用,属于基础题.9.(江苏省泰州中学2019-2020学年高三下学期4月质量检测数学试题)已知集合{|02}A x x =<<,{|1}B x x =>,则A B =______【答案】{|12}x x <<【解析】因为集合{|02}A x x =<<,{|1}B x x =>,所以{|12}A B x x =<<.故答案为:{|12}x x <<【点睛】本题主要考查集合的交集运算,属基础题.10.(江苏省扬州市2020届高三下学期6月最后一卷数学试题)已知集合2{1,0,}A a =-,{1,1}B =-,则A B B =,则实数a 的值是_______.【答案】±1【解析】因为AB B =,所以B A ⊆,又2{1,0,}A a =-,{1,1}B =-,所以21a =,解得1a =±.故答案为:±1【点睛】本题主要考查集合间的基本关系,属于基础题.11.(2020届江苏省苏州市三校高三下学期5月联考数学试题)设集合{2,0,1,2}=-A ,{}|10B x x =-<,则A B =___________.【答案】{}2,0-【解析】由已知,{}|1B x x =<,所以AB ={}2,0-. 故答案为:{}2,0-【点睛】本题考查集合的交集运算,考查学生的基本计算能力,是一道基础题.12.(江苏省盐城市2020届高三下学期第四次模拟数学试题)若集合{}A x x m =≤,{}1B x x =≥-,且{}A B m =,则实数m 的值为_______.【答案】1- 【解析】∵{}A x x m =≤,{}1B x x =≥-,且{}AB m =,∴1m =-,故答案为:1-.【点睛】本题主要考查集合的交集运算,属于基础题.13.(江苏省苏州市2019-2020学年高三上学期期中数学试题)已知集合{2,1,0,1,2}A =--,{|0}B x x =>,则A B =__________.【答案】{1,2} 【解析】集合{2,1,0,1,2}A =--,{|0}B x x =>,{1,2}A B ∴=,故答案为:{1,2}.【点睛】本题考查集合交集的运算,是基础题.14.(江苏省淮安市清浦中学2019-2020学年高三下学期5月阶段性检测数学试题)已知集合{}1,2A =,{}2,3B a a =+,若A B={1}⋂则实数a 的值为________ 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.15.(江苏省盐城市第一中学2020届高三下学期第一次调研考试数学试题)设全集{}0,1,2U =,集合{}0,1A =,则U C A =________.【答案】{}2【解析】{}{}0,1,2,0,1U A =={}2U C A ∴=故答案为:{}2【点睛】本题考查了补集的运算,属于基础题.16.(2020届江苏省苏州市常熟市高三阶段性抽测三数学试题)已知集合{}2A x x =≤,(){}40B x x x =-≤,则()A B =R ________.【答案】(]2,4 【解析】集合(){}{}4004B x x x x x =-≤=≤≤ 因为集合{}2A x x =≤ 所以{}2R A x x => 所以(){}(]242,4R A B x x ⋂=<≤=.故答案为:(]2,4.【点睛】本题考查解一元二次不等式,集合的补集、交集运算,属于简单题.17.(2020届江苏省南通市高三下学期5月模拟考试数学试题)已知集合{}1,2,3,4A =,{}2|log (1)2B x x =-<,则A B =____.【答案】{}2,3,4【解析】由题意可得:{}{}|014|15B x x x x =<-<=<< ,则{}2,3,4A B⋂=.如何学好数学做选择题时注意各种方法的运用,比较简单的自己会的题正常做就可以了,遇到比较复杂的题时,看看能否用做选择题的技巧进行求解(主要有排除法、特殊值代入法、特例求解法、选项一一带入验证法、数形结合法、逻辑推理验证法等等),一般可以综合运用各种方法,达到快速做出选择的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省高考数学综合专题1-集合及其应用部分
高考命题规律:
从考查内容上,高考命题仍以考查概念和计算为主,考查两个集合的交集与并集、补集。
形式上以填空题为主。
从能力要求上看,注重基础知识和基本技能的教材,要求具备数形结合的思想意识,会借助Venn 图、数轴等工具解决集合问题。
知识的综合联系上看,本考点会纵横关系数学各个方面的知识体系,如不等式的解集与不等关系,方程与曲线,函数的图象性质,三角函数等。
重难点:
集合的三个基本特征:确定性,互异性,无序性。
集合中三种语言的互化是解决集合问题的关键,即:文字语言、符号语言、图象语言的互化。
方法技巧:
一、数形结合:把题设条件有效转化成图形或图象类型,利用几何的直观性,以“形”助“数” ,形象、直观、方便快捷。
特别是韦恩图法、数轴法、函数图象法。
二、补集思想:对正面求解困难的问题,则可考虑先求解问题的反面,采用“正难则反”的解题策略。
具体地说,就是将研究的对象的全体视为全集,求了使问题反面成立的集合A ,则A 的补集即所求结论。
【2011年考题精选】
1。
(2011江苏)已知集合{1,1,2,4},{1,0,2},A B =-=- 则_______,=⋂B A .
2.(2011安徽科)设集合{}1,2,3,4,5,6,A ={}4,5,6,7,B =则满足S A ⊆且∅≠⋂B S 的集合S 为__________个.
3. (2011北京理科)已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是____
4. (2011广东理科)已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x =,则A B ⋂的元素个数为 ______
5. (2011江西理科)若集合}02|{},3121|{≤-=≤+≤-=x
x x B x x A ,则B A ⋂= _____ 6. (2011山东理科)设集合 M ={x|x 2+x-6<0},N ={x|1≤x ≤3},则M ∩N =_______ 7. (2011湖北理科)已知{}21|log ,1,|,2U y y x x P y y x x ⎧
⎫==>==>⎨⎬⎩
⎭,则U C P =____ 8. (2011上海理科)若全集U R =,集合{|1}{|0}A x x x x =≥≤,则U C A =
【2010年考题精选】
1.(2010浙江理数)设P={x ︱x <4},Q={x ︱2
x <4},则P 与Q 关系是______
2.(2010辽宁理数)1.已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},U C B ∩A={9},则A=_______
3.(2010全国2卷
) ______
4.(2010江西数)若集合{}A=|1x x x R ≤∈,,{}
2B=|y y x x R =∈,,则A B ⋂=______
5. (2010北京数)集合2{03},{9}P x Z x M x Z x =∈≤<=∈≤,则M P ⋂=_____
6. (2010天津数)设集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值范围是_______
7. (2010山东数)已知全集U=R ,集合M={x||x-1|≤2},则U C M=________ 8.(2010安徽理数)若集合121log 2A x x ⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭
,则A C R =_________ 9. (2010湖北理数)2.设集合()22
{,|1}416
x y A x y =+=,{(,)|3}x B x y y ==,则A B ⋂的子集的个数是______
10. (2010江苏卷)设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲_____. 09江苏11.已知集合{}2|log 2A x x =≤,(,)B a =-∞,若A B ⊆则实数a 的取值范围是(,)c +∞,其中c = ★ .
4.由2log 2x ≤得04x <≤,(0,4]A =;由A B ⊆知4a >,所以c =4。
综合能力训练
1已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合)(B C A U 等于___
2设集合21{|2},{1}2
A x x
B x x =-
<<=≤,则A B =____ 3设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么称k 是A
的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有 个
4已知集合A ={x ∈R |a x 2-3x +2=0,a ∈R },若A 中元素至多有1个,则a 的取值范围是_________.
5.向50名学生调查对A 、B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A 、B 都不赞成的学生数比对A 、B 都赞成的学生数的三分之一多1人.问对A 、B 都赞成的学生和都不赞成的学生各有多少人?
6记关于x 的不等式01
x a x -<+的解集为P ,不等式11x -≤的解集为Q . (I )若3a =,求P ; (II )若Q P ⊆,求正数a 的取值范围.
2011答案:1.{}1-,2 2.56提示:反向思考集合A 的所有子集共有6264=个,其
中不含4,5,6,7的子集有328=个,所以集合S 共有56个.
3.[-1,1] 4.2 5. }10|{≤<x x
6. [1,2)
7. 1[,)2+∞
8. {|01}x x <<
2010答案提示:1.Q P ⊆
2. {3,9} 采用韦恩图法
3. {}2,4
4. {}|01x x ≤≤
5. {0,1,2}
6. {}|0,6a a ≤≥或a
7.{x|x<-1或x>3} 8.2(,0],2⎛⎫-∞+∞ ⎪ ⎪⎝⎭
9. 4
10. [解析] 考查集合的运算推理。
3 B, a+2=3, a=1.
(本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。