高考数学总复习圆锥曲线综合
(完整版)高三圆锥曲线知识点总结

第八章 《圆锥曲线》专题复习一、椭圆方程.1. 椭圆的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+2.椭圆的方程形式: ①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222 b a by ax =+. ii. 中心在原点,焦点在y 轴上:)0(12222 b a bx ay =+.②一般方程:)0,0(122B A By Ax =+.③椭圆的参数方程:2222+b y a x ⎩⎨⎧==θθsin cos b y a x (一象限θ应是属于20πθ ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:ca x 2±=或c a y 2±=.⑥离心率:)10( e ace =.⑦焦半径: i. 设),(00y x P 为椭圆)0(12222 b a by ax =+上的一点,21,F F 为左、右焦点,则:证明:由椭圆第二定义可知:)0()(),0()(0002200201 x a ex x ca e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”.ii.设),(00y x P 为椭圆)0(12222 b a ay bx =+上的一点,21,F F 为上、下焦点,则:⑧通径:垂直于x 轴且过焦点的弦叫做通径: 222b d a=;坐标:22(,),(,)b b c c a a -4.共离心率的椭圆系的方程:椭圆)0(12222 b a b y a x =+的离心率是)(22b a c ace -==,方程t t b y a x (2222=+是大于0的参数,)0 b a 的离心率也是ace =我们称此方程为共离心率的椭圆系方程. 5.若P 是椭圆:12222=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan2θb (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2cot2θ⋅b .1020,PF a ex PF a ex=+=-1020,PF a ey PF a ey =+=-asin α,)α)二、双曲线方程.1. 双曲线的第一定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-2.双曲线的方程:①双曲线标准方程:)0,(1),0,(122222222 b a b x a y b a b y a x =-=-. 一般方程:)0(122 AC Cy Ax =+.3.双曲线的性质:①i. 焦点在x 轴上: 顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程ca x 2±= 渐近线方程:0=±b ya x 或02222=-b y a x ii. 焦点在y 轴上:顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:c a y 2±=. 渐近线方程:0=±b x a y 或02222=-b x a y ,参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x . ②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率a ce =. ④准线距c a 22(两准线的距离);通径a b 22. ⑤参数关系ace b a c =+=,222. ⑥焦半径公式:对于双曲线方程12222=-b y a x (21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:aex MF a ex MF -=+=0201 构成满足a MF MF 221=-aex F M a ex F M +-='--='0201(与椭圆焦半径不同,椭圆焦半aey F M a ey F M a ey MF a ey MF -'-='+'-='+=-=020102014. 等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e . 5.共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by ax .6.共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x .例如:若双曲线一条渐近线为x y 21=且过)21,3(-p ,求双曲线的方程? 解:令双曲线的方程为:)0(422≠=-λλy x ,代入)21,3(-得12822=-y x . 7.直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1区域⑤:即过原点,无切线,无与渐近线平行的直线.注意:⑴过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.⑵若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“∆法与渐近线求交和两根之和与两根之积同号.⑶若P 在双曲线12222=-b y a x ,则常用结论1:P 到焦点的距离为m 与n ,则P 到两准线的距离比为m ︰n. 简证:ePF e PF d d 2121= =nm. ⑷:从双曲线一个焦点到另一条渐近线的距离等于b.三、抛物线方程.设0 p ,抛物线的标准方程、类型及其几何性质:注意:⑴x c by ay =++2顶点)244(2aba b ac --.⑵)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.⑶通径为2p ,这是过焦点的所有弦中最短的.⑷px y 22=(或py x 22=)的参数方程为⎩⎨⎧==pt y pt x 222(或⎩⎨⎧==222pty ptx )(t 为参数). ⑸关于抛物线焦点弦的几个结论:设AB 为过抛物线 y 2=2px (p>0 )焦点的弦,A(x 1 ,y 1)、B (x 2 ,y 2 ) ,直线AB 的倾斜角为θ,则:① x 1x 2=24p , y 1y 2=-p 2; ② |AB|=22sin p θ;③以AB 为直径的圆与准线相切;④焦点F 对A 、B 在准线上射影的张角为900;⑤112||||FA FB P+=. 四、圆锥曲线的统一定义.1. 圆锥曲线的统一定义:平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹. 当10 e 时,轨迹为椭圆; 当1=e 时,轨迹为抛物线; 当1 e 时,轨迹为双曲线; 当0=e 时,轨迹为圆(ace =,当b a c ==,0时). 2. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD 与BC 的中点重合即可.3. 当椭圆的焦点位置不明确,而无法确定其标准方程时,可设方程为22x y m n+ =1(m>0,n>0且m ≠n ),这样可以避免讨论和繁杂的运算,椭圆与双曲线的标准方程均可用简单形式 mx 2+ny 2=1(mn ≠0)来表示,所不同的是:若方程表示椭圆,则要求m>0,n>0且m ≠n ; 若方程表示双曲线,则要求mn<0,利用待定系数法求标准方程时,应注意此方法的合理使用,以避免讨论。
高考数学最新真题专题解析—圆锥曲线综合(新高考卷)

高考数学最新真题专题解析—圆锥曲线综合(新高考卷)【母题来源】2022年新高考I卷【母题题文】已知点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2√2,求△PAQ的面积.【答案】解:(1)将点A代入双曲线方程得4a2−1a2−1=1,化简得a4−4a2+4=0得:a2=2,故双曲线方程为x22−y2=1;由题显然直线l的斜率存在,设l:y=kx+m,设P(x1,y1),Q(x2,y2),则联立直线与双曲线得:(2k2−1)x2+4kmx+2m2+2=0,△>0,故x1+x2=−4km2k2−1,x1x2=2m2+22k2−1,k AP+k AQ=y1−1x1−2+y2−1x2−2=kx1+m−1x1−2+kx2+m−1x2−2=0,化简得:2kx1x2+(m−1−2k)(x1+x2)−4(m−1)=0,故2k(2m2+2)2k2−1+(m−1−2k)(−4km2k2−1)−4(m−1)=0,即(k+1)(m+2k−1)=0,而直线l不过A点,故k=−1.(2)设直线AP的倾斜角为α,由tan∠PAQ=2√2,得tan∠PAQ2=√22,由2α+∠PAQ=π,得k AP=tanα=√2,即y1−1x1−2=√2,联立y 1−1x1−2=√2,及x 122−y 12=1得x 1=10−4√23,y 1=4√2−53, 同理,x 2=10+4√23,y 2=−4√2−53, 故x 1+x 2=203,x 1x 2=689而|AP|=√3|x 1−2|,|AQ|=√3|x 2−2|, 由tan∠PAQ =2√2,得sin∠PAQ =2√23, 故S △PAQ =12|AP||AQ|sin∠PAQ =√2|x 1x 2−2(x 1+x 2)+4|=16√29. 【母题来源】2022年新高考II 卷【母题题文】.设双曲线C:x 2a 2−y2b2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x. (1)求C 的方程;(2)经过F 的直线与C 的渐近线分别交于A ,B 两点,点P(x 1,y 1),Q(x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为−√3的直线与过Q 且斜率为√3的直线交于点M ,从下面三个条件 ① ② ③中选择两个条件,证明另一个条件成立: ①M 在AB 上; ②PQ//AB; ③|AM|=|BM|.【答案】解:(1)由题意可得ba =√3,√a 2+b 2=2,故a =1,b =√3. 因此C 的方程为x 2−y 23=1.(2)设直线PQ 的方程为y =kx +m(k ≠0),将直线PQ 的方程代入C 的方程得(3−k 2)x 2−2kmx −m 2−3=0, 则x 1+x 2=2km3−k 2,x 1x 2=−m 2+33−k 2,x 1−x 2=√(x 1+x 2)2−4x 1x 2=2√3(m 2+3−k 2)3−k 2.不段点M 的坐标为(x M ,y M ),则{y M −y 1=−√3(x M −x 1)y M −y 2=√3(x M −x 2).两式相减,得y 1−y 2=2√3x M −√3(x 1+x 2),而y 1−y 2=(kx 1+m)−(kx 2+m)=k(x 1−x 2),故2√3x M =k(x 1−x 2)+√3(x 1+x 2),解得x M =k√m 2+3−k 2+km3−k 2.两式相加,得2y M −(y 1+y 2)=√3(x 1−x 2),而y 1+y 2=(kx 1+m)+(kx 2+m)=k(x 1+x 2)+2m ,故2y M =k(x 1+x 2)+√3(x 1−x 2)+2m ,解得y M =3√m 2+3−k 2+3m3−k 2=3k x M ⋅因此,点M 的轨迹为直线y =3k x ,其中k 为直线PQ 的斜率. 若选择 ① ②:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A,解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3.此时x A +x B =4k 2k 2−3,y A +y B =12kk 2−3.而点M 的坐标满足{y M =k(x M −2)y M =3k x M , 解得x M =2k 2k 2−3=x A +x B2,y M =6kk 2−3=y A +y B2,故M 为AB 的中点,即|MA|=|MB|. 若选择 ① ③:当直线AB 的斜率不存在时,点M 即为点F(2,0),此时M 不在直线y =3k x 上,矛盾.故直线AB 的斜率存在,设直线AB 的方程为y =p(x −2)(p ≠0), 并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =p(x A −2)y A =√3x A,解得x A =p−√3,y A =√3pp−√3.同理可得x B =p+√3,y B =−√3pp+√3.此时x M =x A +x B2=2p 2p 2−3,y M =y A +y B2=6pp 2−3.由于点M 同时在直线y =3k x 上,故6p =3k ·2p 2,解得k =p.因此PQ//AB . 若选择 ② ③:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3,设AB 的中点为C(x C ,y C ),则x C =x A +x B2=2k 2k 2−3,y C =y A +y B2=6kk 2−3.由于|MA|=|MB|,故M 在AB 的垂直平分线上,即点M 在直线y −y C =−1k (x −x C )上.将该直线与y =3k x 联立,解得x M =2k 2k 2−3=x C ,y M =6kk 2−3=y C ,即点M 恰为AB 中点,故点而在直线AB 上. 【命题意图】本题考查双曲线的标准方程和几何性质,考查直线与双曲线的位置关系,考查开放探究能力,属于压轴题.主要考查直线与双曲线的位置关系及双曲线中面积问题,属于难题【命题方向】圆锥曲线综合大题是属于高考历年的压轴题之一,难度较大,对学生的综合要求较高。
2024年新高考版数学专题1_9.5 圆锥曲线的综合问题(分层集训)

解析 (1)设动点P的坐标为(x,y),因为| PF | = 5 ,
d5
所以
(x 1)2 y2
=
5 ,即5[(x+1)2+y2]=|x+5|2,整理得 x2 + y2 =1.所以动点P的
| x5|
5
54
轨迹方程为 x2 + y2 =1.
54
(2)设M(x1,y1),N(x2,y2),由(1)可得点A的坐标为(0,-2),故直线AM:y=
AC
·BC
=1,
则点C的轨迹为 ( )
A.圆 B.椭圆 C.抛物线 D.直线
答案 A
3.(2023届贵州遵义新高考协作体入学质量监测,8)已知圆C的方程为(x-1)2
+y2=16,B(-1,0),A为圆C上任意一点,若点P为线段AB的垂直平分线与直线
AC的交点,则点P的轨迹方程为 ( )
A. x2 + y2 =1
2 2
+
y2 b2
=1(a>b>0)的离心率e=
2 ,四
2
个顶点组成的菱形的面积为8 2 ,O为坐标原点.
(1)求椭圆E的方程;
(2)过☉O:x2+y2= 8
上任意点P作☉O的切线l与椭圆E交于点M,N,求证:
PM
·
3
PN
为定值.
解析 (1)由题意得2ab=8 2 ,e= c = 2 ,a2=b2+c2,
2
3
6
,
0
,∴
PM
=
0,
2
3
6
,
PN
=
0,
2
6 3
,
∴
高考数学第一轮复习圆锥曲线的综合问题

圆锥曲线的综合问题●知识梳理分析几何是联系初等数学与高等数学的纽带,它自己重视于形象思想、 推理运算和数形联合,综合了代数、三角、几何、向量等知识. 反应在解题上,就是依据曲线的几何特色准确地变换为代数形式,依据方程画出图形,研究几何性质. 学习时应娴熟掌握函数与方程的思想、数形联合的思想、参数的思想、分类与转变的思想等,以达到优化解题的目的.详细来说,有以下三方面:( 1)确立曲线方程,本质是求某几何量的值;含参数系数的曲线方程或变化运动中的圆锥曲线的主要问题是定值、最值、最值范围问题,这些问题的求解都离不开函数、方程、不等式的解题思想方法 . 有时题设设计的特别隐蔽,这就要求仔细审题,发掘题目的隐含条 件作为解题打破口 .( 2)分析几何也能够与数学其余知知趣联系,这种综合一般比较直观,在解题时保持思想的灵巧性和多面性,能够顺利进行转变,即从一知识转变为另一知识.( 3)分析几何与其余学科或本质问题的综合,主要表此刻用分析几何知识去解相关知 识,详细地说就是经过成立坐标系, 成立所研究曲线的方程, 并经过方程求解往返答本质问题. 在这一类问题中“本质量”与“数学量”的转变是易犯错的地方,这是由于在座标系中 的量是“数目” ,不单有大小还有符号 .●点击双基1. ( 2005 年春天北京, 5)设 abc ≠0,“ ac >0”是“曲线 ax 2+by 2=c 为椭圆”的 A. 充足不用要条件B. 必需不充足条件C. 充足必需条件D. 既不充足又不用要条件 2 2分析: ac >0 曲线 ax +by =c 为椭圆 .答案: B2. 到两定点 A (0, 0), B ( 3, 4)距离之和为 5 的点的轨迹是A. 椭圆所在直线 C. 线段 ABD. 无轨迹分析:数形联合易知动点的轨迹是线段: = 4,此中 0≤ x ≤ 3.AB3答案: C3. 若点( x , y )在椭圆 4x 2+y 2=4 上,则x y 的最小值为2B. - 1C.-23D. 以上都不对3分析:y的几何意义是椭圆上的点与定点( 2, 0)连线的斜率 . 明显直线与椭圆相x2切时获得最值,设直线 = ( - 2)代入椭圆方程( 4+k 2)x 2-4 2 +4 2-4=0.y k xk x k令 =0, k =± 23 .3∴ k min =- 23 .3答案: C4. ( 2005 年春天上海, 7)双曲线 9 2- 16 y 2=1 的焦距是 ____________.x分析:将双曲线方程化为标准方程得x2y221 21 ,- 1 =1. ∴ a =9 , b =16 19 16c 2=a 2+b 2= 1 + 1 =25 .9 16 144∴ c = 5, 2c = 5.126答案:565. ( 2004 年春天北京)若直线+ -3=0 与圆 x 2+ y 2=3 没有公共点,则mx ny系式为 ____________;以( m , n )为点 P 的坐标,过点 P 的一条直线与椭圆公共点有 ____________个 .分析:将直线 mx +ny - 3=0 变形代入圆方程x 2+y 2=3,消去 x ,得(2+2) y 2- 6 ny +9-3 2=0.m nm22令 <0 得 m +n <3.又 m 、n 不一样时为零,2 2∴ 0<m +n <3.223 , | m |< 3 ,由 0<m +n <3,可知 | n |<m 、n 知足的关2 2 x y再由椭圆方程 a = 7 , b = 3 可知公共点有 2 个.2 2答案: 0<m +n <3 2 ●典例分析【例 1】 (2005 年春天北京, 18)如图, O 为坐标原点,直线 l 在 x 轴和 y 轴上的截距分别是 a 和 b ( a >0, b ≠ 0),且交抛物线 y 2=2px (p >0)于 M ( x 1, y 1),N ( x 2, y 2)两点 .lyMOa xb N( 1)写出直线 l 的截距式方程;( 2)证明: 1+1=1;y 1y 2 b ( 3)当 =2 时,求∠的大小 .a pMON分析:易知直线l 的方程为 x + y =1 ,欲证 1+1=1,即求 y1y 2 的值,为此只要aby 1 y 2by 1 y 22=2px 交点的纵坐标 . 由根与系数的关系易得 121 2的值,从而证得 求直线 l 与抛物线 y y +y 、y y 1+ 1 = 1. 由 OM · ON =0 易得∠ MON =90° . 亦可由 k OM ·k ON =- 1 求得∠MON =90° . y 1 y 2 b( 1)解:直线 l 的截距式方程为x + y=1.a b①( 2)证明:由①及 y 2=2 消去x可得by 2+2-2 =0.pxpaypab②点、 的纵坐标 y 1、 y 2 为②的两个根,故 y 1+ 2=2 pa , 1 y 2=-2. M Npab2 pa所以 1 + 1y 1 y 2 = b1== .y 1 y 2y 1 y 2 2 pa b ( 3)解:设直线 OM 、 ON 的斜率分别为k 1、 k 2,则 k 1=y 1,k 2=y 2.x 1 x 2当 a =2p 时,由( 2)知, y 1y 2=- 2pa =- 4p 2,2222由 y 1 =2px 1, y 2 =2px 2,相乘得( y 1y 2)=4p x 1 x 2,x 1x 2= ( y 1 y 2 ) 2 =( 4 p 2 ) 2=4p 2,4 p 2 4 p 2所以 ky 1 y 2 4 p 21k 2===- 1.x 1 x 24 p 2所以 OM ⊥ ON ,即∠ MON =90° .评论:此题主要考察直线、 抛物线等基本知识, 考察运用分析几何的方法分析问题和解决问题的能力 .【例 2】 (2005 年黄冈高三调研考题)已知椭圆C 的方程为x 2+ y 2=1( a >b >0),双a 2b 2x 2 y 2121曲线a 2-b 2 =1 的两条渐近线为 l 、l ,过椭圆 C 的右焦点 F 作直线 l,使 l ⊥ l ,又 l 与l 2 交于 P 点,设 l 与椭圆 C 的两个交点由上至下挨次为A 、B . (以下列图)ylPl 2AOFx Bl 1( 1)当 l 1 与 l 2 夹角为 60°,双曲线的焦距为4 时,求椭圆 C 的方程;( 2)当 FA =λ AP 时,求 λ的最大值 .分析:( 1)求椭圆方程即求、 b 的值,由l 1与l2的夹角为 60°易得b=3,由双曲aa3线的距离为 4 易得 a 2+b 2=4,从而可求得 a 、b .( 2)由 FA =λ AP ,欲求 λ 的最大值,需求A 、P 的坐标,而 P 是 l 与 l 1 的交点,故需求 l 的方程 . 将 l 与 l 2 的方程联立可求得 P 的坐标,从而可求得点A 的坐标 . 将 A 的坐标代入椭圆方程可求得λ的最大值 .解:( 1)∵双曲线的渐近线为 y =± bx ,两渐近线夹角为60°,a又 b<1,a∴∠ POx =30°,即 b=tan30 ° = 3.a3∴ a = 3 b .又 a 2+b 2=4,∴ a 2=3,b 2=1.故椭圆 C 的方程为x 22+y =1.3( 2)由已知 l : y = a( x -c ),与 y = bx 解得 P ( a 2,ab),ba ccca 2abFA=cc) .由得 (,λ APA11将 A 点坐标代入椭圆方程得( c 2+λa 2)2+λ2a 4=( 1+λ) 2a 2c 2. ∴( e 2+λ) 2+λ2=e 2( 1+λ) 2.∴ λ2= e4e 2 =-[( 2- e 2)+ 2 ]+3≤3-2 2 . e 222 e 2∴ λ的最大值为2 - 1.评论:此题考察了椭圆、双曲线的基础知识,及向量、定比分点公式、重要不等式的应用. 解决此题的难点是经过恒等变形, 利用重要不等式解决问题的思想 . 此题是培育学生分析问题和解决问题能力的一道好题 .【例 3】 设椭圆中心是坐标原点,长轴在x 轴上,离心率= 3,已知点(0, 3)2 2到这个椭圆上的点的最远距离是 7 ,求这个椭圆方程, 并求椭圆上到点P 的距离等于 7 的点的坐标 .分析:设椭圆方程为x2+ y2=1,由 e =3知椭圆方程可化为x 2+4y 2=4b 2,而后将距离a 2b 22转变为 y 的二次函数,二次函数中含有一个参数b ,在判断距离有最大值的过程中,要议论y =- 1能否在 y 的取值范围内,最后求出椭圆方程和P 点坐标 .2解法一:设所求椭圆的直角坐标方程是x2 y 2=1,此中 a >b > 0 待定 .a+2b 2由 e 2c2=a 2b 2=1-(b2可知b1 e2 = 13 1 ,即 a =2b .=a 2 a 2a ) =4 =a222322y 229设椭圆上的点 ( x ,y )到点 P 的距离为 d ,则 d =x +(y - 2 ) =a ( 1- b 2)+y - 3y + 4 =4b 2-3y 2- 3y + 9 =- 3(y + 1)2 +4b 2+3,此中- b ≤ y ≤b .42假如b <1,则当y =- b 时2(从而 )有最大值,由题设得(7)2=( + 3)2,由2ddb 2此得 b = 7 - 3> 1,与 b < 1矛盾 .222所以必有 b ≥1成立,于是当 y =-127 222 2 时 d (从而 d )有最大值, 由题设得 () =4b +3,由此可得 b =1, a =2.故所求椭圆的直角坐标方程是x 2 +y 2=1.4由 y =- 1及求得的椭圆方程可得,椭圆上的点(-3 ,- 1),点(3,- 1)到222点 P 的距离都是7 .解法二:依据题设条件,设椭圆的参数方程是x =a cos θ,y =b sin θ, 此中 a > b > 0 待定,0≤ θ< 2π,∵ e = 3,2 ∴ a =2b .设椭圆上的点( x , y )到点 P 的距离为 d ,则d 2=x 2+( y -3)2=a 2cos 2θ +( b sin θ-3)2=- 3b 2·(sin θ+1) 2+4b 2+3.222b假如1>1,即 b <1272,则当 sin θ=- 1 时, d (从而 d )有最大值,由题设得() =2b2( +3) 2,由此得b =7-3>1,与 <1矛盾 .b22 2b 2所以必有1≤1 成立,于是当 sin θ=-1时, d 2(从而 d )有最大值,由题设得(7 )2b2b2=4b 2+3.由此得 b =1, a =2. 所以椭圆参数方程x =2cos θ, y =sin θ.消去参数得 x2+y 2=1,由 sin θ=1 ,cos θ=±3知椭圆上的点 (- 3,-1),( 3 ,4222- 1)到 P 点的距离都是7 .2评论:此题表现认识析几何与函数、三角知识的横向联系,解答中要注意议论.深入拓展依据图形的几何性质,以P 为圆心,以 7 为半径作圆,圆与椭圆相切时,切点与P 的距离为7 ,此时的椭圆和切点即为所求. 读者不如一试 .x 2+( y - 3) 2=7,提示:由2x 2+4 2=4 2,y b得 3y 2+3y - 9=4b 2- 7,4由 =0 得 b 2=1,即椭圆方程为 x 2+4y 2=4.所求点为(-3,- 1)、( 3,- 1) .22●闯关训练夯实基础1. ( 2005 年北京东城区目标检测)以正方形的相对极点 、 为焦点的椭圆,恰ABCD A C好过正方形四边的中点,则该椭圆的离心率为102 B. 5 1A.3351D. 102C.22分析:成立坐标系,设出椭圆方程,由条件求出椭圆方程,可得e =102.2答案: D2. 已知 F 1(- 3, 0)、F 2(3, 0)是椭圆x 2 + y 2= 1 的两个焦点, P 是椭圆上的点,当m n∠ F 1PF 2=2π时,△ F 1PF 2 的面积最大,则有3=12, n =3=24 , n =6 =6, n =3=12 , n =62分析:由条件求出椭圆方程即得 m =12, n =3.答案: A3. ( 2005 年启东市第二次调研)设P ( 2 ,2 )、P (-2 ,- 2 ), M 是双曲线12y = 1上位于第一象限的点,对于命题①| 2| - |1|=2;②以线段1为直径的圆与圆xMPMP2MPx 2+y 2=2 相切;③存在常数 b ,使得 M 到直线 y =- x +b 的距离等于2| MP 1|. 此中全部正确命2题的序号是 ____________.分析:由双曲线定义可知①正确,②绘图由题意可知正确,③由距离公式及| MP 1| 可知正确 .答案:①②③4. ( 2004 年全国Ⅱ, 15)设中心在原点的椭圆与双曲线2 2- 2 2=1 有公共的焦点,且xy它们的离心率互为倒数,则该椭圆的方程是_________________.分析:双曲线中, a =1=b ,∴ F (± 1, 0), e = c= 2 . ∴椭圆的焦点为(± 1, 0),2a离心率为2. ∴长半轴长为2 ,短半轴长为1.2∴方程为x 2+y 2=1.2答案: x 2+y 2=125. ( 1)试议论方程( 1-k ) x 2+( 3-k 2) y 2=4( k ∈ R )所表示的曲线;( 2)试给出方程x 2 y2k+=1 表示双曲线的充要条件 .k 26 6k 2k 1解:( 1) 3- k 2>1-k >0 k ∈(- 1, 1),方程所表示的曲线是焦点在x 轴上的椭圆;1- k >3- k 2>0 k ∈(-3 ,- 1),方程所表示的曲线是焦点在 y 轴上的椭圆; 1-k =3-k 2>0 k =- 1,表示的是一个圆; ( 1- k )( 3- k 2) <0 k ∈(-∞,- 3 )∪( 1, 3 ),表示的是双曲线; k =1, k =-3 ,表示的是两条平行直线; k = 3 ,表示的图形不存在 .( 2)由( k 2+k - 6)( 6k 2- k -1)<0(k +3)( k -2)( 3k +1)( 2k - 1)<0 k ∈(- 3,- 1)∪( 1,2).326. ( 2003 年湖北八市模拟试题)已知抛物线y 2 =2px 上有一内接正△ AOB ,O 为坐标原点 .yAOxB( 1)求证:点 A 、 B 对于 x 轴对称; ( 2)求△ AOB 外接圆的方程 .( 1)证明:设 A ( x 1, y 1)、 B ( x 2, y 2),∵| |=|| ,∴x 2+ 22211=2+2.OAOByxy又∵ y 12=2px 1, y 22=2px 2, 22∴ x 2 - x 1 +2p (x 2- x 1) =0, 即( x 2-x 1)( x 1+x 2+2p )=0.又∵ x 1、x 2 与 p 同号,∴ x 1+x 2+2p ≠ 0. ∴ x 2- x 1=0,即 x 1=x 2. 由抛物线对称性,知点A 、B 对于 x 轴对称 .( 2)解:由( 1)知∠ AOx =30°,则y 2=2px , x =6p ,y =3 x ∴y =2 3 p .3∴ A ( 6p , 2 3 p ) .方法一:待定系数法, △ AOB 外接圆过原点 O ,且圆心在 x 轴上,可设其方程为 x 2+y 2+dx =0.将点 A ( 6p , 2 3 p )代入,得 d =- 8p . 故△ AOB 外接圆方程为 x 2+y 2- 8px =0.方法二:直接求圆心、半径,设半径为 r ,则圆心( r ,0) .培育能力7. (理)( 2004 年北京, 17)以下列图,过抛物线2=2px ( p > 0)上必定点 P (x , y )y(> 0),作两条直线分别交抛物线于(1,1)、 ( 2, 2) .yA xyB x y( 1)求该抛物线上纵坐标为p的点到其焦点 F 的距离;2yPO AxB( 2)当 PA 与 PB 的斜率存在且倾斜角互补时,求是非零常数 .解:( 1)当 y =p时, = p.2 x 8又抛物线 y 2=2px 的准线方程为x =- p,2由抛物线定义得所求距离为p-(- p) =5p.8 2 8( 2)设直线 PA 的斜率为 k PA ,直线 PB 的斜率为22=2px ,由 y=2px , y0 11相减得( y 1- y 0)( y 1+y 0) =2p ( x 1- x 0),故 ky 1y 0 =2 p(x ≠ x ) .PA1x 1 x 0 y 1 y 0y1y2的值,并证明直线AB的斜率y0 k PB.同理可得 k PB =2 p( x 2 ≠ x 0).y 2y 0由 PA 、 PB 倾斜角互补知 k PA =- k PB ,即2 p 2 p,所以 y +y =- 2y ,=-y 1y 0y 2 y 0 1 2 0故y1y 2=- 2.y 0设直线 AB 的斜率为 k.AB22由 y 2 =2px 2, y 1 =2px 1, 相减得( y 2- y 1)( y 2+y 1) =2p ( x 2- x 1), 所以 k AB = y2y1= 2 p( x 1≠ x 2) .x 2 x 1 y 1y 2将 y 1+y 2=-2y 0( y 0> 0)代入得k AB =2 p =- p,所以 k AB 是非零常数 . y 1 y 2 y 0(文)以下列图,抛物线对于x 轴对称,它的极点在座标原点,点( 1,2)、 ( 1, 1)、PA xyB ( x 2, y 2)均在抛物线上 .y PO AxB( 1)写出该抛物线的方程及其准线方程;( 2)当 PA 与 PB 的斜率存在且倾斜角互补时,求y 1+y 2 的值及直线 AB 的斜率 .解:( 1)由已知条件,可设抛物线的方程为 y 2=2px . ∵点 P ( 1, 2)在抛物线上,∴ 22=2p ·1,得 p =2.故所求抛物线的方程是 y 2=4x ,准线方程是 x =- 1. ( 2)设直线 的斜率为 k PA ,直线 的斜率为 k PB .PAPB则 k PA =y 12( x 1≠ 1),k PB =y 22( x 2≠ 1) .x 1 1x 2 1∵ PA 与 PB 的斜率存在且倾斜角互补,∴ k PA =- k PB .由 A (x 1, y 1)、 B ( x 2, y 2)在抛物线上,得2y 1 =4x 1,①2y 2 =4x 2,②∴ y 12=- y 2 2 .1 y 12 1 1 y 2 2 1 4 4∴ y 1+2=-( y 2+2) . ∴ y 1+y 2=- 4. 由①-②得直线 AB 的斜率y 2 y 14=- 4) .=- 1( x ≠ xAB12x 2x 1 y 1 y 2 48.( 2003 年北京东城区模拟试题)从椭圆 x2+ y 2 =1( a > b > 0)上一点 M 向 x 轴作垂线,a 2b 2恰巧经过椭圆的左焦点 F 1,且它的长轴右端点A 与短轴上端点B 的连线 AB ∥ OM .( 1)求椭圆的离心率;( 2)若 Q 是椭圆上随意一点, F 2 是右焦点,求∠ F 1QF 2 的取值范围;( 3)过 F 1 作 AB 的平行线交椭圆于 C 、 D 两点,若 | CD |=3 ,求椭圆的方程 .解:( 1)由已知可设 (- , ),Mcy则有( c) 2y2a 2+=1.b2∵ M 在第二象限,∴ M (- c ,b 2) .a又由 AB ∥ OM ,可知 k AB =k OM .∴- b 2 =- b. ∴b =c . ∴ a = 2 b .acac2a2( 2)设 | F 1Q |= m ,| F 2Q |= n ,22则 m +n =2a , mn > 0.| F 1F 2|=2 c ,a =2c ,∴ cos ∠ 1 2= m 2 n 2 4c 2F QF2mn( m n) 22mn 4c 2 4a 2 4c2=2mn=2mn - 1= a 2 - 1≥ a 2 - 1= a 2 - 1=0.mn m n 2 a 2()2 当且仅当 m =n =a 时,等号成立 .故∠ F QF ∈[ 0, π ].122(3)∵ ∥ , CD =- b=- 2 .CD AB ka2设直线 CD 的方程为 y =-2(x +c ),2即 y =-2( x +b ).222x+ y =1,a 22b则 消去 y ,整理得y =-2(x +b ).2( a 2+2b 2)x 2+2a 2bx - a 2b 2=0.设 C (x 1, y 1)、 D ( x 2, y 2),∵ a 2=2b 2,∴ x 1+x 2=-2a 2b =- 4b 3=- b ,a 22b 24b 2x 1· x 2=-a 2b 2 =- 2b 4 =- b 2.a 2 2b 24b 22∴ | CD |= 1 k 2| x 1-x 2|=1 k 2· (x 1x 2 )24x 1x 2=1 (2 ) 2 · ( b)22b 2=9b 2 =3.22∴ b 2=2,则 a 2=4.∴椭圆的方程为 x 2+ y 2 =1.4 2 研究创新9. ( 2005 年春天上海, 22)( 1)求右焦点坐标是( 2, 0),且经过点(- 2,- 2 )的椭圆的标准方程 .( 2)已知椭圆 C 的方程是 x 2 + y 2=1( a >b >0). 设斜率为 k 的直线 l 交椭圆 C 于 A 、Ba 2b 2两点,的中点为 . 证明:当直线 l 平行挪动时,动点在一条过原点的定直线上 .AB MM ( 3)利用( 2)所揭露的椭圆几何性质,用作图方法找出下边给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.( 1)解:设椭圆的标准方程为x2+y2 =1, a >b >0,a 2b 2 ∴ a 2=b 2+4,即椭圆的方程为x 2 +y2 =1.b 2 4 b 2∵点(- 2,-2 )在椭圆上,∴4+2 =1.b24 b 2解得 b2=4或 b2=-2(舍).由此得 a2=8,即椭圆的标准方程为x2+ y2=1.8 4 (2)证明:设直线l的方程为y=kx +m,与椭圆 C的交点 A( x, y)、B( x , y ),1122y=kx+m,则有x2+ y2=1.a 2b2222222222解得( b+a k) x +2a kmx+a m- a b =0.2222∵ >0,∴m<b+a k,即- b 2 a 2 k 2<m< b 2 a 2 k 2.2a 2 km, y+y=kx +m+kx +m=b 22b 2m,则 x +x =-b2a 2k 2 a 2k 2121212∴ AB中点 M的坐标为(-a 2 km b2 mb2 a 2k 2,b 2a 2 k 2).∴线段 AB的中点 M在过原点的直线b2x+a2ky=0上.( 3)解:以下列图,作两条平行直线分别交椭圆于A、 B和 C、 D,并分别取 AB、 CD的中点 M、 N,连接直线MN;又作两条平行直线(与前两条直线不平行)分别交椭圆于A、B 和11 C1、D1,并分别取 A1B1、C1D1的中点 M1、N1,连接直线 M1N1,那么直线 MN和 M1N1的交点 O即为椭圆中心 .C AMA1ON C1BM1DB1N 1●思悟小结在知识的交汇点处命题,是高考命题的趋向,而分析几何与函数、三角、数列、向量等知识的亲密联系,正是高考命题的热门,为此在学习时应抓住以下几点:1.客观题求解时应注意绘图,抓住波及到的一些元素的几何意义,用数形联合法去分析解决 .2.四点重视:①重视定义在解题中的作用;②重视平面几何知识在解题中的简化功能;③重视根与系数关系在解题中的作用;④重视曲线的几何特色与方程的代数特色的一致3. 注意用好以下数学思想、方法:.①方程思想;②函数思想;③对称思想;④参数思想;⑤转变思想;⑥分类思想.除上述几种常用数学思想外,整体思想、数形联合思想、主元分析思想、正难则反省想、结构思想等也是分析几何解题中不行缺乏的思想方法. 在复习中一定赐予足够的重视,真实发挥数学解题思想作为联系知识与能力中的作用,从而提升简化计算能力.●教师下载中心教课点睛本节是圆锥曲线的综合应用,主假如曲线方程的运用、变量范围的计算、最值确实定等,解决这种问题的重点是依照分析几何自己的特色,找寻一个打破口,那么怎样找到解决问题的打破口呢?(1)联合定义利用图形中几何量之间的大小关系 . ( 2)成立目标函数,转变为求函数的最值问题 . ( 3)利用代数基本不等式 . 代数基本不等式的应用,常常需要创建条件,并进行奇妙的构想 . ( 4)联合参数方程,利用三角函数的有界性. 直线、圆或椭圆的参数方程,它们的一个共同特色是均含有三角式 . 所以,它们的应用价值在于:①经过参数示曲线上点的坐标;②利用三角函数的有界性及其变形公式来帮助求解诸如最值、题.(5)结构一个二次方程,利用鉴别式≥ 0.拓展题例【例 1】( 2005 年启东市第二次调研题)抛物线y2=4px(p>0)的准线与x 轴交于 M 点,过点 M作直线 l 交抛物线于 A、 B 两点.( 1)若线段AB的垂直均分线交x 轴于 N( x ,0),求证: x>3p;00( 2)若直线l的斜率挨次为p,p2,p3,,线段AB的垂直均分线与x 轴的交点挨次为 N, N, N,,当0<p<1时,求111的值 .++ +123| N1N2 | | N2N3 || N10 N11 |(1)证明:设直线l方程为y=k(x+p),代入y2=4px.得 k2x2+(2k2p-4p)x+k2p2=0.=4(k2p- 2p)2- 4k2·k2p2>0,得 0<k2<1.令 A(x, y)、 B( x , y),则 x +x=-2k 2 p 4 p, y +y=k(x+x +2p) =4 p,112212k 21212kAB中点坐标为( 2 p k 2 p , 2 p ).k 2k垂直均分线为y - 2 p=-1(x- 2 p k 2 p) .AB k k k2令y =0,得x0= k 2 p 2 p= +2 p.k 2p2k由上可知 0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)解:∵l的斜率挨次为p,p2,p3,时,AB中垂线与x轴交点挨次为N1,N2,N3,(0<p<1) .∴点N的坐标为(2, 0). +np 2n1| N n N n+1|=| (p+2)-( p+2) |= 2(1p 2 ),p2n1p2n 1p 2n1θ简洁地表范围等问1p 2n 1| N n N n 1 |=,2(1 p 2 )13421p 3 (1 p 19 )所求的值为 2(1p 2 ) [ p +p + +p ] = 2(1 p) 2 (1p) .【例 2】 ( 2003 年南京市模拟试题)已知双曲线: x 2- y2=1( >0, > 0), B 是右C2 b 2a极点, F 是右焦点,点 A 在 x 轴正半轴上,且知足 | OA |、| OB | 、| OF | 成等比数列,过 F作双曲线 C 在第一、三象限的渐近线的垂线l ,垂足为 P .yDPEAB FxO l( 1)求证: PA · OP =PA · FP ;( 2)若 l 与双曲线 C 的左、右两支分别订交于点D 、E ,求双曲线 C 的离心率 e 的取值范围 .( 1)证法一:yDPEOABFlxl : y =- a( x -c ) . b y =- a( x - c ),bby = x .解得( a2,ab). ∵ | OA | 、| OB | 、 | OF | 成等比数列,∴( a2, 0).ccc∴ PA =( 0,-ab), OP =( a 2,ab),c cc b2,ab) .FP =(-cc∴ PA · OP =-a 2b 2, PA · FP =-a 2b 2.c 2c 2∴ PA · OP =PA · FP .证法二:同上得 P ( a 2,ab) .cc∴ PA ⊥x 轴,PA · OP - PA · FP =PA · OF =0.∴ PA · OP =PA · FP .y =- a(x - c ),( 2)解:bb 2x 2- a 2y 2=a 2b 2.422a222∴ b x -( x - c ) =a b ,即( b 2- a4) x 2+2 a4cx -( a 4c 2+a 2b 2) =0.b 2b 2b 2a 4c 2 22)(2 a b∵ x 1· x 2=ba 4< 0,b 2b2∴ b 4> a 4,即 b 2> a 2,c 2- a 2> a 2.∴ e 2> 2,即 e > 2 .。
高考数学真题分类大全 专题25 圆锥曲线综合解析

专题25圆锥曲线综合第一部分真题分类1.(2021·江苏高考真题)已知双曲线()222210,0x y a b a b-=>>的一条渐近线与直线230x y -+=平行,则该双曲线的离心率是()A B C .2D【答案】D【解析】双曲线的渐近线为b y x a =±,易知by x a=与直线230x y -+=平行,所以=2b e a ⇒=.故选:D.2.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .6【答案】C【解析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).故选:C .3.(2021·全国高考真题(理))设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .2⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C【解析】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32bb c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即02e <≤;当32b b c ->-,即22b c <时,42222max b PB a b c =++,即422224b a b b c++≤,化简得,()2220cb -≤,显然该不等式不成立.故选:C .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB =.则双曲线的离心率为()AB C .2D .3【答案】A【解析】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22b AB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.5.(2021·全国高考真题(文))已知12,F F 为椭圆C :221164x y +=的两个焦点,P ,Q 为C上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】因为,P Q 为C 上关于坐标原点对称的两点,且12||||PQ F F =,所以四边形12PFQF 为矩形,设12||,||PF m PF n ==,则228,48m n m n +=+=,所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.6.(2021·全国高考真题(理))已知双曲线22:1(0)x C y m m-=>的一条渐近线为0my +=,则C 的焦距为_________.【答案】40my +=化简得y =,即b a =,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =.故答案为:4.7.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.【答案】32x =-【解析】抛物线C :22y px =(0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直,所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧,又||6FQ = ,(6,0),(6,)2pQ PQ p ∴+∴=-uu u r 因为PQ OP ⊥,所以PQ OP ⋅= 2602p p ⨯-=,0,3p p >∴=Q ,所以C 的准线方程为32x =-故答案为:32x =-.8.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>的离心率为3.(1)证明:a ;(2)若点9,10M ⎛ ⎝⎭在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥.①求直线l 的方程;②求椭圆C 的标准方程.【答案】(1)证明见解析;(20y -=;②2213x y +=.【解析】(1)3c e a ===,3b a ∴=,因此,a ;(2)①由(1)知,椭圆C 的方程为222213x y b b+=,即22233x y b +=,当9,1015⎛⎫ ⎪ ⎪⎝⎭在椭圆C的内部时,22293310b ⎛⎛⎫+⋅< ⎪ ⎝⎭⎝⎭,可得10b >.设点()11,P x y 、()22,Q x y,则12129210210x x y y +⎧=⎪⎪⎨+⎪=-⎪⎩,所以,12129y y x x +=+,由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x x x y y y y +-++-=,所以()12121212133y y x x x x y y -+⎛=-=-⨯= -+⎝所以,直线l方程为910y x ⎛⎫-- ⎪ ⎭⎝⎭,即y =所以,直线l0y --=;②联立)222331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->,由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥ ,而()11,OP x y = ,()22,OQ x y =,))()12121212121211433OP OQ x x y y x x x x x x x x ∴⋅=+=--=-++()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==,因此,椭圆C 的方程为2213x y +=.9.(2021·湖南高考真题)已知椭圆()2222:10x y C a b a b+=>>经过点()20A ,,且离心率为2.(1)求椭圆C 的方程;(2)设直线1y x =-与椭圆C 相交于P Q ,两点,求AP AQ ⋅的值.【答案】(1)2214x y +=;(2)15.【解析】(1)椭圆()2222:10x y C a b a b+=>>经过点()20A ,,所以2a =,2c ca ==,所以c =222431b a c =-=-=,所以椭圆C 的方程为2214x y +=.(2)由22141x y y x ⎧+=⎪⎨⎪=-⎩得2580x x -=,解得128,05x x ==,所以118583155x y ⎧=⎪⎪⎨⎪=-=⎪⎩,或110011x y =⎧⎨=-=-⎩,可得83,55P ⎛⎫ ⎪⎝⎭,()0,1Q -,或者83,55Q ⎛⎫⎪⎝⎭,()0,1P -,所以()834312,02,155555AP AQ ⎛⎫⋅=-⋅--=-= ⎪⎝⎭ .10.(2021·天津高考真题)已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B ,,且BF =(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.【答案】(1)2215x y +=;(2)0x y -=.【解析】(1)易知点(),0F c 、()0,B b,故BF a ===因为椭圆的离心率为5c e a ==,故2c =,1b ==,因此,椭圆的方程为2215x y +=;(2)设点()00,M x y 为椭圆2215x y +=上一点,先证明直线MN 的方程为0015x xy y +=,联立00221515x xy y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 并整理得220020x x x x -+=,2200440x x ∆=-=,因此,椭圆2215x y +=在点()00,M x y 处的切线方程为0015x x y y +=.在直线MN 的方程中,令0x =,可得01y y =,由题意可知00y >,即点010,N y ⎛⎫⎪⎝⎭,直线BF 的斜率为12BF b k c =-=-,所以,直线PN 的方程为012y x y =+,在直线PN 的方程中,令0y =,可得012x y =-,即点01,02P y ⎛⎫-⎪⎝⎭,因为//MP BF ,则MPBF k k =,即20000002112122y y x y x y ==-++,整理可得()20050x y +=,所以,005x y =-,因为222000615x y y +==,00y ∴>,故06y =,06x =-,所以,直线l的方程为1x y =,即0x y -=.第二部分模拟训练一、单选题1.已知P (x 0,y 0)是椭圆C :24x +y 2=1上的一点,F 1,F 2分别是椭圆C 的左、右焦点,若12PF PF ⋅<0,则x 0的取值范围是A .2626,33⎛⎫-⎪ ⎪⎝⎭B .2323,33⎛⎫-⎪ ⎪⎝⎭C .33,33⎛⎫- ⎪ ⎪⎝⎭D.,33⎛⎫- ⎪ ⎪⎝⎭【答案】A【解析】如图,设以O为原点、半焦距c =为半径的圆x 2+y 2=3与椭圆交于A ,B 两点.由2222314x y x y ⎧+⎪⎨+⎪⎩==得263x ±=,要使12PF PF ⋅<0,则点P 在A 、B 之间,∴x 0的取值范围是2626,33⎛⎫- ⎪ ⎪⎝⎭.故选A.2.已知抛物线C 1:21615y x =和圆C 2:(x -6)2+(y -1)2=1,过圆C 2上一点P 作圆的切线MN 交抛物线C ,于M ,N 两点,若点P 为MN 的中点,则切线MN 的斜率k >1时的直线方程为()A .4x -3y -22=0B .4x -3y -16=0C .2x -y -11+5=0D .4x -3y -26=0【答案】D【解析】画出曲线图像如下图:由题意知,切线MN 的斜率k 存在且不为0,设点00(,)P x y ,设直线MN 的方程为:(0)x my n m =+≠,其中11k m=>,则01m <<,联立21615x my ny x =+⎧⎪⎨=⎪⎩,可得2161601515y my n --=,则有,121615y y m +=,2121216()2215x x m y y n m n +=++=+,根据中点坐标公式可得,20815x m n =+,0815y m =,又直线MN 与圆C 21=,即22(6)1m n m --=+①,依题意,直线C 2P 与直线MN 垂直,则28111518615mm mn -⋅=-+-,整理得218861515n m m =--+②,将②代入①并整理得,43264240642402250m m m m -+-+=,降次化简可得,32(43)(16482075)0m m m m ----=③,令32()16482075g m m m m =---,则222()48962048(1)68g m m m m '=--=--,因为01m <<,所以2()48(1)680g m m '=--<,即()g m 在(0,1)单调递减,则()(0)750g m g <=-<在(0,1)上恒成立,即()=0g m 在(0,1)无解,从而③式的解只有一个,34m =,代入②式可得,132n =,所以,直线MN 的方程为:31342x y =+,整理得,4x -3y -26=0.故选:D.3.已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则221213e e +的值为()A .1B .2512C .4D .16【答案】C【解析】如图,设椭圆的长半轴长为1a ,双曲线的半实轴长为2a ,则根据椭圆及双曲线的定义1211222,2PF PF a PF PF a +=-=,112212,PF a a PF a a ∴=+=-,设12122,3F F c F PF π=∠=,则在12PF F ∆中由余弦定理得()()()()2221212121242cos3c a a a a a a a a π=++--+-,∴化简2221234a a c +=,该式变成2221314e e +=,故选:C.4.已知双曲线2221(0)x y a a -=>的离心率为3,抛物线22(0)y px p =>的焦点与双曲线的右焦点F 重合,其准线与双曲线交于点(),0,2M M N y MF FQ >=,点R 在x 轴上.若||||RN RQ -最大,则点R 的坐标为()A .(6,0)B .(8,0)C .(9,0)D .(10,0)【答案】D【解析】因为双曲线2221(0)x y a a -=>的离心率为233,即233c a =,又221a c +=,所以2a c ==,即(20)F ,,因此抛物线的准线方程为2x =-,联立221(2,(2,3332x y M N x ⎧-=⎪⇒---⎨⎪=-⎩,设(,)Q x y ,由2MF FQ = 可得()()2(2)22(4,60203x Q y ⎧--=-⎪⇒-⎨-=-⎪⎩,结合下图可知,当R 点运动到R ',即,,N Q R 三点共线时,||||RN RQ -最大,设此时(,0)R r ',则有//NQ QR ',即33363610424r r -+=⇒=+-,因此(10,0)R ,故选:D.5.已知抛物线2:4C y x =和点(2,0)D ,直线2x ty =-与抛物线C 交于不同两点A ,B ,直线BD 与抛物线C 交于另一点E .给出以下判断:①以BE 为直径的圆与抛物线准线相离;②直线OB 与直线OE 的斜率乘积为2-;③设过点A ,B ,E 的圆的圆心坐标为(,)a b ,半径为r ,则224a r -=.其中,所有正确判断的序号是()A .①②B .①③C .②③D .①②③【答案】D【解析】如图,设F 为抛物线C 的焦点,以线段BE 为直径的圆为M ,则圆心M 为线段BE的中点.设B ,E 到准线的距离分别为1d ,2d ,M 的半径为R ,点M 到准线的距离为d ,显然B ,E ,F 三点不共线,则12||||||222d d BF EF BE d R ++==>=.所以①正确.由题意可设直线DE 的方程为2x my =+,代入抛物线C 的方程,有2480y my --=.设点B ,E 的坐标分别为()11,x y ,()22,x y ,则124y y m +=,128y y =-.所以()()()21212121222244x x my my m y y m y y =++=+++=.则直线OB 与直线OE 的斜率乘积为12122y y x x =-.所以②正确.将2x ty =-代入抛物线C 的方程可得,18A y y =,从而,2A y y =-.根据抛物线的对称性可知,A ,E 两点关于x 轴对称,所以过点A ,B ,E 的圆的圆心N 在x 轴上.由上,有124y y m +=,21244x x m +=+,则()()2224212121212||44164832BE x x x x y y y y m m =+-++-=++.所以,线段BE 的中垂线与x 轴的交点(即圆心N )横坐标为224m +,所以224a m =+.于是,222222421212||||244128222BE x x y y r MN m m m ++⎛⎫⎛⎫⎛⎫=+=+-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,代入21244x x m +=+,124y y m +=,得24241612r m m =++,所以()()22224224416124a r m m m -=+-++=.所以③正确.故选:D 6.已知(0,3)A ,若点P 是抛物线28x y =上任意一点,点Q 是圆22(2)1x y +-=上任意一点,则2||||PA PQ 的最小值为()A .4-B .1-C .2-D .1+【答案】A【解析】设点,由于点P 是抛物线上任意一点,则20008(0)x y y =≥, 点(0,3)A ,则22222000000(3)8(3)29PA x y y y y y =+-=+-=++,由于点Q 是圆22(2)1x y +-=上任意一点,所以要使2||PA PQ 的值最小,则PQ 的值要最大,即点P 到圆心的距离加上圆的半径为PQ 的最大值,则0max 113PQ y =+==+,∴22002000000()4()12||129333)3(3243y y y y P P y y y Q y A -++++≥==+++++-+,003312()y y +++≥=∴2||PA PQ的最小值为4-,故答案选A .7.以正方形的四个顶点分别作为椭圆的两个焦点和短轴的两个端点,A ,B ,M 是椭圆上的任意三点(异于椭圆顶点),若存在锐角θ,使cos sin OM OA OB θθ=⋅+⋅ ,(0为坐标原点)则直线OA ,OB 的斜率乘积为___.【答案】12-或-2【解析】由题意可设椭圆方程为2222x y 12b b+=,又设A (1x ,1y ),B (2x ,2y ),()1212OM cosθOA sinθOB M cosθx sinθx cosθy sinθy =⋅+⋅⇒⋅+⋅⋅+⋅ ,因为M 点在该椭圆上,∴()()22121222cosθx sinθx cosθy sinθy 12b b ⋅+⋅⋅+⋅+=,则12121222122sinθcosθ2sinθcosθ102b b 2x x y y y y x x ⋅⋅+=⇒=-又因为A 、B 点在也该椭圆上,∴221122x y 12b b +=,222222x y 12b b+=∴1x 12<<,即直线OA 、OB 的斜率乘积为12-,同理当椭圆方程为2222y x 12b b+=时直线OA 、OB 的斜率乘积为﹣2.故答案为12-或﹣2.8.在平面直角坐标系xOy 中,椭圆()222139x y a a +=>与为双曲线22214x y m -=有公共焦点1F ,2F .设P 是椭圆与双曲线的一个交点,则12PF F △的面积是_____________.【答案】6.【解析】根据对称性,不妨设P 在第一象限.由题设可知()()22221249444F F a m c =-=+=.即2213a m -=,229a c -=,224c m -=.根据椭圆与双曲线的定义得,在12PF F △中,由余弦定理得()()222222222222513a c c m a m c a m a m ---+-===--.所以,1212sin 13F PF ∠=,()122212121112sin 62213PF F S PF PF F PF a m =⋅∠=⨯-⨯⋅⋅=△.故答案为:69.已知1F ,2F 是双曲线22:1259x y Γ-=的左、右焦点,点P 为Γ上异于顶点的点,直线l 分别与以1PF ,2PF 为直径的圆相切于A ,B 两点,若向量AB ,12F F 的夹角为θ,则cos θ=___________.【答案】34【解析】如图,设以PF 1,PF 2为直径的圆的圆心分别为C ,D ,连接AC ,BD ,过D 作DE ⊥AC 于点E ,连接CD ,则||DE =,因为直线AB 是圆C 和圆D 的公切线,且切点分别是A ,B ,所以AC ⊥AB ,BD ⊥AB ,则四边形ABDE 是矩形,所以|AB |=|DE |,|AE |=|BD |.且1||2PF AC =,2||2PF BD =,易知|CE |=|AC |-|AE |=|AC |-|BD |=1222PF PF -,根据双曲线的定义知,|PF 1|-|PF 2|=10,所以|CE |=5.因为12||2F F CD ==222||||+||CD CE DE =|可得||3DE =,即|AB |=3,因为向量12,AB F F 的夹角θ即为,ED CD 的夹角,所以||cos||34DE CD θ==.故答案为:33434.10.在直角坐标系xOy 中,双曲线22221x y a b-=(00a b >>,)的离心率2e >,其渐近线与圆22(2)4x y +-=交x 轴上方于A B ,两点,有下列三个结论:①||||OA OB OA OB →→→→-<+;②||OA OB →→-存在最大值;③||6OA OB →→+>.则正确结论的序号为_______.【答案】①③【解析】 2c b e a a==>⇒>,∴60AOB ∠< ,对①,根据向量加法的平行四边形法则,结合60AOB ∠< ,可得||||OA OB OA OB →→→→-<+成立,故①正确;对②,||||OA OB AB →→-= ,由于60AOB ∠< ,∴AOB ∠没有最大值,∴||AB 没有最大值,故②错误;对③,当60AOB ∠= 时,||||22cos 30OA OB ==⋅=∴21||12122362OA OB OA OB →→+=++⋅⋅⋅= ,又 60AOB ∠< ,∴2||36OA OB →→+>,∴,故③正确;故答案为:①③.。
高中圆锥曲线综合部分总复习

圆锥曲线与方程综合部分一、知识点梳理椭圆、双曲线:二、章节知识点回顾:椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的标准方程,并通过分析标准方程研究这三种曲线的几何性质1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2.椭圆的标准方程:12222=+b y a x ,12222=+b x a y (0>>b a )3.椭圆的性质:由椭圆方程12222=+by a x (0>>b a )(1)范围: a x a ≤≤-,b y b ≤≤-,椭圆落在b y a x ±=±=,组成的矩形中. (2)对称性:图象关于y 轴对称.图象关于x 轴对称.图象关于原点对称原点叫椭圆的对称中心,简称中心.x 轴、y 轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点椭圆共有四个顶点: )0,(),0,(2a A a A -,),0(),,0(2b B b B -加两焦点)0,(),0,(21c F c F -共有六个特殊点21A A 叫椭圆的长轴,21B B 叫椭圆的短轴.长分别为b a 2,2 b a ,分别为椭圆的长半轴长和短半轴长椭圆的顶点即为椭圆与对称轴的交点(4)离心率: 椭圆焦距与长轴长之比a c e =⇒2)(1abe -=10<<e椭圆形状与e 的关系:0,0→→c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为圆为椭圆在1=e 时的特例4.双曲线的定义:平面内到两定点21,F F 的距离的差的绝对值为常数(小于21F F )的动点的轨迹叫双曲线 即a MF MF 221=- 这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距在同样的差下,两定点间距离较长,则所画出的双曲线的开口较开阔(→两条平行线)两定点间距离较短(大于定差),则所画出的双曲线的开口较狭窄(→两条射线)双曲线的形状与两定点间距离、定差有关 5.双曲线的标准方程及特点:(1)双曲线的标准方程有焦点在x 轴上和焦点y 轴上两种:焦点在x 轴上时双曲线的标准方程为:12222=-b y a x (0>a ,0>b );焦点在y 轴上时双曲线的标准方程为:12222=-bx a y (0>a ,0>b )6.c b a ,,有关系式222b a c +=成立,且0,0,0>>>c b a 其中a 与b 的大小关系:可以为b a b a b a ><=,,7焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母2x 、2y 项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴而双曲线是根据项的正负来判断焦点所在的位置,即2x 项的系数是正的,那么焦点在x 轴上;2y 项的系数是正的,那么焦点在y 轴上 8.双曲线的几何性质:(1)范围、对称性由标准方程12222=-by a x ,从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线双曲线不封闭,但仍称其对称中心为双曲线的中心 (2)顶点顶点:()0,),0,(21a A a A -,特殊点:()b B b B -,0),,0(21实轴:21A A 长为2a, a 叫做半实轴长虚轴:21B B 长为2b ,b 叫做虚半轴长 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异 (3)渐近线过双曲线12222=-by a x 的渐近线x a b y ±=(0=±b y a x )(4)离心率双曲线的焦距与实轴长的比aca c e ==22,叫做双曲线的离心率范围:1>e 双曲线形状与e 的关系:1122222-=-=-==e a c a a c a b k ,e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔由此可知,双曲线的离心率越大,它的开口就越阔 9.等轴双曲线定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e 10.共渐近线的双曲线系如果已知一双曲线的渐近线方程为x a b y ±=)0(>±=k x kakb,那么此双曲线方程就一定是:)0(1)()(2222>±=-k kb y ka x 或写成λ=-2222b y a x 11.共轭双曲线以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线 区别:三量a,b,c 中a,b 不同(互换)c 相同共用一对渐近线 双曲线和它的共轭双曲线的焦点在同一圆上确定双曲线的共轭双曲线的方法:将1变为-112.双曲线的焦点弦:定义:过焦点的直线割双曲线所成的相交弦 焦点弦公式:当双曲线焦点在x 轴上时,过左焦点与左支交于两点时: )(221x x e a AB +--= 过右焦点与右支交于两点时:)(221x x e a AB ++-= 当双曲线焦点在y 轴上时,过左焦点与左支交于两点时:)(221y y e a AB +--= 过右焦点与右支交于两点时:)(221y y e a AB ++-=13.双曲线的通径:定义:过焦点且垂直于对称轴的相交弦 ab d 22=14 抛物线定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线 15.抛物线的准线方程:(1))0(22>=p px y , 焦点:)0,2(p ,准线l :2px -=(2))0(22>=p py x , 焦点:)2,0(p ,准线l :2py -=(3))0(22>-=p px y , 焦点:)0,2(p -,准线l :2px =(4) )0(22>-=p py x , 焦点:)2,0(p -,准线l :2py =相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的41,即242pp = 不同点:(1)图形关于X 轴对称时,X 为一次项,Y 为二次项,方程右端为px 2±、左端为2y ;图形关于Y 轴对称时,X 为二次项,Y 为一次项,方程右端为py 2±,左端为2x (2)开口方向在X 轴(或Y 轴)正向时,焦点在X 轴(或Y 轴)的正半轴上,方程右端取正号;开口在X 轴(或Y 轴)负向时,焦点在X 轴(或Y 轴)负半轴时,方程右端取负号 16.抛物线的几何性质 (1)范围因为p >0,由方程()022>=p px y 可知,这条抛物线上的点M 的坐标(x ,y)满足不等式x≥0,所以这条抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸. (2)对称性以-y 代y ,方程()022>=p px y 不变,所以这条抛物线关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴. (3)顶点抛物线和它的轴的交点叫做抛物线的顶点.在方程()022>=p px y 中,当y=0时,x=0,因此抛物线()022>=p px y 的顶点就是坐标原点.(4)离心率抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示.由抛物线的定义可知,e=1. 17抛物线的焦半径公式: 抛物线)0(22>=p px y ,0022x pp x PF +=+= 抛物线)0(22>-=p px y ,0022x pp x PF -=-= 抛物线)0(22>=p py x ,0022y pp y PF +=+= 抛物线)0(22>-=p py x ,0022y pp y PF -=-= 18.直线与抛物线:(1)位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点) 将b kx y l +=:代入0:22=++++F Ey Dx Cy Ax C ,消去y ,得到 关于x 的二次方程02=++c bx ax (*) 若0>∆,相交;0=∆,相切;0<∆,相离 综上,得:联立⎩⎨⎧=+=px y b kx y 22,得关于x 的方程02=++c bx ax当0=a (二次项系数为零),唯一一个公共点(交点) 当0≠a ,则若0>∆,两个公共点(交点) 0=∆,一个公共点(切点) 0<∆,无公共点 (相离) (2)相交弦长: 弦长公式:21k ad +∆=, (3)焦点弦公式:抛物线)0(22>=p px y , )(21x x p AB ++= 抛物线)0(22>-=p px y , )(21x x p AB +-= 抛物线)0(22>=p py x , )(21y y p AB ++= 抛物线)0(22>-=p py x ,)(21y y p AB +-=(4)通径:定义:过焦点且垂直于对称轴的相交弦 通径:p d 2= (5)若已知过焦点的直线倾斜角θ则⎪⎩⎪⎨⎧=-=px y p x k y 2)2(20222=--⇒p y k p y ⎪⎩⎪⎨⎧-==+⇒221212p y y k p y y θsin 24422221p p kp y y =+=-⇒θθ221sin 2sin 1p y y AB =-=⇒ (6)常用结论:⎪⎩⎪⎨⎧=-=pxy p x k y 2)2(20222=--⇒p y k p y 和04)2(22222=++-p k x p p k x k 221p y y -=⇒和421px x =----------------------------------------------------------------------------------------------------------------- 椭圆习题: 选择题1.已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为( )A .2B .3C .5D .72.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( )A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对 3.如果222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .()+∞,0B .()2,0C .()+∞,1D .()1,04.以椭圆1162522=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A .1481622=-y x B .127922=-y x C .1481622=-y x 或127922=-y x D .以上都不对 5.椭圆1244922=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直,则△21F PF 的面积为( )A .20B .22C .28D .246.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A .1222=-y x B .1422=-y x C .13322=-y x D .1222=-y x 填空题:7.若椭圆221x my +=_______________. 8.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。
高三高考数学总复习《圆锥曲线》题型归纳与汇总

高考数学总复习题型分类汇《圆锥曲线》篇经典试题大汇总目录【题型归纳】题型一求曲线的方程 (3)题型二最值(范围)问题 (4)题型三定点定值与存在性 (6)【巩固训练】题型一求曲线的方程 (8)题型二最值(范围)问题 (9)题型三定点定值与存在性 (11)高考数学《圆锥曲线》题型归纳与训练【题型归纳】题型一 求曲线的方程例1 已知定点()0,3-G ,S 是圆()723:22=+-y x C (C 为圆心)上的动点,SG 的垂直平分线与SC 交于点E ,设点E 的轨迹为M . 求M 的方程. 【答案】见解析【解析】由题意知ES EG =,所以26=+=+EC ESEC EG ,又因为266<=GC .所以点E 的轨迹是以G ,C 为焦点,长轴长为26的椭圆,动点E 的轨迹方程为191822=+y x . 例2 设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过点M 作x 轴的垂线,垂足为N , 点P 满足2NP NM =.求点P 的轨迹方程.【答案】见解析【解析】如图所示,设(),P x y ,(),0N x ,()1,M x y . 由2NP NM =知,12y y =,即12y =.又点M 在椭圆2212x y +=上,则有22122x y +=,即222x y +=.例3 如图,矩形ABCD 中, ()()()()2,0,2,0,2,2,2,2A B C D -- 且,AM AD DN DC λλ==,[]0,1,AN λ∈交BM 于点Q .若点Q 的轨迹是曲线P 的一部分,曲线P 关于x 轴、y 轴、原点都对称,求曲线P 的轨迹方程.【答案】Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【解析】设(),Q x y ,由,AM AD DN DC λλ==,求得()()2,2,42,2M N λλ--, ∵1,22QA AN QB BM k k k k λλ====-,∴11224QA QB k k λλ⎛⎫⋅=⋅-=- ⎪⎝⎭, P x,y ()NM Oxy∴1224y y x x ⋅=-+-,整理得()22120,014x y x y +=-≤≤≤≤.可知点Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【易错点】求轨迹问题学生容易忽视范围 【思维点拨】高考中常见的求轨迹方程的方法有:1.直译法与定义法:直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简; 定义法求轨迹方程:轨迹方程问题中,若能得到与所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.2.相关点法:找动点之间的转化关系(平移,伸缩,中点,垂直等),用要求的代替已知轨迹的,代入化简3.参数法:可用联立求得参数方程,消参.注意此种问题通常范围有限制.4.交轨法:联立求交点,变形的轨迹. 题型二 最值(范围)问题例1 已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则DE AB +的最小值为( )A. 16B. 14C. 12D. 10 【答案】A【解析】设()()()()11223344,,,,,,,A x y B x y D x y E x y ,直线1l 的方程为()11y k x =-,联立方程()214 1y xy k x ==-⎧⎪⎨⎪⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=- 212124k k +=, 同理直线2l 与抛物线的交点满足:22342224k x x k ++=, 由抛物线定义可知12342AB DE x x x x p +=++++=22122222121224244448816k k k k k k ++++=++≥=, 当且仅当121k k =-=(或1-)时,取等号.【易错点】本题考查抛物线的焦点弦长,利用抛物线的焦点弦长公式,表示出DE AB +,然后利用基本不等式求最值.对相关流程应有所熟练例2 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【答案】见解析【解析】(1)2(c,0)F c c 设,由条件知,222=2, 1.c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (2)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,23=16(43)0,4k k x ∆->>=当即时,12PQ x =-=从而O PQ d OPQ =∆又点到直线的距离所以的面积21=241OPQ S d PQ k ∆⋅=+244,0,.44OPQ t t t S t t t∆=>==++则44,20.2t t k t +≥==±∆>因为当且仅当,即OPQ ∆所以,当的面积最大时,l 的方程为2222y x y x =-=--或. 【思维点拨】 圆锥曲线中的取值范围问题常用的方法有以下几个:(1)利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;(2)利用基本不等式求出参数的取值范围;(3)利用函数的值域的求法(甚至求导),确定参数的取值范围. 题型三 定点定值与存在性问题例1 已知椭圆C :()222210x y a b a b +=>>上.(1)求C 的方程.(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .直线OM 的斜率与直线l 的斜率的乘积为定值. 【答案】见解析【解析】 (1=22421a b+=,解得28a =,24b =. 所以C 的方程为22184x y +=. (2)设直线l :()00y kx b kb =+≠≠,,()11A x y ,, ()22B x y ,,()M M M x y ,.将 y kx b =+代入22184x y +=得()22221+4280k x kbx b ++-=. 故1222221M x x kb x k +-==+,221M M by kx b k =+=+ . 于是直线OM 的斜率12M OM M y k x k ==-,即12OM k k ⋅=-. 所以直线OM 的斜率与直线l 的斜率的乘积为定值.【思维点拨】解析几何是高考必考内容之一,在命题时多从考查各种圆锥曲线方程中的基本量关系及运算,在直线与圆锥曲线关系中.一般用方程的思想和函数的观点来解决问题,并会结合中点坐标,方程根与函数关系来求解.例2 已知抛物线2:4C y x =,点()0,m M 在x 轴的正半轴上,过M 点的直线l 与抛物线C 相交于A ,B 两点,O 为坐标原点.(1) 若1=m ,且直线l 的斜率为1,求以AB 为直径的圆的方程;(2) 是否存在定点M ,使得不论直线:l x ky m =+绕点M 如何转动,2211AMBM+恒为定值?【答案】(1)()()223216x y -+-=. (2)存在定点M (2, 0). 【解析】(1)当1=m 时,()0,1M ,此时,点M 为抛物线C 的焦点,直线l 的方程为1-=x y ,设()()1122,,A x y B x y ,,联立24{ 1y xy x ==-,消去y 得, 2610x x -+=,∴126x x +=, 121224y y x x +=+-=,∴圆心坐标为(3, 2).又1228AB x x =++=,∴圆的半径为4,∴圆的方程为()()223216x y -+-=. (2)由题意可设直线l 的方程为x ky m =+,则直线l 的方程与抛物线2:4C y x =联立,消去x 得: 2440y ky m --=,则124y y m =-, 124y y k +=,()()22222211221111AMBMx m y x m y +=+-+-+()()()22122222222121211111y y k y k y k y y +=+=+++ ()()()()222121222222221221682111621y y y y k m k mky y k m m k +-++===+++ 对任意k R ∈恒为定值, 于是2=m ,此时221114AMBM+=. ∴存在定点()0,2M ,满足题意. 【易错点】定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果(取特殊位置或特殊值),因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.【思维点拨】定点、定值问题通常先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.在求解中通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.【巩固训练】题型一 求曲线的方程1.设圆222150x y x ++-=的圆心为A ,直线l 过点()0,1B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC的平行线交AD 于点E .证明EA EB +为定值,并写出点E 的轨迹方程.【答案】13422=+y x (0≠y ) 【解析】因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为13422=+y x (0≠y ).2.已知动圆G 过定点()4,0F ,且在y 轴上截得的弦长为8.求动圆G 的圆心点G 的轨迹方程; 【答案】28y x =【解析】设动圆圆心(),G x y ,设圆交y 轴于,M N 两点,连接,GF GM , 则GF GM =,过点G 作GH MN ⊥,则点H 是MN 的中点, 显然()22224,4GM x GF x y =+=-+,于是()222244x y x -+=+,化简整理得28y x =,故的轨迹方程为28y x =.3.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.【答案】(1)见解析; (2)12-=x y .【解析】由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .(1)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=.所以FQ AR ∥. (2)设l 与x 轴的交点为)0,(1x D , 则1111,2222ABF PQF a b S b a FD b a x S -=-=--=△△. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y b a =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为12-=x y .题型二 最值(范围)问题1.已知动点E 到点A ()2,0与点B ()2,0-的直线斜率之积为14-,点E 的轨迹为曲线C . (1)求C 的方程;(2)过点D ()1,0作直线l 与曲线C 交于P , Q 两点,求OP OQ ⋅的最大值.【答案】(1)()22124x y x +=≠±(2)14 【解析】(1)设(),E x y ,则2x ≠±.因为E 到点A ()2,0,与点B ()2,0-的斜率之积为14-,所以122y yx x ⋅=-+-,整理得C 的方程为()22124x y x +=≠±. (2)当l 垂直于轴时,l 的方程为1x =,代入2214x y +=得P ⎛ ⎝⎭,1,Q ⎛ ⎝⎭.11,4OP OQ ⎛⎛⋅=⋅= ⎝⎭⎝⎭. 当l 不垂直于x 轴时,依题意可设()()10y k x k =-≠,代入2214x y +=得 ()2222148440k xk x k +-+-=.因为()216130k ∆=+>,设()11,P x y , ()22,Q x y .则2122814k x x k +=+, 21224414k x x k -=+.()()21212121211OP OQ x x y y x x k x x ⋅=+=+-- ()()22212121k x x k x x k =+-++14+21174416k =-+ 14< 综上OP OQ ⋅ 14≤,当l 垂直于x 轴时等号成立,故OP OQ ⋅的最大值是14.2.设椭圆()2222:10x y M a b a b +=>>经过点12,,P F F ⎭是椭圆M 的左、右焦点,且12PF F ∆的面积为2. (1)求椭圆M 的方程;(2)设O 为坐标原点,过椭圆M 内的一点()0,t 作斜率为k 的直线l 与椭圆M 交于,A B 两点,直线,OA OB 的斜率分别为12,k k ,若对任意实数k ,存在实数m ,使得12k k mk +=,求实数m 的取值范围.【答案】(1)22143x y +=;(2)[)2,m ∈+∞. 【解析】(1)略(2)设直线l 的方程为y kx t =+,由221{ 43x y y kx t+==+,得()2223484120k x ktx t +++-=,设()()1122,,,A x y B x y ,则21212228412,3434kt t x x x x k k -+=-=++,()212121221212122223t x x y y t t kt k k k k k k x x x x x x t ++=+=+++=+=--, 由12k k mk +=对任意k 成立,得22223t m t =--,∴()232m t m-=,又()0,t 在椭圆内部中,∴203t ≤<,∴2m ≥,即[)2,m ∈+∞.题型三 定点定值与存在性问题1.已知12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,离心率为12, ,M N 分别是椭圆的上、下顶点,22•2MF NF =-.(1)求椭圆E 的方程;(2)若直线y kx m =+与椭圆E 交于相异两点,A B ,且满足直线,MA MB 的斜率之积为14,证明:直线AB 恒过定点,并求定点的坐标.【答案】(1)22143x y +=(2)直线AB恒过定点(0,.【解析】(1)由题知()0,2c F ,()b M ,0,()b N -,0,22222-=-=⋅∴b c NF MF ①由21==a c e ,得c a 2= ② 又222cb a =- ③ 由①②③联立解得:42=a ,32=b ∴椭圆E 的方程为13422=+y x . (2)证明:由椭圆E 的方程得,上顶点()3,0M ,设()11,y x A ,()22,y x B ,由题意知,01≠x ,02≠x由⎪⎩⎪⎨⎧=++=13422y x m kx y 得:()()034843222=-+++m kmx x k∴221438kkmx x +-=+,()22214334k m x x +-=, 又111133x m kx x y k MA -+=-=,222233x m kx x y k MB -+=-=, 由41=⋅NB MA k k ,得()()2121334x x m kx m kx =-+-+, ()()()()()()0433483414342222=+-+--+--k m km m k k m ,化简得:06332=+-m m 解得:3=m 或32=m ,结合01≠x ,02≠x 知32=m ,即直线AB 恒过定点()32,0.2.已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.【答案】(1) 1422=+y x (2)见解析. 【解析】(1)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (2)由(1)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y .令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN .综上,BM AN ⋅为定值.3. 在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点 到(0,2)Q 的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y += 相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.【答案】(1) 2213x y += (2)见解析【解析】(1)由2223c e c a a ==⇒=,所以222213b ac a =-= 设(,)P x y 是椭圆C 上任意一点,则22221x y a b+=,所以222222(1)3y x a a y b =-=-||PQ ===所以,当1y =-时,||PQ 3=,可得a =1,b c ==故椭圆C 的方程为:2213x y += (2)存在点M 满足要求,使OAB ∆得面积最大.假设直线:1l mx ny +=与圆22:1O x y +=相交于不同两点,A B , 则圆心O 到l的距离1d =<,∴221m n +> ①因为(,)M m n 在椭圆C 上,所以2213m n +=②,由①②得:203m <∵||AB ==所以1||2OABSAB d =⋅=2213m n =-代入上式得213221213OABmS m m ∆==+⋅,当且仅当22231(0,3]32m m =⇒=∈,∴2231,22m n ==,此时满足要求的点(M 有四个. 此时对应的OAB ∆的面积为12. 4.已知过抛物线()022>=p px y 的焦点F 的直线交抛物线于()()()112212,,,A x y B x y x x < 两点,且6AB =.(1)求该抛物线E 的方程;(2)过点F 任意作互相垂直的两条直线12,l l ,分别交曲线E 于点,C D 和,M N .设线段,CD MN 的中点分别为,P Q ,求证:直线PQ 恒过一个定点.【答案】(1)24y x = (2)直线PQ 恒过定点()3,0.【解析】(1)抛物线的焦点,02p F ⎛⎫⎪⎝⎭,∴直线AB 的方程为:2p y x ⎫=-⎪⎭联立方程组22{ 2y pxp y x =⎫=-⎪⎭,消元得: 22204p x px -+=, ∴212122,4px x p xx +==∴6AB ===,解得2p =±.∵0p >,∴抛物线E 的方程为:24y x =.(2)设,C D 两点坐标分别为()()1122,,,x y x y ,则点P 的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭..由题意可设直线1l 的方程为()()10y k x k =-≠. 由()24{1y x y k x ==-,得()2222240k x k x k -++=.()24224416160k k k ∆=+-=+>因为直线1l 与曲线E 于,C D 两点,所以()1212122442,2x x y y k x x k k+=++=+-=. 所以点P 的坐标为2221,k k ⎛⎫+⎪⎝⎭. 由题知,直线2l 的斜率为1k-,同理可得点Q 的坐标为()212,2k k +-. 当1k ≠±时,有222112k k+≠+,此时直线PQ 的斜率2222221112PQ kk k k k k k+==-+--. 所以,直线PQ 的方程为()222121k y k x k k+=---,整理得()230yk x k y +--=. 于是,直线PQ 恒过定点()3,0; 当1k=±时,直线PQ 的方程为3x =,也过点()3,0.综上所述,直线PQ 恒过定点()3,0.新课程标准的内容与现形课标内容的对比如下表:与现形课标对比,必修3中的“算法初步”删掉了;删掉了必修5中的解三角形,不等式的大部分内容。
高考数学总复习 8-7 圆锥曲线的综合问题(理)课件 新人教B版

点评: 1.点差法的一个基本步骤是:点 A(x1, y1), B(x2,y2)都在圆锥曲线 f(x· y)=0 上, ∴f(x1,y1)=0, f(x2, y2)= 0,两式相减 f(x1,y1)-f(x2,y2)= 0,然后变形构造 y2- y1 出 及 x1+ x2 和 y1+y2,再结合已知条件求解. x2- x1
1 y= 3x-3 x=6, (2)解方程组 1 22 ,得 5 y=- x- y=- . 3 9 2 所以直线 l1 和 l1、 l2 与
Ax+ By+ C= 0 2.解方程组 fx, y= 0
时,若消去 y,得到
关于 x 的方程 ax2+ bx+ c= 0,这时要考虑 a=0 和 a≠ 0 两种情况,对双曲线和抛物线而言,一个公共点的情况 要考虑全面,除 a≠ 0,Δ= 0 外,当直线与双曲线的渐近 线平行时,只有一个交点;当直线与抛物线的对称轴平 行时,只有一个交点. 上述两种情形联立方程组消元后,二次项系数为 0, 即只能得到一个一次方程.
x2 y2 [例 1] P(1,1)为椭圆 + = 1 内的一定点,过 P 点 4 2 引一弦,与椭圆相交于 A、B 两点,且 P 恰好为弦 AB 的中点,如图所示,求弦 AB 所在的直线方程及弦 AB 的 长度.
解析: 设弦 AB 所在的直线方程为 y- 1= k(x- 1), A、B 两点坐标分别为 (x1, y1), (x2,y2),则
2.中点弦问题除了用点差法外,求弦长时应注意是 → → 否过焦点,遇到 AO⊥BO 的情况,常用AO· BO= x1x2+ y1y2= 0 解决,有时中点弦问题还可以利用对称、特例法 解决.
高考数学专题复习-完美版圆锥曲线知识点总结

高考数学专题复习-完美版圆锥曲线知识点总结1.椭圆的概念椭圆是平面内与两个定点F1、F2的距离的和等于常数2a (大于|F1F2|)的点的轨迹。
这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。
若M为椭圆上任意一点,则有|MF1|+|MF2|=2a。
椭圆的标准方程为:x^2/a^2+y^2/b^2=1(a>b>0,焦点在x轴上)或x^2/b^2+y^2/a^2=1(a>b>0,焦点在y轴上)。
2.椭圆的性质①范围:由标准方程得知,椭圆位于直线x=±a,y=±b所围成的矩形里。
②对称性:椭圆关于x轴、y轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心。
③顶点:椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。
同时,线段A1A2、B1B2分别叫做椭圆的长轴和短轴,它们的长分别为2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长。
④离心率:椭圆的焦距与长轴的比e=c/a。
其中,c表示焦距,a表示长半轴长。
椭圆的离心率可以通过长轴和短轴的长度计算得出。
由于长轴大于短轴,因此离心率e的值介于0和1之间。
当离心率接近1时,短轴b的长度会越来越小,导致椭圆变得越扁;反之,当离心率接近0时,短轴b的长度会越来越接近长轴a的长度,此时椭圆会趋向于圆形。
当长轴和短轴的长度相等时,椭圆的两个焦点重合,这时椭圆就变成了圆形,其方程为x+y=a。
双曲线是平面上距离两个定点距离之差绝对值等于常数2a的动点轨迹。
需要注意的是,这里的距离差的绝对值是小于焦距F1F2的。
当距离差等于2a时,得到的是双曲线的一支;当距离差等于-2a时,得到的是双曲线的另一支(含F1的一支)。
当距离差等于0时,得到的是两条射线;当距离差大于2a时,得不到任何图形。
双曲线的焦点是F1和F2,焦距为F1F2.双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1.由此可以看出,双曲线在坐标系中的范围为两条直线x=±a的外侧。
【2023届新高考必刷题目】 高中数学圆锥曲线大题综合

【2023届新高考必刷】圆锥曲线大题综合1.(2023春·江苏扬州·高三统考开学考试)已知AB 为抛物线G :y 2=2px (p >0)的弦,点C 在抛物线的准线l 上.当AB 过抛物线焦点F 且长度为8时,AB 中点M 到y 轴的距离为3.(1)求抛物线G 的方程;(2)若∠ACB 为直角,求证:直线AB 过定点.【答案】(1)y 2=4x(2)证明见解析【分析】(1)利用抛物线弦长公式,以及中点到y 轴的距离公式,计算出p 即可;(2)先设C -1,c ,A y 214,y 1 ,B y 224,y 2,直线AB 的方程:x =ty +n ,联立方程组,由韦达定理可得y 1+y 2=4t ,y 1y 2=-4n ,又因为∠ACB 为直角可得CA ⋅CB=0,化简求解可得n =1,所以得出直线过定点1,0 .【详解】(1)设A x A ,y A ,B x B ,y B ,则由题意得|AB |=x A +x B +p =8x A +x B 2=3,解得p =2,所以抛物线的方程为y 2=4x (2)直线AB 过定点1,0 ,证明如下:设C -1,c ,A y 214,y 1 ,B y 224,y 2,直线AB 的方程:x =ty +n ,将x =ty +n 代入y 2=4x 得y 2-4ty -4n =0,则Δ>0,得t 2+n >0,由韦达定理可得y 1+y 2=4t ,y 1y 2=-4n ,所以CA =y 214+1,y 1-c ,CB =y 224+1,y 2-c,因为∠ACB =90∘,所以CA ⋅CB =0,即y 21y 2216+y 21+y 224+1+y 1y 2-c y 1+y 2 +c 2=0,即n 2+4t 2+2n +1-4n -4tc +c 2=0,即(n -1)2+(2t -c )2=0,所以n =1,所以直线AB 过定点1,0 .2.(2023·江苏泰州·统考一模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点为A ,过左焦点F 的直线与C 交于P ,Q 两点.当PQ ⊥x 轴时,PA =10,△PAQ 的面积为3.(1)求C 的方程;(2)证明:以PQ 为直径的圆经过定点.【答案】(1)x2-y23=1(2)证明见解析【分析】(1)根据题意,可得PF=b2a,b2a2+c-a2=10212⋅2b2a⋅c-a=3c2=a2+b2,进而求解;(2)设PQ方程为x=my-2,P x1,y1,Q x2,y2,联立直线和双曲线方程组,可得3m2-1y2-12my+9 =0,以PQ为直径的圆的方程为x-x1x-x2+y-y1y-y2=0,由对称性知以PQ为直径的圆必过x轴上的定点,进而得到x2-x1+x2x+x1x2+y1y2=0,进而求解.【详解】(1)当PQ⊥x轴时,P,Q两点的横坐标均为-c,代入双曲线方程,可得y P=b2a,y Q=-b2a,即PF=b2a,由题意,可得b2a2+c-a2=10212⋅2b2a⋅c-a=3c2=a2+b2,解得a=1,b=3,c=2,∴双曲线C的方程为:x2-y23=1;(2)方法一:设PQ方程为x=my-2,P x1,y1,Q x2,y2,x=my-2 3x2-y2=3⇒3m2y2-4my+4-y2=3⇒3m2-1y2-12my+9=0,以PQ为直径的圆的方程为x-x1x-x2+y-y1y-y2=0,x2-x1+x2x+x1x2+y2-y1+y2y+y1y2=0,由对称性知以PQ为直径的圆必过x轴上的定点,令y=0,可得x2-x1+x2x+x1x2+y1y2=0,而x1+x2=m y1+y2-4=12m23m2-1-4=43m2-1,x1x2=my1-2my2-2=m2y1y2-2m y1+y2+4=-3m2-4 3m2-1,∴x2-43m2-1x+-3m2-43m2-1+93m2-1=0⇒3m2-1x2-4x+5-3m2=0⇒3m2-1x+3m2-5x-1=0对∀m∈R恒成立,∴x=1,∴以PQ为直径的圆经过定点1,0;方法二:设PQ方程为x=my-2,P x1,y1,Q x2,y2,x=my-2 3x2-y2=3⇒3m2-1y2-12my+9=0,由对称性知以PQ为直径的圆必过x轴上的定点.设以PQ 为直径的圆过E t ,0 ,∴EP ⋅EQ=0⇒x 1-t x 2-t +y 1y 2=0⇒x 1x 2-t x 1+x 2 +t 2+y 1y 2=0,而x 1x 2=my 1-2 my 2-2 =m 2y 1y 2-2m y 1+y 2 +4=m 2⋅93m 2-1-2m ⋅12m 3m 2-1+4=-3m 2-43m 2-1,x 1+x 2=m y 1+y 2 -4=12m 23m 2-1-4=43m 2-1∴-3m 2-43m 2-1-4t 3m 2-1+t 2+93m 2-1=0,3m2-1 t 2-4t +5-3m 2=0,即3m 2-1 t +3m 2-5 t -1 =0对∀m ∈R 恒成立,∴t =1,即以PQ 为直径的圆经过定点1,0 .3.(2023秋·浙江绍兴·高三期末)在平面直角坐标系xOy 中,已知点A (-2,0),B (2,0),直线PA 与直线PB 的斜率之积为-14,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)若直线l :y =kx +m 与曲线C 交于M ,N 两点,直线MA ,NB 与y 轴分别交于E ,F 两点,若EO=3OF ,求证:直线l 过定点.【答案】(1)x 24+y 2=1(x ≠±2)(2)证明见解析【分析】(1)设P 点坐标为(x ,y ),由y x +2⋅y x -2=-14可得结果;(2)设M x 1,y 1 ,N x 2,y 2 ,联立y =kx +m x 24+y 2=1,得x 1+x 2和x 1x 2,再求出E ,F 的坐标,根据EO =3OF得k =m ,从而可得结果.【详解】(1)设P 点坐标为(x ,y ),则y x +2⋅y x -2=-14,即x 24+y 2=1(x ≠±2),所以曲线C 的方程为x 24+y 2=1(x ≠±2).(2)设M x 1,y 1 ,N x 2,y 2 ,由y =kx +mx 24+y 2=1,消去y 并整理得4k 2+1 x 2+8km x +4m 2-4=0,由Δ=64k 2m 2-4(4k 2+1)(4m 2-4)>0,得4k 2+1>m 2,所以x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.MA :y =y 1x 1+2(x +2)⇒E 0,2y 1x 1+2 ,NB :y =y 2x 2-2x -2 ⇒F 0,-2y 2x 2-2 ,因为EO =3OF ,所以-2y 1x 1+2=3⋅-2y 2x 2-2,即y 1(x 2-2)=3y 2(x 1+2),∴kx 1+m x 2-2 =3kx 2+m x 1+2 ,∴2kx 1x 2+(2k +3m )x 1+x 2 +4(k -m )x 2+8m =0,所以2k ⋅4m 2-44k 2+1+(2k +3m )⋅-8km4k 2+1+4(k -m )x 2+8m =0,所以(k -m )4km -2+4k 2+1 x 2 =0对任意x 2都成立,∴k =m ,故直线l 过定点(-1,0).4.(2023秋·浙江·高三期末)已知点A 463,233 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点,B 与A 关于原点对称,F 是右焦点,∠AFB =π2.(1)求双曲线的方程;(2)已知圆心在y 轴上的圆C 经过点P (-4,0),与双曲线的右支交于点M ,N ,且直线MN 经过F ,求圆C 的方程.【答案】(1)x 28-y 24=1(2)x 2+(y ±26)2=40【分析】(1)由已知条件列方程求出a ,b ,c ,即可求出双曲线的方程;(2)讨论直线MN 的斜率不存在时不满足题意;当斜率存在时设直线MN 的方程为y =kx +m ,联立双曲线的方程,由韦达定理求出MN 的中点Q 的坐标以及C 的坐标,根据勾股定理有CN 2=CP 2=CQ 2+12MN2,代入解方程即可得出答案.【详解】(1)由已知条件得:463+c ,233 ⋅463-c ,233 =0323a 2-43b 2=1a 2+b 2=c 2⇒a 2=8b 2=4c =23双曲线方程为:x 28-y 24=1.(2)若直线MN 的斜率不存在,则圆C 的圆心不在y 轴上,因此不成立.设直线MN 的方程为y =kx +m ,由y =k (x -23)x 28-y 24=1消元得:2k 2-1 x 2-83k 2x +24k 2+8 =0⇒2k 2-1≠0Δ=32k 2+1 >0x 1+x 2=83k 22k 2-1,y 1+y 2=k x 1+x 2 -43k =83k 32k 2-1-43k =43k2k 2-1∴MN 的中点Q 的坐标为43k 22k 2-1,23k2k 2-1.设C (0,m ),直线CQ :y =-1k x +m ,得C 0,63k2k 2-1,又|MN |=k 2+1⋅82⋅-8k 2+4+12k 28k 2-4 =42k 2+1 2k 2-1,根据勾股定理有CN 2=CP 2=CQ 2+12MN2∴63k 2k 2-1 2+42=43k 22k 2-1 2+23k 2k 2-1-63k 2k 2-1 2 +22k 2+1 2k 2-12.化简得2k 4-5k 2+2=0解得k 2=2或k 2=12(舍)∴C (0,±26),∴圆C 的方程为x 2+(y ±26)2=40.5.(2023春·广东揭阳·高三校考阶段练习)已知抛物线E :y 2=2px p >0 的焦点为F ,点F 关于直线y =12x +34的对称点恰好在y 轴上.(1)求抛物线E 的标准方程;(2)直线l :y =k x -2 k ≥6 与抛物线E 交于A ,B 两点,线段AB 的垂直平分线与x 轴交于点C ,若D 6,0 ,求AB CD的最大值.【答案】(1)y 2=4x(2)2915【分析】(1) 由题意得F p 2,0 ,设F 关于直线y =12x +34的对称点为F 0,m ,根据题意列出方程组,解之即可求解;(2)将直线方程与抛物线方程联立,利用韦达定理和弦长公式,并求得线段AB 的垂直平分线方程为y -2k =-1k x -2k 2+2k 2 ,进而得到AB CD=22+49t +36t-12,利用函数的单调性即可求解.【详解】(1)由题意得F p 2,0 ,设F 关于直线y =12x +34的对称点为F0,m ,则m -p 2=-2m 2=18p +34 ,解得m =p =2,∴抛物线E 的标准方程为y 2=4x .(2)由y =k x -2 y 2=4x 可得k 2x 2-4k 2+4 x +4k 2=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=4k 2+4k 2,x 1x 2=4,∴AB =1+k 2⋅x 1-x 2 =1+k 2⋅x 1+x 22-4x 1x 2=1+k 2⋅4k 2+4k 22-16=42k 4+3k 2+1k 2,y 1+y 2=k x 1+x 2 -4k =4k ,∴线段AB 的中点坐标为2k 2+2k 2,2k ,则线段AB 的垂直平分线方程为y-2k =-1k x -2k 2+2k 2 ,令y =0,得x =4+2k2,故C 4+2k 2,0 ,又D 6,0 ,得CD =4+2k 2-6=2-2k 2.∴ABCD =22k 4+3k 2+1k 2-1=22+7k 2-1k 4-2k 2+1,令t =7k 2-1k ≥6 ,则k 2=17t +1 ,t ≥41,∴AB CD=22+t 149t +1 2-27t +1+1=22+49t +36t-12,易知函数f t =t +36t在41,+∞ 上单调递增,∴当t =41时,f t 取得最小值,此时k =6,故AB CD的最大值为22+4136-12+1=2915.6.(2023·湖南邵阳·统考二模)已知双曲线C :x 2a 2-y 2b2=10<a 10,b 0 的右顶点为A ,左焦点F -c ,0 到其渐近线bx +ay =0的距离为2,斜率为13的直线l 1交双曲线C 于A ,B 两点,且AB=8103.(1)求双曲线C 的方程;(2)过点T 6,0 的直线l 2与双曲线C 交于P ,Q 两点,直线AP ,AQ 分别与直线x =6相交于M ,N 两点,试问:以线段MN 为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.【答案】(1)x 29-y 24=1(2)以线段MN 为直径的圆过定点6-23,0 和6+23,0 .【分析】(1)根据点到直线的距离公式即可求解b =2,进而联立直线与双曲线方程,根据弦长公式即可求解a =3,(2)联立直线与曲线的方程得韦达定理,根据圆的对称性可判断若有定点则在x 轴上,进而根据垂直关系得向量的坐标运算,即可求解.【详解】(1)∵双曲线C 的左焦点F -c ,0 到双曲线C 的一条渐近线bx +ay =0的距离为d =bca 2+b2=b ,而d =2,∴b =2.∴双曲线C 的方程为x 2a2-y 24=10<a <10 .依题意直线l 1的方程为y =13x -a .由x 2a 2-y 24=1,y =13x -a ,消去y 整理得:36-a 2 x 2+2a 3x -a 2a 2+36 =0,依题意:36-a 2≠0,Δ>0,点A ,B 的横坐标分别为x A ,x B ,则x A x B =a 2a 2+36a 2-36.∵x A =a ,∴x B =a a 2+36a 2-36.∴AB =1+132x A -x B =103x A -x B =8103,∴x A -x B =8.即a -a a 2+36a 2-36=8,解得a =3或a =12(舍去),且a =3时,Δ>0,∴双曲线C 的方程为x 29-y 24=1.(2)依题意直线l 2的斜率不等于0,设直线l 2的方程为x =my +6.由x =my +6,x 29-y 24=1,消去x 整理得:4m 2-9 y 2+48my +108=0,∴4m 2-9≠0,Δ1>0.设P x 1,y 1 ,Q x 2,y 2 ,则y 1+y 2=-48m 4m 2-9,y 1y 2=1084m 2-9.直线AP 的方程为y =y 1x 1-3x -3 ,令x =6得:y =3y 1x 1-3,∴M 6,3y 1x 1-3 .同理可得N 6,3y 2x 2-3.由对称性可知,若以线段MN 为直径的圆过定点,则该定点一定在x 轴上,设该定点为R t ,0 ,则RM =6-t ,3y 1x 1-3 ,RN =6-t ,3y 2x 2-3 ,故RM ⋅RN =6-t 2+9y 1y 2x 1-3 x 2-3 =6-t 2+9y 1y 2my 1+3 my 2+3 =6-t 2+9y 1y 2m 2y 1y 2+3m y 1+y 2 +9=6-t 2+9×1084m 2-9m 2×1084m 2-9-3m ×48m 4m 2-9+9=6-t 2-12=0.解得t =6-23或t =6+23.故以线段MN 为直径的圆过定点6-23,0 和6+23,0 .【点睛】关键点睛:本题解题的关键是根据圆的对称性可判断定点在坐标轴上,结合向量垂直的坐标运算化简求解就可,对计算能力要求较高.7.(2023春·湖南长沙·高三雅礼中学校考阶段练习)定义:一般地,当λ>0且λ≠1时,我们把方程x 2a 2+y 2b 2=λ(a >b >0)表示的椭圆C λ称为椭圆x 2a 2+y 2b2=1(a >b >0)的相似椭圆.(1)如图,已知F 1-3,0 ,F 23,0 ,M 为⊙O :x 2+y 2=4上的动点,延长F 1M 至点N ,使得MN =MF 1 ,F 1N 的垂直平分线与F 2N 交于点P ,记点P 的轨迹为曲线C ,求C 的方程;(2)在条件(1)下,已知椭圆C λ是椭圆C 的相似椭圆,M 1,N 1是椭圆C λ的左、右顶点.点Q 是C λ上异于四个顶点的任意一点,当λ=e 2(e 为曲线C 的离心率)时,设直线QM 1与椭圆C 交于点A ,B ,直线QN 1与椭圆C 交于点D ,E ,求AB +DE 的值.【答案】(1)x 24+y 2=1(2)5【分析】(1)由图可知OM 是△F 1NF 2的中位线,由此可得F 2N 长为定值,因为点P 在F 1N 的垂直平分线上,所以PF 1 +PF 2 =PF 2 +PN ,根据椭圆定义求解析式即可;(2)假设出点Q 坐标,表示直线QM 1与直线QN 1的斜率,并找出两斜率关系,最后表示出两直线方程,分别与椭圆C 联立方程,利用弦长公式和韦达定理求出AB +DE 的值.【详解】(1)连接OM ,易知OM ∥12F 2N 且OM =12F 2N ,∴F 2N =4,又点P 在F 1N 的垂直平分线上,∴PF 1 =PN ,∴PF 1 +PF 2 =PF 2 +PN =NF 2 =4>23,满足椭圆定义,∴a =2,c =3,b =1,∴曲线C 的方程为x 24+y 2=1.(2)由(1)知椭圆C 方程为x 24+y 2=1,则离心率e =32⇒λ=34,∴楄圆C λ的标准方程为x 23+4y 23=1,设Q x 0,y 0 为椭圆C λ异于四个顶点的任意一点,直线QM 1,QN 1斜率k QM 1,k QN 1,则k QM1⋅k QN 1=y 0x 0+3⋅y 0x 0-3=y 2x 20-3,又x 203+4y 203=1⇒y 20=143-x 20 ,∴k QM 1⋅k QN 1=-14k QM 1≠±12.设直线QM 1的斜率为k ,则直线QN 1的斜率为-14k.∴直线QM 1为y =k x +3 ,由y =k x +3 ,x 24+y 2=1,得1+4k 2 x 2+83k 2x +12k 2-4=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=-83k 21+4k 2,x 1x 2=12k 2-41+4k 2,∴AB =1+k 2x 1-x 2 =1+k 2x 1+x 2 2-4x 1x 2=41+k 21+4k 2,同理可得DE =1+16k 21+4k 2,∴AB +DE =41+k 2 1+4k 2+1+16k 21+4k 2=5.8.(2023·湖北武汉·统考模拟预测)过坐标原点O 作圆C :(x +2)2+y 2=3的两条切线,设切点为P ,Q ,直线PQ 恰为抛物E :y 2=2px ,(p >0)的准线.(1)求抛物线E 的标准方程;(2)设点T 是圆C 上的动点,抛物线E 上四点A ,B ,M ,N 满足:TA =2TM ,TB =2TN,设AB 中点为D .(i )求直线TD 的斜率;(ii )设△TAB 面积为S ,求S 的最大值.【答案】(1)y 2=2x(2)(i )0;(ii )48【分析】(1)设直线PQ 与x 轴交于P 0-p 2,0 ,由几何性质易得:CP 2=CP 0 ⋅CO ,即可解决;(2)设T x 0,y 0 ,A x 1,y 1 ,B x 2,y 2 ,(i )中,由于TA 中点M 在抛物线E 上,得y 0+y 12 2=2⋅x 0+x 12,将A x 1,y 1,B x 2,y 2 ,代入联立得D 点纵坐标为y 1+y 22=y 0,即可解决;(ⅱ)由(i )得点D 3y 20-4x 02,y 0,S =12TD ⋅y 1-y 2 =322⋅y 20-2x 03,又点T 在圆C 上,得y 20=-x 20-4x 0-1,可得:S =322⋅-x 0+32+8 3即可解决.【详解】(1)设直线PQ 与x 轴交于P 0-p2,0 .由几何性质易得:△CPP 0与△OCP 相似,所以CP CP 0=CO CP,CP2=CP 0 ⋅CO ,即:3=-p2+2 ⋅2,解得:p =1. 所以抛物线E 的标准方程为:y 2=2x .(2)设T x0,y0,A x1,y1,B x2,y2(i)由题意,TA中点M在抛物线E上,即y0+y122=2⋅x0+x12,又y21=2x1,将x1=y212代入,得:y21-2y0y1+4x0-y20=0,同理:y22-2y0y2+4x0-y20=0,有y1+y2=2y0y1y2=4x0-y20,此时D点纵坐标为y1+y22=y0,所以直线TD的斜率为0.(ⅱ)因为x1+x22=y21+y224=y1+y22-2y1y24=3y20-4x02,所以点D3y20-4x02,y0 ,此时S=12TD⋅y1-y2,TD =3y20-4x02-x0=32y20-2x0,y1-y2=y1+y22-4y1y2=8y20-2x0,所以S=322⋅y20-2x03,又因为点T在圆C上,有x0+22+y20=3,即y20=-x20-4x0-1,代入上式可得:S=322⋅-x20-6x0-13=322⋅-x0+32+83,由-2-3≤x0≤-2+3,所以x0=-3时,S取到最大价322⋅83=48.所以S的最大值为48.9.(2023·山东·潍坊一中校联考模拟预测)已知F为抛物线C:y2=2px(p>0)的焦点,O为坐标原点,M为C的准线l上的一点,直线MF的斜率为-1,△OFM的面积为1.(1)求C的方程;(2)过点F作一条直线l ,交C于A,B两点,试问在l上是否存在定点N,使得直线NA与NB的斜率之和等于直线NF斜率的平方?若存在,求出点N的坐标;若不存在,请说明理由.【答案】(1)y2=4x(2)存在,-1,0或-1,-4【分析】(1)设点M的坐标为-p 2,a,根据直线MF的斜率为-1,得到a=p,再根据△OFM的面积为1求出p,即可得解;(2)假设存在点N,使得直线NA与NB的斜率之和等于直线NF斜率的平方.设直线l 的方程为x=my+1,A x 1,y 1 ,B x 2,y 2 ,N -1,t ,联立直线与抛物线方程,消元列出韦达定理,又k NF =-t2,k NA+k NB =y 1-t x 1+1+y 2-tx 2+1,化简k NA +k NB ,即可得到方程,求出t 的值,即可得解.【详解】(1)解:由题意知F p 2,0 ,设点M 的坐标为-p2,a ,则直线MF 的斜率为a -0-p 2-p 2=-ap .因为直线MF 的斜率为-1,所以-ap =-1,即a =p ,所以△OFM 的面积S =12OF a =p 24=1,解得p =2或p =-2(舍去),故抛物线C 的方程为y 2=4x .(2)解:假设存在点N ,使得直线NA 与NB 的斜率之和等于直线NF 斜率的平方.由(1)得F 1,0 ,抛物线C 的准线l 的方程为x =-1.设直线l 的方程为x =my +1,A x 1,y 1 ,B x 2,y 2 ,N -1,t ,联立x =my +1y 2=4x得y 2-4my -4=0,所以Δ=16m 2+16>0,y 1+y 2=4m ,y 1y 2=-4.因为k NF =0-t 1+1=-t 2,k NA +k NB =y 1-t x 1+1+y 2-tx 2+1=2my 1y 2+2-tm y 1+y 2 -4t m 2y 1y 2+2m y 1+y 2 +4=2m ⋅-4 +4m 2-tm -4t -4m 2+2m ⋅4m +4=-4t m 2+14m 2+1 =-t ,所以-t =-t22,解得t =0或t =-4.故存在定点N ,使得直线NA 与NB 的斜率之和等于直线NF 斜率的平方,其坐标为-1,0 或-1,-4 .10.(2023·山东菏泽·统考一模)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点分别为F 1-3,0,F 23,0 ,A 为椭圆C 上一点,△F 1AF 2的面积最大值为3.(1)求椭圆C 的方程;(2)若B 、D 分别为椭圆C 的上、下顶点,不垂直坐标轴的直线l 交椭圆C 于P 、Q (P 在上方,Q 在下方,且均不与B ,D 点重合)两点,直线PB ,QD 的斜率分别为k 1,k 2,且k 2=-3k 1,求△PBQ 面积的最大值.【答案】(1)x 24+y 2=1(2)12【分析】(1)根据条件,得到关于a ,b ,c 的方程,即可得到结果;(2)根据题意设直线PQ 的方程为y =kx +m ,联立直线与椭圆方程,结合韦达定理,再由k 2=-3k 1列出方程,代入计算,即可得到结果.【详解】(1)S ΔF 1AF 2=12⋅23⋅b =3,∴b =1,a =b 2+3=2,故椭圆的方程为x 24+y 2=1;(2)依题意设直线PQ 的方程为y =kx +m ,P x 1,y 1 ,Q x 2,y 2 ,联立方程组y =kx +mx 24+y 2=1,消元得:1+4k 2 x 2+8km x +4m 2-4=0,∴x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k2,Δ=64k 2m 2-41+4k 2 4m 2-4 =161+4k 2-m 2 >0,由k 2=-3k 1得:y 2+1x 2=-3⋅y 1-1x 1,两边同除x 1,y 2+1x 1x 2=-3⋅y 1-1x 21=-3⋅y 1-141-y 21 =341+y 1 ,即3x 1x 2-41+y 1 1+y 2 =0;将y 1=kx 1+m ,y 2=kx 2+m 代入上式得:3x 1x 2-41+y 1 1+y 2 =3x 1x 2-4kx 1+m +1 kx 2+m +1 =3-4k 2 x 1x 2-4k m +1 x 1+x 2 -4m +1 2=3-4k 2 4m 2-41+4k 2-4k m +1 -8km 1+4k 2 -4m +1 2=0,整理得:m 2-m -2=0所以m =2或m =-1(舍),S △PQB =12⋅1⋅x 1-x 2 =12x 1+x 2 2-4x 1x 2=12-8km 1+4k 2 2-44m 2-41+4k 2=24k 2-31+4k 2=24k 2-3+44k 2-3≤12,当k =±72时等号成立,满足条件,所以△PQB 面积的最大值为12.11.(2023·福建泉州·统考三模)已知椭圆C :x 24+y 23=1的左、右顶点分别为A ,B .直线l 与C 相切,且与圆O :x 2+y 2=4交于M ,N 两点,M 在N 的左侧.(1)若|MN |=455,求l 的斜率;(2)记直线AM ,BN 的斜率分别为k 1,k 2,证明:k 1k 2为定值.【答案】(1)k =±12;(2)证明过程见解析.【分析】(1)根据圆弦长公式,结合点到直线距离公式、椭圆切线的性质进行求解即可;(2)根据直线斜率公式,结合一元二次方程根与系数关系进行求解即可.【详解】(1)当直线l 不存在斜率时,方程为x =±2,显然与圆也相切,不符合题意,设直线l 的斜率为k ,方程为y =kx +m ,与椭圆方程联立,得x 24+y 23=1y =kx +m⇒(3+4k 2)x 2+8km x +4m 2-12=0,因为直线l 与C 相切,所以有Δ=64k 2m 2-43+4k 2 4m 2-12 =0⇒m 2=4k 2+3,圆O :x 2+y 2=4的圆心坐标为0,0 ,半径为2,圆心0,0 到直线y =kx +m 的距离为mk 2+-12,因为|MN |=455,所以有455=2×4-mk 2+-1 22⇒45=4-4k 2+3k 2+1⇒k =±12;(2)A -2,0 ,B 2,0 ,由x 2+y 2=4y =kx +m ⇒1+k 2 x 2+2km x +m 2-4=0,设M x 1,y 1 ,N x 2,y 2 ,x 1<x 2,则有x 1+x 2=-2km k 2+1,x 1x 2=m 2-4k 2+1=4k 2-1k 2+1,x 1=-km -11+k 2,x 2=-km +11+k 2,k 1k 2=y 1x 1+2⋅y 2x 2-2=kx 1+m kx 2+m x 1x 2-2x 1+2x 2-4=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2-2x 1+2x 2-4,把x 1+x 2=-2km k 2+1,x 1x 2=m 2-4k 2+1=4k 2-1k 2+1,x 1=-km -11+k 2,x 2=-km +11+k 2代入上式,得k 1k 2=k 24k 2-1k 2+1+km -2km k 2+1+m 24k 2-1k 2+1-2⋅-km -1k 2+1+2⋅-km +1k 2+1-4=m 2-4k 2m 2-4-4k2,而m 2=4k 2+3,所以k 1k 2=4k 2+3-4k 24k 2+3-4-4k 2=-3.【点睛】关键点睛:利用一元二次方程根与系数关系,结合椭圆切线的性质进行求解是解题的关键.12.(2023·江苏南通·统考模拟预测)已知A x 1,y 1 ,B x 2,y 2 ,C x 3,y 3 三个点在椭圆x 22+y 2=1,椭圆外一点P 满足OP =2AO ,BP =2CP,(O 为坐标原点).(1)求x 1x 2+2y 1y 2的值;(2)证明:直线AC 与OB 斜率之积为定值.【答案】(1)12(2)证明见解析【分析】(1)设P x ,y ,根据向量关系用x 1,x 2,y 1,y 2表示x 3,y 3,代入椭圆方程即可求解;(2)用x 1,x 2,y 1,y 2表示x 3,y 3,代入斜率公式即可求解.【详解】(1)设P x ,y ,因为OP =2AO ,所以x ,y =2-x 1,-y 1 解得x =-2x 1y =-2y 1 ,又因为BP =2CP ,所以-2x 1-x 2,-2y 1-y 2 =2-2x 1-x 3,-2y 1-y 3 解得x 3=-x 1+12x 2y 3=-y 1+12y 2,因为点C 在椭圆上,所以-x 1+12x 2 22+-y 1+12y 2 2=1⇒x 212+y 21+14x 222+y 22-12x 1x 2-y 1y 2=1,即x 1x 2+2y 1y 2=12.(2)设直线AC 与OB 斜率分别为k AC ,k OB ,k AC k OB =y 3-y 1x 3-x 1×y 2x 2=-y 1+12y 2-y 1-x 1+12x 2-x 1×y 2x 2=-2y 1y 2+12y 22-2x 1x 2+12x 22=x 1x 2-12+121-12x 22 -2x 1x 2+12x 22=x 1x 2-14x 22-2x 1x 2+12x 22=-12是定值.13.(2023·浙江嘉兴·统考模拟预测)已知抛物线C :y 2=2px p >0 ,过焦点F 的直线交抛物线C 于A ,B 两点,且AB =AF ⋅BF .(1)求抛物线C 的方程;(2)若点P 4,4 ,直线PA ,PB 分别交准线l 于M ,N 两点,证明:以线段MN 为直径的圆过定点.【答案】(1)y 2=4x (2)证明见解析【分析】(1)设AB :x =my +p2m ∈R ,联立抛物线方程,由根与系数的关系及抛物线的定义,根据AB =AF ⋅BF 建立方程求出p 得解;(2)由直线方程求出M ,N 的坐标,计算y M ⋅y N =-4,设Q x ,y 是以线段MN 为直径的圆上任意一点,根据MQ ⋅NQ=0化简0=x +1 2+y -y M y -y N ,根据对称性令y =0可得解.【详解】(1)设AB :x =my +p2m ∈R ,A x 1,y 1 ,B x 2,y 2 ,则联立y 2=2pxx =my +p 2得y 2-2pmy -p 2=0,所以Δ=4p 2m 2+4p 2>0y 1+y 2=2pm y 1y 2=-p 2,所以x 1+x 2=2m 2+1 px 1x 2=p 24,又AF =x 1+p 2,BF =x 2+p2,所以AB =AF +BF =x 1+x 2+p 由AB =AF ⋅BF 得x 1+x 2+p =x 1+p 2 x 2+p2 ,即x 1+x 2+p =x 1x 2+p 2x 1+x 2 +p 24所以2m 2+1 p +p =p 22m 2+1 p +p 22,化简得m 2+1 p p -2 =0,又p >0,所以p =2,所以抛物线C 的方程为y 2=4x .(2)由(1)知AB :x =my +1m ∈R ,A x 1,y 1 ,B x 2,y 2 ,所以y 1+y 2=4m ,y 1y 2=-4,易得x 1+x 2=4m 2+2,x 1x 2=1,由题意知AP :y -4=y 1-4x 1-4x -4 ,BP :y -4=y 2-4x 2-4x -4 ,所以令x =-1得y M =-5y 1-4 my 1-3+4,y N =-5y 2-4my 2-3+4,即M -1,-5y 1-4 x 1-4+4,N -1,-5y 2-4 x 2-4+4,所以y M ⋅y N =-5y 1-4my 1-3+4-5y 2-4 my 2-3+4=4m -5 y 1+8 4m -5 y 2+8my 1-3 my 2-3=4m -52y 1y 2+84m -5 y 1+y 2 +64m 2y 1y 2-3m y 1+y 2 +9=-44m -5 2+32m 4m -5 +64-4m 2-12m 2+9=64m 2-36-16m 2+9=-4设Q x ,y 是以线段MN 为直径的圆上得任意一点,则有MQ ⋅NQ=0,即0=x +1 2+y -y M y -y N ,由对称性令y =0得0=x +1 2+y M y N =x +1 2-4,所以x =1或x =-3所以以线段MN 为直径的圆经过定点,定点坐标为-3,0 与1,0 .【点睛】关键点点睛:求出M ,N 的点的坐标,计算出y M ⋅y N 为定值-4,是解题的关键之一,其次写出以MN 为直径的圆的方程,根据圆的方程0=x +1 2+y -y M y -y N ,由对称性,令y =0求定点是解题的关键.14.(2023·江苏连云港·统考模拟预测)已知椭圆E :x 2a 2+y 2b2=1a >b >0 的焦距为23,且经过点P -3,12 .(1)求椭圆E 的标准方程:(2)过椭圆E 的左焦点F 1作直线l 与椭圆E 相交于A ,B 两点(点A 在x 轴上方),过点A ,B 分别作椭圆的切线,两切线交于点M ,求AB MF 1的最大值.【答案】(1)x 24+y 2=1(2)2【分析】(1)由待定系数法求解析式;(2)设出直线方程,由韦达定理法及导数法求得两切线方程,即可联立两切线方程解得交点M ,再由弦长公式及两点距离公式表示出AB MF 1,进而讨论最值.【详解】(1)由题意得2c =233a 2+14b 2=1a 2=b 2+c2 ,所以a =2b =1 ,即椭圆方程为x24+y 2=1;(2)当直线l 斜率为0时,A ,B 分别为椭圆的左右顶点,此时切线平行无交点.故设直线l :x =ty -3,由x 24+y 2=1x =ty -3,得t 2+4 y 2-23ty -1=0.Δ=16t 2+16>0,y 1+y 2=23t t 2+4,y 1y 2=-1t 2+4.AB =1+t 2y 1-y 2 =1+t 2y 1+y 22-4y 1y 2=1+t212t 2t 2+42+4t 2+4=4t 2+1t 2+4不妨设A x 1,y 1 在x 轴上方,则B x 2,y 2 在x 轴下方.椭圆在x 轴上方对应方程为y =1-x 24,y =-x41-x 24,则A 处切线斜率为-x 141-x 214=-x 14y 1,得切线方程为y -y 1=-x 14y 1x -x 1 ,整理得x 1x4+y 1y =1.同理可得B 处的切线方程为x 2x4+y 2y =1.由x 1x 4+y 1y =1①x 2x 4+y 2y =1②得x M =4y 2-y 1 x 1y 2-x 2y 1=4y 2-y 1 ty 1-3 y 2-ty 2-3 y 1=4y 2-y 1 3y 1-y 2 =-433,代入①得y M =1+33x 1y 1=1+33ty 1-3 y 1=3t 3,所以M -433,3t 3.因为MF 1 =-433+3 2+t 23=1+t 23,所以AB MF 1 =4t 2+1t 2+41+t 23=43t 2+1t 2+4设m =t 2+1≥1,则t 2=m 2-1,则AB MF 1=43m m 2+3=43m +3m≤4323=2,当且仅当m 2=3,即t =±2时,ABMF 1的最大值是2.另解:当直线l 的斜率存在时,设l :y =k x +3 ,由x 24+y 2=1y =k x +3得1+4k 2 x 2+83k 2x +12k 2-4=0,所以Δ=k 2+1>0,x 1+x 2=-83k 21+4k 2,x 1x 2=12k 2-41+4k 2,AB =1+k 2x 1-x 2 =1+k 2⋅x 1+x 22-4x 1x 2=1+k 2⋅64×3k 21+4k 22-412k 2-41+4k 2=41+k 21+4k 2椭圆在x轴上方的部分方程为y=1-x24,y'=-x41-x24,则过A x1,y1y1>0的切线方程为y-y1=-x14y1x-x1,即x1x4+y1y=x214+y21=1,同理可得过B x2,y2y2<0的切线方程为x2x4+y2y=1.由x1x4+y1y=1x2x4+y2y=1得x M=4y2-y1x1y2-x2y1=4y2-y1y1k-3y2-y2k-3y1=4y2-y13y1-y2=-433设M-43 3,t,则-3x13+ty1=1-3x23+ty2=1 ,所以直线l的方程为-33x+ty=1,所以t=33k.MF1=-433+32+t2=1+k23k2,AB MF1=41+k21+4k2⋅3k21+k2=43k21+k21+4k22令n=1+4k2≥1,则k2=n-14,所以ABMF1=3-3⋅1n2+2⋅1n+1,当1n=-22×-3⇒n=3时,即k=±22时,ABMF1取得最大值,为2.【点睛】直线与圆锥曲线问题,一般设出直线,联立直线与圆锥曲线方程,结合韦达定理表示出所求的内容,进而进行进一步讨论.15.(2023春·江苏常州·高三校联考开学考试)已知点P2,-1在椭圆C:x2a2+y2b2=1(a>b>0)上,C的长轴长为42,直线l:y=kx+m与C交于A,B两点,直线PA,PB的斜率之积为14.(1)求证:k为定值;(2)若直线l与x轴交于点Q,求QA|2+QB|2的值.【答案】(1)证明见解析(2)10【分析】(1)根据题意求出椭圆方程为:x28+y22=1,将椭圆,及相关直线、点进行平移,将y1x1,y2x2看作方程8n-4X2+8t-4nX-4t+1=0的两不等实根,进而可得n=-2t,代入直线方程化简即可;(2)联立直线与椭圆方程,结合韦达定理得y3+y4=m,y3y4=m2-22,化简QA|2+QB|2=5y3+y42-2y3y4,代入韦达定理即可求解.【详解】(1)由题意知2a=424a2+1b2=1⇒a=22b=2,∴椭圆方程为:x28+y22=1.将椭圆平移至(x +2)28+(y -1)22=1即x 2+4y 2+4x -8y =0,此时P 点平移至P 0,0 ,A ,B 分别平移至A x 1,y 1 ,B x 2,y 2 ,设直线A B 方程为tx +ny =1代入椭圆⇒x 2+4y 2+4x -8y tx +ny =0,整理得8n -4 y 2+8t -4n xy -4t +1 x 2=0,两边同除以x 2⇒8n -4 ⋅y x2+8t -4n ⋅y x-4t +1 =0,∴k PA ⋅k PB=k PA ⋅k PB =14⇒y 1x 1⋅y 2x 2=14令y x =X ,则y 1x 1,y 2x 2可看作关于X 的一元二次方程,8n -4 X 2+8t -4n X -4t +1 =0的两不等实根,∴y 1x 1⋅y 2x 2=X 1X 2=-4t +1 8n -4=14,∴4t =-2n ,即n =-2t ,∴直线A B 方程为tx -2ty =1t ≠0 ,∴y =12x -12t,∴A B 的斜率为定值12,即k 的定值12.(2)设A x 3,y 3 ,B x 4,y 4 ,y =12x +m x 2+4y 2=8⇒8y 2-8my +4m 2-8=0,即2y 2-2my +m 2-2=0,Δ>0,故y 3+y 4=m ,y 3y 4=m 2-22,∴QA |2+ QB 2=1+4⋅y 3 2+1+4⋅y 4 2=5y 23+y 24 =5y 3+y 4 2-2y 3y 4=5m 2-2×m 2-22=10,∴QA |2+ QB |2=1016.(2023春·江苏苏州·高三统考开学考试)已知抛物线y 2=a 2x 的焦点也是离心率为32的椭圆x 2a2+y 2b 2=1a >b >0 的一个焦点F .(1)求抛物线与椭圆的标准方程;(2)设过F 的直线l 交抛物线于A 、B ,交椭圆于C 、D ,且A 在B 左侧,C 在D 左侧,A 在C 左侧.设a =AC ,b =μCD ,c =DB .①当μ=2时,是否存在直线l ,使得a ,b ,c 成等差数列?若存在,求出直线l 的方程;若不存在,说明理由;②若存在直线l ,使得a ,b ,c 成等差数列,求μ的范围.【答案】(1)抛物线的标准方程是y 2=12x ,椭圆的标准方程为x 212+y 23=1(2)①不存在,理由见解析;②μ∈43-12,+∞【分析】(1)根据相同焦点得到a 24=32a ,解得a =23,得到答案.(2)设l :x =my +3和各点坐标,联立方程利用韦达定理得到根与系数的关系,计算AB =12m 2+1 ,CD =43m 2+1m 2+4,根据等差数列的性质得到方程,方程无解得到答案;整理得到m 2=3+23μ-123>0,解不等式即可.【详解】(1)抛物线的焦点F a 24,0 ,椭圆的焦点F c ,0 ,由于e =c a =32,即F 32a ,0 ,则有a 24=32a ,因此a =23,c =3,b =a 2-c 2=3,故椭圆的标准方程为x 212+y 23=1,抛物线的标准方程是y 2=12x .(2)①设l :x =my +3,m ≠0 ,A x 1,y 1 ,B x 2,y 2 ,C x 3,y 3 ,D x 4,y 4 ,将直线与抛物线联立,则有y 2=12xx =my +3 ,y 2-12my -36=0,Δ=144m 2+36×4>0,则y 1+y 2=12m y 1y 2=-36,于是x 1x 2=my 1+3 my 2+3 =m 2y 1y 2+3m y 1+y 2 +9=9,将直线与椭圆联立,则有x 2+4y 2-12=0x =my +3,得到二次方程m 2+4 y 2+6my -3=0,Δ>0,则有y 3+y 4=-6m m 2+4y 3y 4=-3m 2+4,则AB =x 1-x 22+y 1-y 2 2=1+m 2⋅y 1+y 22-4y 1y 2=12m 2+1 ,CD =x 3-x 42+y 3-y 4 2=1+m 2⋅y 3+y 4 2-4y 3y 4=1+m236m 2m 2+4 2+12m 2+48m 2+42=43m 2+1 m 2+4,AC +DB =AB -CD =12m 2+1 -43m 2+1m 2+4,假设存在直线l ,使得a ,b ,c 成等差数列,即AC +DB =4CD 即有12m 2+1 -43m 2+1 m 2+4=2×2×43m 2+1m 2+4,整理得到12m 2=203-48,方程无解,因此不存在l 满足题设.②只需使得方程12m 2+1 -43m 2+1 m 2+4=2μ×43m 2+1m 2+4有解即可.整理得到m 2=3+23μ-123,故m 2=3+23μ-123>0,解得μ∈43-12,+∞【点睛】关键点睛:本题考查了抛物线和椭圆的标准方程,等差数列性质,直线和抛物线,椭圆的位置关系,意在考查学生的计算能力,转化能力和综合应用能力,其中,利用韦达定理得到根与系数的关系,根据设而不求的思想,可以简化运算,是解题的关键,需要熟练掌握.17.(2023秋·江苏无锡·高三统考期末)已知椭圆C 1:x 2a 2+y 2b 2=1a >b >0 的右焦点F 和抛物线C 2:y 2=2px p >0 的焦点重合,且C 1和C 2的一个公共点是23,263.(1)求C 1和C 2的方程;(2)过点F 作直线l 分别交椭圆于A ,B ,交抛物线C 2于P ,Q ,是否存在常数λ,使1AB -λPQ为定值?若存在,求出λ的值;若不存在,说明理由.【答案】(1)x 24+y 23=1, y 2=4x (2)存在,λ=13【分析】(1)先求出抛物线的方程,进而求出焦点,再根据椭圆的右焦点与其重合,列出方程组求解即可;(2)利用弦长公式分别表示出AB ,PQ ,然后代入1AB -λPQ ,可求出使1AB -λPQ为定值的常数λ.【详解】(1)解:由题意知2632=2p ⋅23⇒p =2,∴y 2=4x ,抛物线焦点1,0 ,∴c =149a 2+83b 2=1a 2=b 2+c2 ⇒a =2b =3 ⇒C 1方程:x 24+y 23=1,C 2方程:y 2=4x .(2)解:方法一:假设存在这样的l ,设直线l 的方程为:x =my +1,A x 1,y 1 ,B x 2,y 2 ,x =my +13x 2+4y 2=12⇒3m 2y 2+2my +1 +4y 2=12,3m 2+4 y 2+6my -9=0.Δ=36m 2+363m 2+4 =144m 2+1 ,∴AB =1+m 2⋅y 1-y 2 =1+m 2⋅144m 2+1 3m 2+4=12m 2+13m 2+4.设P x 3,y 3 ,Q x 4,y 4 ,x =my +1y 2=4x⇒y 2=4my +4,y 2-4my -4=0,Δ=16m 2+16,∴PQ =1+m 2⋅y 3-y 4=1+m 2⋅16m 2+16=4m 2+1 ,∴1AB -λPQ =3m 2+412m 2+1 -λ4m 2+1 =3m 2+4-3λ12m 2+1 为定值.∴312=4-3λ12⇒λ=13,∴存在常数λ=13使1AB -λPQ为定值14.方法二:1AB -λPQ =1-14cos 2θ3-λ1-cos 2θ4对比cos 2θ前系数λ=13.方法三:设l 倾斜角为θ,∴AB =2ab 2a 2-c 2cos 2θ=2×2×34-cos 2θ=124-cos 2θ,PQ =2p sin 2θ=4sin 2θ,∴1AB -λPQ =4-cos 2θ12-λsin 2θ4=4-3λsin 2θ-cos 2θ12为定值,∴3λ=1,λ=13,此时定值为14.18.(2023秋·江苏·高三统考期末)如图,已知椭圆x 24+y 2=1的左、右顶点分别为A ,B ,点C 是椭圆上异于A ,B 的动点,过原点O 平行于AC 的直线与椭圆交于点M ,N ,AC 的中点为点D ,直线OD 与椭圆交于点P ,Q ,点P ,C ,M 在x 轴的上方.(1)当AC =5时,求cos ∠POM ;(2)求PQ ⋅MN 的最大值.【答案】(1)-35(2)10【分析】(1)根据题意求出k AC ⋅k OD =-14,根据AC =5分析出点C 满足的方程,求出点C 坐标,进而求出cos ∠POM ;(2)利用弦长公式求出PQ 和MN ,再利用基本不等式求出最值.【详解】(1)由题知A -2,0 ,设C x 0,y 0 ,则D x 0-22,y 02,则k AC ⋅k OD =y 0x 0+2⋅y 0x 0-2=1-14x 2x 20-4=-14.因为AC =5,所以C 在圆(x +2)2+y 2=5上,又C 在椭圆x 24+y 2=1上,所以C x 0,y 0 满足(x +2)2+y 2=5x 24+y 2=1,所以(x +2)2+1-x 24=5,34x 2+4x =0,所以x 0=0或x 0=-163<-2(舍去),又C 在x 轴上方,所以C 0,1 ,所以直线AC 的斜率为12,故直线OD 的斜率为-12,所以直线AC 与直线OD 关于y 轴对称.设直线AC 的倾斜角θ,cos ∠POM =cos2π2-θ=-cos2θ=sin 2θ-cos 2θ=sin 2θ-cos 2θsin 2θ+cos 2θ=tan 2θ-1tan 2θ+1=-35(2)当直线MN 斜率为k ,k >0,则直线MN :y =kx ,直线PQ :y =-14k x ,M x 1,y 1 ,N x 2,y 2 满足y =kxx 24+y 2=1,所以4k 2+1 x 2=4,x 2=44k 2+1,所以MN 2=1+k 2 164k 2+1,同理PQ 2=1+116k 2 114k 2+1=416k 2+1 4k 2+1,所以MN 2⋅PQ 2=164k 2+4 16k 2+1 4k 2+1 2≤164k 2+4+16k 2+12 24k 2+1 2=420k 2+5 24k 2+12=100所以MN ⋅PQ ≤10,当且仅当4k 2+4=16k 2+1,即k ≤12时取“=”,所以PQ ⋅MN 的最大值为10.【点睛】方法点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.19.(2023·浙江·校联考模拟预测)设双曲线C :x 2a 2-y 2b 2=1的右焦点为F 3,0 ,F 到其中一条渐近线的距离为2.(1)求双曲线C 的方程;(2)过F 的直线交曲线C 于A ,B 两点(其中A 在第一象限),交直线x =53于点M ,(i )求|AF |⋅|BM ||AM |⋅|BF |的值;(ii )过M 平行于OA 的直线分别交直线OB 、x 轴于P ,Q ,证明:MP =PQ .【答案】(1)x 25-y 24=1(2)(i )1;(ii )证明见解析【分析】(1)结合点F 到其中一条渐近线的距离为2和a 2+b 2=c 2,即可求得本题答案;(2)(i )设AB 直线方程为x =my +3,A x 1,y 1 ,B x 2,y 2 ,得y M =-43m,直线方程与双曲线方程联立消x ,然后由韦达定理得y 1+y 2=-24m 4m 2-5,y 1y 2=164m 2-5,把|AF |⋅|BM ||AM |⋅|BF |逐步化简,即可求得本题答案;(ii )把QM 和OB 的直线方程分别求出,联立可得到点P 的坐标,由此即可得到本题答案.【详解】(1)因为双曲线其中一条渐近线方程为bx +ay =0,又点F 3,0 到它的距离为2,所以3b b 2+a2=3bc =2,又c =3,得b =2,又因为a 2+b 2=c 2,所以a 2=5,所以双曲线C 的方程为x 25-y 24=1.(2)(2)设AB 直线方程为x =my +3,则y M =-43m,代入双曲线方程整理得:4m 2-5 y 2+24my +16=0,设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=-24m 4m 2-5,y 1y 2=164m 2-5,(i )|AF |⋅|BM ||AM |⋅|BF |=y 1 ⋅y 2-y M y M -y 1 ⋅y 2 =y 1y 2-y 1y My 2y M -y 2y 1 而y 1y 2-y 1y M -y 2y M -y 2y 1 =2y 1y 2-y M y 1+y 2 =324m 2-5--24m 4m 2-5⋅-43m =0,所以y 1y 2-y 1y M =y 2y M -y 2y 1,,则y 1y 2-y 1y M =y 2y M -y 2y 1 ,所以|AF |⋅|BM ||AM |⋅|BF |=1 ;(ii )过M 平行于OA 的直线方程为y +43m =y 1my 1+3x -53,直线OB 方程为y =y 2my 2+3x 与y +43m =y 1my 1+3x -53联立,得y +43m =y 1my 1+3my 2+3y 2y -53,即y 2my 1+3 y +43m my 1+3 y 2=y 1my 2+3 y -53y 1y 2,则3y 2-y 1 y =-3y 1y 2-4my 2,所以y P =-3y 1y 2-4my 23y 2-y 1 ,由y 1+y 2=-24m 4m 2-5,y 1y 2=164m 2-5两式相除得,y 1y 2y 1+y 2=2-3m ,则y 1y 2=-23m y 1+y 2 ,所以y P =-3y 1y 2-4m y 23y 2-y 1 =2m y 1+y 2 -4m y 23y 2-y 1 =2m y 1-y 2 3y 2-y 1 =-23m ,因为y Q =0,所以y P =y M +y Q2,故P 为线段MQ 的中点,所以|MP |=|PQ |.【点睛】关键点点睛:本题第二小题第一问考了|AF |⋅|BM ||AM |⋅|BF |如何用y 1,y 2,y M 表示出来,进而利用韦达定理进行化简求值,考查了学生的转化能力以及对复杂运算的求解能力20.(2023春·浙江绍兴·高三统考开学考试)在平面直角坐标系xOy 中,已知椭圆C :x 24+y 2=1,B 1,0 .(1)设P 是椭圆C 上的一个动点,求PO ⋅PB的取值范围;(2)设与坐标轴不垂直的直线l 交椭圆C 于M ,N 两点,试问:是否存在满足条件的直线l ,使得△MB N 是以B 为直角顶点的等腰直角三角形?若存在,求出直线l 的方程,若不存在,请说明理由.【答案】(1)23,6(2)y =54x -355或y =-54x +355【分析】(1)设点P (x 0,y 0),将PO ⋅PB转化为坐标表示,求取值范围;(2)设直线方程,与椭圆方程联立,设MN 中点为D ,若△MB N 是以B 为直角顶点的等腰直角三角形,则BM ⊥BN ,BD ⊥MN ,解出直线方程.【详解】(1)设点P (x 0,y 0),则x 204+y 20=1,PO ⋅PB =(-x 0,-y 0)⋅(1-x 0,-y 0)=x 0(x 0-1)+y 20=34x 0-23 2+23,因为-2≤x 0≤2,所以当x 0=-2时,PO ⋅PB max =34×-2-23 2+23=6,当x 0=23时,PO ⋅PB min =34×23-23 2+23=23,所以PO ⋅PB ∈23,6 .(2)设直线l :y =kx +m (k ≠0),M (x 1,y 1),N (x 2,y 2),y =kx +mx 24+y 2=1,消去y 得,(4k 2+1)x 2+8km x +4m 2-4=0,由题,Δ=64k 2m 2-4(4k 2+1)(4m 2-4)>0,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1,y 1+y 2=kx 1+m +kx 2+m =2m 4k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=m 2-4k 24k 2+1,若△MB N 是以B 为直角顶点的等腰直角三角形,则BM ⊥BN , BM ⋅BN=(x 1-1,y 1)⋅(x 2-1,y 2)=x 1x 2-(x 1+x 2)+1+y 1y 2=8km +5m 2-34k 2+1=0,所以8km +5m 2-3=0,①设MN 中点为D ,则D -4km 4k 2+1,m4k 2+1,因为BD ⊥MN ,。
高中数学高考总复习圆锥曲线的综合问题习题及详解

高中数学高考总复习圆锥曲线的综合问题习题及详解一、选择题1.(2010·聊城模考)已知双曲线x 2a 2-y 2b 2=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为( )A .5x 2-45y 2=1B.x 25-y 24=1 C.y 25-x 24=1D .5x 2-54y 2=1[答案] D[解析] 抛物线y 2=4x 焦点为(1,0),∴双曲线中c =1, 又e =c a =5,∴a =55,∴b 2=c 2-a 2=1-15=45,∴双曲线方程为x 215-y 245=1.2.(2010·山东郓城)已知对k ∈R ,直线y -kx -1=0与椭圆x 25+y 2m =1恒有公共点,则实数m 的取值范围是( )A .(0,1)B .(0,5)C .[1,5)∪(5,+∞)D .[1,5)[答案] C[解析] 直线y =kx +1过定点(0,1),只要(0,1)在椭圆x 25+y 2m =1上或共内部即可,从而m ≥1.又因为椭圆x 25+y 2m=1中m ≠5,∴m ∈[1,5)∪(5,+∞).[点评] 含参数的直线与曲线位置关系的命题方式常常是直线过定点,考虑定点与曲线位置,以确定直线与曲线的位置.3.图中的椭圆C 1、C 2与双曲线C 3、C 4的离心率分别为e 1、e 2、e 3、e 4,则它们的大小关系是( )A .e 1<e 2<e 3<e 4B .e 2<e 1<e 3<e 4C .e 1<e 2<e 4<e 3D .e 2<e 1<e 4<e 3[答案] B[解析] ∵C 1、C 2为椭圆,∴e ∈(0,1) ∵C 3、C 4为双曲线,∴e ∈(1,+∞) 比较C 1、C 2∵a 相等而C 1比C 2的短轴小, ∴C 1的焦距比C 2的焦距大,从而e 1>e 2 同理C 4的虚轴长>C 3的虚轴长,而实轴长相同 ∴C 4的焦距>C 3的焦距 ∴e 4>e 3 综上可得:e 2<e 1<e 3<e 4,选B. [点评] 对于椭圆e =ca =1-⎝⎛⎭⎫b a 2,e 越大越扁,对于双曲线e =c a=1+⎝⎛⎭⎫b a 2,e 越大开口越宽阔.4.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个公共点,则椭圆的长轴长为( )A .3 2B .2 6C .27D .4 2[答案] C[解析] 根据题意设椭圆方程为x 2b 2+4+y 2b 2=1(b >0),则将x =-3y -4代入椭圆方程得,4(b 2+1)y 2+83b 2y -b 4+12b 2=0,∵椭圆与直线x +3y +4=0有且仅有一个公共点, ∴Δ=(83b 2)2-4×4(b 2+1)(-b 4+12b 2)=0, 即(b 2+4)(b 2-3)=0,∴b 2=3, 长轴长为2b 2+4=27,故选C.5.已知椭圆x 2a 2+y 2b 2=1(a >b >0),过椭圆的右焦点作x 轴的垂线交椭圆于A 、B 两点,若OA →·OB →=0,则椭圆的离心率e 等于( )A.-1+52B.-1+32C.12D.32[答案] A[解析] 如图,F 2(c,0)把x =c 代入椭圆x 2a 2+y 2a 2=1得A (c ,b 2a).由OA →·OB →=0结合图形分析得 |OF 2|=|AF 2|,即c =b 2a⇒b 2=ac ⇒a 2-c 2=ac⇒(c a )2+ca -1=0⇒e 2+e -1=0⇒e =5-12. 6.(2010·重庆南开中学)双曲线x 2n -y 2=1(n >1)的两焦点为F 1,F 2,点P 在双曲线上,且满足:|PF 1|+|PF 2|=2n +2,则△PF 1F 2的面积是( )A .1 B.12 C .2D .4[答案] A[解析] 由条件知⎩⎨⎧|PF 1|-|PF 2|=2n|PF 1|+|PF 2|=2n +2,∴|PF 1|=n +2+n ,|PF 2|=n +2-n 又∵|F 1F 2|=2n +1,∴|PF 1|2+|PF 2|2=|F 1F 2|2, ∴S △PF 1F 2=12|PF 1|·|PF 2|=12(n +2+n )(n +2-n )=1. 7.在同一坐标系中方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)的曲线大致是( )[答案] D[解析] 方程a 2x 2+b 2y 2=1,即x 21a 2+y 21b2=1,因为1a 2<1b 2,所以是焦点在y 轴上的椭圆.方程ax +by 2=0化为y 2=-abx ,为焦点在x 轴的负半轴的抛物线.8.(2010·长沙一中、雅礼中学联考)若椭圆mx 2+ny 2=1(m >0,n >0)与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的连线的斜率为12,则椭圆的离心率为( )A.12B.22C.32D.62[答案] B[解析] 设A (x 1,y 1),B (x 2,y 2),则AB 中点为⎝⎛⎭⎫x 1+x 22,y 1+y 22,mx 12+ny 12=1,mx 22+ny 22=1,两式相减得y 1+y 2x 1+x 2=-m n ×x 1-x 2y 1-y 2,∴12=-m n ×(-1),即m n =12,离心率e =1m -1n1m=1-m n =22,故选B.9.(2010·福建福州市质检)已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是( )A .5B .8 C.17-1D.5+2[答案] C[解析] 抛物线y 2=4x 的焦点为F (1,0),圆x 2+(y -4)2=1的圆心为C (0,4),设点P 到抛物线的准线距离为d ,根据抛物线的定义有d =|PF |,∴|PQ |+d =|PQ |+|PF |,由圆的几何性质及三角形两边之和大于第三边可知,当P 、Q 、F 、C 四点共线时取最小值,故最小值为|FC |-1=17-1.10.(2010·北方四校联考)已知抛物线C :y 2=2px (p >0),过点A ⎝⎛⎭⎫p 2,0的直线与抛物线C 交于M 、N 两点,且MA →=2AN →,过点M 、N 向直线x =-p 2作垂线,垂足分别为P 、Q ,△MAP 、△NAQ 的面积分别为记为S 1与S 2,那么( )A .S 1∶S 2=2∶1B .S 1∶S 2=5∶2C .S 1∶S 2=4∶1D .S 1∶S 2=7∶1[答案] C[解析] 依题意,点A 为抛物线的焦点,直线x =-p2为抛物线的准线,则|MP |=|MA |,|NA |=|NQ |,∠PMA =π-∠QNA ,故S 1=|MP ||MA |sin ∠PMA =4|AN |2sin ∠QNA =4S 2,故选C.二、填空题11.(2010·吉林省调研)已知过双曲线x 2a 2-y 2b 2=1右焦点且倾斜角为45°的直线与双曲线右支有两个交点,则双曲线的离心率e 的取值范围是________.[答案] (1,2)[解析] 由条件知,渐近线的倾斜角小于45°,即b a <1,∴c 2-a 2a 2<1,∴c 2a 2<2,即e 2<2,∵e >1,∴1<e < 2.12.已知点M (-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为________.[答案] x 2-y 28=1(x >1)[解析] 设另两个切点为E 、F ,如图所示,则|PE |=|PF |,|ME |=|MB |,|NF |=|NB |.从而|PM |-|PN |=|ME |-|NF |=|MB |-|NB |=4-2=2<|MN |,所以点P 的轨迹是以M 、N 为焦点,实轴长为2的双曲线的右支.∴a =1,c =3,∴b 2=8.故方程为x 2-y 28=1(x >1).13.(2010·平顶山市调研)在下列命题中:①方程|x |+|y |=1表示的曲线所围成区域面积为2; ②与两坐标轴距离相等的点的轨迹方程为y =±x ;③与两定点(-1,0)、(1,0)距离之和等于1的点的轨迹为椭圆;④与两定点(-1,0)、(1,0)距离之差的绝对值等于1的点的轨迹为双曲线.正确的命题的序号是________.(注:把你认为正确的命题序号都填上) [答案] ①②④[解析] 方程|x |+|y |=1与两轴交点A (-1,0),B (0,-1),C (1,0),D (0,1)组成正方形的面积S =12|AC |·|BD |=12×2×2=2,故①真;设与两坐标轴距离相等的点为P (x ,y ),则|x |=|y |,∴y =±x ,故②真;∵两点E (-1,0),F (1,0)的距离|EF |=2>1,∴到两点E 、F 距离之和等于1的点不存在,∴③错误;与两点E 、F 距离之差的绝对值等于1的点的轨迹为双曲线正确.14.(2010·安徽安庆联考)设直线l :y =2x +2,若l 与椭圆x 2+y 24=1的交点为A 、B ,点P 为椭圆上的动点,则使△P AB 的面积为2-1的点P 的个数为________.[答案] 3[解析] 设与l 平行且与椭圆相切的直线方程为y =2x +b , 代入x 2+y 24=1中消去y 得,8x 2+4bx +b 2-4=0,由Δ=16b 2-32(b 2-4)=0得,b =±22,显见y =2x +2与两轴交点为椭圆的两顶点A (-1,0),B (0,2), ∵直线y =2x +22与l 距离d =22-25,∴欲使S △ABP =12|AB |·h =52h =2-1,须使h =22-25,∵d =h ,∴直线y =2x +22与椭圆切点,及y =2x +4-22与椭圆交点均满足,∴这样的点P 有3个.三、解答题15.(2010·新课标全国)设F 1、F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1斜率为1的直线l 与E 相交于A 、B 两点,且|AF 2|、|AB |、|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|P A |=|PB |,求E 的方程. [解析] (1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a , 又2|AB |=|AF 2|+|BF 2|,得|AB |=43a .l 的方程为y =x +c ,其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1.消去y ,整理得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2.因为直线AB 斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2], 得43a =4ab 2a 2+b2,故a 2=2b 2, 所以E 的离心率e =c a =a 2-b 2a =22.(2)设AB 的中点为N (x 0,y 0),由(1)知 x 0=x 1+x 22=-a 2c a 2+b 2=-23c ,y 0=x 0+c =c3.由|P A |=|PB |得k PN =-1. 即y 0+1x 0=-1, 得c =3,从而a =32,b =3. 故椭圆E 的方程为x 218+y 29=1.16.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,坐标原点到直线AB 的距离为32,其中A (0,-b ),B (a,0).(1)求双曲线的标准方程;(2)设F 是双曲线的右焦点,直线l 过点F 且与双曲线的右支交于不同的两点P 、Q ,点M 为线段PQ 的中点.若点M 在直线x =-2上的射影为N ,满足PN →·QN →=0,且|PQ →|=10,求直线l 的方程.[解析] (1)依题意有⎩⎨⎧ca=2,ab a 2+b2=32,a 2+b 2=c 2.解得a =1,b =3,c =2.所以,所求双曲线的方程为x 2-y 23=1.(2)当直线l ⊥x 轴时,|PQ →|=6,不合题意.当直线l 的斜率存在时,设直线l 的方程为y =k (x -2).由⎩⎪⎨⎪⎧x 2-y 23=1(x >0)y =k (x -2)得,(3-k 2)x 2+4k 2x -4k 2-3=0.①因为直线与双曲线的右支交于不同两点,所以3-k 2≠0.设P (x 1,y 1),Q (x 2,y 2),M (x 0,y 0),则x 1、x 2是方程①的两个正根,于是有⎩⎨⎧x 1+x 2=4k 2k 2-3>0,x 1x 2=4k 2+3k 2-3>0,Δ=(4k 2)2-4(3-k 2)(-4k 2-3)>0,所以k 2>3.②因为PN →·QN →=0,则PN ⊥QN ,又M 为PQ 的中点,|PQ →|=10,所以|PM |=|MN |=|MQ |=12|PQ |=5. 又|MN |=x 0+2=5,∴x 0=3,而x 0=x 1+x 22=2k 2k 2-3=3,∴k 2=9,解得k =±3.∵k =±3满足②式,∴k =±3符合题意. 所以直线l 的方程为y =±3(x -2). 即3x -y -6=0或3x +y -6=0.17.(2010·北京崇文区)已知椭圆的中心在坐标原点O ,焦点在x 轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F 与x 轴不垂直的直线l 交椭圆于P ,Q 两点.(1)求椭圆的方程;(2)当直线l 的斜率为1时,求△POQ 的面积;(3)在线段OF 上是否存在点M (m,0),使得以MP ,MQ 为邻边的平行四边形是菱形?若存在,求出m 的取值范围;若不存在,请说明理由.[解析] (1)由已知,椭圆方程可设为x 2a 2+y 2b2=1(a >b >0).∵两个焦点和短轴的两个端点恰为正方形的顶点,且短轴长为2, ∴b =c =1,a = 2. 所求椭圆方程为x 22+y 2=1.(2)右焦点F (1,0),直线l 的方程为y =x -1. 设P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧x 2+2y 2=2y =x -1得,3y 2+2y -1=0, 解得y 1=-1,y 2=13.∴S △POQ =12|OF |·|y 1-y 2|=12|y 1-y 2|=23.(3)假设在线段OF 上存在点M (m,0)(0<m <1),使得以MP 、MQ 为邻边的平行四边形是菱形.因为直线与x 轴不垂直,所以设直线l 的方程为y =k (x -1)(k ≠0).由⎩⎪⎨⎪⎧x 2+2y 2=2y =k (x -1)可得,(1+2k 2)x 2-4k 2x +2k 2-2=0. ∴x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2.MP →=(x 1-m ,y 1),MQ →=(x 2-m ,y 2),PQ →=(x 2-x 1,y 2-y 1).其中x 2-x 1≠0以MP ,MQ 为邻边的平行四边形是菱形⇔(MP →+MQ →)⊥PQ →⇔(MP →+MQ →)·PQ →=0 ⇔(x 1+x 2-2m ,y 1+y 2)·(x 2-x 1,y 2-y 1)=0 ⇔(x 1+x 2-2m )(x 2-x 1)+(y 1+y 2)(y 2-y 1)=0 ⇔(x 1+x 2-2m )+k (y 1+y 2)=0 ⇔⎝⎛⎭⎫4k 21+2k 2-2m +k 2⎝⎛⎭⎫4k21+2k 2-2=0 ⇔2k 2-(2+4k 2)m =0⇔m =k 21+2k 2(k ≠0).∴0<m <12.。
2024高考数学专项复习圆锥曲线基础知识手册

圆锥曲线一、椭圆及其性质第一定义平面内一动点P 与两定点F 1、F 2距离之和为常数(大于F 1F 2 )的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF 1d 1=MF 2d 2=e 焦点焦点在x 轴上焦点在y 轴上图形yxF 1F 2abc O A 1A 2B 2B 1x =a 2cx =-a 2c y x F 1F 2ab c A 1A 2B 2B 1y =a2cy =-a2c标准方程x 2a 2+y 2b 2=1a >b >0y 2a 2+x 2b2=1a >b >0范围-a ≤x ≤a 且-b ≤y ≤b-b ≤x ≤b 且-a ≤y ≤a顶点A 1-a ,0 ,A 2a ,0 ,B 10,-b ,B 20,bA 10,-a ,A 20,a ,B 1-b ,0 ,B 2b ,0轴长长轴长=2a ,短轴长=2b ,焦距=F 1F 2 =2c ,c 2=a 2-b 2焦点F 1-c ,0 、F 2c ,0F 10,-c 、F 20,c焦半径PF 1 =a +e x 0,PF 2 =a -e x 0PF 1 =a -e y 0,PF 2 =a +e y 0焦点弦左焦点弦|AB |=2a +e (x 1+x 2),右焦点弦|AB |=2a -e (x 1+x 2).离心率e =c a=1-b 2a20<e <1 准线方程x =±a 2cy =±a 2c切线方程x 0x a 2+y 0y b 2=1x 0xb 2+y 0y a 2=1通径过椭圆焦点且垂直于对称轴的弦长AB =2b 2a(最短焦点弦)焦点三角形(1)由定义可知:|PF 1|+|PF 2|=2a ,周长为:2a +2c (2)焦点三角形面积:S △F 1PF 2=b 2×tan θ2(3)当P 在椭圆短轴上时,张角θ最大,θ≥1-2e 2cos (4)焦长公式:PF 1 =b 2a -c αcos 、MF 1 =b 2a +c αcos MP =2ab 2a 2-c 22αcos =2ab 2b 2+c 22αsin (5)离心率:e =(α+β)sin α+βsin sin yxF 1F 2θαP OMβ2024高考数学专项复习第一定义平面内一动点P与两定点F1、F2距离之差为常数(大于F1F2)的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF1d1=MF2d2=e焦点焦点在x轴上焦点在y轴上图形yxF1F2bc虚轴实轴ayxF1F2实轴虚轴标准方程x2a2-y2b2=1a>0,b>0y2a2-x2b2=1a>0,b>0范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R 顶点A1-a,0、A2a,0A10,-a、A20,a轴长虚轴长=2b,实轴长=2a,焦距=F1F2=2c,c2=a2+b2焦点F1-c,0、F2c,0F10,-c、F20,c焦半径|PF1|=a+e x0,|PF2|=-a+e x0左支添“-”离心率e=ca=1+b2a2e>1准线方程x=±a2c y=±a2c渐近线y=±ba x y=±ab x切线方程x0xa2-y0yb2=1x0xb2-y0ya2=1通径过双曲线焦点且垂直于对称轴的弦长AB=2b2a(最短焦点弦)焦点三角形(1)由定义可知:|PF1|-|PF2|=2a(2)焦点直角三角形的个数为八个,顶角为直角与底角为直角各四个;(3)焦点三角形面积:S△F1PF2=b2÷tanθ2=c∙y(4)离心率:e=F1F2PF1-PF2=sinθsinα-sinβ=sin(α+β)sinα-sinβyxF1F2Pθαβ定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.方程y 2=2px p >0y 2=-2px p >0x 2=2py p >0x 2=-2py p >0图形yxF x =-p2yxFx =p2y xFy =-p2yxFy =p2顶点0,0对称轴x 轴y 轴焦点F p2,0 F -p 2,0 F 0,p 2 F 0,-p 2准线方程x =-p 2x =p2y =-p 2y =p 2离心率e =1范围x ≥0x ≤0y ≥0y ≤0切线方程y 0y =p x +x 0y 0y =-p x +x 0x 0x =p y +y 0x 0x =-p y +y 0通径过抛物线焦点且垂直于对称轴的弦AB =2p (最短焦点弦)焦点弦AB 为过y 2=2px p >0 焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =x 1+p 2BF =x 2+p2AB =x 1+x 2+p ,(2)x 1x 2=p 24y 1y 2=-p 2(3)AF =p 1-αcos BF =p 1+αcos 1|FA |+1|FB |=2P (4)AB =2psin 2αS △AOB =p 22αsin AB 为过x 2=2py (p >0)焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =p 1-αsin BF =p1+αsin (2)AB =2p 2αcos S △AOB=p 22αcos (3)AF BF=λ,则:α=λ-1λ+1sin yxFx =-p 2αABO yxFαABOy 2=2px (p >0)y 2=2px (p >0)四、圆锥曲线的通法F 1F 2POxyOxyFP MOxyF 1F 2P椭圆双曲线抛物线点差法与通法1、圆锥曲线综述:联立方程设交点,韦达定理求弦长;变量范围判别式,曲线定义不能忘;弦斜中点点差法,设而不求计算畅;向量参数恰当用,数形结合记心间.★2、直线与圆锥曲线的位置关系(1)直线的设法:1若题目明确涉及斜率,则设直线:y =kx +b ,需考虑直线斜率是否存在,分类讨论;2若题目没有涉及斜率或直线过(a ,0)则设直线:x =my +a ,可避免对斜率进行讨论(2)研究通法:联立y =kx +bF (x ,y )=0得:ax 2+bx +c =0判别式:Δ=b 2−4ac ,韦达定理:x 1+x 2=−b a ,x 1x 2=ca(3)弦长公式:AB =(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=(1+k 2)⋅[(x 1+x 2)2-4x 1x 2]=1+1k2(y 1+y 2)2−4y 1y 2 3、硬解定理设直线y =kx +φ与曲线x 2m +y 2n=1相交于A (x 1,y 1)、B (x 2,y 2)由:y =kx +φnx 2+my 2=mn,可得:(n +mk 2)x 2+2kφmx +m (φ2-n )=0判别式:△=4mn (n +mk 2-φ2)韦达定理:x 1+x 2=-2kmφn +mk 2,x 1x 2=m (φ2-n )n +mk 2由:|x 1-x 2|=(x 1+x 2)2-4x 1x 2,代入韦达定理:|x 1-x 2|=△n +mk 2★4、点差法:若直线l 与曲线相交于M 、N 两点,点P (x 0,y 0)是弦MN 中点,MN 的斜率为k MN ,则:在椭圆x 2a 2+y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=−b 2a2;在双曲线x 2a 2−y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=b 2a2;在抛物线y 2=2px (p >0)中,有k MN ⋅y 0=p .(椭圆)设M 、N 两两点的坐标分别为(x 1,y 1)、(x 2,y 2),则有x 12a 2+y 12b 2=1,⋯⋯(1)x 22a 2+y 22b 2=1.⋯⋯(2) (1)−(2),得x 12−x 22a 2+y 12−y 22b 2=0.∴y 2−y 1x 2−x 1⋅y 2+y 1x 2+x 1=−b 2a2.又∵k MN =y 2−y 1x 2−x 1,y 1+y 2x 1+x 2=2y 2x =y x .∴k MN ⋅y x =−b 2a2.圆锥曲线的参数方程1、参数方程的概念在平面直角坐标系中,曲线上任意一点的坐标x ,y 都是某个变数t 的函数x =f (t )y =g (t )并且对于t 的每一个允许值,由这个方程所确定的点M (x ,y )都在这条曲线上,该方程就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.※2、直线的参数方程(1)过定点P (x 0,y 0)、倾斜角为α(α≠π2)的直线的参数方程x =x 0+t cos αy =y 0+t sin α (t 为参数)(2)参数t 的几何意义:参数t 表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段的长度再加上表示方向的正负号,也即|M 0M|=|t |,|t |表示直线上任一点M 到定点M 0的距离.当点M 在M 0上方时,t >0;当点M 在M 0下方时,t <0;当点M 与M 0重合时,t =0;(3)直线方程与参数方程互化:y −y o =tan α(x −x o )⇔x =x 0+t cos αy =y 0+t sin α(t 为参数)(4)直线参数方程:x =x 0+aty =y 0+bt (t 为参数),当a 2+b 2=1时,参数方程为标准型参数方程,参数的几何意义才是代表距离.当a 2+b 2≠1时,将参数方程化为x =x 0+aa 2+b 2t y =y 0+ba 2+b 2t 然后在进行计算.★3、圆的参数方程(1)圆心(a ,b ),半径r 的圆(x -a )2+(y -b )2=r 2参数方程x =a +r cos θy =b +r sin θ (θ为参数);特别:当圆心在原点时,半径为r 的圆x 2+y 2=r 2的参数方程为:x =r cos θy =r sin θ (θ是参数).(2)参数θ的几何意义:θ表示x 轴的正方向到圆心和圆上任意一点的半径所成的角.(3)消参的方法:利用sin 2θ+cos 2θ=1,yxF 1F 2PN OMyxM 0tαO M 1αP (x ,y )rxy可得圆方程:(x -a )2+(y -b )2=r 2★4、椭圆的参数方程(1)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为x =a cos φy =b sin φ (φ为参数);椭圆y 2a 2+x 2b2=1(a >b >0)的参数方程为x =b cos φy =a sin φ (φ为参数);(2)参数θ的几何意义:参数θ表示椭圆上某一点的离心角.如图所示,点P 对应的离心角为θ=∠QOx (过P 作PQ ⊥x 轴,交大圆即以2a 为直径的圆于Q ),切不可认为是θ=∠POx .5、双曲线的参数方程(1)双曲线x 2a 2-y 2b 2=1(a >b >0)的参数方程x =a sec φy =b tan φ (φ为参数);sec φ=1cos φ双曲线y 2a 2-x 2b2=1(a >b >0)的参数方程x =b cot φy =a csc φ (φ为参数);csc φ=1sin φ(2)参数θ的几何意义:参数θ表示双曲线上某一点的离心角.※6、抛物线的参数方程(1)抛物线y 2=2px 参数方程x =2pt 2y =2pt(t 为参数,t =1tan α);(2)参数t 的几何意义:抛物线上除顶点外的任意一点与原点连线的斜率的倒数.t =1k OP仿射变换与齐次式1、仿射变换:在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间.※2、椭圆的变换:椭圆b 2x 2+a 2y 2=a 2b 2变换内容x =x y=a b y x =xy =b a yx =b a x y=yx =a b x y =y圆方程x 2+y 2=a 2x 2+y 2=b 2图示yxAB OCyxABOCyxAB OCyxAB OC 点坐标A (x 0,y 0)→A '(x 0,a by 0)A (x 0,y 0)→A '(b ax 0,y 0)斜率变化k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a 2k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a2弦长变化则AB =1+k 2x 1-x 2 ⇒A 'B '=1+k '2x 1-x 2 =1+(a b)2k 2x 1-x 2 yxαPOQ面积变化S△ABC=b a S△A'B'C'(水平宽不变,铅锤高缩小)S△ABC=a b S△A'B'C'(水平宽扩大,铅垂高不变)3、中点弦问题,k OP⋅k AB=−b2a2,中垂线问题k OPk MP=b2a2,且x M=c2x0a2y N=-c2y0b2,拓展1:椭圆内接△ABC中,若原点O为重心,则仿射后一定得到△OB'C'为120°的等腰三角形;△A'B'C'为等边三角形;拓展2:椭圆内接平行四边形OAPB(A、P、B)在椭圆上,则仿射后一定得菱形OA'P'B' 4、面积问题:(1)若以椭圆x2a2+y2b2=1对称中心引出两条直线交椭圆于A、B两点,且k OA⋅k OB=−b2a2,则经过仿射变换后k OA'⋅k OB'=−1,所以S△AOB为定值.(2)若椭圆方程x2a2+y2b2=1上三点A,B,M,满足:①k OA⋅k OB=−b2a2②S△AOB=ab2③OM=sinαOA+cosαOBα∈0,π2,三者等价※5、平移构造齐次式:(圆锥曲线斜率和与积的问题)(1)题设:过圆锥曲线上的一个定点P作两条直线与圆锥曲线交于A、B,在直线PA和PB斜率之和或者斜率之积为定值的情况下,直线AB过定点或者AB定斜率的问题.(2)步骤:①将公共点平移到坐标原点(点平移:左加右减上减下加)找出平移单位长.②由①中的平移单位长得出平移后的圆锥曲线C ,所有直线方程统一写为:mx+ny=1③将圆锥曲线C 展开,在一次项中乘以mx+ny=1,构造出齐次式.④在齐次式中,同时除以x2,构建斜率k的一元二次方程,由韦达定理可得斜率之积(和).圆锥曲线考点归类(一)条件方法梳理1、椭圆的角平分线定理(1)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆长轴交点为N,在长轴上一定存在一个点M,当仅当则x M⋅x N=a2时,∠AMN=∠BMN,即长轴为角平分线;(2)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆短轴交点为N,在短轴上一定存在一个点M,当仅当则y M⋅y N=b2时,∠AMN=∠BMN,即短轴为角平分线;※2、关于角平分线的结论:若直线AO的斜率为k1,直线CO的斜率为k2,EO平分∠AOC则有:k1+k2=tanα+tan(π-α)=0角平分线的一些等价代换条件:作x轴的对称点、点到两边的距离相等.3、四种常用直线系方程(1)定点直线系方程:经过定点P 0(x 0,y 0)的直线系方程为y -y 0=k (x -x 0)(除直线x =x 0),其中k 是待定的系数;经过定点P 0(x 0,y 0)的直线系方程为A (x -x 0)+B (y -y 0)=0,其中A ,B 是待定的系数.(2)共点直线系方程:经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线系方程为(A 1x +B 1y +C 1)+λ(A 2x +B 2y +C 2)=0(除l 2),其中λ是待定的系数.(3)平行直线系方程:直线y =kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C =0平行的直线系方程是Ax +By +λ=0(λ≠0),λ是参变量.(4)垂直直线系方程:与直线Ax +By +C =0(A ≠0,B ≠0)垂直的直线系方程是Bx -Ay +λ=0,λ是参变量.4、圆系方程(1)过直线l :Ax +By +C =0与圆C :x 2+y 2+Dx +Ey +F =0的交点的圆系方程是x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0,λ是待定的系数.(2)过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0的交点的圆系方程是x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0,λ是待定的系数.★(二)圆锥曲线过定点问题1、直线过定点的背景:(1)直线过定点模型:A ,B 是圆锥曲线上的两动点,M 是一定点,其中α,β分别为MA ,MB 的倾斜角,则:①、MA ⋅MB 为定值⇔直线AB 恒过定点;②、k MA ⋅k MB 为定值⇔直线AB 恒过定点;③、α+β=θ(0<θ<π)⇔直线AB 恒过定点.(2)抛物线中直线过定点:A ,B 是抛物线y 2=2px (p >0)上的两动点,α,β分别为OA ,OB 的倾斜角,则:OA ⊥OB ⇔k OA ⋅k OB =-1⇔α-β =π2⇔直线AB 恒过定点(2p ,0).(3)椭圆中直线过定点模型:A ,B 是椭圆x 2a 2+y 2b2=1(a >b >0)上异于右顶点D 的两动点,其中α,β分别为DA ,DB 的倾斜角,则可以得到下面几个充要的结论:DA ⊥DB ⇔k DA ⋅k DB =-1⇔α-β =π2⇔直线AB 恒过定点(ac 2a 2+b 2,0)2、定点的求解方法:1含参形式简单的直线方程,通过将直线化为y -y 0=k (x -x 0)可求得定点坐标(x 0,y 0)2含参形式复杂的通过变换主元法求解定点坐标.变换主元法:将直线化为h (x ,y )+λf (x ,y )=0,解方程组:h (x ,y )=0f (x ,y )=0 可得定点坐标.eg :直线方程:(2m +1)x +(m -5)y +6=0,将m 看作主元,按照降幂排列:(2x +y )m+x -5y +6=0,解方程组:2x +y =0x -5y +6=0,解得:x =-611y =1211,求得直线过定点(-611,1211).3、关于以AB 为直径的圆过定点问题:(1)直接法:设出参数后,表示出圆的方程.圆的直径式方程:(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0(2)由特殊到一般:利用赋值法,先求出几个位置的圆方程,联立圆方程解出公共交点,该交点即为圆所过的定点,再利用向量数量积为0证明点恒在圆上.★(三)圆锥曲线面积问题1、面积的求解方法:(1)S △ABC =12MN ∙d ,从公式可以看出,求面积重在求解弦长和点到线的距离.(2)S △ABC =12×水平宽×铅锤高,主要以点的坐标运算为主.(3)S △AOB =12x 1y 2-x 2y 1例题1.在平面直角坐标系xOy 中,已知点O 0,0 ,A x 1,y 1 ,B x 2,y 2 不共线,证明:△AOB 的面积为S △AOB =12x 1y 2-x 2y 1 .2、面积中最值的求解(1)f (x )=αx 2+βx +φx +n型:令t =x +n ⇒x =t -n 进行代换后裂项转化为:y =at +bt (2)f (x )=x +n αx 2+βx +φ型:先在分母中配出分子式f (x )=x +n α(x +n )2+λ(x +n )+υ令t =x +n ,此时:y =t αt 2+λt +υ,分子分母同时除t ,此时y =1αt +υt+λ,再利用对勾函数或不等式分析最值.(3)f (x )=αx +βx +n型:令t =x +n ⇒x =t 2-n 进行代换后裂项,可转化为:y =at +bt五、椭圆的二级结论1.PF1+PF2=2a2.标准方程x2a2+y2b2=13.PF1d1=e<14.点P处的切线PT平分△PF1F2在点P处的外角.5.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相离.7.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.8.设A1、A2为椭圆的左、右顶点,则△PF1F2在边PF2(或PF1)上的旁切圆,必与A1A2所在的直线切于A2 (或A1).9.椭圆x2a2+y2b2=1(a>b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2-y2b2=1.10.若点P0(x0,y0)在椭圆x2a2+y2b2=1a>b>0上,则在点P0处的切线方程是x0xa2+y0yb2=1.11.若P0(x0,y0)在椭圆x2a2+y2b2=1外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2+y0yb2=1.12.AB是椭圆x2a2+y2b2=1的不平行于对称轴的弦,M为AB的中点,则k OM⋅k AB=-b2a2.13.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则被PO所平分的中点弦的方程是x0xa2+y0yb2=x02a2+y02b2.14.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则过PO的弦中点的轨迹方程是x2a2+y2b2=x0xa2+y0yb2.15.若PQ是椭圆x2a2+y2b2=1(a>b>0)上对中心张直角的弦,则1r12+1r22=1a2+1b2(r1=|OP|,r2=|OQ|).16.若椭圆x2a2+y2b2=1(a>b>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2+1 b2=A2+B2;(2)L=2a4A2+b4B2a2A2+b2B2.17.给定椭圆C1:b2x2+a2y2=a2b2(a>b>0),C2:b2x2+a2y2=a2-b2a2+b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2-b2a2+b2x0,-a2-b2a2+b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为椭圆(或圆)C:x2a2+y2b2=1(a>0,.b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=-1+m1-m⋅b2a2.19.过椭圆x2a2+y2b2=1(a>0,b>0)上任一点A(x0,y0)任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且k BC=b2x0a2y0(常数).20.椭圆x2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,点P为椭圆上任意一点∠F1PF2=γ,则椭圆的焦点三角形的面积为S△F1PF2=b2tanγ2,P±ac c2-b2tan2γ2,±b2c tanγ2.21.若P为椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则a-ca+c=tanα2tanβ2.22.椭圆x2a2+y2b2=1(a>b>0)的焦半径公式:|MF1|=a+ex0,|MF2|=a-ex0(F1(-c,0),F2(c,0),M(x0,y0)).23.若椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当2-1≤e<1时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.24.P为椭圆x2a2+y2b2=1(a>b>0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则2a-|AF2|≤|PA|+|PF1|≤2a+|AF2|,当且仅当A,F2,P三点共线时,等号成立.25.椭圆x2a2+y2b2=1(a>b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02≤(a2-b2)2a2+b2k2.26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是椭圆x=a cosϕy=b sinϕ(a>b>0)上一点,则点P对椭圆两焦点张直角的充要条件是e2=11+sin2ϕ.29.设A,B为椭圆x2a2+y2b2=k(k>0,k≠1)上两点,其直线AB与椭圆x2a2+y2b2=1相交于P,Q,则AP=BQ.30.在椭圆x 2a 2+y 2b 2=1中,定长为2m (o <m ≤a )的弦中点轨迹方程为m 2=1-x 2a 2+y 2b 2a 2cos 2α+b 2sin 2α ,其中tan α=-bx ay ,当y =0时,α=90∘.31.设S 为椭圆x 2a 2+y 2b2=1(a >b >0)的通径,定长线段L 的两端点A ,B 在椭圆上移动,记|AB |=l ,M(x 0,y 0)是AB 中点,则当l ≥ΦS 时,有(x 0)max =a 2c -l 2e c 2=a 2-b 2,e =c a;当l <ΦS 时,有(x 0)max =a 2b4b 2-l 2,(x 0)min=0.32.椭圆x 2a 2+y 2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥C 2.33.椭圆(x -x 0)2a 2+(y -y 0)2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥(Ax 0+By 0+C )2.34.设椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记∠F 1PF 2=α,∠PF 1F 2=β,∠F 1F 2P =γ,则有sin αsin β+sin γ=c a =e.35.经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则|P 1A 1|⋅|P 2A 2|=b 2.36.已知椭圆x 2a 2+y 2b2=1(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP ⊥OQ .(1)1|OP |2+1|OQ |2=1a 2+1b2;(2)|OP |2+|OQ |2的最小值为4a 2b 2a 2+b 2;(3)S ΔOPQ 的最小值是a 2b 2a 2+b 2.37.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则|AB |2=2a |MN |.38.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP ⊥MN ,则2a |MN |+1|OP |2=1a 2+1b2.39.设椭圆x 2a 2+y 2b2=1(a >b >0),M (m ,o )或(o ,m )为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q (A 1,A 2为对称轴上的两顶点)的交点N 在直线l :x =a2m(或y =b 2m)上.40.设过椭圆焦点F 作直线与椭圆相交P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF .41.过椭圆一个焦点F的直线与椭圆交于两点P、Q,A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.42.设椭圆方程x2a2+y2b2=1,则斜率为k(k≠0)的平行弦的中点必在直线l:y=kx的共轭直线y=k x上,而且kk =-b2 a2 .43.设A、B、C、D为椭圆x2a2+y2b2=1上四点,AB、CD所在直线的倾斜角分别为α,β,直线AB与CD相交于P,且P不在椭圆上,则PA⋅PBPC⋅PD=b2cos2β+a2sin2βb2cos2α+a2sin2α.44.已知椭圆x2a2+y2b2=1(a>b>0),点P为其上一点F1,F2为椭圆的焦点,∠F1PF2的外(内)角平分线为l,作F1、F2分别垂直l于R、S,当P跑遍整个椭圆时,R、S形成的轨迹方程是x2+y2=a2c2y2=a2y2+b2x x±c2 a2y2+b2x±c2.45.设△ABC内接于椭圆Γ,且AB为Γ的直径,l为AB的共轭直径所在的直线,l分别交直线AC、BC于E和F,又D为l上一点,则CD与椭圆Γ相切的充要条件是D为EF的中点.46.过椭圆x2a2+y2b2=1(a>b>0)的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,则|PF||MN|=e2.47.设A(x1,y1)是椭圆x2a2+y2b2=1(a>b>0)上任一点,过A作一条斜率为-b2x1a2y1的直线L,又设d是原点到直线L的距离,r1,r2分别是A到椭圆两焦点的距离,则r1r2d=ab.48.已知椭圆x2a2+y2b2=1(a>b>0)和x2a2+y2b2=λ(0<λ<1),一直线顺次与它们相交于A、B、C、D四点,则│AB│=|CD│.49.已知椭圆x2a2+y2b2=1(a>b>0),A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0),则-a2-b2a<x0<a2-b2 a.50.设P点是椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记∠F1PF2=θ,则(1)|PF1||PF2|=2b21+cosθ.(2)SΔPF1F2=b2tanθ2.51.设过椭圆的长轴上一点B(m,o)作直线与椭圆相交于P、Q两点,A为椭圆长轴的左顶点,连结AP和AQ分别交相应于过H点的直线MN:x=n于M,N两点,则∠MBN=90∘⇔a-ma+m=a2n-m2 b2(n+a)2.52.L是经过椭圆x2a2+y2b2=1(a>b>0)长轴顶点A且与长轴垂直的直线,E、F是椭圆两个焦点,e是离心率,点P∈L,若∠EPF=α,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=b时取等号).53.L是椭圆x2a2+y2b2=1(a>b>0)的准线,A、B是椭圆的长轴两顶点,点P∈L,e是离心率,∠EPF=α,H是L与X轴的交点c是半焦距,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=ab c时取等号).54.L是椭圆x2a2+y2b2=1(a>b>0)的准线,E、F是两个焦点,H是L与x轴的交点,点P∈L,∠EPF=α,离心率为e,半焦距为c,则α为锐角且sinα≤e2或α≤arcsin e2(当且仅当|PH|=b c a2+c2时取等号).55.已知椭圆x2a2+y2b2=1(a>b>0),直线L通过其右焦点F2,且与椭圆相交于A、B两点,将A、B与椭圆左焦点F1连结起来,则b2≤|F1A|⋅|F1B|≤(2a2-b2)2a2(当且仅当AB⊥x轴时右边不等式取等号,当且仅当A、F1、B三点共线时左边不等式取等号).56.设A、B是椭圆x2a2+y2b2=1(a>b>0)的长轴两端点,P是椭圆上的一点,∠PAB=α,∠PBA=β,∠BPA=γ,c、e分别是椭圆的半焦距离心率,则有(1)|PA|=2ab2|cosα|a2-c2cos2α.(2)tanαtanβ=1-e2.(3)SΔPAB=2a2b2b2-a2cotγ.57.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点)、外部的两点,且x A、x B的横坐标x A⋅x B=a2,(1)若过A点引直线与这椭圆相交于P、Q两点,则∠PBA=∠QBA;(2)若过B引直线与这椭圆相交于P、Q两点,则∠PAB+∠QAB=180∘.58.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A点引直线与这椭圆相交于P、Q两点,(若BP交椭圆于两点,则P、Q不关于x轴对称),且∠PBA=∠QBA,则点A、B的横坐标x A、x B满足x A⋅x B=a2;(2)若过B点引直线与这椭圆相交于P、Q两点,且∠PAB+∠QAB=180∘,则点A、B的横坐标满足x A⋅x B=a2.59.设A,A 是椭圆x2a2+y2b2=1的长轴的两个端点,QQ 是与AA 垂直的弦,则直线AQ与A Q 的交点P的轨迹是双曲线x2a2-y2b2=1.60.过椭圆x2a2+y2b2=1(a>b>0)的左焦点F作互相垂直的两条弦AB、CD则8ab2a2+b2≤|AB|+|CD|≤2(a2+b2)a.61.到椭圆x 2a 2+y 2b2=1(a >b >0)两焦点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆(x ±a )2+y 2=b 2.62.到椭圆x 2a 2+y 2b2=1(a >b >0)的长轴两端点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆x ±a e 2+y 2=b e 2.63.到椭圆x 2a 2+y 2b2=1(a >b >0)的两准线和x 轴的交点的距离之比为a -c b (c 为半焦距)的动点的轨迹是姊妹圆x ±a e 2 2+y 2=b e 2 2(e 为离心率).64.已知P 是椭圆x 2a 2+y 2b2=1(a >b >0)上一个动点,A ,A 是它长轴的两个端点,且AQ ⊥AP ,A Q ⊥AP ,则Q 点的轨迹方程是x 2a 2+b 2y 2a4=1.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆x 2a 2+y 2b 2=1(a >b >0)长轴的端点为A ,A ,P (x 1,y 1)是椭圆上的点过P 作斜率为-b 2x 1a 2y 1的直线l ,过A ,A 分别作垂直于长轴的直线交l 于M ,M ,则(1)|AM ||A M |=b 2.(2)四边形MAA M 面积的最小值是2ab .67.已知椭圆x 2a 2+y2b2=1(a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC ⎳x 轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆(x -a )2a 2+y 2b 2=1(a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB必经过一个定点2ab 2a 2+b 2,0 .(2)以OA 、OB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2a 2+b 2 2+y 2=ab 2a 2+b 2 2(x ≠0).69.P (m ,n )是椭圆(x -a )2a 2+y 2b2=1(a >b >0)上一个定点,PA 、PB 是互相垂直的弦,则(1)直线AB 必经过一个定点2ab 2+m (a 2-b 2)a 2+b 2,n (b 2-a 2)a 2+b 2 .(2)以PA 、PB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2+a 2m a 2+b 2 2+y -b 2n a 2+b 2 2=a 2[b 4+n 2(a 2-b 2)](a 2+b 2)2(x ≠m 且y ≠n ).70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)d 1d 2=b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)d 1d 2>b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)d 1d 2<b 2,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆x 2a 2+y 2b2=1(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B 的切线交于C 、D两点,则梯形ABDC的对角线的交点M的轨迹方程是x2a2+4y2b2=1(y≠0).72.设点P(x0,y0)为椭圆x2a2+y2b2=1(a>b>0)的内部一定点,AB是椭圆x2a2+y2b2=1过定点P(x0,y0)的任一弦,当弦AB平行(或重合)于椭圆长轴所在直线时(|PA|⋅|PB|)max=a2b2-(a2y02+b2x02)b2.当弦AB垂直于长轴所在直线时,(|PA|⋅|PB|)min=a2b2-(a2y02+b2x02)a2.73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切.74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点.75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c与a-c.76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例.81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行.83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长.84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e.86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线.87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.89.已知椭圆x2a2+y2b2=1(a>0,b>0)(包括圆在内)上有一点P,过点P分别作直线y=b a x及y=-b a x的平行线,与x 轴于M ,N ,与y 轴交于R ,Q .,O 为原点,则:(1)|OM |2+|ON |2=2a 2;(2)|OQ |2+|OR |2=2b 2.90.过平面上的P 点作直线l 1:y =b a x 及l 2:y =-b ax 的平行线,分别交x 轴于M ,N ,交y 轴于R ,Q .(1)若|OM |2+|ON |2=2a 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).(2)若|OQ |2+|OR |2=2b 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).91.点P 为椭圆x 2a 2+y 2b2=1(a >0,b >0)(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记ΔOMQ 与ΔONR 的面积为S 1,S 2,则:S 1+S 2=ab 2.92.点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记△OMQ 与△ONR 的面积为S 1,S 2,已知S 1+S 2=ab 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).93.过椭圆焦点垂直于长轴的弦(通径)是最短的弦,长为2b 2a,过焦点最长弦为长轴.94.过原点最长弦为长轴长2a ,最短弦为短轴长2b .95.与椭圆x 2a 2+y 2b 2=1(a >b >0)有共焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(a >b >0,λ>-b 2).96.与椭圆y 2a 2+x 2b 2=1(a >b >0)有共焦点的椭圆方程为y 2a 2+λ+x 2b 2+λ=1(a >b >0,λ>-b 2).97.焦点三角形:椭圆上的点P (x 0,y 0)与两焦点F 1,F 2构成的△PF 1F 2叫做焦点三角形.若r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2时,即点P 为短轴端点时,θ最大;cos θ=r 21+r 22-4c 22r 1r 2=r 1+r 2 2-2r 1r 2-4c22r 1r 2=4b 22r 1r 2-1=2b 2r 1r 2-1≥2b 2r 1+r 222-1=2b 2-a 2a 2=b 2-c 2a 2当且仅当r 1=r 2时,等号成立.②S =12|PF 1||PF 2|sin θ=c |y 0|=sin θ1+cos θb 2=b 2tan θ2,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;③△PF 1F 2的周长为2(a +c ).98.AB 为过F 的焦点弦,则1FA +1FB =2ab 299.已知椭圆Γ:x 2a 2+y 2b2=1a >b >0 的左右焦点分别为F 1、F 2.椭圆Γ在点P 处的切线为l ,Q ∈l .且满足∠AQF1=θ0<θ<π2,则点Q在以C0,±cθcot为圆心,a θsin为半径的圆上.六、双曲线的二级结论1.PF1-PF2=2a2.标准方程x2a2-y2b2=13.PF1d1=e>14.点P处的切线PT平分△PF1F2在点P处的内角.5.PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以实轴为直径的圆,除去实轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相交.7.以焦点半径PF1为直径的圆必与以实轴为直径的圆外切.8.设P为双曲线上一点,则△PF1F2的内切圆必切于与P在同侧的顶点.9.双曲线x2a2-y2b2=1(a>0,b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2+y2b2=1.10.若点P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)上,则在点P0处的切线方程是x0xa2-y0yb2=1.11.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)外,则过P0作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2-y0yb2=1.12.若AB是双曲线x2a2-y2b2=1(a>0,b>0)的不平行于对称轴且过原点的弦,M为AB的中点,则k OM⋅k AB=b2a2.13.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则被P0所平分的中点弦的方程是x0xa2-y0yb2=x02a2-y02 b2 .14.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则过Po的弦中点的轨迹方程是x2a2-y2b2=x0xa2-y0y b2.15.若PQ是双曲线x2a2-y2b2=1(b>a>0)上对中心张直角的弦,则1r12+1r22=1a2-1b2(r1=|OP|,r2=|OQ|).16.若双曲线x2a2-y2b2=1(b>a>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2-1 b2=A2+B2;(2)L=2a4A2+b4B2|a2A2-b2B2|.17.给定双曲线C1:b2x2-a2y2=a2b2(a>b>0),C2:b2x2-a2y2=a2+b2a2-b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2+b2a2-b2x0,-a2+b2a2-b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为双曲线x2a2-y2b2=1(a>0,b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=1+m1-m⋅b2a2.19.过双曲线x2a2-y2b2=1(a>0,b>o)上任一点A(x0,y0)任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且k BC=-b2x0a2y0(常数).20.双曲线x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,点P为双曲线上任意一点∠F1PF2=γ,则双曲线的焦点角形的面积为S△F1PF2=b2cotγ2=b2γ2tan,P±ac c2+b2cot2γ2,±b2c cotγ2.21.若P为双曲线x2a2-y2b2=1(a>0,b>0)右(或左)支上除顶点外的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则c-ac+a=tan α2cotβ2(或c-ac+a=tanβ2cotα2).22.双曲线x2a2-y2b2=1(a>0,b>o)的焦半径公式:F1(-c,0),F2(c,0)当M(x0,y0)在右支上时,|MF1|=ex0+a,|MF2|=ex0-a.当M(x0,y0)在左支上时,|MF1|=-ex0-a,|MF2|=-ex0+a.23.若双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,左准线为L,则当1<e≤2+1时,可在双曲线上求一点P,使得PF1是P到对应准线距离d1与PF2的比例中项.24.P为双曲线x2a2-y2b2=1(a>0,b>0)上任一点,F1,F2为二焦点,A为双曲线左支内一定点,则|AF2|-2a≤|PA|+|PF1|,当且仅当A,F2,P三点共线且P在左支时,等号成立.25.双曲线x2a2-y2b2=1(a>0,b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02>(a2+b2)2 a2-b2k2k≠0且k≠±a b .26.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是双曲线x=a secϕy=b tanϕ(a>0,b>0)上一点,则点P对双曲线两焦点张直角的充要条件是e2=11-tan2ϕ.29.设A,B为双曲线x2a2-y2b2=k(a>0,b>0,k>0,k≠1)上两点,其直线AB与双曲线x2a2-y2b2=1相交于P,Q,则AP=BQ.30.在双曲线x2a2-y2b2=1中,定长为2m(m>0)的弦中点轨迹方程为m2=1-x2a2-y2b2a2cosh2t+b2sinh2t,coth t=-aybx,x=0时t=0,弦两端点在两支上x2a2-y2b2-1a2sinh2t+b2cosh2t,coth t=-bxay,y=0时t=0,弦两端点在同支上31.设S为双曲线x2a2-y2b2=1(a>0,b>0)的通径,定长线段L的两端点A,B在双曲线右支上移动,记|AB|=l,M(x0,y0)是AB中点,则当l≥ΦS时,有(x0)min=a2c+l2e c2=a2+b2,e=c a;当l<ΦS时,有(x0)min=a2b4b2+l2.32.双曲线x2a2-y2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤C2.33.双曲线(x-x0)2a2-(y-y0)2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤(Ax0+By0+C)2.34.设双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记∠F1PF2=α,∠PF1F2=β,∠F1F2P=γ,则有sinα±(sinγ-sinβ)=c a=e.35.经过双曲线x2a2-y2b2=1(a>0,b>0)的实轴的两端点A1和A2的切线,与双曲线上任一点的切线相交于P1和P2,则|P1A1|⋅|P2A2|=b2.36.已知双曲线x2a2-y2b2=1(b>a>0),O为坐标原点,P、Q为双曲线上两动点,且OP⊥OQ.(1)1|OP|2+1 |OQ|2=1a2-1b2;(2)|OP|2+|OQ|2的最小值为4a2b2b2-a2;(3)SΔOPQ的最小值是a2b2b2-a2.37.MN是经过双曲线x2a2-y2b2=1(a>0,b>0)过焦点的任一弦(交于两支),若AB是经过双曲线中心O且平行于MN的弦,则|AB|2=2a|MN|.38.MN是经过双曲线x2a2-y2b2=1(a>b>0)焦点的任一弦(交于同支),若过双曲线中心O的半弦OP⊥。
高考数学总复习(基础知识+高频考点+解题训练)圆锥曲线的综合问题

高考数学总复习(基础知识+高频考点+解题训练)圆锥曲线的综合问题[知识能否忆起]1.直线与圆锥曲线的位置关系判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0).若a ≠0,可考虑一元二次方程的判别式Δ,有:Δ>0⇔直线与圆锥曲线相交; Δ=0⇔直线与圆锥曲线相切; Δ<0⇔直线与圆锥曲线相离.若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则弦长|AB |=1+k 2|x 1-x 2|或 1+1k 2|y 1-y 2|.[小题能否全取]1.(教材习题改编)与椭圆x 212+y 216=1焦点相同,离心率互为倒数的双曲线方程是( )A .y 2-x 23=1 B.y 23-x 2=1C.34x 2-38y 2=1D.34y 2-38x 2=1 解析:选A 设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),则⎩⎪⎨⎪⎧a 2+b 2=c 2,ca =2,c =2,得a =1,b = 3.故双曲线方程为y 2-x 23=1.2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是( )A .相交B .相切C .相离D .不确定解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.3.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).4.过椭圆x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交点为B ,若|AM |=|MB |,则该椭圆的离心率为________.解析:由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,所以B 点的坐标为(0,a ),故M 点的坐标为⎝ ⎛⎭⎪⎫-a 2,a 2,代入椭圆方程得a 2=3b 2,则c 2=2b 2,则c 2a 2=23,故e =63.答案:635.已知双曲线方程是x 2-y 22=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2的中点,则此直线方程是________________.解析:设点P 1(x 1,y 1),P 2(x 2,y 2),则由x 21-y 212=1,x 22-y 222=1,得k =y 2-y 1x 2-x 1=2x 2+x 1y 2+y 1=2×42=4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件.答案:4x -y -7=01.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.直线与圆锥曲线的位置关系典题导入[例1] (2012·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y=k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值. [自主解答] (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b =2,所以椭圆C 的方程为x 24+y 22=1. (2)由⎩⎪⎨⎪⎧y =k x -1,x 24+y22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则 y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k21+2k 2,x 1x 2=2k 2-41+2k 2,所以|MN |=x 2-x 12+y 2-y 12=1+k2[x 1+x 22-4x 1x 2]=21+k 24+6k21+2k2.又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2,所以△AMN 的面积为 S =12|MN |· d =|k |4+6k 21+2k 2. 由|k |4+6k 21+2k 2=103,解得k =±1. 由题悟法研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解.以题试法1.(2012·信阳模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1]D .[-4,4]解析:选C 易知抛物线y 2=8x 的准线x =-2与x 轴的交点为Q (-2,0),于是,可设过点Q (-2,0)的直线l 的方程为y =k (x +2)(由题可知k 是存在的),联立⎩⎪⎨⎪⎧y 2=8x ,y =k x +2⇒k 2x 2+(4k 2-8)x +4k 2=0.当k =0时,易知符合题意;当k ≠0时,其判别式为Δ=(4k 2-8)2-16k 4=-64k 2+64≥0, 可解得-1≤k ≤1.最值与范围问题典题导入[例2] (2012·浙江高考)如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(1)求椭圆C 的方程;(2)求△ABP 面积取最大值时直线l 的方程.[自主解答] (1)设椭圆左焦点为F (-c,0),则由题意得 ⎩⎪⎨⎪⎧2+c 2+1=10,c a =12,得⎩⎪⎨⎪⎧c =1,a =2.所以椭圆方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M .当直线AB 与x 轴垂直时,直线AB 的方程为x =0,与不过原点的条件不符,舍去.故可设直线AB 的方程为y =kx +m (m ≠0),由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12消去y ,整理得(3+4k 2)x 2+8kmx +4m 2-12=0, ① 则Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0,⎩⎪⎨⎪⎧x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2.所以线段AB 的中点为M ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2. 因为M 在直线OP :y =12x 上,所以3m 3+4k 2=-2km3+4k 2.得m =0(舍去)或k =-32.此时方程①为3x 2-3mx +m 2-3=0,则Δ=3(12-m 2)>0,⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=m 2-33.所以|AB |=1+k 2·|x 1-x 2|=396·12-m 2, 设点P 到直线AB 的距离为d ,则d =|8-2m |32+22=2|m -4|13. 设△ABP 的面积为S ,则S =12|AB |·d =36·m -4212-m2.其中m ∈(-23,0)∪(0,23).令u (m )=(12-m 2)(m -4)2,m ∈[-23,2 3 ],u ′(m )=-4(m -4)(m 2-2m -6)=-4(m -4)(m -1-7)(m -1+7).所以当且仅当m =1-7时,u (m )取到最大值. 故当且仅当m =1-7时,S 取到最大值. 综上,所求直线l 的方程为3x +2y +27-2=0.由题悟法1.解决圆锥曲线的最值与范围问题常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法; (2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.2.在利用代数法解决最值与范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系; (3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围.以题试法2.(2012·东莞模拟)已知抛物线y 2=2px (p ≠0)上存在关于直线x +y =1对称的相异两点,则实数p 的取值范围为( )A.⎝ ⎛⎭⎪⎫-23,0B.⎝ ⎛⎭⎪⎫0,23C.⎝ ⎛⎭⎪⎫-32,0D.⎝ ⎛⎭⎪⎫0,32 解析:选B 设抛物线上关于直线x +y =1对称的两点是M (x 1,y 1)、N (x 2,y 2),设直线MN 的方程为y =x +b .将y =x +b 代入抛物线方程,得x 2+(2b -2p )x +b 2=0,则x 1+x 2=2p -2b ,y 1+y 2=(x 1+x 2)+2b =2p ,则MN 的中点P 的坐标为(p -b ,p ).因为点P 在直线x +y =1上,所以2p -b =1,即b =2p -1.又Δ=(2b -2p )2-4b 2=4p 2-8bp >0,将b =2p -1代入得4p 2-8p (2p -1)>0,即3p 2-2p <0,解得0<p <23.定点定值问题典题导入[例3] (2012·辽宁高考)如图,椭圆C 0:x 2a 2+y 2b2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值.[自主解答] (1)设 A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a(x +a ),①直线A 2B 的方程为y =-y 1x 1-a(x -a ).② 由①②得y 2=-y 21x 21-a2(x 2-a 2).③由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b2=1.从而y 21=b 2⎝ ⎛⎭⎪⎫1-x 21a 2,代入③得x 2a 2-y 2b 2=1(x <-a ,y <0). (2)证明:设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2|·|y 2|, 故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以b 2x 21⎝ ⎛⎭⎪⎫1-x 21a 2=b 2x 22⎝ ⎛⎭⎪⎫1-x 22a 2.由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2,从而y 21+y 22=b 2, 因此t 21+t 22=a 2+b 2为定值.由题悟法1.求定值问题常见的方法有两种(1)从特殊入手,求出表达式,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b 、k 等量关系进行消元,借助于直线系方程找出定点;(2)从特殊情况入手,先探求定点,再证明一般情况.以题试法3.(2012·山东省实验中学模拟)已知抛物线y 2=2px (p ≠0)及定点A (a ,b ),B (-a,0),ab ≠0,b 2≠2pa ,M 是抛物线上的点.设直线AM ,BM 与抛物线的另一个交点分别为M 1,M 2,当M 变动时,直线M 1M 2恒过一个定点,此定点坐标为________.解析:设M ⎝ ⎛⎭⎪⎫y 202p ,y 0,M 1⎝ ⎛⎭⎪⎫y 212p ,y 1,M 2⎝ ⎛⎭⎪⎫y 222p ,y 2,由点A ,M ,M 1共线可知y 0-b y 202p-a=y 1-y 0y 212p -y 202p,得y 1=by 0-2pa y 0-b ,同理由点B ,M ,M 2共线得y 2=2pa y 0.设(x ,y )是直线M 1M 2上的点,则y 2-y 1y 222p -y 212p =y 2-y y 222p-x ,即y 1y 2=y (y 1+y 2)-2px ,又y 1=by 0-2pa y 0-b ,y 2=2pay 0, 则(2px -by )y 02+2pb (a -x )y 0+2pa (by -2pa )=0. 当x =a ,y =2pa b时上式恒成立,即定点为⎝ ⎛⎭⎪⎫a ,2pa b .答案:⎝⎛⎭⎪⎫a ,2pa b1.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则1PA ,·2PF ,的最小值为( )A .-2B .-8116C .1D .0解析:选A 设点P (x ,y ),其中x ≥1.依题意得A 1(-1,0),F 2(2,0),由双曲线方程得y 2=3(x 2-1).1PA ,·2PF ,=(-1-x ,-y )·(2-x ,-y )=(x +1)(x -2)+y 2=x 2+y 2-x -2=x 2+3(x 2-1)-x-2=4x 2-x -5=4⎝ ⎛⎭⎪⎫x -182-8116,其中x ≥1.因此,当x =1时,1PA ,·2PF ,取得最小值-2.2.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A 、B 两点,它们的横坐标之和等于2,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条解析:选B 设该抛物线焦点为F ,则|AB |=|AF |+|FB |=x A +p 2+x B +p2=x A +x B +1=3>2p =2.所以符合条件的直线有且仅有两条.3.(2012·南昌联考)过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 作与x 轴垂直的直线,分别与双曲线、双曲线的渐近线交于点M 、N (均在第一象限内),若FM ,=4MN ,,则双曲线的离心率为( )A.54 B.53 C.35D.45解析:选B 由题意知F (c,0),则易得M ,N 的纵坐标分别为b 2a ,bc a ,由FM ,=4MN ,得b 2a =4·⎝ ⎛⎭⎪⎫bc a -b 2a ,即b c =45.又c 2=a 2+b 2,则e =c a =53. 4.已知椭圆x 225+y 216=1的焦点是F 1,F 2,如果椭圆上一点P 满足PF 1⊥PF 2,则下面结论正确的是( )A .P 点有两个B .P 点有四个C .P 点不一定存在D .P 点一定不存在解析:选D 设椭圆的基本量为a ,b ,c ,则a =5,b =4,c =3.以F 1F 2为直径构造圆,可知圆的半径r =c =3<4=b ,即圆与椭圆不可能有交点.5.已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足x 202+y 20≤1,则|PF 1|+|PF 2|的取值范围为________.解析:当P 在原点处时,|PF 1|+|PF 2|取得最小值2;当P 在椭圆上时,|PF 1|+|PF 2|取得最大值22,故|PF 1|+|PF 2|的取值范围为[2,2 2 ].答案:[2,2 2 ]6.(2013·长沙月考)直线l :x -y =0与椭圆x 22+y 2=1相交于A 、B 两点,点C 是椭圆上的动点,则△ABC 面积的最大值为________.解析:由⎩⎪⎨⎪⎧x -y =0,x 22+y 2=1,得3x 2=2,∴x =±63, ∴A ⎝⎛⎭⎪⎫63,63,B ⎝ ⎛⎭⎪⎫-63,-63, ∴|AB |=433.设点C (2cos θ,sin θ),则点C 到AB 的距离d =|2cos θ-sin θ|2=32·⎪⎪sin(θ-φ)⎪⎪≤32,∴S △ABC =12|AB |·d ≤12×433×32= 2.答案: 27.设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左,右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求|AB |;(2)若直线l 的斜率为1,求b 的值.解:(1)由椭圆定义知|AF 2|+|AB |+|BF 2|=4, 又2|AB |=|AF 2|+|BF 2|,得|AB |=43.(2)l 的方程为y =x +c ,其中c =1-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2+y 2b 2=1,化简得(1+b 2)x 2+2cx +1-2b 2=0.则x 1+x 2=-2c 1+b 2,x 1x 2=1-2b21+b 2.因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|,即43=2|x 2-x 1|.则89=(x 1+x 2)2-4x 1x 2=41-b 21+b 22-41-2b21+b2=8b 41+b22,解得b =22. 8.(2012·黄冈质检)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上任意一点到右焦点F 的距离的最大值为2+1.(1)求椭圆的方程;(2)已知点C (m,0)是线段OF 上一个动点(O 为坐标原点),是否存在过点F 且与x 轴不垂直的直线l 与椭圆交于A ,B 点,使得|AC |=|BC |?并说明理由.解:(1)∵⎩⎪⎨⎪⎧e =ca =22a +c =2+1,∴⎩⎨⎧a =2c =1,∴b =1,∴椭圆的方程为x 22+y 2=1.(2)由(1)得F (1,0),∴0≤m ≤1. 假设存在满足题意的直线l ,设l 的方程为y =k (x -1),代入x 22+y 2=1中,得(2k 2+1)x 2-4k 2x +2k 2-2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k22k 2+1,x 1x 2=2k 2-22k 2+1,∴y 1+y 2=k (x 1+x 2-2)=-2k2k 2+1.设AB 的中点为M ,则M ⎝ ⎛⎭⎪⎫2k22k 2+1,-k 2k 2+1.∵|AC |=|BC |,∴CM ⊥AB ,即k CM ·k AB =-1,∴k2k 2+1m -2k 22k 2+1·k =-1,即(1-2m )k 2=m . ∴当0≤m <12时,k =±m1-2m,即存在满足题意的直线l ; 当12≤m ≤1时,k 不存在,即不存在满足题意的直线l . 9.(2012·江西模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0),直线y =x +6与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F 1,F 2为其左,右焦点,P 为椭圆C 上任一点,△F 1PF 2的重心为G ,内心为I ,且IG ∥F 1F 2.(1)求椭圆C 的方程;(2)若直线l :y =kx +m (k ≠0)与椭圆C 交于不同的两点A ,B ,且线段AB 的垂直平分线过定点C ⎝ ⎛⎭⎪⎫16,0,求实数k 的取值范围.解:(1)设P (x 0,y 0),x 0≠±a ,则G ⎝ ⎛⎭⎪⎫x 03,y 03. 又设I (x I ,y I ),∵IG ∥F 1F 2, ∴y I =y 03,∵|F 1F 2|=2c ,∴S △F 1PF 2=12·|F 1F 2|·|y 0|=12(|PF 1|+|PF 2|+|F 1F 2|)·| y 03| ,∴2c ·3=2a +2c ,∴e =c a =12,又由题意知b =|6|1+1,∴b =3,∴a =2,∴椭圆C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1y =kx +m,消去y ,得(3+4k 2)x 2+8kmx +4m 2-12=0,由题意知Δ=(8km )2-4(3+4k 2)(4m 2-12)>0,即m 2<4k 2+3,又x 1+x 2=-8km 3+4k 2,则y 1+y 2=6m 3+4k2,∴线段AB 的中点P 的坐标为⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2.又线段AB 的垂直平分线l ′的方程为y =-1k ⎝ ⎛⎭⎪⎫x -16,点P 在直线l ′上,∴3m 3+4k 2=-1k ⎝ ⎛⎭⎪⎫-4km 3+4k 2-16, ∴4k 2+6km +3=0,∴m =-16k (4k 2+3),∴4k 2+3236k2<4k 2+3,∴k 2>332,解得k >68或k <-68,∴k 的取值范围是⎝ ⎛⎭⎪⎫-∞,-68∪⎝ ⎛⎭⎪⎫68,+∞.1.(2012·长春模拟)已知点A (-1,0),B (1,0),动点M 的轨迹曲线C 满足∠AMB =2θ,|AM |,·|BM |,cos 2θ=3,过点B 的直线交曲线C 于P ,Q 两点.(1)求|AM |,+|BM |,的值,并写出曲线C 的方程; (2)求△APQ 的面积的最大值.解:(1)设M (x ,y ),在△MAB 中,|AB |,=2,∠AMB =2θ,根据余弦定理得|AM |,2+|BM |,2-2|AM |,·|BM |,cos 2θ=|AB |,2=4,即(|AM |,+|BM |,)2-2|AM |,·|BM |,·(1+cos 2θ)=4, 所以(|AM |,+|BM |,)2-4|AM |,| BM |,·cos 2θ=4.因为|AM |,·|BM |,cos 2θ=3,所以(|AM |,+|BM |,)2-4×3=4,所以|AM |,+|BM |,=4. 又|AM |,+|BM |,=4>2=|AB |,因此点M 的轨迹是以A ,B 为焦点的椭圆(点M 在x 轴上也符合题意),设椭圆的方程为x 2a 2+y 2b2=1(a >b>0),则a =2,c =1,所以b 2=a 2-c 2=3. 所以曲线C 的方程为x 24+y 23=1.(2)设直线PQ 的方程为x =my +1.由⎩⎪⎨⎪⎧x =my +1x 24+y23=1,消去x ,整理得(3m 2+4)y 2+6my -9=0.①显然方程①的判别式Δ=36m 2+36(3m 2+4)>0, 设P (x 1,y 1),Q (x 2,y 2),则△APQ 的面积S △APQ =12×2×|y 1-y 2|=|y 1-y 2|.由根与系数的关系得y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4,所以(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=48×3m 2+33m 2+42.令t =3m 2+3,则t ≥3,(y 1-y 2)2=48t +1t+2, 由于函数φ(t )=t +1t在[3,+∞)上是增函数,所以t +1t ≥103,当且仅当t =3m 2+3=3,即m =0时取等号,所以(y 1-y 2)2≤48103+2=9,即|y 1-y 2|的最大值为3,所以△APQ 的面积的最大值为3,此时直线PQ 的方程为x =1.2.(2012·郑州模拟)已知圆C 的圆心为C (m,0),m <3,半径为5,圆C 与离心率e >12的椭圆E :x2a2+y 2b 2=1(a >b >0)的其中一个公共点为A (3,1),F 1,F 2分别是椭圆的左、右焦点. (1)求圆C 的标准方程;(2)若点P 的坐标为(4,4),试探究直线PF 1与圆C 能否相切?若能,设直线PF 1与椭圆E 相交于D ,B 两点,求△DBF 2的面积;若不能,请说明理由.解:(1)由已知可设圆C 的方程为(x -m )2+y 2=5(m <3), 将点A 的坐标代入圆C 的方程中,得(3-m )2+1=5, 即(3-m )2=4,解得m =1,或m =5. ∴m <3,∴m =1.∴圆C 的标准方程为(x -1)2+y 2=5. (2)直线PF 1能与圆C 相切,依题意设直线PF 1的斜率为k ,则直线PF 1的方程为y =k (x -4)+4,即kx -y -4k +4=0, 若直线PF 1与圆C 相切,则|k -0-4k +4|k 2+1= 5.∴4k 2-24k +11=0,解得k =112或k =12.当k =112时,直线PF 1与x 轴的交点的横坐标为3611,不合题意,舍去.当k =12时,直线PF 1与x 轴的交点的横坐标为-4,∴c =4,F 1(-4,0),F 2(4,0). ∴由椭圆的定义得: 2a =|AF 1|+|AF 2|=3+42+12+3-42+12=52+2=6 2.∴a =32,即a 2=18,∴e =432=223>12,满足题意.故直线PF 1能与圆C 相切.直线PF 1的方程为x -2y +4=0,椭圆E 的方程为x 218+y 22=1.设B (x 1,y 1),D (x 2,y 2),把直线PF 1的方程代入椭圆E 的方程并化简得,13y 2-16y -2=0,由根与系数的关系得y 1+y 2=1613,y 1y 2=-213,故S △DBF 2=4|y 1-y 2|=4y 1+y 22-4y 1y 2=241013.1.已知抛物线C 的顶点在坐标原点,焦点为F (1,0),过焦点F 的直线l 与抛物线C 相交于A ,B 两点,若直线l 的倾斜角为45°,则弦AB 的中点坐标为( )A .(1,0)B .(2,2)C .(3,2)D .(2,4)解析:选C 依题意得,抛物线C 的方程是y 2=4x ,直线l的方程是y =x -1.由⎩⎪⎨⎪⎧y 2=4x ,y =x -1消去y得(x -1)2=4x ,即x 2-6x +1=0,因此线段AB 的中点的横坐标是62=3,纵坐标是y =3-1=2,所以线段AB 的中点坐标是(3,2).2.若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至多1个B .2个C .1个D .0个解析:选B 由题意得4m 2+n2>2,即m 2+n 2<4,则点(m ,n )在以原点为圆心,以2为半径的圆内,此圆在椭圆x 29+y 24=1的内部.3.(2012·深圳模拟)如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以椭圆C 的左顶点T 为圆心作圆T :(x +2)2+y 2=r 2(r >0),设圆T 与椭圆C 交于点M 与点N .(1)求椭圆C 的方程;(2)求TM ,·TN ,的最小值,并求此时圆T 的方程; (3)设点P 是椭圆C 上异于M ,N 的任意一点,且直线MP ,NP 分别与x 轴交于点R ,S ,O 为坐标原点,求证:|OR |·|OS |为定值.解:(1)依题意,得a =2,e =c a =32, ∴c =3,b =a 2-c 2=1. 故椭圆C 的方程为x 24+y 2=1.(2)易知点M 与点N 关于x 轴对称,设M (x 1,y 1),N (x 1,-y 1),不妨设y 1>0. 由于点M 在椭圆C 上,∴y 21=1-x 214.(*)由已知T (-2,0),则TM ,=(x 1+2,y 1),TN ,=(x 1+2,-y 1), ∴TM ,·TN ,=(x 1+2,y 1)·(x 1+2,-y 1)=(x 1+2)2-y 21=(x 1+2)2-⎝ ⎛⎭⎪⎫1-x 214=54x 21+4x 1+3=54⎝⎛⎭⎪⎫x 1+852-15.由于-2<x 1<2,故当x 1=-85时,TM ,·TN ,取得最小值-15.把x 1=-85代入(*)式,得y 1=35,故M ⎝ ⎛⎭⎪⎫-85,35,又点M 在圆T 上,代入圆的方程得r 2=1325.故圆T 的方程为(x +2)2+y 2=1325.(3)设P (x 0,y 0),则直线MP 的方程为:y -y 0=y 0-y 1x 0-x 1(x -x 0), 令y =0,得x R =x 1y 0-x 0y 1y 0-y 1,同理:x S =x 1y 0+x 0y 1y 0+y 1,故x R ·x S =x 21y 20-x 20y 21y 20-y 21.(**)又点M 与点P 在椭圆上,故x 20=4(1-y 20),x 21=4(1-y 21), 代入(**)式, 得x R ·x S =41-y 21y 20-41-y 20y 21y 20-y 21=4⎝ ⎛⎭⎪⎫y 20-y 21y 20-y 21=4. 所以|OR |·|OS |=|x R |·|x S |=|x R ·x S |=4为定值.平面解析几何(时间:120分钟,满分150分)一、选择题(本题共12小题,每小题5分,共60分)1.(2012·佛山模拟)已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1解析:选D 由题意得a +2=a +2a,解得a =-2或a =1. 2.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13C .-32D.23解析:选B 设P (x P,1),由题意及中点坐标公式得x P +7=2,解得x P =-5,即P (-5,1),所以k =-13. 3.(2012·长春模拟)已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ) A .x 2+y 2=2 B .x 2+y 2= 2 C .x 2+y 2=1D .x 2+y 2=4解析:选A AB 的中点坐标为(0,0), |AB |=[1--1]2+-1-12=22,∴圆的方程为x 2+y 2=2.4.(2012·福建高考)已知双曲线x 24-y 2b2=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A. 5 B .4 2 C .3D .5解析:选A ∵抛物线y 2=12x 的焦点坐标为(3,0),故双曲线x 24-y 2b2=1的右焦点为(3,0),即c =3,故32=4+b 2,∴b 2=5,∴双曲线的渐近线方程为y =±52x , ∴双曲线的右焦点到其渐近线的距离为⎪⎪⎪⎪⎪⎪52×31+54= 5.5.(2012·郑州模拟)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成7∶3的两段,则此双曲线的离心率为( )A.98B.53C.324D.54解析:选B 依题意得,c +b 2=77+3×2c ,即b =45c (其中c 是双曲线的半焦距),a =c 2-b 2=35c ,则c a =53,因此该双曲线的离心率等于53. 6.设双曲线的左,右焦点为F 1,F 2,左,右顶点为M ,N ,若△PF 1F 2的一个顶点P 在双曲线上,则△PF 1F 2的内切圆与边F 1F 2的切点的位置是( )A .在线段MN 的内部B .在线段F 1M 的内部或NF 2内部C .点N 或点MD .以上三种情况都有可能解析:选C 若P 在右支上,并设内切圆与PF 1,PF 2的切点分别为A ,B ,则|NF 1|-|NF 2|=|PF 1|-|PF 2|=(|PA |+|AF 1|)-(|PB |+|BF 2|)=|AF 1|-|BF 2|.所以N 为切点,同理P 在左支上时,M 为切点.7.圆x 2+y 2-4x =0在点P (1, 3)处的切线方程为( ) A .x +3y -2=0 B .x +3y -4=0 C .x -3y +4=0D .x -3y +2=0解析:选D 圆的方程为(x -2)2+y 2=4,圆心坐标为(2,0),半径为2,点P 在圆上,设切线方程为y -3=k (x -1),即kx -y -k +3=0,所以|2k -k +3|k 2+1=2,解得k =33. 所以切线方程为y -3=33(x -1),即x -3y +2=0. 8.(2012·新课标全国卷)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4D .8解析:选C 抛物线y 2=16x 的准线方程是x =-4,所以点A (-4,23)在等轴双曲线C :x 2-y 2=a 2(a >0)上,将点A 的坐标代入得a =2,所以C 的实轴长为4.9.(2012·潍坊适应性训练)已知双曲线C :x 24-y 25=1的左,右焦点分别为F 1,F 2,P 为C 的右支上一点,且|PF 2|=|F 1F 2|,则|P F 2|=|F 1F 2|,则1PF ,·2PF ,等于( )A .24B .48C .50D .56解析:选C 由已知得|PF 2|=|F 1F 2|=6,根据双曲线的定义可得|PF 1|=10,在△F 1PF 2中,根据余弦定理可得cos ∠F 1PF 2=56,所以1PF ,·2PF ,=10×6×56=50.10.(2012·南昌模拟)已知△ABC 外接圆半径R =1433,且∠ABC =120°,BC =10,边BC 在x 轴上且y 轴垂直平分BC 边,则过点A 且以B ,C 为焦点的双曲线方程为( )A.x 275-y 2100=1 B.x 2100-y 275=1 C.x 29-y 216=1D.x 216-y 29=1 解析:选D ∵sin ∠BAC =BC 2R =5314,∴cos ∠BAC =1114,|AC |=2R sin ∠ABC =2×1433×32=14,sin ∠ACB =si n(60°-∠BAC )=sin 60°cos∠BAC -cos 60°sin∠BAC =32×1114-12×5314=3314, ∴|AB |=2R sin ∠ACB =2×1433×3314=6,∴2a =||AC |-|AB ||=14-6=8,∴a =4,又c =5,∴b 2=c 2-a 2=25-16=9, ∴所求双曲线方程为x 216-y 29=1.11.(2012·乌鲁木齐模拟)已知抛物线y 2=2px (p >0)的焦点为F ,P ,Q 是抛物线上的两个点,若△PQF 是边长为2的正三角形,则p 的值是( )A .2± 3B .2+ 3 C.3±1D.3-1解析:选A 依题意得F ⎝ ⎛⎭⎪⎫p 2,0,设P ⎝ ⎛⎭⎪⎫y 212p ,y 1,Q ⎝ ⎛⎭⎪⎫y 222p ,y 2(y 1≠y 2).由抛物线定义及|PF |=|QF |,得y 212p +p2=y 222p +p 2,所以y 21=y 22,所以y 1=-y 2.又|PQ |=2,因此|y 1|=|y 2|=1,点P ⎝ ⎛⎭⎪⎫12p ,y 1.又点P 位于该抛物线上,于是由抛物线的定义得|PF |=12p +p2=2,由此解得p =2± 3.12.已知中心在原点,焦点在坐标轴上,焦距为4的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( )A .32或4 2B .26或27C .25或27D.5或7解析:选C 设椭圆方程为mx 2+ny 2=1(m ≠n 且m ,n >0),与直线方程x +3y +4=0联立, 消去x 得(3m +n )y 2+83my +16m -1=0,由Δ=0得3m +n =16mn ,即3n +1m=16,①又c =2,即1m -1n=±4,②由①②联立得⎩⎪⎨⎪⎧m =17n =13或⎩⎪⎨⎪⎧m =1n =15,故椭圆的长轴长为27或2 5.二、填空题(本题有4小题,每小题5分,共20分)13.(2012·青岛模拟)已知两直线l 1:x +y sin θ-1=0和l 2:2x sin θ+y +1=0,当l 1⊥l 2时,θ=________.解析:l 1⊥l 2的充要条件是2sin θ+sin θ=0,即sin θ=0,所以θ=k π(k ∈Z ).所以当θ=k π(k ∈Z )时,l 1⊥l 2.答案:k π(k ∈Z )14.已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,A ,B 分别是此椭圆的右顶点和上顶点,P 是椭圆上一点,O 是坐标原点,OP ∥AB ,PF 1⊥x 轴,|F 1A |=10+5,则此椭圆的方程是______________________.解析:由于直线AB 的斜率为-b a ,故直线OP 的斜率为-b a ,直线OP 的方程为y =-b ax .与椭圆方程联立得x 2a 2+x 2a 2=1,解得x =±22a .根据PF 1⊥x 轴,取x =-22a ,从而-22a =-c ,即a =2c .又|F 1A |=a+c =10+5,故 2c +c =10+5,解得c =5,从而a =10.所以所求的椭圆方程为x 210+y 25=1.答案:x 210+y 25=115.(2012·陕西高考)右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.解析:设抛物线的方程为x 2=-2py ,则点(2,-2)在抛物线上,代入可得p=1,所以x 2=-2y .当y =-3时,x 2=6,即x =±6,所以水面宽为2 6.答案:2 616.(2012·天津高考)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为________.解析:由直线与圆相交所得弦长为2,知圆心到直线的距离为3,即1m 2+n2=3,所以m 2+n 2=13≥2|mn |,所以|mn |≤16,又A ⎝ ⎛⎭⎪⎫1m ,0,B ⎝ ⎛⎭⎪⎫0,1n ,所以△AOB 的面积为12|mn |≥3,最小值为3. 答案:3三、解答题(本题共6小题,共70分)17.(10分)求过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)距离为2的直线方程.解:由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.所以l 1与l 2的交点为(1,2),设所求直线y -2=k (x -1)(由题可知k 存在),即kx -y +2-k =0, ∵P (0,4)到直线距离为2,∴2=|-2-k |1+k 2, 解得k =0或k =43.∴直线方程为y =2或4x -3y +2=0.18.(12分)(2012·南昌模拟)已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)过点P 作两条相异直线分别与圆C 相交于A ,B ,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.解:设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2, 故圆C 的方程为x 2+y 2=2.(2)由题意知,直线PA 和直线PB 的斜率存在,且互为相反数,故可设PA :y -1=k (x -1),PB :y -1=-k (x -1),由⎩⎪⎨⎪⎧y -1=k x -1,x 2+y 2=2得(1+k 2)x 2+2k (1-k )x +(1-k )2-2=0.因为点P的横坐标x =1一定是该方程的解,故可得x A =k 2-2k -11+k 2.同理可得x B =k 2+2k -11+k 2,所以k AB =y B -y Ax B -x A=-k x B -1-kx A -1x B -x A=2k -k x B +x Ax B -x A=1=k OP ,所以,直线AB 和OP 一定平行.19.(12分)(2012·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点P ⎝ ⎛⎭⎪⎫55a ,22a 在椭圆上.(1)求椭圆的离心率;(2)设A 为椭圆的左顶点,O 为坐标原点.若点Q 在椭圆上且满足|AQ |=|AO |,求直线OQ 的斜率的值.解:(1)因为点P ⎝ ⎛⎭⎪⎫55a ,22a 在椭圆上,故a 25a 2+a 22b 2=1,可得b 2a 2=58.于是e 2=a 2-b 2a 2=1-b 2a 2=38,所以椭圆的离心率e =64.(2)设直线OQ 的斜率为k ,则其方程为y =kx ,设点Q 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 2b 2=1,消去y 0并整理得x 20=a 2b 2k 2a 2+b2.①由|AQ |=|AO |,A (-a,0)及y 0=kx 0, 得(x 0+a )2+k 2x 20=a 2.整理得(1+k 2)x 2+2ax 0=0,而x 0≠0,故x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2·a 2b2+4.由(1)知a 2b 2=85,故(1+k 2)2=325k 2+4,即5k 4-22k 2-15=0,可得k 2=5. 所以直线OQ 的斜率k =± 5.20.(12分)(2012·河南模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,短轴的一个端点为M (0,1),直线l :y =kx -13与椭圆相交于不同的两点A ,B .(1)若|AB |=4269,求k 的值;(2)求证:不论k 取何值,以AB 为直径的圆恒过点M . 解:(1)由题意知c a =22,b =1. 由a 2=b 2+c 2可得c =b =1,a =2, ∴椭圆的方程为x 22+y 2=1.由⎩⎪⎨⎪⎧y =kx -13,x 22+y 2=1得(2k 2+1)x 2-43kx -169=0.Δ=169k 2-4(2k 2+1)×⎝ ⎛⎭⎪⎫-169=16k 2+649>0恒成立,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k32k 2+1,x 1x 2=-1692k 2+1. ∴|AB |=1+k 2·|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=41+k 29k 2+432k 2+1=4269, 化简得23k 4-13k 2-10=0,即(k 2-1)(23k 2+10)=0, 解得k =±1.(2)∵MA ,=(x 1,y 1-1),MB ,=(x 2,y 2-1), ∴MA ,·MB ,=x 1x 2+(y 1-1)(y 2-1), =(1+k 2)x 1x 2-43k (x 1+x 2)+169=-161+k292k 2+1-16k 292k 2+1+169=0.∴不论k 取何值,以AB 为直径的圆恒过点M .21. (2012·广州模拟)设椭圆M :x 2a 2+y 22=1(a >2)的右焦点为F 1,直线l :x =a 2a 2-2与x 轴交于点A ,若1OF ,+21AF ,=0(其中O 为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆N :x 2+(y -2)2=1的任意一条直径(E ,F 为直径的两个端点),求PE ,·PF ,的最大值.解:(1)由题设知,A ⎝ ⎛⎭⎪⎫a 2a 2-2,0,F 1(a 2-2,0),由1OF ,+21AF ,=0,得a 2-2=2⎝ ⎛⎭⎪⎫a 2a 2-2-a 2-2, 解得a 2=6.所以椭圆M 的方程为x 26+y 22=1.(2)设圆N :x 2+(y -2)2=1的圆心为N ,则PE ,·PF ,=(NE ,-NP ,)·(NF ,-NP ,) =(-NF ,-NP ,)·(NF ,-NP ,) =NP ,2-NF ,2=NP ,2-1.从而将求PE ,·PF ,的最大值转化为求NP ―→,2的最大值. 因为P 是椭圆M 上的任意一点,设P (x 0,y 0), 所以x 206+y 202=1,即x 20=6-3y 20.因为点N (0,2),所以NP ,2=x 20+(y 0-2)2=-2(y 0+1)2+12. 因为y 0∈[-2, 2],所以当y 0=-1时,NP ,2取得最大值12.所以PE ,·PF ,的最大值为11.22. (2012·湖北模拟)如图,曲线C 1是以原点O 为中心,F 1,F 2为焦点的椭圆的一部分.曲线C 2是以O 为顶点,F 2为焦点的抛物线的一部分,A 是曲线C 1和C 2的交点且∠AF 2F 1为钝角,若|AF 1|=72,|AF 2|=52. (1)求曲线C 1和C 2的方程;(2)设点C 是C 2上一点,若|CF 1|= 2|CF 2|,求△CF 1F 2的面积.解:(1)设椭圆方程为x 2a 2+y 2b2=1(a >b >0),则2a =|AF 1|+|AF 2|=72+52=6,得a =3.设A (x ,y ),F 1(-c,0),F 2(c,0),则(x +c )2+y 2=⎝ ⎛⎭⎪⎫722,(x -c )2+y 2=⎝ ⎛⎭⎪⎫522,两式相减得xc =32.由抛物线的定义可知|AF 2|=x +c =52,则c =1,x =32或x =1,c =32.又∠AF 2F 1为钝角,则x =1,c =32不合题意,舍去.当c =1时,b =22,所以曲线C 1的方程为x 29+y 28=1⎝ ⎛⎭⎪⎫-3≤x ≤32,曲线C 2的方程为y 2=4x ⎝ ⎛⎭⎪⎫0≤x ≤32.(2)过点F 1作直线l 垂直于x 轴,过点C 作CC 1⊥l 于点C 1,依题意知|CC 1|=|CF 2|. 在Rt △CC 1F 1中,|CF 1|= 2|CF 2|=2|CC 1|,所以∠C 1CF 1=45°, 所以∠CF 1F 2=∠C 1CF 1=45°.在△CF 1F 2中,设|CF 2|=r ,则|CF 1|=2r ,|F 1F 2|=2. 由余弦定理得22+(2r )2-2×2×2r cos 45°=r 2, 解得r =2,所以△CF 1F 2的面积S △CF 1F 2=12|F 1F 2|·|CF 1|sin 45°=12×2×22sin 45°=2.。
完整版)高三圆锥曲线知识点总结

完整版)高三圆锥曲线知识点总结第八章《圆锥曲线》专题复一、椭圆方程1.椭圆的第一定义:设F1.F2是平面内两个定点,对于任意点P,有PF1 +PF2 = 2a (a。
0),则称所有满足该性质的点P的轨迹为椭圆。
椭圆的方程为 PF1 + PF2 = 2a,无轨迹为 PF1 + PF2 = 2a,以F1,F2为端点的线段。
2.椭圆的方程形式:①椭圆的标准方程:i。
中心在原点,焦点在x轴上。
x^2/a^2 + y^2/b^2 = 1 (a。
b)。
ii。
中心在原点,焦点在y轴上:x^2/b^2 + y^2/a^2 = 1 (a。
b)。
②一般方程:Ax^2 + By^2 = 1 (A,B不同时为0)。
③椭圆的参数方程:x = a*cosθ,y = b*sinθ (θ ∈ [0,π])。
注意:椭圆参数方程的推导:设点N(acosθ,bsinθ),则有PF1 + PF2 = 2a,即√[(acosθ - c)^2 + (bsinθ)^2] + √[(acosθ + c)^2 + (bsinθ)^2] = 2a,整理得到x = a*cosθ,y = b*sinθ。
3.椭圆的性质:①顶点:(±a,0)或(0,±b)。
②轴:对称轴为x轴,y轴;长轴长2a,短轴长2b。
③焦点:(±c,0)或(0,±c),其中c = √(a^2 - b^2)。
④焦距:F1F2 = 2c,c = √(a^2 - b^2)。
⑤准线:x = ±a/e 或 y = ±b/e,其中e为离心率。
⑥离心率:e = c/a。
⑦焦半径:y = ±(b^2 - x^2)^(1/2) 或 x = ±(a^2 - y^2)^(1/2)。
⑧通径:垂直于x轴且过焦点的弦叫做通径,坐标为(±c,d/2),其中d为通径长度。
4.共离心率的椭圆系的方程:椭圆 x^2/a^2 + y^2/b^2 = 1 的离心率是e = c/a (c = √(a^2 -b^2)),方程 x^2/a^2 + y^2/b^2 = t (t。
圆锥曲线综合复习

角度问题
直接法
向量法
利用圆锥曲线的定义和性质,直接求 出角度。
利用向量的数量积、模长等性质,将 角度问题转化为向量的运算问题。
余弦定理或正弦定理法
通过作弦心距或利用余弦定理、正弦 定理解三角形,求出角度。
面积问题
直接法
利用圆锥曲线的定义和性 质,直接求出面积。
底乘高的一半法
通过作底和高,利用三角 形面积公式求出面积。
圆锥曲线上的点可以与三角函数结合,通过三角函数来表示曲线上点的 坐标。例如,在椭圆上任取一点P,可以设点P的坐标为(x, y),利用三角 函数来表示x和y的关系。
圆锥曲线与三角函数的综合问题常常涉及到求最值、求轨迹、求参数范 围等类型的问题。例如,在椭圆上求一点到直线的最短距离,可以通过 三角函数来求解。
它们之间的关系取决于物体的初始速度和重力加速度。
实际应用
03
抛物线运动在实际生活中有广泛的应用,如投篮、投掷标枪等
体育运动,以及导弹、火箭的发射等军事和航天领域。
双曲线在声学中的应用
双曲线描述声波传播
在声学中,双曲线可以用来描述声波的传播路径,特别是在处理反射、折射和干涉等问题 时。
声速与介质的关系
声波在不同介质中的传播速度不同,双曲线的形状会因为声速的变化而变化,这有助于我 们了解声波在不同介质中的传播规律。
实际应用
双曲线在声学中的应用包括建筑设计、声音传播规律的研究以及声音控制等,例如在音乐 厅的设计中利用双曲线来控制声波的传播,以达到最佳的音响效果。
05 圆锥曲线与其他知识点的 综合
与三角函数的综合
圆锥曲线综合复习
目 录
• 圆锥曲线的基本概念 • 圆锥曲线的性质 • 圆锥曲线在几何中的应用 • 圆锥曲线在物理中的应用 • 圆锥曲线与其他知识点的综合 • 圆锥曲线综合题解析
高考数学总复习 8-7 圆锥曲线的综合问题(理)但因为测试 新人教B版

高考数学总复习 8-7 圆锥曲线的综合问题(理)但因为测试 新人教B 版1.(2011·宁波十校联考)已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于( )A .3B .4C .3 2D .4 2[答案] C[解析] 设A (x 1,3-x 21),B (x 2,3-x 22),由于A 、B 关于直线x +y =0对称,∴⎩⎪⎨⎪⎧x 1=x 22-33-x 21=-x 2,解得⎩⎪⎨⎪⎧ x 1=-2x 2=1或⎩⎪⎨⎪⎧x 1=1x 2=-2,设直线AB 的斜率为k AB , ∴|AB |=1+k 2AB |x 1-x 2|=3 2.故选C.2.(2011·南昌检测(二))过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( )A.22B.33C.12D.13[答案] B[解析] 记|F 1F 2|=2c ,则|PF 1|=2c 3,|PF 2|=4c 3,所以椭圆的离心率为|F 1F 2||PF 1|+|PF 2|=2c 2c 3+4c 3=33,选B. 3.(2011·长安一中、高新一中、交大附中、师大附中、西安中学一模)已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则P A 1→·PF 2→的最小值为( )A .-2B .-8116C .1D .0[答案] A[解析] 由已知得A 1(-1,0),F 2(2,0).设P (x ,y )(x ≥1),则P A 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=4x 2-x -5.令f (x )=4x 2-x -5,则f (x )在x ≥1上单调递增,所以当x =1时,函数f (x )取最小值,即P A 1→·PF 2→取最小值,最小值为-2.4.(2011·大纲全国理,10)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A.45 B.35 C .-35D .-45[答案] D[解析] 方法一:联立⎩⎪⎨⎪⎧y 2=4xy =2x -4,解得⎩⎪⎨⎪⎧ x =4y =4或⎩⎪⎨⎪⎧x =1y =-2,不妨设A 在x 轴上方, ∴A (4,4),B (1,-2),∵F 点坐标为(1,0),∴F A →=(3,4),FB →=(0,-2), cos ∠AFB =F A →·FB →|F A →|·|FB →|=-85×2=-45.方法二:同上求得A (4,4),B (1,-2),|AB |=35,|AF |=5,|BF |=2, 由余弦定理知,cos ∠AFB =|AF |2+|BF |2-|AB |22·|AF |·|BF |=-45.5.(2011·台州二模)已知过抛物线y 2=2px (p >0)的焦点F 且倾斜角为60°的直线l 与抛物线在第一、四象限分别交于A 、B 两点,则|AF ||BF |的值为( )A .5B .4C .3D .2[答案] C[解析] 由题意设直线l 的方程为y =3(x -p 2),即x =y 3+p2,代入抛物线方程y 2=2px中,整理得3y 2-2py -3p 2=0,设A (x A ,y A ),B (x B ,y B ),则y A =3p ,y B =-33p ,所以|AF ||BF |=|y Ay B|=3. 6.(2011·海南一模)若AB 是过椭圆x 2a 2+y 2b 2=1(a >b >0)中心的一条弦,M 是椭圆上任意一点,且AM 、BM 与两坐标轴均不平行,k AM 、k BM 分别表示直线AM 、BM 的斜率,则k AM ·k BM=( )A .-c 2a 2B .-b 2a 2C .-c 2b 2D .-a 2b2[答案] B[解析] 解法一(直接法):设A (x 1,y 1),M (x 0,y 0),则B (-x 1,-y 1),k AM ·k BM =y 0-y 1x 0-x 1·y 0+y 1x 0+x 1=y 20-y 21x 20-x 21=-b 2a 2x 20+b 2--b 2a 2x 21+b 2x 20-x 21 =-b 2a2.解法二(特殊值法):因为四个选项为确定值,取A (a,0),B (-a,0),M (0,b ),可得k AM ·k BM=-b 2a2.7.(2010·吉林省调研)已知过双曲线x 2a 2-y 2b 2=1右焦点且倾斜角为45°的直线与双曲线右支有两个交点,则双曲线的离心率e 的取值范围是________.[答案] (1,2)[解析] 由条件知,渐近线的倾斜角小于45°,即b a <1,∴c 2-a 2a 2<1,∴c 2a 2<2,即e 2<2,∵e >1,∴1<e < 2.8.(2010·安徽安庆联考)设直线l :y =2x +2,若l 与椭圆x 2+y 24=1的交点为A 、B ,点P 为椭圆上的动点,则使△P AB 的面积为2-1的点P 的个数为________.[答案] 3[解析] 设与l 平行且与椭圆相切的直线方程为y =2x +b ,代入x 2+y 24=1中消去y 得,8x 2+4bx +b 2-4=0,由Δ=16b 2-32(b 2-4)=0得,b =±22,显见y =2x +2与两轴交点为椭圆的两顶点A (-1,0),B (0,2), ∵直线y =2x +22与l 距离d =22-25,∴欲使S △ABP =12|AB |·h =52h =2-1,须使h =22-25,∵d =h ,∴直线y =2x +22与椭圆切点,及y =2x +4-22与椭圆交点均满足,∴这样的点P 有3个.9.(2011·海南五校联考)已知抛物线x 2=4y 的焦点为F ,准线与y 轴的交点为M ,N 为抛物线上的一点,且|NF |=32|MN |,则∠NMF =________. [答案] 30°[解析] 作NH 垂直于准线于H ,由抛物线的定义得 |NH |=|NF |, ∴|NH ||MN |=|NF ||MN |=32=sin ∠HMN ,得∠HMN =60°, ∴∠NMF =90°-60°=30°.10.(2011·安徽模拟)点A 、B 分别为椭圆x 236+y 220=1长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,P A ⊥PF .(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于|MB |,求椭圆上的点到点M 的距离d 的最小值.[解析] (1)由已知可得点A (-6,0),F (4,0),设点P 的坐标是(x ,y ),则AP →=(x +6,y ),FP →=(x -4,y ).由已知得⎩⎪⎨⎪⎧x 236+y 220=1x +6 x -4 +y 2=0消去y 得,2x 2+9x -18=0,∴x =32或x =-6由于y >0,只能x =32,于是y =52 3所以点P 的坐标是(32,523).(2)直线AP 的方程是x -3y +6=0设点M 的坐标是(m,0),则M 到直线AP 的距离是 |m +6|2,于是|m +6|2=|m -6|, 又-6≤m ≤6,解得:m =2∵椭圆上的点(x ,y )到点M 的距离是d , ∴d 2=(x -2)2+y 2=x 2-4x +4+20-59x 2=49(x -92)2+15, 由于-6≤x ≤6,所以当x =92时d 取最小值15.11.(2011·新课标全国文,9)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( )A .18B .24C .36D .48[答案] C[解析] 设抛物线为y 2=2px ,则焦点F ⎝⎛⎭⎫p 2,0,准线x =-p2,由|AB |=2p =12,知p =6,所以F 到准线距离为6,所以三角形面积为S =12×12×6=36.12.已知椭圆x 2a 2+y 2b 2=1(a >b >0),过椭圆的右焦点作x 轴的垂线交椭圆于A 、B 两点,若OA →·OB →=0,则椭圆的离心率e 等于( )A.-1+52B.-1+32C.12D.32 [答案] A[解析] 如上图,F 2(c,0)把x =c 代入椭圆x 2a 2+y 2a 2=1得A (c ,b 2a ).由OA →·OB →=0结合图形分析得 |OF 2|=|AF 2|,即c =b 2a⇒b 2=ac ⇒a 2-c 2=ac⇒(c a )2+ca -1=0⇒e 2+e -1=0⇒e =5-12.13.(2011·辽宁沈阳二中检测)已知曲线C :y =2x 2,点A (0,-2)及点B (3,a ),从点A 观察点B ,要使视线不被曲线C 挡住,则实数a 的取值范围是( )A .(4,+∞)B .(-∞,4]C .(10,+∞)D .(-∞,10][答案] D[解析] 过点A (0,-2)作曲线C :y =2x 2的切线,设方程为y =kx -2,代入y =2x 2得,2x 2-kx +2=0,令Δ=k 2-16=0得k =±4, 当k =4时,切线为l ,∵B 点在直线x =3上运动,直线y =4x -2与x =3的交点为M (3,10),当点B (3,a )满足a ≤10时,视线不被曲线C 挡住,故选D.14.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,坐标原点到直线AB 的距离为32,其中A (0,-b ),B (a,0).(1)求双曲线的标准方程;(2)设F 是双曲线的右焦点,直线l 过点F 且与双曲线的右支交于不同的两点P 、Q ,点M 为线段PQ 的中点.若点M 在直线x =-2上的射影为N ,满足PN →·QN →=0,且|PQ →|=10,求直线l 的方程.[解析] (1)依题意有⎩⎨⎧ca=2,ab a 2+b2=32,a 2+b 2=c 2.解得a =1,b =3,c =2.所以,所求双曲线的方程为x 2-y 23=1.(2)当直线l ⊥x 轴时,|PQ →|=6,不合题意.当直线l 的斜率存在时,设直线l 的方程为y =k (x -2).由⎩⎪⎨⎪⎧x 2-y 23=1 x >0y =k x -2得, (3-k 2)x 2+4k 2x -4k 2-3=0. ① 因为直线与双曲线的右支交于不同两点,所以3-k 2≠0.设P (x 1,y 1),Q (x 2,y 2),M (x 0,y 0),则x 1、x 2是方程①的两个正根,于是有⎩⎨⎧x 1+x 2=4k 2k 2-3>0,x 1x 2=4k 2+3k 2-3>0,Δ=4k 22-4 3-k 2-4k 2-3 >0,所以k 2>3. ②因为PN →·QN →=0,则PN ⊥QN ,又M 为PQ 的中点,|PQ →|=10,所以|PM |=|MN |=|MQ |=12|PQ |=5. 又|MN |=x 0+2=5,∴x 0=3, 而x 0=x 1+x 22=2k 2k 2-3=3,∴k 2=9,解得k =±3.∵k =±3满足②式,∴k =±3符合题意. 所以直线l 的方程为y =±3(x -2). 即3x -y -6=0或3x +y -6=0.15.(2010·北京崇文区)已知椭圆的中心在坐标原点O ,焦点在x 轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F 与x 轴不垂直的直线l 交椭圆于P ,Q 两点.(1)求椭圆的方程;(2)当直线l 的斜率为1时,求△POQ 的面积;(3)在线段OF 上是否存在点M (m,0),使得以MP ,MQ 为邻边的平行四边形是菱形?若存在,求出m 的取值范围;若不存在,请说明理由.[解析] (1)由已知,椭圆方程可设为x 2a 2+y 2b 2=1(a >b >0).∵两个焦点和短轴的两个端点恰为正方形的顶点,且短轴长为2,∴b =c =1,a = 2.所求椭圆方程为x 22+y 2=1.(2)右焦点F (1,0),直线l 的方程为y =x -1. 设P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧x 2+2y 2=2y =x -1得,3y 2+2y -1=0, 解得y 1=-1,y 2=13.∴S △POQ =12|OF |·|y 1-y 2|=12|y 1-y 2|=23.(3)假设在线段OF 上存在点M (m,0)(0<m <1),使得以MP 、MQ 为邻边的平行四边形是菱形.因为直线与x 轴不垂直,所以设直线l 的方程为y =k (x -1)(k ≠0).由⎩⎪⎨⎪⎧x 2+2y 2=2y =k x -1 可得,(1+2k 2)x 2-4k 2x +2k 2-2=0. ∴x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2.MP →=(x 1-m ,y 1),MQ →=(x 2-m ,y 2),PQ →=(x 2-x 1,y 2-y 1).其中x 2-x 1≠0以MP ,MQ 为邻边的平行四边形是菱形⇔(MP →+MQ →)⊥PQ →⇔(MP →+MQ →)·PQ →=0⇔(x 1+x 2-2m ,y 1+y 2)·(x 2-x 1,y 2-y 1)=0 ⇔(x 1+x 2-2m )(x 2-x 1)+(y 1+y 2)(y 2-y 1)=0 ⇔(x 1+x 2-2m )+k (y 1+y 2)=0 ⇔⎝⎛⎭⎫4k 21+2k 2-2m +k 2⎝⎛⎭⎫4k21+2k 2-2=0 ⇔2k 2-(2+4k 2)m =0⇔m =k 21+2k 2(k ≠0).∴0<m <12.1.(2010·安徽江南十校联考)已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,左、右焦点为F 1、F 2,直线AF 2与圆M :x 2+y 2-6x -2y +7=0相切.(1)求椭圆C 的方程;(2)若椭圆内存在动点P ,使|PF 1|,|PO |,|PF 2|成等比数列(O 为坐标原点),求PF 1→·PF 2→的取值范围.[解析] (1)圆M :x 2+y 2-6x -2y +7=0化为(x -3)2+(y -1)2=3, 则圆M 的圆心为M (3,1),半径r = 3.由A (0,1),F 2(c,0),(c =a 2-1),得直线AF 2: xc+y =1, 即x +cy -c =0,由直线AF 2与圆M 相切,得|3+c -c |c 2+1=3, 解得c =2或c =-2(舍去).则a 2=c 2+1=3,故椭圆C 的方程为:x 23+y 2=1.(2)由(1)知F 1(-2,0)、F 2(2,0),设P (x ,y ), 由题意知|PO |2=|PF 1|·|PF 2|,即(x 2+y 2)2=x +22+y 2·x -22+y 2, 化简得:x 2-y 2=1,则x 2=y 2+1≥1.因为点P 在椭圆内,故x 23+y 2<1,即x 23+x 2-1<1,∴x 2<32,∴1≤x 2<32,又PF 1→·PF 2→=x 2-2+y 2=2x 2-3, ∴-1≤PF 1→·PF 2→<32.2.(2010·广州市质检)已知动点P 到定点F (2,0)的距离与点P 到定直线l :x =22的距离之比为22. (1)求动点P 的轨迹C 的方程;(2)设M 、N 是直线l 上的两个点,点E 与点F 关于原点O 对称,若EM →·FN →=0,求|MN |的最小值.[解析] (1)设点P (x ,y ),依题意有,x -22+y 2|x -22|=22,整理得x 24+y 22=1,所以动点P 的轨迹C 的方程为x 24+y 22=1.(2)∵点E 与点F 关于原点O 对称, ∴点E 的坐标为(-2,0). ∵M 、N 是直线l 上的两个点,∴可设M (22,y 1),N (22,y 2)(不妨设y 1>y 2). ∵EM →·FN →=0,∴(32,y 1)·(2,y 2)=0, ∴6+y 1y 2=0,即y 2=-6y 1.由于y 1>y 2,∴y 1>0,y 2<0. ∴|MN |=y 1-y 2=y 1+6y 1≥2y 1·6y 1=2 6. 当且仅当y 1=6,y 2=-6时,等号成立. 故|MN |的最小值为2 6.3.(2011·浙江文,22)如下图,设P 是抛物线C 1:x 2=y 上的动点,过点P 做圆C 2:x 2+(y +3)2=1的两条切线,交直线l :y =-3于A ,B ,两点.(1)求圆C 2的圆心M 到抛物线C 1准线的距离.(2)是否存在点P ,使线段AB 被抛物线C 1在点P 处的切线平分,若存在,求出点P 的坐标;若不存在,请说明理由.[解析] (1)因为抛物线C 1的准线方程为:y =-14, 所以圆心M 到抛物线C 1准线的距离为:|-14-(-3)|=114. (2)设点P 的坐标为(x 0,x 20),抛物线C 1在点P 处的切线交直线l 于点D ,再设A ,B ,D 的横坐标分别为x A ,x B ,x D ;过点P (x 0,x 20)的抛物线C 1的切线方程为:y -x 20=2x 0(x -x 0) ①当x 0=1时,过点P (1,1)与圆C 2的切线P A 为:y -1=158(x -1), 可得x A =-1715,x B =1,x D =-1,x A +x B ≠2x D . 当x 0=-1时,过点P (-1,1)与圆C 2的切线PB 为:y -1=-158(x +1), 可得x A =-1,x B =1715,x D=1,x A +x B ≠2x D . 所以x 20-1≠0.设切线P A ,PB 的斜率为k 1,k 2,则P A :y -x 20=k 1(x -x 0), ②PB :y -x 20=k 2(x -x 0), ③将y =-3分别代入①,②,③得x D =x 20-32x 0(x 0≠0); x A =x 0-x 20+3k 1,x B =x 0-x 20+3k 2(k 1,k 2≠0) 从而x A +x B =2x 0-(x 20+3)(1k 1+1k 2) 又|-x 0k 1+x 21+3|k 21+1=1 即(x 20-1)k 21-2(x 20+3)x 0k 1+(x 20+3)2-1=0.同理,(x 20-1)k 22-2(x 20+3)x 0k 2+(x 20+3)2-1=0所以k 1,k 2是方程(x 20-1)k 2-2(x 20+3)x 0k +(x 20+3)2-1=0的两个不相等的根,从而k 1+k 2=2 3+x 20x 0x 20-1, k 1·k 2=3+x 202-1x 20-1, 因为x A +x B =2x D .所以2x 0-(x 20+3)(1k 1+1k 2)=x 20-3x 0,即1k 1+1k 2=1x 0. 从而2 3+x 20x 0x 20+3 2-1=1x 0,进而得,x 40=8,x 0=±48. 综上所述,存在点P 满足题意,点P 坐标为(±48,22).。
2025高考数学总复习圆锥曲线中常见结论及应用

思维升华
周角定理:已知点 P 为椭圆(或双曲线)上异于顶点的任一点,A,B 为长轴 (或实轴)端点,则椭圆中 kPA·kPB=-ba22,双曲线中 kPA·kPB=ba22. 周角定理的推广:已知 A,B 两点为椭圆(或双曲线)上关于原点对称的两点, 点 P 为椭圆(或双曲线)上异于 A,B 的任一点,则椭圆中 kPA·kPB=-ba22,双 曲线中 kPA·kPB=ba22.
所以 S=x11y1=x221x+1y1y21=2xy11+yx11≥2
2xy11·xy11= 2,
当且仅当2xy11=yx11,即 x1=1,y1= 22时等号成立,
所以△OCD 面积的最小值为 2.
思维升华
(1)已知点 P(x0,y0)为椭圆(或双曲线)上任一点,则过点 P 与圆锥曲线相切 的切线方程为椭圆中xa02x+yb02y=1,双曲线中xa02x-yb02y=1. (2)若点 P(x0,y0)是椭圆(或双曲线)外一点,过 点 P(x0,y0)作椭圆(或双曲线)的两条切线,切 点分别为 A,B,则切点弦 AB 的直线方程是 椭圆中xa02x+yb02y=1,双曲线中xa02x-yb02y=1.
足B→A·B→P=0,直线 PA 交 x 轴于点 D,若∠ADO=∠AOD,则双曲线 C 的
离心率为
√A. 2
B.2
C. 3
D.3
如图,∵B→A·B→P=0,
∴BA⊥BP,令kAB=k,∵∠ADO=∠AOD, ∴kAP=-kAB=-k, 又 BA⊥BP,∴kPB=-1k, 依题意,kPB·kPA=ba22,∴-1k·(-k)=ba22,
题型一 椭圆、双曲线的常用结论及其应用
命题点1 焦点三角形 例 1 (2024·临川模拟)已知椭圆 C:ax22+by22=1(a>b>0),其左、右焦点分别
最新高考数学总复习-圆锥曲线综合

第六节圆锥曲线综合考纲解读1.掌握与圆锥曲线相关的最值、定值和参数范围问题.2.会办理动曲线(含直线)过定点的问题.3.会证明与曲线上的动点相关的定值问题.4.会按条件成立目标函数,研究变量的最值及取值范围问题,注意运用数形联合法和几何法求某些量的最值.命题趋向研究从内容上看,展望2015 年高考主要考察两大类问题:一是依据条件,求出表示平面曲线的方程;二是经过方程,研究平面曲线的性质,其热门有:①以客观题的形式考察圆锥曲线的基本观点和性质;②求平面曲线的方程和轨迹;③圆锥曲线的相关元素计算、关系证明或范围确立;④波及圆锥曲线对称变换、最值或地点关系的相关问题.从形式上看,以解答题为主,难度较大.从能力要求上看,要修业生具备必定的数形联合、剖析问题和解决问题及运算能力.知识点精讲一、定值问题分析几何中定值问题的证明可运用函数的思想方法来解决 . 证明过程可总结为“变量—函数—定值” ,详细操作程序以下:(1)变量 ---- 选择适合的量为变量 .(2)函数 ---- 把要证明为定值的量表示成变量的函数.(3)定值 ---- 化简获得的函数分析式,消去变量获得定值.求定值问题常有的方法有两种:( 1)从特别状况下手,求出定值,再证明该定值与变量没关;( 2)直接推理、计算,并在计算推理过程中消去变量,进而获得定值.二、求最值问题常用的两种方法( 1)几何法:题中给出的条件有明显的几何特点,则考虑用几何图形性质来解决,这是几何法 .( 2)代数法:题中给出的条件和结论的几何特点不明显,则能够成立目标函数,再求该函数的最值 . 求函数的最值常有的方法有基本不等式法、单一性法、导数法和三角换元法等,这就是代数法 .三、求定值、最值等圆锥曲线综合问题的“三重视”( 1)重视定义在解题中的作用( 把定义作为解题的着眼点).( 2)重视曲线的几何特点特别是平面几何性质与方程的代数特点在解题中的作用.( 3)重视根与系数的关系在解题中的作用( 波及弦长、中点要用根与系数的关系).四、求参数的取值范围据已知条件及题目要求等量或不等量关系,再求参数的范围.题型概括及思路提示题型 150 平面向量在分析几何中的应用思路提示解决平面向量在分析几何中的应用要把几何特点转变成向量关系,并把向量用坐标表示.常有的应用有以下两个方面.r r r r r r(1)用向量的数目积解决相关角的问题. 直角agb 0 ,钝角agb0 (且 a, b 不反向),精选文档r rr r 锐角agb0 ( 且 a, b 不一样向 ).(2)利用向量的坐标表示解决共线问题.一、利用向量的数目积解决相关夹角(锐角、直角、钝角)的问题其步骤是:先写出向量坐标式,再用向量数目积的坐标公式cosr rx 1 x 2 y 1 y 2a,bx 12y 12x 22y 22例 10.44过抛物线 x 22 py ( p 0) 的焦点 F 作直线交抛物线于A ,B 两点, O 为坐标原点 .求证:△的是钝角三角形 .ABO剖析证明△ ABO 的是钝角三角形常用的方法是利用余弦定理,但用余弦定理来解决需计算OB ,OA, ABuuur uuur AOB出 的长,明显较复杂 . 因为 O , A , Bg不共线,故可利用 OA OB 0 来证明∠>90°,进而得证 .分析设 A( x 1, y 1 ) , B( x 2 , y 2 ) , 抛物线 x 22 py( p 0) 的焦点坐标 F (0, p) .AB 的斜率存在 ( 若不存在,则 A , B 在原点,矛盾 ) ,2依据题意知,直线p,由ykxp设直线 AB 的方程为 y kx2 ,得 x 22 pkxp 20 ,2x 22 py则x 1x 2 2pk , x 1 x 2p 2 .因为 A , B 两点在抛物线上,所以x 12 2 py 1 , x 222 py 2 ,两式相乘得,y 1 y 2x 12 x 22p 2 .4 p24uuur, uuur, uuur uuur2p 23p 2g,OA (x 1 , y 1 ) OB (x 2 , y 2 )y 1 y 2p0 OA OB x 1 x 244又因为 , ,三点不共线,所以∠ >90°,△ 的是钝角三角形 .O A BAOBABO评注直线 l 与抛物线 x 22 py( p 0) 交于 A , B 两点,则( 1)直线 l 在 y 轴上的截距等于 2 p 时,∠ AOB =90°;( 2)直线 l 在 y 轴上的截距大于 2 p 时,∠ AOB <90°;( 3)直线 l 在 y 轴上的截距大于0 且小于 2 p 时,∠ AOB >90° .变式 1( 2012 重庆理 20)如图 10-34 所示,设椭圆的中心为原点O ,长轴在 x 轴上,上 极点为 ,左右焦点分别为 1, 2,线段 1,2 的中点分别为 1, 2,且△ 1 2 是面积为 4 的AF FOF OFB BABB直角三角形 .精选文档(1)求该椭圆的离心率和标准方程;(2)过B1作直线l交椭圆于P, Q两点,使PB2⊥QB2,求直线l的方程 .变式2设 ,分别为椭圆x2y2P x 4(4,0)A B为直线上不一样于的任4的左右极点,3意一点,若直线AP, BP分别与椭圆交于异于A, B的点 M, N,证明:点 B 在以 MN为直径的圆内.变式 3已知m 1,直线l : x m 2x2y2112Cmy0,椭圆C:,F , F 分别为椭圆2m2的左右焦点 .( 1)当直线l过右焦点 F2时,求直线l的方程;( 2)设直线l与椭圆C交于 ,两点,△ 1 2和△ 1 2 和的重心分别是, ;若原点OA B AFF BFF G H在以线段 GH为直径的圆内,务实数m 的取值范围.例 10.45 在直角坐标系xOy 中,点P到两点 (0, 3) , (0,3) 的距离之和等于4,设点P 的轨迹为 C,直线y kx 1与C交于A,B两点.(1)写出C的方程;uuur uuur( 2)若OA⊥OB , 求k的值 .分析( 1)设P(x, y),由椭圆定义可知,点P 的轨迹 C 是以(0, 3),(0,3) 为焦点,精选文档精选文档长半轴为 2 的椭圆 . 其短半轴 b1 ,故曲线 C 的方程为 x2 y 21 .42y 2 1,即(k2(2)设A( x 1 , y 1 ) , B( x 2 , y 2 ) , 由 x44) x 2 2kx3 0 ,由韦达定理ykx 1 知,x 1 x 22k,x 1 x 23k 2 4k 2 .uuur uuur40 ,而 y 1 y 2k 2 x 1 x 2若 OA ⊥ OB , 即 x 1 x 2 y 1 y 2 k (x 1x 2 ) 1,所以 x 1 x 2 y 1 y 2 (k 21)(k 3 ) k (2k) 1 0 ,即 4k 2 1 0 ,12 4k 2 4解得 k.2uuur 评注 此题的结论可由 【例 10.44 变式 3】的评注中的重要结论顺利获得:由题意, OA ⊥uuurOHd ,则有11 15 OB , 故有∠ AOB =90°,设原点 O 到直线的距离为2a 2b 2,OH4故可得 OHd2 ,又 y kx 1 ,所以 d1 12 ,解得 k1 . 利用此结5k 252论求解, 能够对利用惯例方法求解出的结果加以考证, 进而提升解题的正确率,做到胸有成竹.变式 1 如图 10-35 所示,椭圆x 2y 2的极点为 A 1 A 2B 1 B 2,焦点为 F 1F 2,C :a 2b 21(ab 0) , ,, ,A 1B 1 7 ,SY B 1 A 1B 2 A 22SY B 1 F 1B 2 F 2 .(1) 求椭圆 C 的方程; ( 2)设 n 为过原点的直线, l 是与 n 垂直订交于 P 点, 与椭圆订交于uuur 1 ,能否存在上述直线 uuur uuur0 成立?若存在求出直线l 的A ,B 两点的直线, OPl 使 OAgOB 方程;若不存在,请说明原由.精选文档变式 2 如图 10-36 所示,椭圆C :x2y 21(a b 0) 的一个焦点是F(1,0) ,O为坐标a2b2原点,设过点 F 的直线l交椭圆于 A, B 两点.若直线l绕点 F 任意转动,恒有222OA OB AB ,求a的取值范围.二、利用向量的坐标表示解决共线问题r r r r向量 a, b 共线的条件是 a b 或 x1 y2x2 y1.例 10.46 在平面直角坐标系xOy 中,经过点 (0,2) 且斜率为k的直线l与椭圆x2y21 2有两个不一样的交点 P, Q.(1)求k的取值范围;uuury A B k(2)设椭圆与x轴正半轴、轴正半轴的交点分别为,使得向量OP, ,能否存在常数uuur uuurk 的值;若不存在,请说明原由.+ OQ 与 AB 共线?若存在,求剖析将向量共线转变成坐标关系求解.解析( 1 )设直线l方程为 y kx2,代入椭圆得x2(kx2) 2 1 即2(2 k21)x242kx 20 ,①则(42k) 24(2k 21)2 16k 280,解得 k2, 或k2.22uuur uuur( 2)设P( x1, y1),Q ( x2, y2) , 则OP+OQ=(x1x2 , y1y2 ) ,由方程①得 x1x242k ,②12k 2y1y2k( x1x2 ) 2 2 ,③精选文档又 A( 2,0), B(0,1)uuur( 2,1) .,∴ ABuuur uuur uuur所以向量 OP + OQ 与 AB 共线等价于 x 1x 22( y 1y 2 ) ,将②③代入上式,解得k2,2由( 1)知 k2, 或 k2,故没有切合题意的常数k .2 2变式 1 设椭圆x 2y 2 1(a b 0) 的左右焦点分别为F , F ,离心率 e2,直线a2b21222uuuur uuuuraM N 是 l 上的两个动点, 0.l : x1 g 2,如图 10-37 所示, ,F M F Ncuuuuruuuur( 1)若 F 1M F 2 N2 5 ,求 a, b 的值;( 2)证明:当 uuuuruuuur uuuur uuuur共线 .MN 取最小值时, F M F N 与 F F 212 1设 A , B 是椭圆x2 y2uuuruuur 例 10.471 上的两点,并且点N ( 2,0) 知足 NANB ,当2精选文档1 1 [ , ] 时,求直线 AB 斜率的取值范围 .5 3表示 k ,打破口在于将剖析已知 的取值范围,求直线斜率范围重点在于怎样用uuur uuur NA NB 转变成坐标关系 .uuur uuurB , N 三点共线,又点N 的坐标为 ( 2,0) ,设直线 AB 的分析 因为 NANB ,所以 A , 方程为 yk (x2) ,则 k 0 ,由 x 2y 21,消去 x 得 (2 k 21) y 24ky 2k 220 ,yk( x 2)由条件可知,k( 4k)2 4(2k 2 1) 2k 2 0解得 0 k2 .2设 A( x 1 , y 1 ) , B( x 2 , y 2 ) , 则 y 1 y 24k , y 1 y 22k21 2k 21,2k 2uuuruuur由 NANB ,得 ( x 1 2, y 1)(x 22, y 2 ) .x 1 2 ( x 2 2) y 1 y 2 (1 ) y 24k12k 2所以有,y 1y 22k2,y 1 y 22y 2 1 2k 2消去 y 2 得(1)28 ,令 h( ) (1)212 ,[ 1, 1] ,则 h( ) 在1 2k 25 3区间 [ 1 , 1] 上为减函数,进而 16 ≤8 ≤36. 解得1 ≤ k ≤2 或≤ k ≤,切合 5 331 2k2 52 60 k2 ,所以直线 AB 斜率的取值范围为 [1 ,2 ] ∪ [2 , 1].22662评注 此题在消元上有个技巧,当x 1x 2 时消去 y 得对于 x 的一元二次方程 .x 1 x 2 (1)x 2b, x 1 x 2x 22c,消去 x 2 就会得与 a, b, c 之间的关系;当a ay 1 y 2 时消去 x .变式 1 已知 F 1 , F 2 分别为椭圆 x 2y 2 1132的左右焦点,直线 l 1 过点 F 且垂直于椭圆的长轴,动直线 l 2 垂直于直线 l 1 ,垂足为 D ,线段 DF 的垂直均分线交 l 2 于点 M . (1)求动点 M 的轨2精选文档精选文档迹 C 的方程;uuuruuur( 2)过点 F 1 作直线交曲线 C 于两个不一样的点[2,3] ,求P 和Q ,设FPFQ ,若11uuuur uuuurF 2 PgF 2Q 的取值范围 .变式 2 过点 F (1,0) 的直线交抛物线y 24x于 A B 两点,交直线 l : x 1 于点 M ,已知,uuuruuur uuur uuurMA1 AF , MB 2BF ,求 12的值.题型 151定点问题思路提示( 1)直线过定点,由对称性知定点一般在座标轴上,如直线y kx b ,若 b 为常量,则直线恒过 (0, b) 点;若 b为常量,则直线恒过 ( b ,0) .kk( 2)一般曲线过定点,把曲线方程变成f 1 ( x, y)f 2 (x, y) 0 ( 为参数),解方程组f 1 ( x, y) 0即得定点 .f 2 ( x, y)模型一:三大圆锥曲线(椭圆、双曲线、抛物线)中的极点直角三角形的斜边所在的直线过定点 .例 10.48 已知椭圆x 2y 2 1,直线 l : ykx m 与椭圆交于 A , B 两点(A , B 不是原点),43且以 AB 为直径的圆过椭圆的右极点 . 求证:直线 l 过定点,并求出该定点的坐标 .剖析要求直线过定点,一定知道直线l : ykx m 中 k 与 m 的关系 .x 2 y 21,消去 y 得分析设 A(x 1, y 1 ) , B(x 2 , y 2 ) , 由4 3y kx m(4 k 2 3) x 2 8kmx 4m 2 120 ,由条件可知,(8km)24(4k 2 3)(4 m 2 12) 0 ,即 m 2 4k 23 ,则 x 1x 28km 3 , x 1 x 2 4m 212,(** )4k 24k 2 3精选文档精选文档因为以 AB 为直径的圆过椭圆的右极点(2,0) ,所以 ( x 1 2, y 1 )g( x 2 2, y 2 ) 0 ,即 x 1 x 2 2( x 1 x 2 ) 4y 1 y 2 0 ,即 x 1 x 2 2( x 1 x 2 )4 (kx 1 m)(kx 2 m)0 ,整理得, (k 21) x 1 x 2 (km 2)( x 1 x 2 ) m 24 0 ,将( ** )代入,化简得7m 2 16km4k 20 ,即 m2k 或 m2k .7( 1)当( 2)当m 2k 时, l : y kx 2k 过右极点 (2,0) ,与题意不符,故舍去;m2k 时, l : y kx 2k 过定点 ( 2 ,0) ,且知足 m 24k 23,切合 .77 7所以 l : ykx m 过定点 ( 2 ,0) .7评注 x 2y 21(a b0)l : ykx m已知椭圆,直线,a 2b 2与椭圆交于 A B 两点,且以AB 为直径的圆过椭圆的右极点 A 1, 求证:如图10-38 所示,设 A(x 1, y 1 ) , B( x 2 , y 2 ) , 由x 2y 21,消去 y 得 a 2 b 2y kx m(a 2 k 2 b 2 )x 22a 2 kmx a 2m 2 a 2b 20 ,由条件可知,(2a 2 km) 2 4( a 2 k 2 b 2 )(a 2 m 2 a 2 b 2 ) 0 ,即 m 2a 2k 2b 2 . (注:截距的平方小于二次方程的二次项系数,请记着! )则 x 1 x 22a 2km, x 1 x 2 a 2 (m 2 b 2 ) ,(** )a 2 k 2b 2 a 2 k 2 b 2因为AB 为直径的圆过椭圆的右极点1, 所以A (a,0)uuur uuur , 又 uuur uuurAAAB 0A A ( x a, y ) , AB ( x2a, y )1g111112所以 ( x 1a, y 1 )g( x 2 a, y 2 ) 0,即 x 1 x 2 a(x 1x 2 ) a 2 y 1 y 2 0 ,精选文档精选文档即 x1x2 a( x1 x2 ) a 2(kx1m)(kx2m)0 ,整理得, (k 21) x1 x2(km a)( x1 x2 )m2a20 ,将(**)代入,化简得(m ak)[( a2b2 ) m a(a2b2 )k] 0 .(1)当m ak 时,l : y kx ak 过右极点 (a,0) ,与题意不符,故舍去;( 2)当m a(a2b2 )k时, l : y kx a(aa2b2a 2b2 )k过定点( a(a2b2 ),0) ,且知足2b2a2b2m2a2 k2b2,切合题意.所以, l : y kx m过定点( a( a2b2 ),0) .a2b2同理可证,若AB为直径的圆过左极点(a,0) ,则l过定点 (a(a2b2 ),0) ;a2b2过上极点 (0, b) 时,l过定点b(b2a2 ) (0,2b2);a过下极点 (0,b) 时,l过定点 (0,b(b2a2 )a2b2) .类比椭圆,对于双曲线x2y21(a0, b 0),上异于右极点的两动点,a2b2 A B,若 AB 为直径的圆过右极点(a,0), 则l AB过定点( a( a2b2),0) ;同理,若该圆过左极点a2b2( a,0) ,则 l AB过定点 (a( a2b2),0) ;a2b2x221 的左极点为A,可是点 A 的直线l : y kx b 与椭圆交于不一样变式 1 已知椭圆y4uuur uuur,求 k 与 b 的关系,并证明直线l 过定点.的两点 P, Q,当AP gAQ精选文档变式 2( 2012 北京海淀高三期末理19)已知焦点在x 轴上的椭圆 C 过点(0,1),且离心率为3,Q为椭圆 C的左极点.2( 1)求椭圆C的标准方程;( 2)已知过点(6,0) 的直线 l 与椭圆C交与A,B两点.5(Ⅰ)若直线 l 垂直于x轴,求∠AQB的大小;(Ⅱ)若直线 l 与x轴不垂直,能否存在直线l 使得△QAB为等腰三角形?假如存在,求出直线 l 的方程;假如不存在,请说明原由.例 10.49 已知抛物线y2 2 px( p0)上异于极点的两动点,A B知足以 AB为直径的圆过顶点.求证: AB所在的直线过定点,并求出该定点的坐标.剖析要证明 l AB过定点,一定先求得其方程.分析由题意知 l AB的斜率不为0 (不然只有一个交点),故可设l AB : x ty m ,设A( x1 , y1 ) , B( x2 , y2 ) ,由y22 px,消去 x 得 y22pty 2 pm0,进而x ty m( 2 pt )24( 2 pm) 4 p2t 28pm 0 ,即 pt 22m0 ,且y1y2 2 pt,( *)y1 y22 pmuuur uuur0 ,即 x1x2因为以 AB 为直径的圆过极点O(0,0),所以OA OB y1 y2 0,也即y12y22y1 y2 0 ,把式(*)代入化简得 m( m 2 p) 0,得 m0 或m 2 p .2p 2 p(1)当m0时, x ty ,l AB过极点O(0,0),与题意不符,故舍去;(2)当m 2 p 时,x ty 2 p ,令 y0 ,得 x 2 p ,所以 l AB过定点 (2 p,0),此时 m 2 p 知足 pt 22m0 .综上, l AB过定点 (2 p,0) .评注:( 1)①将斜率存在的直线的方程设为y kx b ,将斜率不为0 的直线的方程设为x ty m ;②抛物线y2 2 px 中, x1x2y1 y2y12 y22y1 y2;③对于过定点问题,必4p2须引入参数,最后令参数的系数为0. 如此题,先引入参数t, m 以后,就剩下参数t,直线x ty 2p中令参数t 的系数y为0(2 p,0) .,则直线过定点(2) 抛物线x2 2 py( p0)uuur uuur上两异于原点O的动点 A,B 知足OA OB ,则AB所在的直线过定点 (0, 2 p) ;抛物线 y2 2 px ( puuur uuur 0) 上两异于原点O的动点A,B知足 OA OB ,则 AB 所在的直线过定点(2 p,0) .变式1如图10-39 所示,已知定点P(x0 , y0 ) 在抛物线 y2 2 px ( p 0)APy上,过点 P 作两直线l1, l2分别交抛物线于A,B,且以 AB为直径的圆过O x 点 P,证明:直线过定点,并求出此定点的坐标 .ABy 2=2pxBy2变式 2 已知抛物线4x ,过点 M (1,2) 作两直线 l1, l2分别与抛物线交于图 10-39 A, B 两点,且 l1 ,l 2的斜率 k1, k2知足 k1k2 2 .求证:直线AB过定点,并求出此定点的坐标 .模型二:三大圆锥曲线(椭圆,双曲线,抛物线)中,若过焦点的弦为AB ,则焦点所在座uuur uuur标轴上存在独必定点N ,使得NA NB为定值.例 10.50 ( 2012北京海淀二模理18)已知椭圆x2y2b0) 的右焦点为C :2b2 1(aaF (1,0) ,且点 (1,2) 在椭圆C上. 2(1)求椭圆C的标准方程;(2)已知动直线l过点F,且与椭圆C交于A, B两点,试问x轴上能否存在定点Q ,使得uuur uuur7恒成立?若存在,求出点Q 的坐标;若不存在,请说明原由.QA QB16分析( 1)由题意知:c 1 . 依据椭圆的定义得:2a( 1 1)2( 2)22 2 2 ,22精选文档即 a2 . 所以 b 22 1 1 . 所以椭圆 C 的标准方程为 x 2 y 2 1.2uuur uuur7恒成立.(2) 假定在 x 轴上存在点 Q (m,0) ,使得 QA QB167当直线 l 的斜率为 0 时, A( 2,0), B(2,0) . 则 ( 2m,0) ( 2m,0), 解得516m.4(i)当 直 线l的 斜 率 不 存 在 时,A(1,2), B(1,2 ) . 由 于22(1 5 , 2 ) (1 5 ,2 ) 7 ,所以 m 5 .4 2 42164下边证明 m5uuur uuur7恒成立.(ii) 时, QA QB4uuur uuur 16明显直线 l 的斜率为7 . 0时,QA QB16当直线 l 的斜率不为 0 时,设直线 l 的方程为 xty 1,A(x 1, y 1 ), B( x 2 , y 2 ).x 221y可得: (t 22) y 22ty 10.由2x ty 1(2t) 2 4(t 2 2) 0 .y 1y 2 2tt 2,2 因为 x 1 ty 1 1, x 2 ty 2 1,所以y 1 y 2 1.t 22uuur uuur (x 155 11 y 1 y2 QA QB , y 1) ( x 2 , y 2 ) (ty 1)(ty 2 )4444(t 21)y 1 y 21t ( y 1 y 2 ) 1(t 2 1) 2 1t t 2 2t 1 2t 2 2 t 2 4 16t 24 2 1617 .2(t 2 2) 1616x 轴上存在点 Q( 5uuur uuur7 综上所述,在 ,0) ,使得 QA QB4 16恒成立 . 变式 1 已知双曲线 x 2y 22 的左、右焦点分别为 F 1, F 2 ,过点 F 2 的动直线与双曲线相交于 A, B 两点 . 在 x 轴上能否存在定点uuur uuurC 的坐C ,使得 CA CB 为常数?若存在,求出点精选文档标;若不存在,请说明原由.题型 152定直线问题模型: 已知椭圆x 2y 2 1(a b0) 外一点 P( x 0 , y 0 ) ,当过点 P 的动直线 l 与椭圆订交a 2b 2uuuruuur于不一样的两点 A, B 时,在线段 AB 上取一点 Q , 知足| AP| | AQ|.uuuruuur|PB||QB|求证:点 Q 总在某定直线上,并求出该直线的方程.uuuruuuur证明 :如图 10-40 |PA||PB|所示,设 A( x 1 , y 1), B( x 2 , y 2 ), Q ( x, y) ,由题意知 uuuruuur ,|AQ||QB |uuur uuury设 A 在 P ,Q 之间, PAAQ(0) ,又 Q 在 P , B 之间,故P(x 0,y 0) uuuruuuruuur uuurA1 . 由PBBQ , 因为|PB||BQ|,所以Quuur uuurOxPAAQx 1x 0 x1得 (x 1 x 0, y 1 y 0 )(x x 1, y y 1 ) ,解得y 0 y . y 11B图 10-40uuuruuurx 2x 0 x1同理,由 PBBQ 得 ( x 2 x 0 , y 2 y 0 )( x x 2 , y y 2 ) ,解得y 0 y .y 21( x 0x )2 ( y 0y )2 因为点 A 在椭圆上,所以1a21b21 ,即 ( x 0x)2( y 0y)2 (1)2①a 2b 2同理,点 B 在椭圆上,得( x 0a 2 x)2 ( y 0 y) 2 (1 ) 2 .②b 2由①-②得2x 0(2 x) 2y 0 (2 y)4 ,即x 0 xy 0 y 1.a 2b 2a2b 2所以点 Q 在定直线x 0xy 0 y 1上 .a 2b 2精选文档精选文档类比椭圆,对于双曲线有点Q 在定直线x 0xy 0 y 1上 .a2b 2再有 P , Q 的平等性知,当 P 在椭圆内,仍有上述结论,双曲线亦同.已知抛物线 y 22 px ( p 0) ,定点 P( x 0 , y 0 ) 不在抛物线上, 过点 P 的动直线交抛物uuuruuur 线于 A, B 两点,在直线AB 上取点 Q ,知足| AP|| AQ|uuuruuur .|PB| |QB|求证:点 Q 在某定直线上,并求其方程 .uuur uuur证明 :设 A( x 1 , y 1), B( x 2 , y 2 ), Q( x, y) ,由题意知 |PA||PB|uuuruuur ,|AQ| |QB|uuur uuur设 A 在 , 之间,PA AQ(0) ,又 在 , B 之间,故 P QQ Puuur uuur uuuruuuruuur uuur PBBQ ,因为|PB| |BQ |,所以1,由 PAAQx 1x 0 x1知 (x 1 x 0, y 1y 0 )(xx 1, yy 1 ) ,解得,y 0y 1y1故点 A 坐标为 (x 0x , y 0y) .11x 0xuuuruuurx 21 同理,由 PBBQ 知 ( x 2 x 0 , y 2 y 0 )( xx 2, y y 2 ) ,解得yy 0y 2.1故点 B 坐标为 (x 0x , y 0y) .11因为点 A 在抛物线上,所以(yy )2 2 p(x 0x) ,11即 ( y 0 y)22 p(1 )( x 0x)①同理 ( y 0y)22 p(1)( x 0 x) .②由①-②得 2 y 0 (2 y)4p ( x x 0 ) ,即 y 0 y p(x x 0 ) .所以点 Q 在定直线 y 0 yp(x x 0 ) 上 .注: 三大圆锥曲线(椭圆、双曲线、抛物线)中,当定点P( x 0 , y 0 ) 在曲线上时,相应的定精选文档直线x 0xy 0 y 1,x 0xy 0 y 1, y 0 y p( x 0 x) 均为在定点 P( x 0 , y 0 ) 处的切线 .a 2b 2a 2b 2例 10.51 x 2 y 2 1(a b 0) 过点 M (2,1) , 且左焦点为 F 1( 2,0) .设椭圆 C :2b 2a(1) 求椭圆 C 的方程;(2)当过点 P (4,1) 的动直线 l 与椭圆 C 订交于两不一样点A, B 时,在线段 AB 上取点 Q , 满uuur uuur uuur uuur足 | AP ||QB | | AQ || PB |. 证明:点 Q 总在某定直线上 .剖析 用待定系数法求解椭圆的方程,奇妙地利用定比分点解答点Q 的轨迹问题 .c 22分析 ( 1)由题意知2 1 1 ,解得 a 24, b 2 2 ,所求椭圆方程为x 2 y 2 1 . a 2 b 242c 2a 2b 2y(2)如图 10-41 所示,设A( x 1, y 1 ), B( x 2, y 2 ), Q (x, y) ,uuur uuuur 由题意知| PA| |PB|,uuuruuur| AQ| |QB|uuur uuur 0) ,又 Q 在 P , B 之间,故不如设 A 在 P , Q 之间, PA AQ (uuur uuur uuuruuur uuuruuur PBBQ ,因为|PB| |BQ |,所以1,由 PAAQ P(4,1) AQOxB图 10-41x 14 x1得 (x 14, y 1 1)( xx 1, y y 1 ) ,解得1 y .y 11uuur uuurx 2 4x1 同理,由 PBBQ 得 ( x 2 4, y 21)( xx 2, y y 2 ) ,解得1 y .y 21(4x ) 2 (1y )2因为点 A 在椭圆上,所以111 ,42(4x)2 (1y) 2(1 )2①即42同理,点 B 在椭圆上,得(4x)2 (1 y)2(1) 2②42.由①-②得8 2 x 22 y 4 ,因为0 所以 xy 1.422所以点 Q 在定直线 2x y 20 上 .评 注 由 模 型 的 结 论 不 难 知 动 点 Q (x, y) 总 在 定 直 线x 0xy 0y1 上 ,4x ya 2b 2a24, b22, x 04, y 01 ,得 ,即2 x y 20 .412题型 153定值问题思路提示求定值问题常有的方法有两种:( 1)从特别下手,求出其值,再证明这个值与变量没关,这切合一般与特别的思想辩证关系 . 简称为:特别探路,一般论证 .(2) 直接推理,计算,并在计算推理的过程中消去变量,进而获得定值 .模型: 三大圆锥曲线 (椭圆、 双曲线、抛物线)中, 曲线上的必定点 P 与曲线上的两动点 A ,B 知足直线 PA 与直线 PB 的斜率互为相反数,则直线 AB 的斜率为定值 .例 10.52 已知椭圆 x 2y 21 , A 为椭圆 C 上的点,其坐标为 A(1,3) ,E, F 为椭圆 CC :342上的两动点, 假如直线 AE 的斜率与 AF 的斜率互为相反数, 证明:直线 EF 的斜率为定值,并求出该定值 .剖析 要求直线 EF 的斜率,一定知道 E ,F 的坐标 .3x 2y 2 1分析 设直线 AE 的方程为 y43 ,消 y 得k( x 1)0) ,联立(k32yk (x 1)2(4k23)x 2(12k 8k 2) x 4(3k ) 2 120 ,24(3k )2 124k 212 k 3则 x E2①(4k 2 3) x A4k 2 3又直线 AE 的斜率与 AF 的斜率互为相反数,故以上 k 用 k 取代 x F4k 2 12 k 3②4k 2 3y F y E [ k( x F 1)3] [ k( x E1) 3]k( x F x E ) 2k22所以 k EFx Ex F x Ex F x E ,x F把①,②两式代入上式,得kEF 1,为定值 .2评注此题中能够用换元法简化计算,能够设x 1t, y 3s ,得 x3 2t 1,y s,32将 x, y 代入椭圆方程中得3(t1)24( s) 212,且 s kt ( k 为直线 AE 的斜率),联2s kt立直线方程与椭圆方程得3(t1)24( s 3 )2,消 s 得对于 t 的一元二次方程:12212 k6t 212k6t1(4 k23)t 2(12k6)t0,得4k 23,同理4k 23,12k 26ks212k 26ks14k 234k 23由 E(t11,s13) , F (t21,s23) ,得212k 212k 22s2s16k6k12k1k EF4k234k 23为定值 . t2t112k612k624k24k 234k 23变式 1已知 A,B,C是长轴为4,焦点在x轴上的椭圆上的三点,点 A 是长轴的一个端点,uuur uuur uuur uuurBC过椭圆的中心 O,且AC BC0,| BC |2|AC |.(1)求椭圆的方程;( 2)假如椭圆上的两点P, Q , 使得PCQ的均分线垂直于OA,问是uuur uuur否总存在实数,使得 PQ AB ?说明原由.Py变式2如图10-42 所示,过抛物线y2 2 px( p0) 上必定点O x P( x0 , y0 ) ( y00) ,作两条直线分别交抛物线于AA( x1 , y1), B( x2 , y2 ) .图 10-42Bp的点到焦点 F 的距离;(1)求该抛物线上纵坐标为2(2)当 PA与 PB的斜率存在且倾斜角互补时,求y1y2的值,并证明直线 AB的斜率是非零y0常数 .题型 154 最值问题思路提示有两种求解方法:一是几何方法,所求最值量拥有明显的几何意义时可利用几何性质联合图形直观求解;二是目标函数法,即选用适合的变量,成立目标函数,而后依据求函数精选文档精选文档例 10.53 设椭圆x 2 y 2 1 的左、右焦点分别为 F 1, F 2 ,点 M 是椭圆上随意一点, 点 A 的25 16坐标为 (2,1) ,求 | MF 1 | | MA |的最大值和最小值 .剖析此题若设 M (x, y) ,成立目标函数 | MA ||MF 1| f ( x, y) ,则会玩火自焚 . 可是注意到 F 1 为椭圆左焦点,联想到椭圆定义及三角形中边的关系不等式时,问题就简单获解 .分析如图 10-43 所示, F 1( 3,0), F 2 (3,0) ,yM因为 M 在椭圆上,所以有|MF 1||MF 2 | 2a 10 ,A令 Z|MF 1| |MA |,得 Z 10 |MA | |MF 2 |.F 1OF 2x当 M , A, F 2 三点不共线时,有 |AF 2| |MA||MF 2| |AF 2|,当 M 落在 F 2A 的延伸线时, | MA | | MF 2 || F 2A |,图 10-43当 M 落在 AF 2 的延伸线时, | MA | |MF 2 | |F 2A |.所以Z max10 |F 2A| 10(2 3)2 (1 0)2 102 , Z min 10 |F 2A| 10 2 .评注 这里利用椭圆定义、三角形两边之差小于或等于 (注意等号成立的条件) 第三边, 使与曲线相关的最值转变成直线段间的最值. 应明确这里不可以用| FM 1 | | AM | |F 1A|26 ,求得 | F 1M | | AM |的最小值26 ,原由是取不到等号,y假如要取到等号,那么M 一定在线段 F 1 A 上,但这是不行能的 .d 2 y 2=4xP 是抛物线 y 2d 1Px+2y-12=0变式 1如图 10-44 所示,已知点4x 上的点,O F x设点 P 到此抛物线的准线的距离为 d 1 ,到直线 l : x 2 y12 0的距离为 d 2 ,求 d 1d 2 的最小值 .图 10-44变 式 2已 知 点 P 为 双 曲 线x 2y 2 1上的动点,M(3 5 ,45 ),F( 5,0) , 求45 5||MP|| FP || 的最大值及此时点 P 的坐标 .2例10. 54已 知 椭 圆 x 2 y1 , 点 M 为 椭 圆 上 的 动 点 , 若 C , D 的 坐 标 分 别 是 4(0, 3),(0, 3) ,求 | MC | | MD |的最大值 .精选文档剖析求积的最大值,由“和为定值积有最大值”知,一定找出和为定值.分析由题设知 D , C 是椭圆的上、下焦点,故由椭圆的定义知|MC ||MD| 2 4 4.所以|MC| |MD |(| MC | |MD |)2( 4)24.当且仅当|MC || MD |时取等号,即22M 为左、右极点时取等号. 所以,当M为左、右极点时,|MC | |MD |获得最大值 4.评注此题运用基本不等式求最值,但要注意使用基本不等式的条件:一正,二定,三相等,四同时,积为定值时,和最小 a b 2 ab (a,b 0) ;和为定值时,积最大ab(a b 2( a,b0) ,取等号的条件均为a b .)2变式 1已知椭圆 x2y21在第一象限部分为曲线C,动点 P在C上,C在P点处的切4线与 x, y 轴的交点分别为uuuur uuur uuur uuuurA,B,且向量 OM OA OB ,求 |OM |的最小值.例10.55如图 10-45 所示,已知抛物线 E : y2x 与圆 M : ( x4) 2y2r 2 (r 0) 订交于A, B,C, D 四点.y DA(1) 求r的取值范围;( 2)当四边形ABCD的面积最大时,O P M求对角线 AC , BD 的交点P的坐标.BCx图 10-45分析( 1)将y2x 代入 (x 4)2y2r 2并化简得 x27x16 r 20①因为 E 与 M 有四个交点的充要条件是方程①有两个不等的正根x1 , x2,由此得(7) 24(16r 2 ) 0x1x270,解得15r 216 .x1 x216r 204又 r0 ,所以r的取值范围是(15,4) . 2(2)不如设 E 与 M 的四个交点坐标分别为A( x1 ,x1 ), B( x1 ,x1 ), C( x2 ,x2 ), D( x2 ,x2 ) ,则直线AC, BD的方程分别为y x x2x1 ( x x ) , y x x2x1 ( x x ) .1x2x111x2x11解得点 P 的坐标为 (x1x2 ,0) .设 tx 1x 2 ,由 t16 r 2 及( 1)知 0 t7 .2因为四边形 ABCD 为等腰梯形,因此其面积S1 2 x 2 ) | x 2 x 1 |.(2 x 12即 S 2( x 1x 2 2 x 1 x 2 ) [( x 1 x 2 ) 2 4x 1x 2 ] . 将 x 1 x 27 , x 1 x 2t 代入上式,并令 f (t )S 2,得 f (t)(7 2t) 2(7 2t)(0t7) .27,t7求导数得 f '(t )2(2t7)(6 t 7) ,令 f '(t ) 0 ,解得 t(舍去) .7 7 76 2 7时, f '(t) 0 ;当 t '(t ) 0 . 故当且仅当 t 明显当 0 t 6 时, f 时,6 27 6 f (t) 有最大值,即四边形 ABCD 的面积最大 . 故所求的点 P 的坐标为 (,0) .11 ( 28)3 6 另 解 ,f (t) (7 2t )2 (7 2t ) (7 2t )2 (14 4t) ,当且仅当2 2 37 2t 14 4t 时,即 t7 时取等号,所以点 P 的坐标为 (7,0) .66评注 此题主要有两个考察点: 一个是考察将曲线与曲线的交点问题转变成二次方程的根的问题,是较基本的问题;另一个是考察四边形ABCD 的面积最大值问题,是此题的中心点 . 要注意此题中表面上求点的坐标,本质上是求四边形 ABCD 的面积最大值, 并且在求目标函数最值的过程中,利用了导数判断单一性的方法,进而使此题的综合性大大提升 .变式 1已知平面内一动点P 到点 F (1,0) 的距离与点 P 到 y 轴的距离的差等于1.(1) 求动点 P 的轨迹 C 的轨迹;(2) 过点 F 作两条斜率存在且相互垂直的直线l 1 , l 2 ,设 l 1 与轨迹 C 订交于点 A,B , l 2 与轨uuur uuur 的最小值 .迹C 订交于点, ,求AD EBD E最有效训练题 47(限时 45 分钟)1. 经过椭圆 x 2y 21的一个焦点作倾斜角为o 的直线l 交椭圆于, B 两点.设 O 为245Auuuruuur坐标原点,则 OA OB 等于()A.3 B.1 C.1 3 D.13或332. 设 F 1, F 2x 2y20)的两个焦点,点P 在双曲线上,是双曲线4a1(aauuur uuuur uuur uuuur | 2 , 则 a 的值为 PF PF 20,| PF || PF112A. 1B.5C.2D.5 23. 过抛物线y ax 2 (a0) 的焦点F作向来线交抛物线于P,Q两点,若线段 PF与 FQ的长分别是 p, q ,则11等于()p qA.2aB.1C.4aD.4 2a a4. 已知椭圆x2y21(a b0) 的左焦点为F,右极点为A,点B在椭圆上,且BF x a2b2yuuur uuur轴,直线AB 交轴于点,若AP2PB,则椭圆的离心率是()PA.3B.2C.1D.122325 . 若以椭圆上一点和两个焦点为极点的三角形面积的最大值为1,则椭圆长轴长的最小值为()A. 1B.2C.2D. 2 26 . 假如AB是椭圆x2y21( a b 0) 的随意一条与x 轴不垂直的弦,O为椭圆的中a2b2心, e 为椭圆的离心率,M为 AB 的中点,则k AB k OM的值为()A. e 1B. 1 eC. e2 1D. 1 e27 . 已知椭圆的焦点是F1 (3,0) 和 F2 (3,0) ,离心率为e3,P为椭圆上一点,2uuur uuuurPF1PF22,则PF1F2面积为________.38.如图 10-46所示,P是双曲线x2y21右支(在第一象限内)上的随意一点, A1, A 2 4分别是左、右极点, O 是坐标原点,直线PA1, PO, PA 2的斜率分别为 k1 , k2 , k3,则斜率y之积 k1k2 k3的取值范围是_______.PA1OA2x9. 已知椭圆的焦点为 F 1 ( 3,0) , F 2 (3,0) ,且与直线 x y 9 0 有公共点,则此中长轴最短的椭圆方程为____________.10. 已知两点A ,B 分别在直线 yx 和 yx 上运动,且 | AB |4 5 ,动点 P 知足5uuur uuur uuur2OP OA OB ( O 为坐标原点 ) ,点 P 的轨迹记为曲线 C .(1) 求曲线 C 的方程;( 2)过曲线 C 上随意一点作它的切线 l ,与椭圆x 2y 2 1交于M ,4uuuur uuurN 两点,求证: OM ON 为定值 .x 2 y 2 1(ab 0) 过点 (1,2 ,离心率为2 11. 如图 10-47 所示,已知椭圆b 2) ,左、a 222右焦点分别为 F 1 , F 2 ,点 P 为直线 l : x y2 上且不在 x 轴上的随意一点,直线PF 1 和PF 2 与椭圆的交点分别为 A, B 和 C , D , O 为坐标原点 .y(1) 求椭圆的标准方程;PACl( 2)设直线 PF 1 , PF 2 的斜率分别为 k 1, k 2 .F 1OF 2xB①证明:13D2 ;图 10-47 k 1k 2②问直线 l 上能否存在点 P ,使得直线 OA,OB, OC, OD 的斜率 k OA , k OB ,k OC , k OD 知足k OA k OB k OC k OD 0 ?若存在,求出全部知足条件的点 P 的坐标;若不存在,说明原由 .12. 如图 10-48 所示,等边三角形 OAB 的边长为 8 3 ,且其三个极点均在抛物线 E : x 2 2 py( p 0) 上 .y(1) 求抛物线 E 的方程;A B( 2)设动直线 l 与抛物线 E 相切于点 P ,与直线 y1PxOQy=- 1订交于点 Q .证明:以 PQ 为直径的圆恒过y 轴上某定点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六节 圆锥曲线综合考纲解读1.掌握与圆锥曲线有关的最值、定值和参数范围问题.2.会处理动曲线(含直线)过定点的问题.3.会证明与曲线上的动点有关的定值问题.4.会按条件建立目标函数,研究变量的最值及取值范围问题,注意运用数形结合法和几何法求某些量的最值. 命题趋势研究从内容上看,预测2015年高考主要考查两大类问题:一是根据条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质,其热点有:①以客观题的形式考查圆锥曲线的基本概念和性质;②求平面曲线的方程和轨迹;③圆锥曲线的有关元素计算、关系证明或范围确定;④涉及圆锥曲线对称变换、最值或位置关系的有关问题.从形式上看,以解答题为主,难度较大.从能力要求上看,要求学生具备一定的数形结合、分析问题和解决问题及运算能力. 知识点精讲一、定值问题解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下: (1)变量----选择适当的量为变量.(2)函数----把要证明为定值的量表示成变量的函数. (3)定值----化简得到的函数解析式,消去变量得到定值. 求定值问题常见的方法有两种:(1)从特殊情况入手,求出定值,再证明该定值与变量无关;(2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值. 二、求最值问题常用的两种方法(1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形性质来解决,这是几何法.(2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求该函数的最值.求函数的最值常见的方法有基本不等式法、单调性法、导数法和三角换元法等,这就是代数法.三、求定值、最值等圆锥曲线综合问题的“三重视”(1)重视定义在解题中的作用(把定义作为解题的着眼点).(2)重视曲线的几何特征特别是平面几何性质与方程的代数特征在解题中的作用. (3)重视根与系数的关系在解题中的作用(涉及弦长、中点要用根与系数的关系). 四、求参数的取值范围据已知条件及题目要求等量或不等量关系,再求参数的范围. 题型归纳及思路提示题型150 平面向量在解析几何中的应用思路提示解决平面向量在解析几何中的应用要把几何特征转化为向量关系,并把向量用坐标表示.常见的应用有如下两个方面.(1)用向量的数量积解决有关角的问题.直角⇔0a b =,钝角⇔0a b <(且,a b 不反向),锐角⇔0a b >(且,a b 不同向).(2)利用向量的坐标表示解决共线问题.一、利用向量的数量积解决有关夹角(锐角、直角、钝角)的问题 其步骤是:先写出向量坐标式,再用向量数量积的坐标公式cos ,a b <>=例10.44过抛物线22(0)x py p =>的焦点F 作直线交抛物线于A ,B 两点,O 为坐标原点.求证:△ABO 的是钝角三角形.分析 证明△ABO 的是钝角三角形常用的方法是利用余弦定理,但用余弦定理来解决需计算出,,OB OA AB 的长,显然较复杂.因为O ,A ,B 不共线,故可利用0OA OB <来证明∠AOB >90°,从而得证.解析 设11(,)A x y ,22(,)B x y ,抛物线22(0)x py p =>的焦点坐标(0,)2pF . 根据题意知,直线AB 的斜率存在(若不存在,则A ,B 在原点,矛盾),设直线AB 的方程为2p y kx =+,由222p y kx x py⎧=+⎪⎨⎪=⎩,得2220x pkx p --=,则122x x pk +=,212x x p =-.因为A ,B 两点在抛物线上,所以2112x py =,2222x py =,两式相乘得,2221212244x x p y y p ==. 11(,)OA x y =,22(,)OB x y =,22212123044p p OA OB x x y y p =+=-+=-<, 又因为O ,A ,B 三点不共线,所以∠AOB >90°,△ABO 的是钝角三角形. 评注 直线l 与抛物线22(0)x py p =>交于A ,B 两点,则 (1)直线l 在y 轴上的截距等于2p 时,∠AOB =90°; (2)直线l 在y 轴上的截距大于2p 时,∠AOB <90°; (3)直线l 在y 轴上的截距大于0且小于2p 时,∠AOB >90°.变式1(2012重庆理20)如图10-34所示,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形.(1)求该椭圆的离心率和标准方程;(2)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程.变式2设A ,B 分别为椭圆22143x y +=的左右顶点,P 为直线4x =上不同于(4,0)的任意一点,若直线AP ,BP 分别与椭圆交于异于A ,B 的点M ,N ,证明:点B 在以MN 为直径的圆内.变式3已知1m >,直线2:02m l x my --=,椭圆222:1x C y m+=,F 1,F 2分别为椭圆C 的左右焦点.(1)当直线l 过右焦点F 2时,求直线l 的方程;(2)设直线l 与椭圆C 交于A ,B 两点,△AF 1F 2和△BF 1F 2和的重心分别是G ,H ;若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.例10.45在直角坐标系xOy 中,点P 到两点(0,3),3)的距离之和等于4,设点P 的轨迹为C ,直线1y kx =+与C 交于A ,B 两点. (1)写出C 的方程; (2)若OA ⊥OB ,求k 的值.解析 (1)设(,)P x y ,由椭圆定义可知,点P 的轨迹C 是以(0,3)-,3)为焦点,长半轴为2的椭圆.其短半轴1b =,故曲线C 的方程为2214y x +=. (2)设11(,)A x y ,22(,)B x y,由22141y x y kx ⎧+=⎪⎨⎪=+⎩,即22(4)230k x kx ++-=,由韦达定理知,12224k x x k +=-+,12234x x k =-+. 若OA ⊥OB ,即12120x x y y +=,而2121212()1y y k x x k x x =+++,所以212122232(1)()()1044k x x y y k k k k +=+-+-+=++,即2410k -+=, 解得12k =±. 评注 本题的结论可由【例10.44变式3】的评注中的重要结论顺利得到:由题意,OA ⊥OB ,故有∠AOB =90°,设原点O 到直线的距离为OH d =,则有22211154a bOH=+=,故可得5OH d ==,又1y kx =+,所以251d k ==+,解得12k =±.利用此结论求解,可以对利用常规方法求解出的结果加以验证,从而提高解题的准确率,做到胸有成竹.变式1如图10-35所示,椭圆2222:1(0)x y C a b a b+=>>的顶点为A 1,A 2,B 1,B 2,焦点为F 1,F 2,117A B =,112211222B A B A B F B F SS=.(1)求椭圆C 的方程; (2)设n 为过原点的直线,l 是与n 垂直相交于P 点,与椭圆相交于A ,B 两点的直线,1OP =,是否存在上述直线l 使0OA OB =成立?若存在求出直线l 的方程;若不存在,请说明理由.变式2如图10-36所示,椭圆2222:1(0)x y C a b a b+=>>的一个焦点是(1,0)F ,O 为坐标原点,设过点F 的直线l 交椭圆于A ,B 两点.若直线l 绕点F 任意转动,恒有222OA OB AB +<,求a 的取值范围.二、利用向量的坐标表示解决共线问题向量,a b 共线的条件是a b λ=或1221x y x y =.例10.46在平面直角坐标系xOy 中,经过点2)且斜率为k 的直线l 与椭圆2212x y +=有两个不同的交点P ,Q . (1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量OP +OQ 与AB 共线?若存在,求k 的值;若不存在,请说明理由. 分析 将向量共线转化为坐标关系求解.解析 (1)设直线l 方程为2y kx =+,代入椭圆得22(2)12x kx ++=即22(21)4220k x kx +++=,①则222(42)4(21)21680k k k ∆=-+⨯=->,解得22k <-,或22k >. (2)设11(,)P x y ,22(,)Q x y ,则OP +OQ =1212(,)x x y y ++, 由方程①得122212kx x k+=-+,② 1212()22y y k x x +=++又(2,0),(0,1)A B ,∴(2,1)AB =-.所以向量OP +OQ 与AB 共线等价于12122()x x y y +=-+, 将②③代入上式,解得22k =, 由(1)知2k <-,或2k >,故没有符合题意的常数k . 变式1设椭圆22221(0)x y a b a b +=>>的左右焦点分别为F 1,F 2,离心率22e =,直线2:a l x c=,如图10-37所示,M ,N 是l 上的两个动点,120F M F N =.(1)若1225F M F N ==,求,a b 的值;(2)证明:当MN 取最小值时,12F M F N +与12F F 共线.例10.47设A ,B 是椭圆2212x y +=上的两点,并且点(2,0)N -满足NA NB λ=,当11[,]53λ∈时,求直线AB 斜率的取值范围.分析 已知λ的取值范围,求直线斜率范围关键在于如何用λ表示k ,突破口在于将NA NB λ=转化为坐标关系.解析 因为NA NB λ=,所以A ,B , N 三点共线,又点N 的坐标为(2,0)-,设直线AB 的方程为(2)y k x =+,则0k ≠,由2212(2)x y y k x ⎧+=⎪⎨⎪=+⎩,消去x 得222(21)420k y ky k +-+=,由条件可知,222(4)4(21)200k k k k ⎧∆=--+⨯>⎨≠⎩解得0k <<. 设11(,)A x y ,22(,)B x y ,则122412ky y k +=+,2122212k y y k =+,由NA NB λ=,得1122(2,)(2,)x y x y λ+=+.所以有12122(2)x x y y λλ+=+⎧⎨=⎩,12222212224(1)12212k y y y k ky y y k λλ⎧+=+=⎪⎪+⎨⎪==⎪+⎩, 消去2y 得22(1)812k λλ+=+,令2(1)1()2h λλλλλ+==++,11[,]53λ∈,则()h λ在区间11[,]53上为减函数,从而163≤2812k +≤365.解得12-≤k≤6-或≤k≤,符合02k <<,因此直线AB 斜率的取值范围为[12-,6-]∪[6,12]. 评注 本题在消元上有个技巧,当12x x λ=时消去y 得关于x 的一元二次方程.122(1)b x x x a λ+=+=-,2122c x x x aλ==,消去2x 就会得λ与,,a b c 之间的关系;当12y y λ=时消去x .变式1已知F 1,F 2分别为椭圆22132x y +=的左右焦点,直线1l 过点F 1且垂直于椭圆的长轴,动直线2l 垂直于直线1l ,垂足为D ,线段DF 2的垂直平分线交2l 于点M . (1)求动点M 的轨迹C 的方程;(2)过点F 1作直线交曲线C 于两个不同的点P 和Q ,设11F P FQ λ=,若[2,3]λ∈,求22F P F Q 的取值范围.变式2过点(1,0)F 的直线交抛物线24y x =于A ,B 两点,交直线:1l x =-于点M ,已知1MA AF λ=,2MB BF λ=,求12λλ+的值.题型151 定点问题思路提示(1)直线过定点,由对称性知定点一般在坐标轴上,如直线y kx b =+,若b 为常量,则直线恒过(0,)b 点;若b k 为常量,则直线恒过(,0)bk-. (2)一般曲线过定点,把曲线方程变为12(,)(,)0f x y f x y λ+=(λ为参数),解方程组12(,)0(,)0f x y f x y =⎧⎨=⎩即得定点. 模型一:三大圆锥曲线(椭圆、双曲线、抛物线)中的顶点直角三角形的斜边所在的直线过定点.例10.48已知椭圆22143x y +=,直线:l y kx m =+与椭圆交于A ,B 两点(A ,B 不是原点),且以AB 为直径的圆过椭圆的右顶点.求证:直线l 过定点,并求出该定点的坐标. 分析 要求直线过定点,必须知道直线:l y kx m =+中k 与m 的关系.解析 设11(,)A x y ,22(,)B x y ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得 222(43)84120k x kmx m +++-=,由条件可知,222(8)4(43)(412)0km k m ∆=-+->,即2243m k <+,则122843kmx x k +=-+,212241243m x x k -=+,(**)因为以AB 为直径的圆过椭圆的右顶点(2,0),所以1122(2,)(2,)0x y x y --=,即1212122()40x x x x y y -+++=,即1212122()4()()0x x x x kx m kx m -+++++=,整理得,221212(1)(2)()40k x x km x x m ++-+++=,将(**)代入,化简得2271640m km k ++=,即2m k =-或27k m =-. (1)当2m k =-时,:2l y kx k =-过右顶点(2,0),与题意不符,故舍去; (2)当27k m =-时,2:7k l y kx =-过定点2(,0)7,且满足2243m k <+,符合. 所以:l y kx m =+过定点2(,0)7.评注 已知椭圆22221(0)x y a b a b+=>>,直线:l y kx m =+与椭圆交于A ,B 两点,且以AB 为直径的圆过椭圆的右顶点A 1,求证:如图10-38所示,设11(,)A x y ,22(,)B x y ,由22221x y ab y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得 222222222()20a k b x a kmx a m a b +++-=,由条件可知,222222222(2)4()()0a km a k b a m a b ∆=-+->,即2222m a k b <+.(注:截距的平方小于二次方程的二次项系数,请记住!)则2122222a km x x a k b +=-+,22212222()a m b x x a k b -=+,(**)因为AB 为直径的圆过椭圆的右顶点A 1(,0)a ,所以110A A A B =,又111(,)A A x a y =-,122(,)A B x a y =-所以1122(,)(,)0x a y x a y --=,即2121212()0x x a x x a y y -+++=,即2121212()()()0x x a x x a kx m kx m -+++++=,整理得,2221212(1)()()0k x x km a x x m a ++-+++=,将(**)代入,化简得2222()[()()]0m ak a b m a a b k +++-=.(1)当m ak =-时,:l y kx ak =-过右顶点(,0)a ,与题意不符,故舍去;(2)当2222()a a b k m a b -=-+时,2222():a a b k l y kx a b -=-+过定点2222()(,0)a a b a b -+,且满足2222m a k b <+,符合题意.所以,:l y kx m =+过定点2222()(,0)a a b a b-+. 同理可证,若AB 为直径的圆过左顶点(,0)a -,则l 过定点2222()(,0)a a b a b --+; 过上顶点(0,)b 时,l 过定点2222()(0,)b b a a b -+; 过下顶点(0,)b -时,l 过定点2222()(0,)b b a a b --+. 类比椭圆,对于双曲线22221(0,0)x y a b a b -=>>,上异于右顶点的两动点A ,B ,若AB 为直径的圆过右顶点(,0)a ,则AB l 过定点2222()(,0)a a b a b +-;同理,若该圆过左顶点(,0)a -,则AB l 过定点2222()(,0)a a b a b-+-; 变式1已知椭圆2214x y +=的左顶点为A ,不过点A 的直线:l y kx b =+与椭圆交于不同的两点P ,Q ,当0AP AQ =,求k 与b 的关系,并证明直线l 过定点.变式2(2012北京海淀高三期末理19)已知焦点在x 轴上的椭圆C 过点(0,1),且离心率为2,Q 为椭圆C 的左顶点. (1)求椭圆C 的标准方程;(2)已知过点6(,0)5-的直线l 与椭圆C 交与A ,B 两点.(Ⅰ)若直线l 垂直于x 轴,求∠AQB 的大小;(Ⅱ)若直线l 与x 轴不垂直,是否存在直线l 使得△QAB 为等腰三角形?如果存在,求出直线l 的方程;如果不存在,请说明理由.例10.49已知抛物线22(0)y px p =>上异于顶点的两动点A ,B 满足以AB 为直径的圆过顶点. 求证:AB 所在的直线过定点,并求出该定点的坐标. 分析 要证明AB l 过定点,必须先求得其方程.解析 由题意知AB l 的斜率不为0(否则只有一个交点),故可设:AB l x ty m =+,设11(,)A x y ,22(,)B x y ,由22y px x ty m⎧=⎨=+⎩,消去x 得2220y pty pm --=,从而222(2)4(2)480pt pm p t pm ∆=---=+>,即220pt m +>,且121222y y pty y pm +=⎧⎨=-⎩,(*)因为以AB 为直径的圆过顶点(0,0)O ,所以0OA OB ⋅=,即12120x x y y +=,也即221212022y y y y p p⋅+=,把式(*)代入化简得(2)0m m p -=,得0m =或2m p =. (1)当0m =时,x ty =,AB l 过顶点(0,0)O ,与题意不符,故舍去;(2)当2m p =时,2x ty p =+,令0y =,得2x p =,所以AB l 过定点(2,0)p ,此时2m p=满足220pt m +>.图10-39综上,AB l 过定点(2,0)p .评注:(1)①将斜率存在的直线的方程设为y kx b =+,将斜率不为0的直线的方程设为x ty m =+ ;②抛物线22y px =中,221212121224y y x x y y y y p +=+ ;③对于过定点问题,必须引入参数,最后令参数的系数为0.如本题,先引入参数,t m 之后,就剩下参数t ,直线2x ty p =+中令参数t 的系数y 为0,则直线过定点(2,0)p .(2)抛物线22x py = (0)p >上两异于原点O 的动点A,B 满足OA OB ⊥,则AB 所在的直线过定点(0,2)p ;抛物线22y px = (0)p >上两异于原点O 的动点A,B 满足OA OB ⊥,则AB 所在的直线过定点(2,0)p .变式1 如图10-39所示,已知定点00(,)P x y 在抛物线22y px = (p 上,过点P 作两直线12,l l 分别交抛物线于A,B ,且以AB 为直径的圆过点P ,证明:直线AB 过定点,并求出此定点的坐标.变式2 已知抛物线24y x =,过点(1,2)M 作两直线12,l l ,A B 两点,且12,l l 的斜率12,k k 满足122k k =.求证:直线AB 过定点,并求出此定点的坐标.模型二:三大圆锥曲线(椭圆,双曲线,抛物线)中,若过焦点的弦为AB ,则焦点所在坐标轴上存在唯一定点N ,使得NA NB ⋅为定值.例10.50 (2012北京海淀二模理18)已知椭圆2222:1(0)x y Ca b a b+=>>的右焦点为(1,0)F ,且点(1,2-在椭圆C 上. (1)求椭圆C 的标准方程;(2)已知动直线l 过点F ,且与椭圆C 交于,A B 两点,试问x 轴上是否存在定点Q ,使得716QA QB ⋅=-恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由. 解析 (1)由题意知:1c =.根据椭圆的定义得:22a ==即a =所以2211b =-=.所以椭圆C 的标准方程为2212x y +=. (2) 假设在x 轴上存在点(,0)Q m ,使得716QA QB ⋅=-恒成立. 当直线l 的斜率为0时,(A B .则7,0)(,0)16m m ⋅=-,解得54m =±.(i)当直线l 的斜率不存在时,(1,(1,22A B -.由于557(1(1,4416+⋅+≠-,所以54m ≠-.(ii)下面证明54m =时,716QA QB ⋅=-恒成立. 显然直线l 的斜率为0时,716QA QB ⋅=-.当直线l 的斜率不为0时,设直线l 的方程为1x ty =+,1122(,),(,).A x y B x y由22121x y x ty ⎧+=⎪⎨⎪=+⎩可得:22(2)210.t y ty ++-= 22(2)4(2)0t t ∆=++>.1221222,21.2t y y t y y t ⎧+=-⎪⎪+⎨⎪=-⎪+⎩因为111x ty =+,221x ty =+,所以 112212125511(,)(,)()()4444QA QB x y x y ty ty y y ⋅=-⋅-=--+2212122222211121(1)()(1)416242162217.2(2)1616t t t y y t y y t t t t t t =+-++=-++⨯+++--+=+=-+综上所述,在x 轴上存在点5(,0)4Q ,使得716QA QB ⋅=-恒成立. 变式1 已知双曲线222x y -=的左、右焦点分别为12,F F ,过点2F 的动直线与双曲线相交于,A B 两点.在x 轴上是否存在定点C ,使得CA CB ⋅为常数?若存在,求出点C 的坐图10-40标;若不存在,请说明理由.题型152 定直线问题模型:已知椭圆22221(0)x y a b a b+=>>外一点00(,)P x y ,当过点P 的动直线l 与椭圆相交于不同的两点,A B 时,在线段AB 上取一点Q ,满足||||.||||AP AQ PB QB = 求证:点Q 总在某定直线上,并求出该直线的方程.证明:如图10-40所示,设1122(,),(,),(,)A x y B x y Q x y ,由题意知||||||||PA PB AQ QB =, 设A 在P ,Q 之间,(0)PA AQ λλ=>,又Q 在P ,B PB BQ λ=-,因为||||PB BQ >,所以1λ>.由PA AQ λ=得101011(,)(,)x x y y x x y y λ--=--,解得01011.1x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩同理,由PB BQ λ=-得202022(,)(,)x x y y x x y y λ--=---,解得02021.1x xx y yy λλλλ-⎧=⎪⎪-⎨-⎪=⎪-⎩因为点A 在椭圆上,所以220022()()111x x y y a b λλλλ+++++=, 即2220022()()(1)x x y y a b λλλ+++=+ ① 同理,点B 在椭圆上,得2220022()()(1)x x y y a bλλλ--+=-. ② 由①-②得00222(2)2(2)4x x y y a b λλλ⨯⨯+=,即00221x x y y a b +=. 所以点Q 在定直线00221x x y ya b+=上.类比椭圆,对于双曲线有点Q 在定直线00221x x y ya b-=上. 再有P ,Q 的对等性知,当P 在椭圆内,仍有上述结论,双曲线亦同.已知抛物线22y px = (0)p >,定点00(,)P x y 不在抛物线上,过点P 的动直线交抛物线于,A B 两点,在直线AB 上取点Q ,满足||||.||||AP AQ PB QB = 求证:点Q 在某定直线上,并求其方程.证明:设1122(,),(,),(,)A x y B x y Q x y ,由题意知||||||||PA PB AQ QB =, 设A 在P ,Q 之间,(0)PA AQ λλ=>,又Q 在P ,B 之间,故PB BQ λ=-,因为||||PB BQ >,所以1λ>,由PA AQ λ=知101011(,)(,)x x y y x x y y λ--=--,解得01011,1x xx y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩故点A 坐标为00(,)11x x y yλλλλ++++. 同理,由PB BQ λ=-知202022(,)(,)x x y y x x y y λ--=---,解得02021.1x xx y yy λλλλ-⎧=⎪⎪-⎨-⎪=⎪-⎩故点B 坐标为00(,)11x x y yλλλλ----. 因为点A 在抛物线上,所以200()2()11y y x xp λλλλ++=++,即200()2(1)()y y p x x λλλ+=++ ① 同理 200()2(1)()y y p x x λλλ-=--. ②由①-②得002(2)4()y y p x x λλ⨯=+,即00()y y p x x =+. 所以点Q 在定直线00()y y p x x =+上.注:三大圆锥曲线(椭圆、双曲线、抛物线)中,当定点00(,)P x y 在曲线上时,相应的定直线00221x x y y a b +=,00221x x y ya b-=,00()y y p x x =+均为在定点00(,)P x y 处的切线.例10.51 设椭圆2222:1(0)x y C a b a b+=>>过点M ,且左焦点为1(F .(1)求椭圆C 的方程;(2)当过点P (4,1)的动直线l 与椭圆C 相交于两不同点,A B 时,在线段AB 上取点Q ,满足||||||||AP QB AQ PB =.证明:点Q 总在某定直线上.分析 用待定系数法求解椭圆的方程,巧妙地利用定比分点解答点Q 的轨迹问题.解析 (1)由题意知2222222211c a bc a b ⎧=⎪⎪+=⎨⎪⎪=-⎩,解得224,2a b ==,所求椭圆方程为22142x y +=. (2)如图10-41所示,设1122(,),(,),(,)A x y B x y Q x y , 由题意知||||||||PA PB AQ QB =, 不妨设A 在P ,Q 之间,(0)PA AQ λλ=>,又Q 在P ,B PB BQ λ=-,因为||||PB BQ >,所以1λ>,由PA AQ λ=得1111(4,1)(,)x y x x y y λ--=--,解得11411.1x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩同理,由PB BQ λ=-得2222(4,1)(,)x y x x y y λ--=---,解得22411.1x x y y λλλλ-⎧=⎪⎪-⎨-⎪=⎪-⎩因为点A 在椭圆上,所以2241()()11142x y λλλλ+++++=, 即222(4)(1)(1)42x y λλλ+++=+ ① 同理,点B 在椭圆上,得222(4)(1)(1)42x y λλλ--+=-. ②由①-②得8222442x y λλλ⨯⨯+=,因为0λ≠所以12yx +=. 所以点Q 在定直线220x y +-=上.评注 由模型的结论不难知动点(,)Q x y 总在定直线00221x x y ya b+=上,22004,2,4,1a b x y ====,得4142x y+=,即220x y +-=. 题型153 定值问题思路提示求定值问题常见的方法有两种:(1)从特殊入手,求出其值,再证明这个值与变量无关,这符合一般与特殊的思维辩证关系.简称为:特殊探路,一般论证.(2)直接推理,计算,并在计算推理的过程中消去变量,从而得到定值.模型:三大圆锥曲线(椭圆、双曲线、抛物线)中,曲线上的一定点P 与曲线上的两动点A ,B 满足直线PA 与直线PB 的斜率互为相反数,则直线AB 的斜率为定值.例10.52 已知椭圆22:143x y C +=,A 为椭圆C 上的点,其坐标为3(1,)2A ,,E F 为椭圆C 上的两动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明:直线EF 的斜率为定值,并求出该定值.分析 要求直线EF 的斜率,必须知道E ,F 的坐标.解析 设直线AE 的方程为3(1)(0)2y k x k =-+≠,联立221433(1)2x y y k x ⎧+=⎪⎪⎨⎪=-+⎪⎩,消y 得22223(43)(128)4()1202k x k k x k ++-+--=,则222234()1241232(43)43E A k k k x k x k ----==++ ① 又直线AE 的斜率与AF 的斜率互为相反数,故以上k 用k -代替22412343F k k x k +-=+ ②所以33[(1)][(1)]()222F E F E F E EFF E F E F Ek x k x y y k x x k k x x x x x x --+--+--++===---, 把①,②两式代入上式,得12EF k =,为定值.评注 本题中可以用换元法简化计算,可以设31,2x t y s -=-=,得31,2x t y s =+=+,将,x y 代入椭圆方程中得2233(1)4()122t s +++=,且s kt =(k 为直线AE 的斜率),联立直线方程与椭圆方程得2233(1)4()122s kt t s =⎧⎪⎨+++=⎪⎩,消s 得关于t 的一元二次方程: 22(43)(126)0k t k t +++=,得122121264312643k t k k k s k +⎧=-⎪⎪+⎨+⎪=-⎪+⎩,同理222221264312643k t k k k s k -⎧=⎪⎪+⎨-⎪=-⎪+⎩, 由113(1,)2E t s ++,223(1,)2F t s ++,得222221212261212612143431261262424343EF k k k ks s k k k k k k t t k k k -++-++====-+-+++为定值. 变式1 已知A ,B ,C 是长轴为4,焦点在x 轴上的椭圆上的三点,点A 是长轴的一个端点,BC 过椭圆的中心O ,且0,||2||AC BC BC AC ⋅==.(1) 求椭圆的方程;(2)如果椭圆上的两点,P Q ,使得PCQ ∠的平分线垂直于OA ,问是否总存在实数λ,使得PQ AB λ=?说明理由.变式2 如图10-42所示,过抛物线22(0)y px p =>上一定00(,)P x y 0(0)y ≠,作两条直线分别交抛物线于1122(,),(,)A x y B x y .(1) 求该抛物线上纵坐标为2p的点到焦点F 的距离; (2) 当PA 与PB 的斜率存在且倾斜角互补时,求12y y y +的值,并证明直线AB 的斜率是非零常数.题型154 最值问题思路提示有两种求解方法:一是几何方法,所求最值量具有明显的几何意义时可利用几何性质结合图形直观求解;二是目标函数法,即选取适当的变量,建立目标函数,然后按照求函数的最值方法求解,同时要注意变量的范围.图10-43例10.53 设椭圆2212516x y +=的左、右焦点分别为12,F F ,点M 是椭圆上任意一点,点A 的坐标为(2,1),求1||||MF MA +的最大值和最小值.分析 本题若设(,)M x y ,建立目标函数1||||(,)MA MF f x y +=,则会作茧自缚.但是注意到1F 为椭圆左焦点,联想到椭圆定义及三角形中边的关系不等式时,问题就容易获解. 解析 如图10-43所示,12(3,0),(3,0)F F -,因为M 在椭圆上,所以有12||||210MF MF a +==,令1||||Z MF MA =+,得210||||Z MA MF =+-.当2,,M A F 三点不共线时,有222||||||||AF MA MF AF -<-<当M 落在2F A 的延长线时,22||||||MA MF F A -=-,当M 落在2AF的延长线时,22||||||MA MF F A -=.所以max 210||1010Z F A =+==+,min 210||10Z F A =-=评注 这里利用椭圆定义、三角形两边之差小于或等于(注意等号成立的条件)第三边,使与曲线有关的最值转化为直线段间的最值.应明确这里不能用11||||||FM AM F A +≥=1||||F M AM +,原因是取不到等号,如果要取到等号,那么M 必须在线段1F A 上,但这是不可能的变式1 如图10-44所示,已知点P 是抛物线24y x =上的点,设点P 到此抛物线的准线的距离为1d ,到直线:2120l x y +-=的距离为2d ,求12d d +的最小值.变式 2 已知点P 为双曲线2214x y -=上的动点,(55M F ,求||||||MP FP -的最大值及此时点P 的坐标.例10.54已知椭圆2214y x +=,点M 为椭圆上的动点,若,C D 的坐标分别是(0,,求||||MC MD 的最大值.分析求积的最大值,由“和为定值积有最大值”知,必须找出和为定值.解析 由题设知,D C 是椭圆的上、下焦点,故由椭圆的定义知||||4MC MD +==. 所以22||||4||||()()422MC MD MC MD +≤==.当且仅当||||MC MD =时取等号,即M 为左、右顶点时取等号.所以,当M 为左、右顶点时,||||MC MD 取得最大值4.评注 本题运用基本不等式求最值,但要注意使用基本不等式的条件:一正,二定,三相等,四同时,积为定值时,和最小,0)a b a b +≥>;和为定值时,积最大2()(,0)2a b ab a b +≤>,取等号的条件均为a b =. 变式1 已知椭圆2214y x +=在第一象限部分为曲线C ,动点P 在C 上,C 在P 点处的切线与,x y 轴的交点分别为,A B ,且向量OM OA OB =+,求||OM 的最小值.例10.55 如图10-45所示,已知抛物线2:E y x =与圆222:(4)(0)M x y r r -+=>相交于,,,A B C D 四点.(1) 求r 的取值范围;(2)当四边形ABCD 的面积最大时, 求对角线,AC BD 的交点P 的坐标.解析 (1)将2y x =代入222(4)x y r -+= 因为E 与M 有四个交点的充要条件是方程①有两个不等的正根12,x x ,由此得2212212(7)4(16)070160r x x x x r ⎧∆=--->⎪+=>⎨⎪=->⎩,解得215164r<<.又0r >,所以r 的取值范围是4)2. (2)不妨设E 与M 的四个交点坐标分别为11((,A x B x2(,C x2(D x ,则直线,AC BD 的方程分别为121()y xx =-,121()y x x=-.解得点P 的坐标为.设t =t =1)知702t <<.由于四边形ABCD 为等腰梯形,因而其面积211||2S x x =⋅-.即22121212([()4]S x x x x x x =++⋅+-.将127x x +=t =代入上式,并令2()f t S =,得27()(72)(72)(0)2f t t t t =+⋅-<<.求导数得'()2(27)(67)f t t t =-+-,令'()0f t =,解得77,62t t ==-(舍去). 显然当706t <<时,'()0f t >;当7762t <<时,'()0f t <.故当且仅当76t =时,()f t 有最大值,即四边形ABCD 的面积最大.故所求的点P 的坐标为7(,0)6.另解,2231128()(72)(72)(72)(144)()223f t t t t t =+-=⋅+-≤⨯,当且仅当72144t t +=-时,即76t =时取等号,所以点P 的坐标为7(,0)6.评注 本题主要有两个考查点:一个是考查将曲线与曲线的交点问题转化为二次方程的根的问题,是较基本的问题;另一个是考查四边形ABCD 的面积最大值问题,是本题的核心点.要注意本题中表面上求点的坐标,实质上是求四边形ABCD 的面积最大值,而且在求目标函数最值的过程中,利用了导数判断单调性的方法,从而使本题的综合性大大提高. 变式1 已知平面内一动点P 到点(1,0)F 的距离与点P 到y 轴的距离的差等于1. (1) 求动点P 的轨迹C 的轨迹;(2)过点F 作两条斜率存在且互相垂直的直线12,l l ,设1l 与轨迹C 相交于点A,B ,2l 与轨迹C 相交于点D ,E ,求AD EB ⋅的最小值.最有效训练题47(限时45分钟)1.经过椭圆2212x y +=的一个焦点作倾斜角为45的直线l 交椭圆于A ,B 两点.设O 为坐标原点,则OA OB ⋅等于( ) A. 3- B. 13-C. 13-或3-D. 13± 2.设12,F F 是双曲线221(0)4x y a a a-=>的两个焦点,点P 在双曲线上,12120,||||2PF PF PF PF ⋅==,则a 的值为A. 1B.23.过抛物线2(0)y ax a =>的焦点F 作一直线交抛物线于P ,Q 两点,若线段PF 与FQ 的长分别是,p q ,则11p q+等于( ) A. 2a B.12a C. 4a D. 4a4.已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x⊥轴,直线AB 交y 轴于点P,若2AP PB =,则椭圆的离心率是( )A.2 B.2 C.13 D.125.若以椭圆上一点和两个焦点为顶点的三角形面积的最大值为1,则椭圆长轴长的最小值为()C.2D. 6.如果AB 是椭圆22221(0)x y a b a b+=>>的任意一条与x 轴不垂直的弦,O为椭圆的中心,e 为椭圆的离心率,M为AB 的中点,则AB OM k k ⋅的值为( ) A.1e - B.1e - C.21e - D.21e -7.已知椭圆的焦点是1(F和2F ,离心率为e =P为椭圆上一点,1223PF PF ⋅=,则12PF F ∆面积为________. 8.如图10-46所示,P是双曲线2214x y -=右支(在第一象限内)上的任意一点,12,A A 分别是左、右顶点,O 是坐标原点,直线12,,PA PO PA 之积123k k k ⋅⋅的取值范围是_______.9.已知椭圆的焦点为1(3,0)F -,2(3,0)F ,且与直线x y -有公共点,则其中长轴最短的椭圆方程为____________.图10-48-110.已知两点A,B 分别在直线y x =和y x =-上运动,且||5AB =,动点P 满足2OP OA OB =+(O 为坐标原点),点P 的轨迹记为曲线C .(1)求曲线C 的方程;(2)过曲线C 上任意一点作它的切线l ,与椭圆2214x y +=交于M ,N 两点,求证:OM ON ⋅为定值.11.如图10-47所示,已知椭圆22221(0)x y a b a b+=>>过点(1,2,离心率为2,左、右焦点分别为12,F F ,点P 为直线:2l x y +=上且不在x 轴上的任意一点,直线1PF 和2PF 与椭圆的交点分别为,A B 和,C D ,O 为坐标原点.(1)求椭圆的标准方程;(2)设直线1PF ,2PF 的斜率分别为12,k k .①证明:12132k k -=; ②问直线l 上是否存在点P ,使得直线,,,OA OB OC OD 的斜率,,,OA OB OC OD k k k k 满足0OA OB OC OD k k k k +++=?若存在,求出所有满足条件的点P 的坐标;若不存在,说明理由.12.如图10-48所示,等边三角形OAB 的边长为 且其三个顶点均在抛物线2:2(0)E x py p =>上. (1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线1y =-相交于点Q .证明:以PQ 为直径的圆恒过y 轴上某定点.。