解绝对值题的关键:去绝对值符号

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带绝对值符号的运算

在初中数学教学中,如何去掉绝对值符号?因为这一问题看似简单,所以往往容易被人们忽视。其实它既是初中数学教学的一个重点,也是初中数学教学的一个难点,还是学生容易搞错的问题。那么,如何去掉绝对值符号呢?我认为应从以下几个方面着手:

一、要理解数a的绝对值的定义。在中学数学教科书中,数a的绝对值是这样定义的,“在数轴上,表示数a的点到原点的距离叫做数a的绝对值。”学习这个定义应让学生理解,数a的绝对值所表示的是一段距离,那么,不论数a本身是正数还是负数,它的绝对值都应该是一个非负数。

二、要弄清楚怎样去求数a的绝对值。从数a的绝对值的定义可知,一个正数的绝对值肯定是它的本身,一个负数的绝对值必定是它的相反数,零的绝对值就是零。在这里要让学生重点理解的是,当a是一个负数时,怎样去表示a的相反数(可表示为“-a”),以及绝对值符号的双重作用(一是非负的作用,二是括号的作用)。

三、掌握初中数学常见去掉绝对值符号的几种题型。

1、对于形如︱a︱的一类问题

只要根据绝对值的3个性质,判断出a的3种情况,便能快速去掉绝对值符号。

当a>0时,︱a︱=a(性质1:正数的绝对值是它本身);

当a=0 时︱a︱=0(性质2:0的绝对值是0) ;

当a<0 时;︱a︱=–a (性质3:负数的绝对值是它的相反数) 。

2、对于形如︱a+b︱的一类问题

首先要把a+b看作是一个整体,再判断a+b的3种情况,根据绝对值的3个性质,便能快速去掉绝对值符号进行化简。

当a+b>0时,︱a+b︱=(a+b) =a +b(性质1:正数的绝对值是它本身);

当a+b=0 时,︱a+b︱=(a+b) =0(性质2:0的绝对值是0);

当a+b<0 时,︱a+b︱=–(a+b)=–a-b (性质3:负数的绝对值是它的相反数)。

3、对于形如︱a-b︱的一类问题

同样,仍然要把a-b看作一个整体,判断出a-b 的3种情况,根据绝对值的3个性质,去掉绝对值符号进行化简。

但在去括号时最容易出现错误。如何快速去掉绝对值符号,条件非常简单,只要你能判断出a与b的大小即可(不论正负)。因为︱大-小︱=︱小-大︱=大-小,所以当a>b时,︱a-b︱=(a-b)= a-b,︱b-a︱=(a-b)= a-b 。

口诀:无论是大减小,还是小减大,去掉绝对值,都是大减小。

4、对于数轴型的一类问题,

根据3的口诀来化简,更快捷有效。如︱a-b︱的一类问题,只要判断出a在b的右边(不论正负),便可得到︱a-b︱=(a-b)=a-b,︱b-a︱=(a-b)=a-b 。

5、对于绝对值符号前有正、负号的运算

非常简单,去掉绝对值符号的同时,不要忘记打括号。前面是正号的无所谓,如果是负号,忘记打括号就惨了,差之毫厘失之千里也!

去绝对值化简专题练习:

(1)设化简的结果是( B )。

(A)(B)(C)(D)

(2) 实数a、b、c在数轴上的位置如图所示,则代数式的值等于( C )。

(A)(B)(C)(D)

(3) 已知,化简的结果是 x-8 。

(4) 已知,化简的结果是 -x+8 。

(5) 已知,化简的结果是 -3x 。

(6) 已知a、b、c、d满足且,那么a+b+c+d=____0_____ (提示:可借助数轴完成)

(7) 若,则有( A )。

(A)(B)(C)(D)

(8) 有理数a、b、c在数轴上的位置如图所示,则式子化简结果为( C ).

(A)(B)(C)(D)

(9) 有理数a、b在数轴上的对应点如图所示,那么下列四个式子,

中负数的个数是(B ).

(A)0 (B)1 (C)2 (D)3

(10) 化简 =

(1)-3x (x<-4) (2)-x+8(-4≤x≤2)(3)3x(x>2)

(11) 设x是实数,下列四个结论中正确的是( D )。

(A)y没有最小值

(B)有有限多个x使y取到最小值

(C)只有一个x使y取得最小值

(D)有无穷多个x使y取得最小值

相关文档
最新文档