PPARγ——中枢神经系统损伤治疗的新靶点
过氧化物酶体增殖物激活受体γ与相关疾病的研究进展
过氧化物酶体增殖物激活受体γ与相关疾病的研究进展1. 引言1.1 过氧化物酶体增殖物激活受体γ的介绍过氧化物酶体增殖物激活受体γ(PPARγ)是一种核受体蛋白,属于PPARs家族。
它广泛存在于多种组织和细胞中,并在调控脂质代谢、糖代谢、炎症反应等生理过程中起着重要作用。
PPARγ在疾病发生发展过程中扮演着重要角色,特别在代谢性疾病、炎症性疾病和肿瘤等方面有着重要作用。
PPARγ的功能主要通过结合内源性配体,如脂肪酸和合成类固醇等,来调控下游基因的转录活性。
激活PPARγ后,它与另一核受体RXR形成二聚体,结合到特定的DNA响应元上,从而调控一系列基因的表达。
研究表明,PPARγ的激活可促进脂肪细胞分化、增加糖代谢和胰岛素敏感性,抑制炎症反应等。
1.2 相关疾病的背景相关疾病包括自身免疫性疾病和恶性肿瘤等多种疾病。
自身免疫性疾病是一组由机体免疫系统错误地攻击自身组织和器官而引起的疾病,如类风湿关节炎、系统性红斑狼疮和自身免疫性甲状腺疾病等。
恶性肿瘤是一种细胞异常增殖的疾病,恶性细胞会不受控制地增殖和扩散,如白血病、乳腺癌和肺癌等。
这些疾病给患者的身体和心理健康造成了严重危害,严重影响了患者的生活质量和生存期。
目前,虽然已有一些治疗手段和药物用于这些疾病的治疗,但治疗效果并不理想,存在很多副作用和耐药性问题。
2. 正文2.1 过氧化物酶体增殖物激活受体γ在疾病中的作用过氧化物酶体增殖物激活受体γ(PPARγ)是一种重要的核受体,在人体的疾病发生和发展中扮演着重要的角色。
PPARγ主要通过调节基因的转录来影响细胞的代谢、增殖和分化等功能,从而参与调控多种生理过程。
在糖尿病研究中,PPARγ被发现对胰岛素敏感性具有重要影响。
PPARγ可以通过促进葡萄糖摄取和利用、调控血糖代谢等途径,降低血糖水平,提高胰岛素敏感性,从而有望成为糖尿病治疗的靶点。
在脂质代谢调控中,PPARγ也发挥着重要作用。
除了在糖尿病中的作用外,PPARγ在心血管疾病、炎症性疾病、神经系统疾病等方面也有着重要的影响。
共轭亚油酸通过PPARγ通路调控小胶质细胞的炎症表型
2 结果
2.1 LPS 构建体外小胶质细胞炎症模型
0.25%的胰酶消化液在 37℃温箱中消化 15 min,过滤离
为构建体外小胶质细胞炎症模型,
我们给予 LPS 刺
心后用 DMEM/F12 完全培养基重悬接种至 T75 培养瓶
通讯作者
本文引用格式:唐玥,陈曼,初云惠,庞晓伟,秦川,田代实. 共轭亚油酸通过 PPARγ通路调控小胶质细胞的炎
田代实
症表型[J]. 神经损伤与功能重建, 2022, 17(10): 563-566, 578.
tiands@foxmail.
com
Conjugated Linoleic Acid Regulates the Inflammatory Phenotype of Microglia via PPARγγ Path⁃
析。符合正态分布以及方差齐性的计量资料以(x±s)表
公司;实时荧光定量 PCR 试剂盒购于翌圣生物科技公
示,多样本均数比较采用单因素方差分析,多重比较采
司。
用 Bonferroni 法分析。P<0.05 为差异有统计学意义。
1.2 方法
1.2.1
原代细胞培养
将 C57 乳鼠用 75%酒精消毒后
于 生 物 安 全 柜 中 取 出 脑 组 织 ,剥 离 脑 膜 和 血 管 ,用
及封闭液室温先后孵育 15 min,PBS 洗涤后加入一抗
症表型的机制。
CD206(1∶200)、CD16/32(1∶50)、Iba1(1∶500),4℃孵
育过夜,PBS 洗涤 3 遍,5 min/次;加入相对应的二抗
(1 ∶ 200)室 温 孵 育 1 h;PBS 洗 涤 稍 微 晾 干 后 加 入 含
糖尿病治疗药PPAR激动剂的一些情况
糖尿病治疗药PPAR激动剂的一些情况糖尿病是一种由遗传基因决定的全身慢性代谢性疾病。
由于体内胰岛素的相对或绝对不足而引起糖、脂肪和蛋白质代谢的紊乱。
其主要特点是高血糖及糖尿。
糖尿病的病因至今尚未完全阐明,胰岛素分泌相对或绝对不足是本病的基本发病机理,而遗传因素和病毒感染后p细胞破坏,自身免疫紊乱,胰岛素拮抗激素,胰岛p细胞释放胰岛素异常,胰岛素受体异常、受体抗体和胰岛素抵抗等原因都可能导致胰岛素分泌不足、糖尿病的发生。
糖尿病本身并不可怕,可怕的是糖尿病的并发症,糖尿病带来的危害,几乎都来自它的并发症。
糖尿病除常发生酮症酸中毒、低血糖,以及大血管、微血管和周围神经病变等严重的并发症外,还具有脂代谢紊乱以及动脉粥样硬化、冠心病、心肌梗死等心血管并发症,这些并发症在许多国家已成为致死、致残并造成医疗费用增高的一个主要原因。
糖尿病可分为胰岛素依赖型(1型,即IDDM)和非胰岛素依赖型(2型,即NIDDM),其中2型患者占糖尿病病例的90%以上。
1型糖尿病治疗药主要是胰岛素及其类似物。
2型糖尿病口服降糖药产品主要有5类:磺脲类、D-苯丙氨酸类促胰岛素分泌剂、双胍类、a-葡萄糖苷酶抑制剂、胰岛素增敏剂。
噻唑烷二酮(thiazolidinediones/TZDs)类口服降糖药,属胰岛素增敏剂,是一种新型的过氧化酶增殖活化受体(peroxisome prolfferator—activated receptors,PPARs)激动剂。
1997年,Warner—Lambert和三共公司研制的Rezulin(瑞泽林、曲格列酮/tmditazone,首个噻唑烷二酮类药物品种)上市,口服降糖药市场发生了变化。
1999年5月获得美国FDA批准上市的Avandia(罗格列酮,rosiglitazonemai—eate,SmithklineBeecham)和1999年7月获得FDA批准上市的Actos(吡格列酮,ploditazone,EliLilly/Takeda)已成为口服降糖药的佼佼者。
直肠癌PPARγ的表达及其相关性研究
直肠癌PPARγ的表达及其相关性研究目的研究直肠癌组织中过氧化物酶体增殖物激活受体γ(PPARγ)的表达情况。
方法采用免疫组织化学SABC法,检测40例直肠癌组织、10例直肠腺瘤组织和10例直肠旁正常组织切片中的PPARγ的表达,结合病理学分型、临床分期、放疗敏感性、淋巴结转移、生存期探讨其意义。
结果PPARγ 在直肠癌中含量明显高于腺瘤组织及直肠旁正常组织(P<0.05);PPARγ在直肠癌中的表达与直肠癌分期、放疗敏感性、淋巴结转移、5年生存期密切相关(P<0.05)。
结论直肠癌组织中PP ARγ表达与临床相关因素关系密切,对直肠癌预后的判断和临床治疗具有重要意义。
标签:直肠癌;过氧化物酶体增殖物激活受体γ(PPARγ);放疗敏感性直肠癌是常见恶性肿瘤,死亡率为4.54/10万,在恶性肿瘤中排第五位。
手术一直是治疗直肠癌的主要手段,但术后复发率高[1]。
不少学者通过术前放疗、化疗、放疗增敏、三维适形放疗、调强放疗等手段进一步提高疗效,但对复发率及远处转移率的降低依然不尽人意。
近年来随着分子生物学技术的飞速发展,人们发现过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor γ,PPARγ)与肿瘤的发生发展有重要关系,可能成为肿瘤治疗的新靶点[2-4]。
本研究旨在探讨直肠癌组织中PPARγ的表达,为判断直肠癌患者病情及预后提供指导依据。
1资料与方法1.1 临床资料收集我科2005~2007年经病理确诊的直肠癌患者活检组织标本40例,均为腺癌。
患者年龄最小28岁,最大82岁,平均53岁;另选择直肠腺瘤组织标本10例;及同期活检的癌旁正常组织组织标本10例。
1.2 实验试剂采用兔抗人PPARγ多克隆抗体(IgG);抗原修复液I、通用型SABC染色试剂盒、DAB显色试剂盒,均购自武汉博士德生物工程有限公司。
1.3 方法采用常规免疫组织化学SABC法,严格按照说明书进行操作。
心房能量代谢重塑和PPARγ靶向干预在心房颤动中的研究进展
基金项目:国家自然科学基金(82100343,82260065,82260064,82060069)通信作者:周贤惠,E mail:zhouxhuiyf@163.com心房能量代谢重塑和PPARγ靶向干预在心房颤动中的研究进展喜林强 孙华鑫 商鲁翔 汤宝鹏 周贤惠(新疆医科大学第一附属医院心脏起搏与电生理科/新疆心电生理与心脏重塑重点实验室,新疆乌鲁木齐830054)【摘要】心房颤动(房颤)是临床常见的心律失常,具有高死亡率和致残风险。
心房重塑(电、结构重塑)与房颤发病密切相关。
成熟心肌细胞向胎儿表型的转换、线粒体功能障碍和活性氧过载的细胞效应等生物学事件参与心房重塑。
过氧化物酶体增殖物激活受体(PPAR)是心肌细胞能量代谢调控的关键开关。
对房颤能量重塑、心房肌细胞代谢紊乱调控机制的研究,特别是针对PPARγ介导的糖脂代谢表型转换的干预,可能成为房颤治疗的新策略。
【关键词】心房颤动;心肌能量代谢;过氧化物酶体增殖物激活受体γ;线粒体;吡格列酮【DOI】10 16806/j.cnki.issn.1004 3934 2023 10 014AtrialEnergyMetabolismRemodelingandTargetedInterventionofPPARγinAtrialFibrillationXILinqiang,SUNHuaxin,SHANGLuxiang,TANGBaopeng,ZHOUXianhui(CardiacPacingandElectrophysiology/DepartmentofCardiacElectrophysiologyandRemodeling,TheFirstAffiliatedHospitalofXinjiangMedicalUniversity,Urumqi830054,Xinjiang,China)【Abstract】Atrialfibrillationisacommonarrhythmiawithhighmortalityanddisability.Atrialremodeling(electricalandstructuralremodeling)iscloselyrelatedtothepathogenesisofatrialfibrillation.Biologicaleventssuchasthetransitionofmaturecardiomyocytestofetalphenotype,mitochondrialdysfunctionandcellulareffectsofreactiveoxygenspeciesoverloadareinvolvedinatrialremodeling.Peroxisomeproliferator activatedreceptor(PPAR)isakeyswitchintheregulationofenergymetabolismincardiomyocytes.Thestudiesontheregulationmechanismofatrialfibrillationenergyremodelingandatrialmyocytemetabolicdisorder,especiallytheinterventionofglucoseandlipidmetabolismphenotypeswitchingmediatedbyPPARγ,maybecomeanewstrategyforthetreatmentofatrialfibrillation.【Keywords】Atrialfibrillation;Myocardialenergymetabolism;Peroxisomeproliferator activatedreceptorγ;Mitochondria;Pioglitazone 心房颤动(房颤)是最常见的心律失常,全球约6000万患者[1]。
PPARγ和Nrf2在脑出血后内源性血肿清除机制中的研究进展
ABSTRACT: ICH is the most destructive form of stroke with high mortality and disability. Nowadays, little effective treatments can be used for ICH . Endogenous hematoma clearance mechanism is a hot topic in recent years. Peroxisome proliferator–activated receptor gamma (PPARγ) and nuclear factor erythroid 2-related factor 2 (Nrf2) can enhance the phagocytosis of microglia and promote hematoma absorption. This article reviews the recent research of PPARγ and Nrf2 in hematoma scavenging after intracerebral hemorrhage. KEY WORDS: Intracerebral hemorrhage; Endogenous hematoma scavenging; PPAR-γ; Nrf2
1 PPARγ
PPARγ 是一种配体激活的转录因子,属于 II 型核激素受 体超家族,在脂肪组织、脑组织、血管组织中均有表达。研究 显示 PPARγ 不仅在生殖发育、糖脂代谢、炎症和免疫反应等 多种生物学过程中发挥重要作用,在阿尔茨海默病,帕金森氏 病和神经退行性疾病,多发性硬化,缺血性卒中神经外伤和脊 髓损伤和 ICH 的发病机制中也起着重要作用 [8-13]。PPARγ 激 动 剂,通 过 控 制 葡 萄 糖 转 运 蛋 白 GLUT-3 的 表 达 改 善 葡 萄糖利用和局部代谢,从而有助于脑出血后的细胞保护 。 [14] PPARγ 不仅对神经元,星形胶质细胞,少突胶质细胞,内皮细 胞有保护作用,对小胶质细胞 / 巨噬细胞也有保护作用。
过氧化物酶体增殖物激活受体γ与相关疾病的研究进展
过氧化物酶体增殖物激活受体γ与相关疾病的研究进展过氧化物酶体增殖物激活受体γ(PPARγ)是一种核受体转录因子,已被广泛应用于糖尿病、肥胖症、心血管疾病和肿瘤等疾病的治疗研究中。
PPARγ在脂质与糖代谢、细胞增殖和分化等过程中起着重要作用。
近年来,研究发现PPARγ还与许多其他疾病有关,如神经退行性疾病、炎症性疾病、自身免疫疾病、肿瘤和感染性疾病。
通过深入了解PPARγ的功能和调控机制,可以为相关疾病的治疗提供新的思路和方法。
本文将针对PPARγ与相关疾病的研究进展进行综述。
一、PPARγ与糖尿病、肥胖症研究表明,PPARγ在调控葡萄糖代谢和胰岛素敏感性中起着关键作用,因此成为糖尿病和肥胖症的重要治疗靶点。
PPARγ激动剂被广泛应用于二型糖尿病的治疗,可以提高胰岛素敏感性,促进葡萄糖的利用和代谢,从而降低血糖水平。
PPARγ激动剂还可以促进脂肪细胞的分化和脂肪的储存,减少脂肪酸的流动,降低血脂水平,减轻肥胖症患者的症状。
二、PPARγ与心血管疾病PPARγ在心血管系统中的作用也备受关注。
研究表明,PPARγ激动剂可以抑制动脉粥样硬化的形成,减少血管内皮细胞的增殖和炎症反应,保护血管壁的完整性,降低动脉硬化和心血管疾病的发病风险。
PPARγ激动剂还有降低血液中胆固醇和三酰甘油的作用,可以改善血脂代谢,降低血压,减少心血管疾病的发生。
三、PPARγ与肿瘤近年来的研究表明,PPARγ在肿瘤的发生和发展中发挥着重要作用。
PPARγ激动剂可以抑制肿瘤细胞的增殖和转移,诱导肿瘤细胞凋亡,促进肿瘤细胞的分化,从而抑制肿瘤的生长和扩散。
PPARγ还可以调节肿瘤相关的炎症反应和血管生成,影响肿瘤的微环境,抑制肿瘤的发展。
PPARγ激动剂被认为有望成为肿瘤治疗的新靶点。
四、PPARγ与神经退行性疾病最新研究发现,PPARγ在神经保护和修复中也起着重要作用。
PPARγ激动剂可以抑制神经炎症和氧化应激反应,保护神经细胞免受损伤,促进神经干细胞的分化和再生,有望成为治疗神经退行性疾病的新药物。
针灸治疗脑缺血炎症反应的新靶点—PPAR-γ
[ 键 词 ] 脑 缺 血 ; 症 反 应 ; 氧化 物 酶体 增 殖 物 激 活受 体 7 P A 一 ) 针 灸 ; 述 关 炎 过 ( P R ; 综
PPAR— Y:A w r e f Tr a m e o nfa m aor aci fe r br lI c e i y Ac un t r ( e iw ) Ne Ta g t o e t nt f r I l m t y Re ton a t r Ce e a s h m c b up c u e r ve L I Zhe, L I U U
t r nd a e i olc l o sa dh son m e u e,s ppr s ig t u ton fi lm m a or e l. The e or u e sn he f nc i s o nfa t y c ls r f e,i ilbea pr tw l om ii int to o sf he sng ore a in t itt e f c i c un t e f r t atc n s i ult hea tva i fPPA R一 fe tvea up c ur o h a tm a e t c i ton o 7,a he r s a c e ha s ofa u nd t e e r h ofm c nim c pun t e o t n lm c ur n an iifa
p o ec rb a sh mi ij r yihbt g s nh sso nlmmao yc t kn s o rg ltn x rs in fifa r v ee rl c e a n yb n iin y t e i fifa i u i tr yo ie ,d wn e uaige p e so so nlmmao yme i— t r da
PPARγ调节的脂肪代谢及其相关疾病研究
PPARγ调节的脂肪代谢及其相关疾病研究随着社会的发展和生活方式的改变,肥胖症、糖尿病、高血压等代谢性疾病的发病率越来越高。
研究表明,这些疾病之间存在着密切的关系并常常同时发生。
而PPARγ作为核激素受体家族之一,对脂肪代谢具有重要调节作用,近年来成为了研究的热点之一。
1. PPARγ的基本特点PPARγ是一种核激素受体,人和小鼠的PPARγ基因编码不同形式的蛋白质,分别为PPARγ1和PPARγ2。
其中,PPARγ1在多种组织中广泛分布,对脂肪酸代谢起重要作用;PPARγ2则主要分布在脂肪组织中,是调节脂肪细胞分化和代谢的重要分子。
PPARγ的识别基序是TNNGGAACTAGGTCA,存在于多种基因的启动子区域,包括脂肪酸氧化酶、脂肪转运蛋白和脂肪合成酶等。
当PPARγ与其配体结合后,会形成一个三聚体,并结合到坐标基序上,从而激活相应基因的表达。
2. PPARγ在脂肪代谢中的作用脂肪细胞是体内主要储能细胞,PPARγ作为脂肪细胞分化和代谢的关键分子,在脂肪代谢中扮演着重要的角色。
具体表现在以下几个方面:(1)调节脂肪细胞分化。
PPARγ能够促进脂肪细胞的分化,使其从前脂肪细胞向成熟的脂肪细胞转变。
同时,PPARγ的表达也受到分化状态的调节,即在脂肪细胞分化过程中逐渐上调。
(2)调节脂肪酸合成和氧化的平衡。
PPARγ可以通过诱导脂肪细胞内脂肪酸合成酶的表达,增加脂肪细胞对葡萄糖的摄取和利用,并通过诱导脂肪酸氧化酶的表述,降低脂肪酸在脂肪细胞内的积累。
(3)影响胰岛素信号传导。
PPARγ能够影响脂肪细胞对胰岛素的反应,并调节胰岛素信号通路,从而影响葡萄糖的代谢和胰岛素的敏感性。
3. PPARγ在相关疾病中的作用PPARγ在许多代谢性疾病中均发挥着重要作用,下面对其中几种常见疾病进行详细阐述。
(1)肥胖症。
肥胖症是一种由于脂肪细胞的数量和/或大小的增加而导致身体脂肪过多的疾病。
PPARγ能够促进脂肪细胞分化和脂肪酸合成,促进脂肪细胞的增生和夹层化,从而导致脂肪细胞数量和大小的增加,是肥胖症的重要诱因。
过氧化物酶体增殖物激活受体γ在炎症相关疾病中作用的研究进展
过氧化物酶体增殖物激活受体γ在炎症相关疾病中作用的研究进展任润健;赵虎;毕波【摘要】Peroxisome proliferator-activated receptor gamma(PPARγ)is a member of typeⅡ nuclear receptor superfamily,as a ligand-dependent transcription factor. In recent years,studies have shown that activated PPARγ is capable of modulating the expression of numerous genes and is involved in many physiological and pathological processes,including anti-obesity,anti-atherosclerosis,anti-diabetes mellitus,anti-cancer and anti-inflammatory skin diseases. These diseases are closely related to inflammation. In this review,the research progress of PPARγ in inflammation and inflammatory-related diseases will be summarized.%过氧化物酶体增殖物激活受体γ(PPARγ)是一种配体依赖性转录因子,属Ⅱ型核受体超家族成员.近年来的研究表明,配体激活的PPARγ能够调控大量基因表达,参与抗肥胖、抗动脉粥样硬化、抗糖尿病、抗肿瘤、抗皮肤炎症性疾病等机体众多的生理和病理过程,而这些疾病与炎症息息相关.因此,文章主要就PPARγ在炎症以及炎症相关疾病中的研究进展作一综述.【期刊名称】《检验医学》【年(卷),期】2017(032)002【总页数】5页(P153-157)【关键词】过氧化物酶体增殖物激活受体γ;炎症;配体【作者】任润健;赵虎;毕波【作者单位】复旦大学附属华东医院检验科,上海 200040;复旦大学附属华东医院检验科,上海 200040;复旦大学附属华东医院检验科,上海 200040【正文语种】中文【中图分类】R446.62过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor gamma,PPARγ)是一种配体依赖性转录因子,是PPAR的亚型之一,属Ⅱ型核受体超家族成员。
PPARγ研究新进展
PPARγ研究新进展过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptor, PPAR)是调节目标基因表达的核内受体转录因子超家族成员[1],1990 年Issemann 等[2]首先发现了这种能被一类脂肪酸样化合物过氧化物酶体增殖剂(peroxisome proliferators, PP) 激活, 而被命名为PP 激活受体( peroxisome proliferator activated receptor, PPAR)。
根据结构的不同,PPAR可分为α、β(或δ)和γ三种类型,其中PPARγ主要表达于脂肪组织及免疫系统,与脂肪细胞分化、机体免疫及胰岛素抵抗关系密切,是胰岛素增敏剂噻唑烷二酮类药物(troglitazone, TZDs)作用的靶分子,成为近年来研究热点1.PPARγ的结构及特征PPARγ基因位于3号染色体短臂上[3],含有9个外显子。
由于基因转录时所用的启动子和接拼方式的不同,PP ARγ可以分为γ1、γ2和γ3三种亚型,其中γ3和γ1编码的蛋白质相同[4,5]。
PPARγ2编码的蛋白质由505个氨基酸组成,比PPARγ1在氨基端多30个氨基酸。
进一步研究发现[6],PPARγ1mRNA是由8个外显子编码,而PPARγ2mRNA由7个外显子编码,编码的氨基酸数量虽有不同,但两者PPARγ的结构域、DNA结合域及配体结合域等完全相同,作用基本相同。
研究发现,不同种属间PPARγcDNA具有高度同源性,如人与小鼠的PPARγ1的一致性达91%[7]。
在啮齿类动物中,PPARγ主要在脂肪组织中表达,而在人体,除脂肪组织外,在巨噬细胞以及其他脂肪贮存细胞,如肝、肾、肺及直肠中均有表达,并且人肝组织比鼠肝表达更为丰富,而肌肉组织基本不表达。
PPARγ1是PPARγ的主要形式,表达范围相对广泛,PPARγ2表达范围较窄,主要在脂肪组织中表达,PPARγ3仅表达于巨噬细胞和大肠中[8,9]。
以PPARγ为靶点调节糖脂代谢的中药有效成分研究进展
以PPARγ为靶点调节糖脂代谢的中药有效成分研究进展时珍国医国药2011年第22卷第3期LISHIZHENMEDICINEANDMA TERIAMEDICARESEARCH2011VOL.22NO.3 以PPARy为靶点调节糖脂代谢的中药有效成分研究进展王国强,尚文斌(南京中医药大学第一临床医学院临床医学实验中心江苏省中医医院,江苏南京210046)摘要:过氧化物酶体增殖物激活受体(PPARy)是一种细胞核受体,是配体激活的核转录因子过氧化物酶体增殖物激活受体(PPARs)的一种亚型.众多研究证实PPARy具有多种生物效应,与脂肪细胞分化,糖脂代谢,癌症发生,动脉粥样硬化形成及炎性反应关系密切;以PPARy为信号通路的中草药提取物的相关研究成为药物开发新热点;诸多中草药有效成分,可以作为PPARy激动剂或是拮抗剂,影响脂肪细胞分化及糖脂代谢.文章意在探讨以PPARy为靶点的中药有效成分对于糖脂代谢的调节及影响,为今后进一步的实验及临床研究提供理论依据和思路.关键词:PPARy:糖脂代谢;中药有效成分DOI标识:doi:10.3969/i.issn.1008-0805.2011.03.088中图分类号:R285.5文献标识码:A文章编号:1008—0805(2011)03~706—03 ResearchProgressinPPAR~,TargetedEffectiveComponentsofChineseMedicineonthe- RegulationofCarbohydrateandLipidMetabolismW ANGGuo-qiang,SHANGWen—bin(MedicalResearchCenter,FCollegeofClinicalMedicine,』]V0ngUniversityofTraditiona lChineseMedic—ne;DepartmentofEndocrinology,JiangsuProvinceHospitalofTraditionalChineseMedici ne,Nanjing210046,China)Abstract:Peroxisomeprolferator—activatedreceptor^y(PPARy)isanuclearreceptorthatactsasasubtypeofligand—activa—tednucleartranscriptionfactorperoxisomeproliferator—activatedreceptor(PPARs).SeverallinesofevidenceindicatePPARy hasmanybiologicaleffects,iscloselyrelatedwithadipocytesdifferentiation,glucoseandlipi dmetabolism,theformationofather—osclerosis,inflammation,cancer,insulinsensitivity.StudiesoneffectivecomponentsofChi nesemedicinethatactthroughPPARy signalingpathwayhavebecomeanewhotspotofdrugdevelopment.Inaddition,thecurrentst udyhasconfirmedthattheactivein—gredientsofmanyChinesemedicinecanbeusedasPPAR-yagonistorantagonist,influencead ipocytedifferentiationandcarbohy—drateandlipidmetabolism.WearegoingtodiscussthatPPARytargetedeffectivecomponents ofChinesemedicineintheregula—tionandinfluenceofcarbohydrateandlipidmetabolism,whichmayprovideatheoreticalbasi sandideasforthefurtherexperi—mentalandclinicalresearches.Keywords:PPARy;Glucoseandlipidmetabolism;ActivecomponentsinChineseherbs过氧化物酶体增殖物激活受体(Peroxisomeprolferator—activatedreceptor^v,PPARy)是一种细胞核受体,是配体激活的核转录因子过氧化物酶体增殖物激活受体(PPARs)的一种亚型.PPAR~主要在脂肪组织,肠细胞及巨噬细胞中表达,同时在骨骼肌和内皮组织也有少量的表达,可以调节胰岛素的敏感性,是噻唑烷二酮类(thiazolidinediones,TZDs)胰岛素增敏药物的作用靶点.众多研究证实PPARy具有多种生物效应,与脂肪细胞分化,糖脂代谢,癌症发生,动脉粥样硬化形成及炎性反应关系密切.其对于脂肪细胞分化,糖脂代谢影响的研究为热点之一.目前的研究证实诸多中草药的有效成分.可以作为PPARy激动剂或是拮抗剂,影响脂肪细胞分化及糖脂代谢.相关研究结果可以指导糖尿病,肥胖,动脉粥样硬化等代谢疾病的临床治疗.收稿日期:2010-06-04;修订日期:2010-08—10基金项目:江苏省高校自然科学基金(N0.08KJB360012);江苏省中医内科学重点学科开放课题(No.ZN091002)作者简介:王国强(1982一),男(汉族),山东东营人,现为南京中医药大学在读硕士研究生,主要从事中西医结合内分泌代谢疾病的研究工作.通讯作者简介:尚文斌(1966一),男(汉族),江苏南京人,现任南京中医药大学第一临床医学院内科研究所医学实验中心副研究员,硕士研究生导师,博士学位,主要从事中西医结合内分泌代谢疾病的研究工作.706?1PPARy激动剂,脂肪组织是PPAR激动剂TZDs主要的靶组织.在脂肪细胞中TZDs有选择性刺激脂肪生成的作用,增加胰岛素敏感性,导致更多的胰岛素抑制脂肪分解.在一项有关中草药有效成分的筛选试验中发现,有的有效成分单独激活PPAR-y,有的可以激活PPARo./-,/或同时激活PPARc~/y/8.从近些年的研究中可以看出,部分中药有效成分可以作为PPAR'v激动剂,促进葡萄糖转运及周围组织,靶器官对糖的利用,维持血糖和血脂稳态,改善脂代谢异常,抑制脂肪分解.1.1人参皂苷(Ginsenoside)人参PanaxginsengC.A.Meyer及西洋参Panaxquinquefolius系五加科植物.人参的有效成分被认为是由一组甾体皂苷组成的人参皂苷.人参皂苷都具有相似的基本结构,分为两类:人参二醇类和人参三醇类.人参二醇类包含了最多的人参皂苷,如人参皂苷Rb,Rb:,Rb,R,R,Rg,Rh及糖苷基PD.人参三醇类包含了人参皂苷Re,Rg,,R,Rh及糖苷基.人参和其组成成分对于中枢神经,心血管,内分泌,免疫系统具有复杂的药理学作用.Rb是人参根部含量最多的人参皂苷,其以剂量依赖的方式作为促进3T3一L1细胞中的脂肪形成的诱导剂,可以增加脂质聚集.用Rb.处理正在分化的脂肪细胞,能使其mRNA以及PPARy及C/EBPoL蛋白表达增加,同时也增加了脂肪酸结合蛋白(ap2)的mRNA的表达.用Rb处理正在分化的脂肪细胞后, LISHIZHENMEDICINEANDMA TERIAMEDICARESEARCH2011VOL.22NO.3时珍国医国药2011年第22卷第3期伴随着mRNA和葡萄糖转运蛋白4(GLUT4)蛋白水平及胰岛素介导的葡萄糖摄取显着增加.富含人参皂苷R的人参醋提取物对胰岛素抵抗大鼠有明显的抗高血糖及抗肥胖作用.用其治疗的胰岛素抵抗大鼠较用媒介物处理的大鼠有较低的胰岛素水平.实验组的大鼠通过腹膜内2h糖耐量实验后证实总的葡萄糖波动下降了21.5%,预示R能改善葡萄糖耐量.治疗组大鼠肝脏重量,内脏脂肪含量,体质量及血清丙氨酸转移酶也较对照组要低.这些效应与R作用下PPARy的表达增加以及在肝脏和肌肉中腺苷磷酸激活蛋白激酶磷酸化有关.1.2大黄素(Emodin)大黄为蓼科植物掌叶大黄Rheumpalma—turnL,唐古特大黄RheumtanguticumMaxim.exBalf或药用大黄RheumofficinaleBaill的干燥根及根茎.虎杖为蓼科植物虎杖PolygonumcuspidatumSieb.etZucc的干燥根茎和根.大黄素的化学名为1~38一三羟基一6一甲基蒽醌,是中药大黄和虎杖的主要活性成分.具有抗肿瘤活性,抗微生物生长,免疫抑制作用,解痉,止咳作用.经大黄素治疗后的非酒精性脂肪肝的小鼠体重,肝指数,谷丙转氨酶,血脂和甘油三酯显着降低,肝组织学表现也大大改善.同时,肝脏的PPAR-ymRNA表达明显增加.同时纤维结合蛋白,腺苷磷酸化蛋白激酶p38,磷酸化环腺苷酸应答元件结合蛋白(CREB)及结缔组织生长因子(CTGF)的蛋白表达显着减少,PPARy蛋白质水平明显升高.同时促进3T3一L1成纤维细胞向脂肪细胞的转化,三磷酸甘油脱氢酶的活性和脂肪细胞aP2 基因的mRNA的表达增加得以证明这一点,此外使与C/EBPct 及PPAR~/mRNA的表达水平增加有关的甘油三酯的蓄积加快.1.3肉桂提取物(CinnamomiCassiaeextract)肉桂为樟科植物肉桂CinnamomumcassiaPresl的树皮.肉桂皮含有1%~2%挥发油,主要成分是肉桂醛(CHO).现代药理研究其有镇静作用,降温,降血压,杀菌,祛痰镇咳,利尿,控制血糖,防治糖尿病的作用.肉桂提取物治疗的2型糖尿病C57BL/Ksdb/db小鼠的空腹血糖和餐后2h血糖水平均明显低于对照组,而肉桂治疗组血清胰岛素和脂联素水平明显低于对照治疗组.肉桂组小鼠血脂和肝脂肪含量也明显改善.相比对照组肝脏中PPARctmRNA和脂肪组织中PPARymRNA的表达水平显着增加12J.肉桂,被广泛的用作食品制作的调味剂和传统的抗糖尿病药物,其能激活PPARy和d,改善高热量饮食引起的肥胖和db/db小鼠胰岛素抵抗,降低空腹血糖,游离脂肪酸,低密度脂蛋白一胆固醇和谷草转氨酶水平.在体外研究表明,肉桂增加在3T3一L1前脂肪细胞过氧化物酶体增殖物激活受体PPARy/ct.肉桂水提取物可以充当PPARy和仅的双重激动剂,并可能在肥胖有关的糖尿病和高脂血症的治疗中充当PPARy的激动剂的角色.1.4黄芪提取物(Astragalusextract)中药材黄芪为豆科植物蒙古黄芪Astragalusmembranaceus(Fisch.)Bge.var.mongholicus (Bge.)Hsiao或膜荚黄芪Astragalusmembranaceus(Fisch.)的根.现代研究发现,黄芪含皂苷,蔗糖,多糖,多种氨基酸,叶酸及硒,锌,铜等多种微量元素,有增强机体免疫功能,保肝,利尿,抗衰老,抗应激,降压和较广泛的抗菌作用.黄芪多糖(astragaluspolysaccharides,APS)对1型糖尿病拥有免疫治疗的作用.给予APS治疗后,在脾脏中血糖水平下调, 血清胰岛素浓度上调,13细胞数量增加,B细胞凋亡百分率降低, Thl/Th2细胞因子比下调和PPA的基因表达上调.研究发现黄芪及葛根提取物可以明显激活PPARct和PPARy.从黄芪中分离出的芒柄花黄素,能够活化PPAR~的驱动受体基因活性并诱导3T3一L1前脂肪细胞分化.黄芪甲苷可明显促进胰岛素诱导前脂肪细胞分化,能改善脂肪细胞在高糖诱导下产生的胰岛素抵抗,显着提高胰岛素诱导的葡萄糖摄取,抑制内皮细胞中肿瘤坏死因子一诱导的细胞凋亡和细胞活力的丧失.1.5葛根素(Puerarin)葛根为豆科植物野葛Puerarialobata (Willd)Ohwi或甘葛藤PuerariathomsoniiBenth的干燥根.葛根素化学名为4,7一二氢基一8B—D葡萄糖基异黄酮,是葛根的有效活性成分之一,对肝组织免疫损害具有保护作用,可有效逆转化学诱导的肝纤维化,增强心肌收缩力,保护心肌细胞及能扩张血管,降低血压,改善微循环等作用.据报道葛根素有全面的治疗糖尿病和心血管疾病的药理作用.葛根素可以使胰岛素诱导脂肪细胞分化增强,促进高糖诱导的胰岛素抵抗下脂肪细胞的葡萄糖摄取,防止肿瘤坏死因子一仅诱导细胞凋亡和血管内皮细胞丧失活力.此外,这些影响可能是由于部分通过促进PPARy的表达和抑制异常TNF一,而引起的血管内皮细胞细胞内自由钙离子的积累所致.葛根素对于公认的包括肥胖,2型糖尿病和心血管疾病等代谢症候群有综合的药理作用:.2PPARy拮抗剂近期的一项研究表明,适度的减弱PPARy的活性对于治疗肥胖和胰岛素抵抗有益,PPAR-/拮抗剂可作为治疗肥胖和糖尿病的潜在药物.充当PPAR~拮抗剂调节糖脂代谢的中药有效成分相关研究证实,PPARy拮抗剂抑制PPARy依赖的脂肪细胞分化,抑制脂滴的积累,降低脂肪量和体重,改善糖耐量,改善糖血液和肝脏中的糖脂代谢.可以用于肥胖,2型糖尿病等疾病的防治.2.1小檗碱(Berberin~)黄连为毛茛科植物黄连Copt/schinensis Franch,三角叶黄连CoptisdeltoideaC.Y.ChengetHsiao或云连copt/~teetaWall的干燥根茎.小檗碱是一种异喹啉生物碱,又称黄连素,是中药黄连的主要有效成分.小檗碱有抗菌作用,并有增强白血球吞噬作用,近年来将其改善胰岛素抵抗,降血糖,纠正脂质紊乱的作用作为研究重点,广泛应用于2型糖尿病,肥胖,代谢综合征等代谢相关性疾病的防治.用游离脂肪酸棕榈酸处理L6肌细胞建立胰岛素抵抗细胞模型,小檗碱使其葡萄糖消耗和胰岛素介导的葡萄糖摄取分别降低了43%和63%.小檗碱治疗增加了在正常细胞中葡萄糖消耗和胰岛素介导的葡萄糖摄取,提高了游离脂肪酸诱导的胰岛素抵抗细胞中的葡萄糖摄取.小檗碱作用下葡萄糖摄取的改善伴随着PPAR和骨骼肌脂肪酸转位酶及CD36蛋白表达降低'j.有研究显示,小檗碱以时间和剂量依赖的方式抑制由分化培养基诱导的3T3一L1前脂肪细胞的分化及有丝分裂的克隆扩增.小檗碱抑制与脂肪形成有关的转录因子PPAR~,C/EBPoL及它们上游调节子C/EBPBmRNA的蛋白水平.结果证实PPARy和0【转录活性受到小檗碱抑制,涉及脂肪细胞分化的过氧化物酶体增生物激活受体(PPAR)的靶基因,诸如脂肪酸结合蛋白(aP2),CD36,脂酰辅酶A氧化酶(ACO),脂蛋白脂肪酶(LPL)都受~Ufl, 檗碱的抑制[2o3.小檗碱降低糖尿病大鼠体重,肝重和肝体比.小檗碱可以降低升高的血糖,糖化血红蛋白,总胆固醇,甘油三酯,低密度脂蛋白胆固醇,载脂蛋白B和降低高密度脂蛋白胆固醇,载脂蛋白AI.并减缓了肝脏的病理进展并恢复升高的肝糖原,甘油三酯,使其接近正常水平.使得糖尿病大鼠肝脏中PPARoJ8的表达增加和PPARy的表达减少并接近对照组.小檗碱可能是通过调节与代谢相关的PPARc~/8/y在肝脏中的蛋白表达,从而改善糖尿病大鼠血液和肝脏中的糖脂代谢.2.2桔梗皂苷(P1atycodin)桔梗为桔梗科植物桔梗Platycodongrandiflorum(Jacq.)A.DC的根.桔梗中主要含有皂苷,黄酮,甾醇,多聚糖,酚类,聚炔,脂肪油,脂肪酸,氨基酸,无机元素,挥发油等成分.桔梗皂苷为其主要活性成分之一.现代药理学研究表明桔梗有免疫调节,抗炎,祛痰,保肝等作用.桔梗的提取物桔梗皂苷D处理3T3一L1细胞后,与脂质代谢有关的脂肪酸结合蛋白4和脂蛋白脂肪酶基因的表达水平显着下调.导致PPAR'y表达及其目的DNA序列结合均减少.在PPARy上游的各种调节因子中,抗脂肪形成因子Kruppel样因子707?时珍国医国药2011年第22卷第3期LISHIZHENMEDICINEANDMA TERIAMEDICARESEARCH2011VOL.22NO.3 (KLF2)的表达,经桔梗皂苷D处理后显着上调.当KLF2上调被KLF2siRNA抑制时,PPARy的表达和其与靶序列的结合显着增加.可见,桔梗皂苷D抗脂肪形成的作用涉及对KLF2表达的上调和对PPAR~表达的下调.2.3丹参酮(Tanshinone)丹参为双子叶植物唇形科丹参Sal—viam.Bge.的干燥根及根茎.丹参酮ⅡA是丹参根中含有的二萜醌类色素中的一种,被广泛用于治疗心血管疾病,最近发现其可以减轻体重,降低血脂.丹参酮ⅡA抑制3T3一L1前脂肪细胞分化,并抑制PPAR~的配体结合域的转录活性,提示丹参酮可能是PPARy的天然拮抗剂.丹参酮ⅡA在不改变高脂肪饮食引起的肥胖动物模型的食物摄入量的同时,可以降低脂肪量和体重,改善糖耐量,降低低密度脂蛋白与高密度脂蛋白的比值.3问题与展望目前研究证实许多中药有效成分能够调节PPARy的活性,并以此为药物靶点对于机体的糖脂代谢有明显影响,这些研究结果提示这些活性成分可用于糖尿病,肥胖,动脉粥样硬化等以糖脂代谢障碍为特点的代谢疾病的治疗,但目前的研究面临一些问题和不足.首先,目前已发现以PPAR~为靶点的中药成分对糖脂代谢的调节作用活性较弱,有待于在前期的研究基础上,透过对其化学结构的改造,提高其药物活性;其次,对于其确切的临床疗效临床研究缺乏,总体疗效尚不清楚,并且缺乏将有效成分与中医药理论和实践紧密结合的研究,所以,一方面需要继续筛选PPAR~ 的活性成分,另一方面,对已探明活性得有效成分加大基础和临床研究力度,开发新型PPARy调节剂;此外,PPAR~激动剂往往产生水肿,体重增加,肝肾损害等副作用,应针对此类中药及活性成分的毒副作用进行监测,评估其药物安全性.总之,进一步开展以PPARy为药物靶点中药及其有效成分的研究,有望开发出具有自主知识产权的调节糖脂代谢的新药物.参考文献:[2][3][4][5][6]QuinnC,HamiltonP,LoekhartC,eta1.Thiazolidinediones:effeetson insulinresistanceandthecardiovascularsystem[J].BritishJournalof Pharmacology,2008,153(4):636.KershawE,SchuppM,GuanH,eta1.PPAR{gamma}regulatesadi- posetriglyceridelipaseinadipocytesinvitroandinvivo[J].AmericanJournalofPhysiology—EndocrinologyAndMetabolism,2007,293 (6):1736.BajajM,SuraamornkulS,HardiesL,eta1.Effectsofperoxisomepro—liferator—activatedreceptor(PPAR)一andPPAR一^yagonistson glucoseandlipidmetabolisminpatientswithtype2diabetesmellitus [J].Diabetologia,2007,50(8):1723.WeiS,Y angJ,LeeS,eta1.PPAR[gamma]一independentantitumor effectsofthiazolidinediones[J].Cancerletters,2009,276(2):119. DuanS,UsherM,MortensenR.PPARs:thevasculature,inflamma—tionandhypertension[J].CurrentOpinioninNephrologyandHyper- tension,2009,l8(2):128.ChiarelliF,DiMarzioD.Peroxisomeproliferator—activatedreceptor一agonistsanddiabetes:Currentevidenceandfutureperspectives[J].V ascularHealthandRiskManagement,2008,4(2):297.708?[7]RauO,WurglicsM,DingermannT,eta1.Screeningofherbalextracts foractivationofthehumanperoxisomeproliferator—activatedreceptor 1J】.Pharmazie,2006,61(11):952.[8]ShangW,Y angY,JiangB,eta1.GinsenosideRblpromotesadipo—genesisin333一L1cellsbyenhancingPPAR[gamma]2andC/EBP [alpha]geneexpression[J].LifeSci,2007,80(7):618.[9]LimS,Y oonJW,ChoiSH,eta1.Effectofginsam,avinegarextract fromPanaxginseng,onbodyweightandglucosehomeostasisinan obeseinsulin—resistantratmodel[J].Metabolism,2009,58(1):8.[1O]DongH,LuFE,GaoZQ,eta1.Effectsofemodinontreatingmurine nonalcoholicfattyliverinducedbyhighcaloriclaboratorychaw[J]. WorldJGastroentero1.2005.11(9):1339.[11]LiX,LiuW,WangQ,eta1.Emodinsuppressescellproliferationand fibronectinexpressionviap38MAPKpathwayinratmesangialcellseul-turedunderhighglucose[J].MolCellEndoerinol,2009,307(1—2):157.[12]KimSH,ChoungSY.Antihyperglycemicandant.hyper1.pjdemicas—tionofCinnamomiCassiae(Cinnamonbark)extractinC57BL/Ksdb/ dbmice[J].ArchPharmRes,2010,33(2):325.[13]ShengX,ZhangY,GongZ,eta1.ImprovedInsulinResistanceand LipidMetabolismbyCinnamonExtractthroughActivationofPeroxisome Proliferator—ActivatedReceptors[J].PPARRes,2008:doi:10.1155. [14]LiRJ,QiusD,ChenHX,eta1.Theimmunotherapeuticeffectsof Astragaluspolysaccharideintype1diabeticmice[J].BiolPharmBull,2007,30(3):470.[15]ShenP,LiuMH,NgTY,eta1.Differentialeffectsofisoflavones, fromAstragalusmembranaceusandPuerariathomsonii,ontheactiva—tionofPPARalpha,PPARgamma,andadipocytedifferentiationinvitro [J].JNutr,2006,136(4):899.[16]xuME,XiaoSZ,SunYH,eta1.EffectsofastragalosideIV on pathogenesisofmetabolicsyndromeinvitro[J].ActaPharmaeolSin, 2006,27(2):229.[17]XuME,XiaoSZ,SunYH,eta1.Thestudyofanti—metabolicsyn- dromeeffectofpuerarininvitro[J].LifeSci,2005,77(25):3183.[18]WakiH,Y amauchiT,KadowakiT.PPARgammaantagonistasapoten. tialdrugforthetreatmentofobesityanddiabetes[J].Nipponrinsho. Japanesejournalofclinicalmedicine,2010,68(2):350.[19]ChenY,LiY,WangY,eta1.Berberineimprovesfree—fatty—acid—inducedinsulinresistanceinL6myotubesthroughinhibitingperoxisome proliferator——activatedreceptorgammaandfattyacidtransferaseexpres—sions[J].Metabolism,2009,58(12):1694.[20]HuangC,ZhangY,GongZ,eta1.Berberineinhibits3T3一L1adipo- cytedifferentiationthroughthePPARgammapathway[J].Bioehem BiophysResCommun,2006,348(2):571.[21]ZhouJY,ZhouSW,ZhangKB,eta1.Chroniceffectsofberberineon blood.1iverglucolipidmetabolismandliverPPARsexpressionindia—betichyperlipidemicrats[J].BiolPharmBull,2008,31(6):1169.[22]LeeH,KangR,KimYS,eta1.PlatycodinDinhibitsadipogenesisof3T3——L1cellsbymodulatingkruppel—-likefactor2andperoxisome proliferator—activatedreceptorgamma[J].PhytotherRes,2010,24 ($52)$161.[23]GongZ,HuangC,ShengX,eta1.TheroleoftanshinoneIIAinthe treatmentofobesitythroughperoxisomeproliferator—activatedreceptor gammaantagonism[J].Endocrinology,2009,150(1):104.。
GK和PPARγ双靶点激动剂SHP-14抗糖尿病作用的研究
人 T l样受体 9 01 结合 C G O N结构域 的研究 p D
潘夕 春 郑 江
第 三 军 医大学 药学 院 药理学 教 研室
重庆
40 3 00 8
第三军医大学第一附属医院中心实验室
重庆
4 0 3 008
目的:脓毒症 的发生与单核/ 吞噬细胞的 T l样受体 ( o1 ie ee tr,T s ol T 1 k cpos I )识别菌 一l r R 体成分后导致多种炎症细胞因子 的大量释放密切相关 ,因此研究 T R 识别病原分子的结构和 L s 功能关系 ,对寻找新 的药物作 用靶 点、获得新 的先导化合物进行脓 毒症 的防治 具有重要意义。
ቤተ መጻሕፍቲ ባይዱ
区域 ,5 个位点突变均可降低 L R l C G O N 的结合 ,其 中 R 3 、K 3 影响最大;分子 R 1 与 p D 37 38 对接表明 R 3 3 7和 K 3 38通过氢键 与 C G O N 结合 ,而 K 4 、R 4 p D 3 7 38和 H33虽然不直接 与 5
中国药理通讯 2 1 0 1年第二十八卷第二期
耐 量 () T)的影 响 。并对 S —l (GT HP 4的药 代动 力 学 和 急性 毒 性 进行 了初 步 评 价 。结 果 :离 体
实验发现 S P 1 H 一 4对 G 和 P AR K P 7有 明显 的激 活作用。其浓 度为 1 时使 G 0M K活性 增加
PPARα激动剂非诺贝特治疗新靶点的探讨
PPARα激动剂非诺贝特治疗新靶点的探讨非诺贝特(Fenofibrate)为氯贝丁酸衍生物类血脂调节药,通过激活PPARα(过氧化物酶增殖体激活受体α),激活脂解酶和减少载脂蛋白CⅢ合成,使血浆中脂肪降解和甘油三酯清除明显增加,同时也有降低正常人及高尿酸血症患者的血尿酸作用。
现常用于治疗成人饮食控制疗法效果不理想的高脂血症(Ⅱa型),内源性高甘油三酯血症,单纯型(Ⅳ型)和混合型(Ⅱb和Ⅲ型)。
特别是饮食控制后血中胆固醇仍持续升高,或是有其他并发的危险因素时。
药理研究证明,过氧化物增殖激活受体(peroxisome proliferator activated receptors,PPARs)是一类由配体激活的核转录因子,属于核受体超家族成员之一,主要有三种亚型,PPARα、PPARβ和PPARγ。
PPARα主要分布在一些脂肪分解代谢活跃的器官或组织(如肝、心、脂肪组织、骨骼肌、血管内皮细胞、动脉粥样斑块等),是脂肪酸氧化酶基因的主要转录调控子,调节脂类的摄取和氧化,调节氨基酸的代谢,参与止血、炎症反应、脂代谢紊乱、动脉粥样硬化及冠心病等多种药理生理过程。
有研究显示PPARα激动剂非诺贝特能改善自发性高血压大鼠心肌肥厚,其可能通过降脂以外的作用,如其抗炎和免疫调节的作用而发生作用。
在创伤性脑损伤(TBI)后引起的神经炎性反应,近期研究人员给予脑损伤大鼠PPARα激动剂非诺贝特,能降低TBI 24小时引起的神经缺陷,减少脑水肿和细胞粘附因子-1(ICAM-1)表达,认为其机制可能是激活PPARα从而降低炎症反应,因此活化PPARα可能成为有效的治疗方法。
有科学家研究激活PPARα减轻海马神经元细胞β淀粉样肽(Aβ)产生的毒性,表明激活PPARα能改善血管机能障碍,并推测PPARα激动剂能用于缓和损伤引起的脑血管机能障碍,非诺贝特可能通过激活神经胶质细胞IL-12家族细胞因子IL-12、IL-23和IL-27p28而抑制神经炎症反应。
PPAR激动剂新进展
ppar激动剂的药理作用研究
调节脂肪代谢
ppar激动剂能够激活脂肪细胞中 的ppar受体,促进脂肪酸的摄取 和氧化,减少脂肪的积累,从而 达到调节脂肪代谢的作用。
抗炎作用
ppar激动剂能够抑制炎症反应中 多种炎症因子的表达,从而起到 抗炎作用,对于治疗炎症性疾病 具有重要意义。
抗糖尿病作用
ppar激动剂能够改善胰岛素抵抗 和糖代谢紊乱,对于治疗糖尿病 具有潜在的应用价值。
脂肪肝的治疗
01
脂肪肝是一种常见的肝脏疾病,与肥胖、糖尿病等 代谢性疾病密切相关。
02
ppar激动剂可以通过调节脂肪代谢和炎症反应,改 善脂肪肝患者的肝功能和肝脏组织结构。
03
一些ppar激动剂还可以促进脂肪细胞分化,减少脂 肪堆积,从而改善脂肪肝患者的代谢异常。
心血管疾病的治疗
01 心血管疾病是一种常见的慢性疾病,与高血压、 高血脂等危险因素密切相关。
ppar激动剂在个性化治疗和精准医疗中的应用
个性化治疗方案
根据患者的基因型、疾病特点和生理特征,制定个性化的治疗方案,选择适合患者的 ppar激动剂种类和剂量。
精准医疗应用
通过基因检测和生物标志物等手段,预测患者对ppar激动剂的疗效和反应,实现精准 用药和个体化治疗。
05
结论
ppar激动剂的重要性和应用前景
ppar激动剂在调节糖脂代谢、抗炎、抗动脉粥样硬化等方面具有重要作用,是治疗代谢性疾病和心血 管疾病的重要药物。
随着对ppar激动剂研究的深入,其应用范围不断扩大,为多种疾病的治疗提供了新的思路和方法。
需要进一步研究和解决的问题
01
深入探讨ppar不同亚型在体内 的生物学效应和作用机制,以 发现更具针对性的药物作用靶 点。
PPARγ研究新进展
PPARγ研究新进展过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptor, PPAR)是调节目标基因表达的核内受体转录因子超家族成员[1],1990 年Issemann 等[2]首先发现了这种能被一类脂肪酸样化合物过氧化物酶体增殖剂(peroxisome proliferators, PP) 激活, 而被命名为PP 激活受体( peroxisome proliferator activated receptor, PPAR)。
根据结构的不同,PPAR可分为α、β(或δ)和γ三种类型,其中PPARγ主要表达于脂肪组织及免疫系统,与脂肪细胞分化、机体免疫及胰岛素抵抗关系密切,是胰岛素增敏剂噻唑烷二酮类药物(troglitazone, TZDs)作用的靶分子,成为近年来研究热点1.PPARγ的结构及特征PPARγ基因位于3号染色体短臂上[3],含有9个外显子。
由于基因转录时所用的启动子和接拼方式的不同,PPARγ可以分为γ1、γ2和γ3三种亚型,其中γ3和γ1编码的蛋白质相同[4,5]。
PPARγ2编码的蛋白质由505个氨基酸组成,比PPARγ1在氨基端多30个氨基酸。
进一步研究发现[6],PPARγ1mRNA是由8个外显子编码,而PPARγ2mRNA由7个外显子编码,编码的氨基酸数量虽有不同,但两者PPARγ的结构域、DNA结合域及配体结合域等完全相同,作用基本相同。
研究发现,不同种属间PPARγcDNA具有高度同源性,如人与小鼠的PPARγ1的一致性达91%[7]。
在啮齿类动物中,PPARγ主要在脂肪组织中表达,而在人体,除脂肪组织外,在巨噬细胞以及其他脂肪贮存细胞,如肝、肾、肺及直肠中均有表达,并且人肝组织比鼠肝表达更为丰富,而肌肉组织基本不表达。
PPARγ1是PPARγ的主要形式,表达范围相对广泛,PPARγ2表达范围较窄,主要在脂肪组织中表达,PPARγ3仅表达于巨噬细胞和大肠中[8,9]。
肿瘤组织中核转录因子PPAR的研究进展
·综述·肿瘤组织中核转录因子PPARγ的研究进展邹 林 静(综述) 余 震 张启瑜(审校)作者单位:325000温州医学院附属第一医院普外科 过氧化物酶体增殖物激活受体(peroxisome proliferator -activatedreceptors ,PPARs )是一类由配体激活的转录因子家族,属Ⅱ型核受体超家族成员。
过氧化物增殖反应是指细胞对各种化合物,包括贝特类降脂药、抗寄生虫药、除草剂、脂肪酸和白三烯拮抗剂等,以及对细胞形态和酶活性等病理生理改变的修饰反应。
1987年Laiwani 等1发现并鉴定了过氧化物增殖物结合蛋白,1990年Isseman 等2从小鼠肝脏克隆出PPAR ,随后科学家们从人类等其它种属中也克隆到PPAR 的同类物。
最近,在小鼠体内获得了有关PPAR α对过氧化物增殖直接作用的证据,由此认为,PPARs 作为细胞核受体可通过转录机制介导过氧化物酶体增殖反应。
1 PPARγ的结构及其抗肿瘤作用的研究111 PPAR γ的基因结构及分布 在两栖类、啮齿类动物及人类等,PPARs 均有三种亚型,即PPARα,PPAR β,PPAR γ。
这三种亚型在结构及功能上均有差异。
其中PPAR γ是最具脂肪组织特异性的。
对小鼠PPARγ研究发现,PPAR γ基因全长>105kb ,由于启动子和拼接方式不同产生两种PPAR γ亚型即PPAR γ1和PPAR γ2,两者mRNA 仅在5’端存在差异,存在不同的5’端非翻译区域。
不同种属之间PPAR γcDNA 具有高度同源性,如人PPAR γ2与小鼠PPAR γ1的一致性达91%3。
过去认为PPAR γ2仅在脂肪组织表达,近年来发现在骨骼肌亦有低水平表达。
PPAR γ1除在脂肪组织高度表达外,在其他组织如脾脏、外周血淋巴细胞、肝脏及骨骼肌亦有低水平表达4。
112 PPARγ的DNA 结合特性 最早的PPAR 反应元件(PPAR re 2sponse element ,PPRE )是在酰基辅酶A 氧化酶基因的启动子中发现的。
PPARγ功能与疾病关系研究进展
PPARγ功能与疾病关系研究进展马晶晶;章涛【摘要】过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor gamma (PPARγ)对脂质代谢、脂肪形成、细胞分裂和凋亡等多种生物学过程具有调节作用.近年来的研究发现,配体激活PPARγ具有抗肥胖、高血压、动脉粥样硬化、糖尿病、肿瘤等疾病的有益作用,使得围绕PPARγ受体功能和配体筛选研究成为生物医学和药理学研究的前沿热点,并有望成为治疗上述顽疾的新的药物靶标.该文就PPARγ与疾病关系的研究进展做一综述.【期刊名称】《中国药理学通报》【年(卷),期】2012(028)005【总页数】4页(P601-604)【关键词】过氧化物酶体增殖物激活受体γ;肿瘤;动脉粥样硬化;肝纤维化;肾脏疾病;神经保护【作者】马晶晶;章涛【作者单位】遵义医学院附属医院贵州省细胞工程重点实验室,贵州,遵义,563003;遵义医学院附属医院贵州省细胞工程重点实验室,贵州,遵义,563003【正文语种】中文【中图分类】R-05;R392.11;R543.5;R575.2;R692;R73;R741过氧化物酶体增殖物激活受体(peroxisome proliferatoractivated receptors,PPARs)是一类由配体激活的核转录因子,属II型核激素受体超家族成员,包括PPARα、β/δ、γ 3种受体亚型。
通常,PPARs与维甲酸类受体(RXR)形成异二聚体并招募共抑制蛋白复合物与之结合,抑制靶基因的转录,当PPARs与配体结合被激活后,此异二聚体释放共抑制蛋白并结合辅激活蛋白,然后与所调节基因的启动子上游过氧化物酶体增殖物反应元件(peroxisome proliferator response element,PPRE)结合,从而发挥对靶基因的转录调控作用,并由此实现其诸多不同的生物学作用。
PPRE通常是含有一个核苷酸间距的正向重复序列,不同物种来源的PPARs反应基因的PPRE序列略有差异,其中人PPRE的共有核苷酸序列为AGGTCA-N-AGGTCA。
我研究人员发现改善血管内膜增生新靶点——为临床治疗内膜增生性血管疾病提供了新思路
我研究人员发现改善血管内膜增生新靶点——为临床治疗内膜增生性血管疾病提供了新思路
佚名
【期刊名称】《科技与生活》
【年(卷),期】2012(000)014
【摘要】第三军医大学大坪医院野战外科研究所神经内科教授张莉莉课题组研究发现,PPAR-γ(过氧化物酶体增生物激活受体-γ)通过抑制血管平滑肌细胞中TLR4(Toll样受体4)介导的炎症反应,改善血管内膜增生,为临床治疗血管增生性疾病提供了新思路。
相关研究近日发表在英国权威期刊《心血管研究》上。
【总页数】1页(P32-32)
【正文语种】中文
【中图分类】G311
【相关文献】
1.氧化应激相关酶介导心血管疾病中血管内膜增生的机制 [J], 倪钧
2.我研究人员发现改善血管内膜增生新靶点为临床治疗内膜增生性血管疾病提供了新思路最新发现与创新 [J],
3.我研究人员发现改善血管内膜增生新靶点 [J],
4.我国研究人员发现改善血管内膜增生新靶点 [J],
5.我研究人员发现改善血管内膜增生新靶点 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PPARγ——中枢神经系统损伤治疗的新靶点【关键词】过氧化物酶增殖物激活受体γ; 中枢神经系统损伤; 神经保护过氧化物酶体增殖物激活受体γ(PPARγ)是一类由配体激活的核转录因子,为核受体超家族中的成员之一。
1990年Isseman等首次发现其存在于脂肪细胞的分化调控通路中,故又称为脂激活转录因子〔1〕。
PPARγ具有多种生物学效应,是体内糖、脂代谢的关键调节因子,对细胞生长、分化及凋亡具有重要影响,且与炎症、心血管疾病、糖尿病及肿瘤等多种疾病密切相关。
PPARγ的激活对缺血性脑血管疾病、阿尔茨海默病(AD)、帕金森病(PD)、多发性硬化(MS)等疾病具有潜在的保护作用而成为研究热点。
1 PPARγ的结构、配体及靶基因的关系人类PPARγ基因位于染色体3p25,全长>100 kb,有9个外显子,由479个氨基酸组成,与PPARα、PPARβ一样,它由4个功能结构域和6个结构区A~F组成。
①氨基端结构域,由A/B结构区形成,丝裂素原激活蛋白激酶(MAPK)可磷酸化此结构域的某些丝氨酸残基,抑制PPARγ的活性。
②DNA结合区(DBD),由C结构区形成,通过此结构域PPARγ与DNA上相应的反应元件结合而调节基因转录。
③转录活性调节结构域,由D结构区形成,许多核因子与此结构域结合后可影响PPARγ的活性。
④配基结合区(LBD),由E/F结构区形成,该结构域在从激素信号至转录激活的转导过程中起关键作用。
PPARγmRNA分为4种亚型,由于启动子和剪切方式的不同,编码两种蛋白质,其中PPARγ1 mRNA、PPARγ3 mRNA、PPARγ4 mRNA翻译的蛋白相同,而PPARγ2 mRNA翻译的蛋白N末端比前者多30个氨基酸残基〔2〕。
PPARγ的配体可分为内源性和外源性配体两大类。
外源性配体类型包括胰岛素增敏剂噻唑烷二酮类药物如匹格列酮、环格列酮、曲格列酮及罗格列酮等,此类配体与PPARγ亲和力很高,目前主要用于临床2型糖尿病(T2DM)的治疗;而含有酪氨酸结构的药物如GW1929、GW7845等,苯乙酸的衍生物L796449及某些非甾体类抗炎药物如布洛芬等,则为较弱的PPARγ配体。
内源性配体主要为系列前列腺素衍生的代谢产物,以15脱氧前列腺素J2(15d PGJ2)的研究最多。
PPAR γ与维甲酸受体X(RXR)形成异源二聚体,PPARγ被配体激活后PPAR/RXR二聚体构象发生改变,并与靶基因启动子区域的过氧化物酶体增殖物反应元件(PPRE)结合,从而调节靶基因的转录表达〔3〕。
2 PPARγ的生理功能PPARγ激动剂能减少TNFα和瘦素的生成,增加外周组织对胰岛素敏感性,从而改善胰岛素抵抗(IR);PPARγ还可促进磷脂酰肌醇Ⅲ激酶基因的表达,抑制丙酮酸脱氢酶激酶Ⅳ基因表达,从而改善糖代谢;PPARγ能正向调节脂肪细胞分化且参与脂代谢相关基因的表达调控,从而在脂质代谢、脂肪存储释放、维持机体能量平衡方面起正向调节作用;PPARγ可抑制平滑肌细胞增殖和迁移,抑制动脉粥样硬化(AS)的形成;此外PPARγ还能抑制癌细胞分化、形成,抑制肝脏炎症和纤维化,防止肾小球硬化等。
3 PPARγ在中枢神经系统中的分布在鼠类胚胎发育时期的中枢神经系统,PPARγ在E13.5期出现表达,且表达水平较高,尤其在后脑,但维持时间短暂,在E15.5期就接近成鼠水平〔4〕。
Moreno等〔5〕利用免疫组织化学方法研究了PPARγ在成年大鼠中枢神经系统各脑区的表达情况。
在端脑,PPAR γ在梨状皮层、嗅结及基底神经结呈高表达,在新大脑皮层的前部及海马的齿状回呈中度表达,在中隔及海马的CA1、CA3呈低表达。
在间脑,PPARγ在丘脑的菱形神经核、中央神经核、丘脑束旁核呈高表达,在丘脑的其余部位及丘脑下部呈低表达。
在中脑,PPARγ在上丘及被盖核的红核、黑质呈中度表达,在被盖核的动眼神经呈低表达。
在菱脑,PPARγ在网状结构、大脑皮层的星形细胞呈高度表达,在蜗神经核、前庭外侧核、深部小脑核、大脑皮层的篮状细胞、戈尔吉细胞呈中度表达,在三叉神经、面神经呈低表达。
在脊髓,PPARγ在Lamina Ⅱ和Ⅸ呈中度表达,在Lamina V和中央颈外侧核呈低表达。
Cullingford〔6〕等研究进一步表明,PPARγ在不同神经细胞表达情况也不同,在原代培养的小鼠皮层星形胶质细胞中高表达,而在脑脊膜成纤维细胞、颗粒神经元中低表达。
4 PPARγ在中枢神经系统损伤中的作用研究表明,PPARγ能抑制细胞因子、黏附分子和金属蛋白酶而抑制炎性细胞从外周进入中枢〔7〕,能通过抑制NFκB、JAK STAT 信号通路的活性而抑制中枢神经系统损伤中的炎症和氧化应激〔8〕。
PPARγ激动剂15d PGJ2能抑制原代培养的星形胶质细胞和小胶质细胞中细胞因子信号抑制剂SOCS1、3的表达,后者能通过降低JAK的磷酸化而抑制JAK STAT信号通路〔9〕,通过共价修饰一种抑制剂蛋白IκB激酶降低NFκB的表达从而抑制NFκB信号传导通路〔10〕。
此外,曲格列酮和环格列酮能抑制谷氨酸和低钾导致的神经毒性〔11〕。
这些研究结果提示PPARγ可能是中枢神经系统急慢性损伤治疗的新靶点。
4.1 PPARγ在急性脑损伤中的作用 Victor〔12〕等研究发现短暂的大鼠脑局部缺血再灌注损伤后PPARγmRNA的表达明显增加,且在缺血后24 h表达最高,给予PPARγ激动剂能明显降低缺血大鼠脑梗死面积,而给予PPARγ拮抗剂后其梗死面积明显增加。
Zhao等〔13〕研究发现在大脑中动脉闭塞(MCAO)前5 d至梗死后2 d内脑室内给予PPARγ激动剂能显著降低梗死面积和脑水肿,改善大鼠MCAO后的神经功能损伤,结果提示缺血性脑损伤后PPARγ可能为保护性增加,其表达与激活对缺血性脑损伤可能存在保护作用。
Straus〔14〕等研究认为在静止的细胞中,NFκB存在于胞质,炎症反应时细胞因子信号释放,NFκB P65亚单位转移到细胞核并刺激基因的表达,从而导致炎症因子的释放,而过度的炎症反应和氧化应激参与了脑缺血再灌注损伤。
在培养的小胶质细胞和星形胶质细胞中,噻唑烷二酮类能抑制脂多糖(LPS)诱导的IL6、TNFα、COX2、iNOS的表达增加,给予PPARγ拮抗剂后这种作用被抑制〔15〕。
Zhao〔13〕等研究发现,大鼠在MCAO前24 h脑室内给予匹格列酮能显著降低炎症引起的IL1、COX2、iNOS的表达,这些结果表明PPARγ的激活可以减轻脑损伤后的炎症反应。
Collino〔16〕等进一步研究了PPARγ激动剂对NFκB信号通路的影响,在假手术组大鼠海马组织中NFκ B P65亚单位仅存在胞质而不存在于胞核中,而在MCAO组大鼠海马组织中,胞核中的NFκB P65亚单位明显高于胞质,这说明NFκB已移位至胞核,而给予匹格列酮后,胞核中的NFκ B P65亚单位减少,此结果提示PPARγ激动剂可能通过抑制NFκB信号通路的激活,发挥其抗炎作用。
Shimazu等〔17〕研究发现用匹格列酮处理的大鼠在短暂MCAO 后其皮层Cu Zn SOD蛋白水平显著升高,同时使缺血梗死面积显著下降,因而认为PPARγ激动剂对缺血脑损伤的保护作用的机制也可能与PPARγ表达激活增加脑组织Cu Zn SOD的表达,从而减轻过量氧自由基导致的氧化应激损伤如脂质过氧化、蛋白氧化和DNA损伤等。
4.2 PPARγ在神经退行性病变中的作用神经退行性病变包括一系列疾病如AD、PD、MS等。
PPARγ对神经退行性病变可能存在保护作用。
AD的病理性特征包括淀粉样蛋白(Aβ)的沉积和胞内蛋白高度磷酸化引起神经纤维缠结的形成,从而导致神经元死亡、学习记忆等认知功能下降。
体外实验发现Aβ能损伤海马的突触强直后增强(PTP)和长时程增强(LTP),从而影响神经突触传递,而PPARγ激动剂能减轻Aβ介导的LTP损伤,从而改善AD的症状〔18〕。
在培养的神经瘤细胞中,炎性因子能刺激Aβ的产生,而PPARγ的激动剂能明显抑制炎性因子诱导Aβ的增加〔19〕。
近年来研究发现PPARγ降低Aβ水平可能与抑制炎症反应和BACE1基因表达有关。
过表达hAPP V717的大鼠给予7 d高剂量匹格列酮后,其海马和皮层中的Aβ142沉积的区域缩小、密度明显降低、溶解态Aβ142水平下降了27%〔20〕,海马和皮层中激活的小胶质细胞和反应性星型胶质细胞数目明显下降,COX2和iNOS的表达明显降低。
有报道PPARγ可能通过抑制BCAE1基因的表达而减少Aβ的产生,BACE1为APP生成Aβ的剪切酶,而PPAR的效应元件PPRE存在于BACE1基因的启动子中,PPARγ的激活能增加与PPRE的结合,负性调控BACE1基因启动子活性,抑制BCAE1基因的表达,从而减少Aβ的产生〔21〕。
PD是以一系列运动功能失调为特征的疾病,主要表现为肌肉震颤、步态僵硬及平衡失调,其病理特征为黑质中多巴胺神经元的丢失。
小胶质细胞和星型胶质细胞的激活及炎性分子的产生能促进多巴胺能神经元的死亡。
Hirsch等〔22〕报道,PPARγ激动剂匹格列酮能阻断MPTP诱导的帕金森病小鼠的炎症激活和iNOS的表达,从而减轻其介导的神经毒性,减少小鼠纹状体和黑质密集区多巴胺神经的丢失。
Dehmer等〔23〕也发现口服给予匹格列酮能抑制小鼠黑质致密部胶质细胞激活,阻止黑质密集区多巴胺神经元的丢失。
其机制可能与PPAR γ激活刺激小胶质细胞、星形胶质细胞中抑制性蛋白IκBα表达和抑制NFκB亚单位移位于细胞核有关。
MS是中枢神经系统的一种慢性、自身免疫性疾病。
实验性自身免疫性脑脊髓炎(experimental autoimmune encephalomyelitis, EAE)是MS的一种动物模型。
其主要病理特征为血脑屏障的损伤、中枢神经系统的炎症与脱髓鞘,最终导致神经功能缺损和弛张性麻痹。
Racke〔24〕等研究发现口服给予PPARγ激动剂匹格列酮虽并不能延迟EAE的发病时间,但可减轻该病的临床症状,使动物的死亡率下降。
中枢神经系统小胶质细胞和星型胶质细胞激活并释放NO〔25〕,以及IL1、IL6、TNFα等炎性因子从外周进入中枢神经系统并定位于EAE炎症反应部位在EAE进程中发挥了重要作用〔26〕。
诱导平低梗死大脑皮层区层区域小胶质细胞和星形胶质细胞Storer〔27〕等研究发现PPARγ的激动剂能调控小胶质细胞和星形胶质细胞的成熟和分化,抑制小胶质细胞和星形胶质细胞产生NO 及促炎因子IL1、IL6、TNFα和趋化因子MCP1。
综上所述,目前的实验表明PPARγ激动剂对中枢神经系统各种急、慢损伤有一定的保护作用,可能会成为缺血性脑血管疾病、AD、PD、MS等多种疾病治疗的新靶点,有着良好的应用前景,但是有待于进行更深入的研究和证实。