平面解析几何初步测试题

合集下载

精选新版2020高考数学专题训练《平面解析几何初步》完整版考核题(含答案)

精选新版2020高考数学专题训练《平面解析几何初步》完整版考核题(含答案)

2019年高中数学单元测试卷平面解析几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( )A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=4(2001全国文2)二、填空题2.一直线倾斜角的正切值为43,且过点()1,2P ,则直线方程为_____________。

3.过点(1,2)P 且与直线2100x y +-=垂直的直线方程为_____4.已知两条直线y =ax -2和y =(a +2)x +1互相垂直,则a 等于________.解析:∵直线y =ax -2和y =(a +2)x +1互相垂直,∴a ·(a +2)=-1,∴a =-1.5.若直线l :y =kx -1与直线x +y -1=0的交点位于第一象限,则实数k 的取值范围是 ________.解析:解法一:由⎩⎪⎨⎪⎧ y =kx -1x +y -1=0,得⎩⎪⎨⎪⎧ x =2k +1y =k -1k +1.由题意知⎩⎪⎨⎪⎧ 2k +1>0k -1k +1>0,∴k >1.解法二:直线l 过定点(0,-1),由数形结合知k >1.6.已知圆心角为120°的扇形AOB 的半径为1,C 为弧AB 的中点,点D ,E 分别在半径OA ,OB 上.若CD 2+CE 2+DE 2=269,则OD +OE 的最大值是________.7.过平面区域202020x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩内一点P 作圆22:1O x y +=的两条切线,切点分别为,A B ,记APB α∠=,则当α最小时cos α= ▲ .8.直线(1)2x m y m ++=-与28mx y +=-垂直,则m =___▲___.9.已知04,k <<直线1:2280l kx y k --+=和直线222:2440l x k y k +--=与两坐标轴;围成一个 四边形,则使得这个四边形面积最小的k 值为10.已知圆C l :22(1)(1)1x y ++-=,圆C 2与圆C 1关于直线x -y -l =0对称,则圆C 2的方程为 .11.如图所示,有一块半径长为1米的半圆形钢板,现要从中截取一个内接等腰梯形部件ABCD ,设梯形部件ABCD 的面积为y 平方米.(I)按下列要求写出函数关系式:①设2CD x =(米),将y 表示成x 的函数关系式;②设()BOC rad θ∠=,将y 表示成θ的函数关系式(II)求梯形部件ABCD 面积y 的最大值.12.在平面直角坐标系xOy 中,设过原点的直线l 与圆C :22(3)(1)4x y -+-=交于M 、N 两点,若MN ≥l 的斜率k 的取值范围是______.13.已知直线3430x y +-=与直线6140x my ++=平行,则它们之间的距离是_________14. 设点A 在x 轴上,点B 在y 轴上,线段AB 中点M(2,−1),则线段AB 长为_________15.在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于A 、B 两点,则弦AB 的长等于16.在平面直角坐标系xOy 中,已知点M (0,3),直线l : x +y -4=0,点N (x ,y )是圆C :x 2+y 2-2x -1=0上的动点,MA ⊥l ,NB ⊥l ,垂足分别为A 、B ,则线段AB 的最大值为 ▲ .17.在平面直角坐标系xOy 中,若圆22(1)4x y +-=上存在A ,B 两点关于点(1,2)P 成中心对称,则直线AB 的方程为 .18.经过圆x 2+y 2+2x =0的圆心,且与直线x +y =0垂直的直线l 的方程是 ▲ .19.已知圆 C 与直线 0x y -= 及 40x y --= 都相切,且圆心在直线 0x y += 上,则圆C 的方程为___▲___.三、解答题20.选修4-4:坐标系与参数方程在极坐标系中,求圆4sin ρθ=上的点到直线cos 4πρθ⎛⎫+= ⎪⎝⎭将直线的极坐标方程cos 4πρθ⎛⎫+= ⎪⎝⎭21. (本小题满分16分) 已知函数()ln f x a b x =-(,a b R ∈),其图像在x e =处的切线方程为0x ey e -+=.函数()(0)k g x k x =>,()()1f x h x x =-. (Ⅰ)求实数a 、b 的值;(Ⅱ)以函数()g x 图像上一点为圆心,2为半径作圆C ,若圆C 上存在两个不同的点到原点O 的距离为1,求k 的取值范围;(Ⅲ)求最大的正整数k ,对于任意的(1,)p ∈+∞,存在实数m 、n 满足0m n p<<<,使得()()()h p h m g n ==.22.(本题满分14分)已知圆心()(1,2)0,1C ,且经过点(Ⅰ)写出圆C 的标准方程;(Ⅱ)过点(2,1)P -作圆C 的切线,求切线的方程及切线的长.23.已知圆22:()(2)4(0)C x a y a -+-=>及直线:30l x y -+=. 当直线l 被圆C 截得的弦长为 求(1)a 的值; (2)求过点(3,5)并与圆C 相切的切线方程.24.(本小题满分14分)设圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长之比为3:1;③圆心到直线:20l x y -=,求该圆的方程.25. 已知圆C 经过P (4,– 2),Q (– 1,3)两点,且在y 轴上截得的线段长为径小于5.(1)求直线PQ 与圆C 的方程.(2)若直线l ∥PQ ,且l 与圆C 交于点A 、B ,90AOB ∠=︒,求直线l 的方程.26.根据下列条件求圆的方程:(1)经过坐标原点和点P (1,1),并且圆心在直线2x +3y +1=0上;(2)已知一圆过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段长为43,求圆的方程.27.求直线l 1:y =2x +3关于直线l :y =x +1对称的直线l 2的方程.28.已知圆22:(1)(2)25C x y -+-=及直线:(21)(1)74()l m x m y m m R +++=+∈(1)求证:不论m 取何值,直线l 与圆C 恒相交;(2)求直线l 被圆C 截得的现场的最小值及此时的直线方程29.已知对直线l 上任意一点(,)x y ,点(42,3)x y x y ++也在直线l 上,求直线l 的方程。

高中数学平面解析几何初步检测考试题(附答案)

高中数学平面解析几何初步检测考试题(附答案)

高中数学平面解析几何初步检测考试题(附答案)试卷分析第2章平面解析几何初步综合检测(时间:120分钟;满分:150分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线3a_-y-1=0与直线(a-23)_+y+1=0垂直,则a的值是()A.-1或13 B.1或13C.-13或-1 D.-13或1解析:选D.由3a(a-23)+(-1)1=0,得a=-13或a=1.2.直线l1:a_-y+b=0,l2:b_-y+a=0(a0,b0,ab)在同一坐标系中的图形大致是图中的()解析:选C.直线l1:a_-y+b=0,斜率为a,在y轴上的截距为b,设k1=a,m1=b.直线l2:b_-y+a=0,斜率为b,在y轴上的截距为a,设k2=b,m2=a.由A知:因为l1∥l2,k1=k20,m10,即a=b0,b0,矛盾.由B知:k1k2,m10,即ab,b0,矛盾.由C知:k10,m20,即a0,可以成立.由D知:k10,m2m1,即a0,ab,矛盾.3.已知点A(-1,1)和圆C:(_-5)2+(y-7)2=4,一束光线从A经_轴反射到圆C上的最短路程是()A.62-2 B.8C.46 D.10解析:选B.点A关于_轴对称点A(-1,-1),A与圆心(5,7)的距离为5+12+7+12=10.所求最短路程为10-2=8.4.圆_2+y2=1与圆_2+y2=4的位置关系是()A.相离 B.相切C.相交 D.内含解析:选D.圆_2+y2=1的圆心为(0,0),半径为1,圆_2+y2=4的圆心为(0,0),半径为2,则圆心距02-1=1,所以两圆内含.5.已知圆C:(_-a)2+(y-2)2=4(a0)及直线l:_-y+3=0,当直线l被圆C截得的弦长为23时,a的值等于()A.2B.2-1C.2-2 D.2+1解析:选B.圆心(a,2)到直线l:_-y+3=0的距离d=|a-2+3|2=|a+1|2,依题意|a+1|22+2322=4,解得a=2-1.6.与直线2_+3y-6=0关于点(1,-1)对称的直线是()A.3_-2y-6=0B.2_+3y+7=0C.3_-2y-12=0D.2_+3y+8=0解析:选D.∵所求直线平行于直线2_+3y-6=0,设所求直线方程为2_+3y+c=0,由|2-3+c|22+32=|2-3-6|22+32,c=8,或c=-6(舍去),所求直线方程为2_+3y+8=0.7.若直线y-2=k(_-1)与圆_2+y2=1相切,则切线方程为()A.y-2=34(1-_)B.y-2=34(_-1)C._=1或y-2=34(1-_)D._=1或y-2=34(_-1)解析:选B.数形结合答案容易错选D,但要注意直线的表达式是点斜式,说明直线的斜率存在,它与直线过点(1,2)要有所区分.8.圆_2+y2-2_=3与直线y=a_+1的公共点有()A.0个 B.1个C.2个 D.随a值变化而变化解析:选C.直线y=a_+1过定点(0,1),而该点一定在圆内部.9.过P(5,4)作圆C:_2+y2-2_-2y-3=0的切线,切点分别为A、B,四边形PACB的面积是()A.5 B.10C.15 D.20解析:选B.∵圆C的圆心为(1,1),半径为5.|PC|=5-12+4-12=5,|PA|=|PB|=52-52=25,S=122552=10.10.若直线m_+2ny-4=0(m、nR,nm)始终平分圆_2+y2-4_-2y-4=0的周长,则mn的取值范围是()A.(0,1) B.(0,-1)C.(-,1) D.(-,-1)解析:选C.圆_2+y2-4_-2y-4=0可化为(_-2)2+(y-1)2=9,直线m_+2ny-4=0始终平分圆周,即直线过圆心(2,1),所以2m+2n-4=0,即m+n=2,mn=m(2-m)=-m2+2m=-(m-1)2+11,当m=1时等号成立,此时n=1,与“mn”矛盾,所以mn<1.11.已知直线l:y=_+m与曲线y=1-_2有两个公共点,则实数m的取值范围是()A.(-2,2) B.(-1,1)C.[1,2) D.(-2,2)解析:选C. 曲线y=1-_2表示单位圆的上半部分,画出直线l与曲线在同一坐标系中的图象,可观察出仅当直线l在过点(-1,0)与点(0,1)的直线与圆的上切线之间时,直线l与曲线有两个交点.当直线l过点(-1,0)时,m=1;当直线l为圆的上切线时,m=2(注:m=-2,直线l为下切线).12.过点P(-2,4)作圆O:(_-2)2+(y-1)2=25的切线l,直线m:a_-3y=0与直线l平行,则直线l与m的距离为()A.4 B.2C.85D.125解析:选A.∵点P在圆上,切线l的斜率k=-1kOP=-11-42+2=43.直线l的方程为y-4=43(_+2),即4_-3y+20=0.又直线m与l平行,直线m的方程为4_-3y=0.故两平行直线的距离为d=|0-20|42+-32=4.二、填空题(本大题共4小题,请把答案填在题中横线上)13.过点A(1,-1),B(-1,1)且圆心在直线_+y-2=0上的圆的方程是________.解析:易求得AB的中点为(0,0),斜率为-1,从而其垂直平分线为直线y=_,根据圆的几何性质,这条直线应该过圆心,将它与直线_+y-2=0联立得到圆心O(1,1),半径r=|OA|=2.答案:(_-1)2+(y-1)2=414.过点P(-2,0)作直线l交圆_2+y2=1于A、B两点,则|PA||PB|=________. 解析:过P作圆的切线PC,切点为C,在Rt△POC中,易求|PC|=3,由切割线定理,|PA||PB|=|PC|2=3.答案:315.若垂直于直线2_+y=0,且与圆_2+y2=5相切的切线方程为a_+2y+c=0,则ac的值为________.解析:已知直线斜率k1=-2,直线a_+2y+c=0的斜率为-a2.∵两直线垂直,(-2)(-a2)=-1,得a=-1.圆心到切线的距离为5,即|c|5=5,c=5,故ac =5.答案:516.若直线3_+4y+m=0与圆_2+y2-2_+4y+4=0没有公共点,则实数m的取值范围是__________.解析:将圆_2+y2-2_+4y+4=0化为标准方程,得(_-1)2+(y+2)2=1,圆心为(1,-2),半径为1.若直线与圆无公共点,即圆心到直线的距离大于半径,即d=|31+4-2+m|32+42=|m-5|5>1,m<0或m>10.答案:(-,0)(10,+)三、解答题(本大题共6小题,解答时应写出必要的文字说明、证明过程或演算步骤)17.三角形ABC的边AC,AB的高所在直线方程分别为2_-3y+1=0,_+y=0,顶点A(1,2),求BC边所在的直线方程.解:AC边上的高线2_-3y+1=0,所以kAC=-32.所以AC的方程为y-2=-32(_-1),即3_+2y-7=0,同理可求直线AB的方程为_-y+1=0.下面求直线BC的方程,由3_+2y-7=0,_+y=0,得顶点C(7,-7),由_-y+1=0,2_-3y+1=0,得顶点B(-2,-1).所以kBC=-23,直线BC:y+1=-23(_+2),即2_+3y+7=0.18.一束光线l自A(-3,3)发出,射到_轴上,被_轴反射后与圆C:_2+y2-4_-4y+7=0有公共点.(1)求反射光线通过圆心C时,光线l所在直线的方程;(2)求在_轴上,反射点M的横坐标的取值范围.解:圆C的方程可化为(_-2)2+(y-2)2=1.(1)圆心C关于_轴的对称点为C(2,-2),过点A,C的直线的方程_+y=0即为光线l所在直线的方程.(2)A关于_轴的对称点为A(-3,-3),设过点A的直线为y+3=k(_+3).当该直线与圆C相切时,有|2k-2+3k-3|1+k2=1,解得k=43或k=34,所以过点A的圆C的两条切线分别为y+3=43(_+3),y+3=34(_+3).令y=0,得_1=-34,_2=1,所以在_轴上反射点M的横坐标的取值范围是[-34,1].19.已知圆_2+y2-2_-4y+m=0.(1)此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线_+2y-4=0相交于M、N两点,且OMON(O为坐标原点),求m的值;(3)在(2)的条件下,求以MN为直径的圆的方程.解:(1)方程_2+y2-2_-4y+m=0,可化为(_-1)2+(y-2)2=5-m,∵此方程表示圆,5-m>0,即m<5.(2)_2+y2-2_-4y+m=0,_+2y-4=0,消去_得(4-2y)2+y2-2(4-2y)-4y+m=0,化简得5y2-16y+m+8=0.设M(_1,y1),N(_2,y2),则y1+y2=165,①y1y2=m+85. ②由OMON得y1y2+_1_2=0即y1y2+(4-2y1)(4-2y2)=0,16-8(y1+y2)+5y1y2=0.将①②两式代入上式得16-8165+5m+85=0,解之得m=85.(3)由m=85,代入5y2-16y+m+8=0,化简整理得25y2-80y+48=0,解得y1=125,y2=45._1=4-2y1=-45,_2=4-2y2=125.M-45,125,N125,45,MN的中点C的坐标为45,85.又|MN|= 125+452+45-1252=855,所求圆的半径为455.所求圆的方程为_-452+y-852=165.20. 已知圆O:_2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,|PQ|=|PA|成立,如图.(1)求a、b间关系;(2)求|PQ|的最小值;(3)以P为圆心作圆,使它与圆O有公共点,试在其中求出半径最小的圆的方程.解:(1)连接OQ、OP,则△OQP为直角三角形,又|PQ|=|PA|,所以|OP|2=|OQ|2+|PQ|2=1+|PA|2,所以a2+b2=1+(a-2)2+(b-1)2,故2a+b-3=0.(2)由(1)知,P在直线l:2_+y-3=0上,所以|PQ|min=|PA|min,为A到直线l的距离,所以|PQ|min=|22+1-3|22+12=255.(或由|PQ|2=|OP|2-1=a2+b2-1=a2+9-12a+4a2-1=5a2-12a+8=5(a-1.2)2+0.8,得|PQ|min=255.)(3)以P为圆心的圆与圆O有公共点,半径最小时为与圆O相切的情形,而这些半径的最小值为圆O到直线l的距离减去圆O的半径,圆心P为过原点与l垂直的直线l与l的交点P0,所以r=322+12-1=355-1,又l:_-2y=0,联立l:2_+y-3=0得P0(65,35).所以所求圆的方程为(_-65)2+(y-35)2=(355-1)2.21.有一圆与直线l:4_-3y+6=0相切于点A(3,6),且经过点B(5,2),求此圆的方程.解:法一:由题意可设所求的方程为(_-3)2+(y-6)2+(4_-3y+6)=0,又因为此圆过点(5,2),将坐标(5,2)代入圆的方程求得=-1,所以所求圆的方程为_2+y2-10_-9y+39=0.法二:设圆的方程为(_-a)2+(y-b)2=r2,则圆心为C(a,b),由|CA|=|CB|,CAl,得3-a2+6-b2=r2,5-a2+2-b2=r2,b-6a-343=-1,解得a=5,b=92,r2=254.所以所求圆的方程为(_-5)2+(y-92)2=254.法三:设圆的方程为_2+y2+D_+Ey+F=0,由CAl,A(3,6),B(5,2)在圆上,得32+62+3D+6E+F=0,52+22+5D+2E+F=0,-E2-6-D2-343=-1,解得D=-10,E=-9,F=39.所以所求圆的方程为_2+y2-10_-9y+39=0.法四:设圆心为C,则CAl,又设AC与圆的另一交点为P,则CA的方程为y-6=-34(_-3),即3_+4y-33=0.又因为kAB=6-23-5=-2,所以kBP=12,所以直线BP的方程为_-2y-1=0.解方程组3_+4y-33=0,_-2y-1=0,得_=7,y=3.所以P(7,3).所以圆心为AP的中点(5,92),半径为|AC|=52.所以所求圆的方程为(_-5)2+(y-92)2=254.22.如图在平面直角坐标系_Oy中,已知圆C1:(_+3)2+(y-1)2=4和圆C2:(_-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被圆C1截得的弦长为23,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被C2截得的弦长相等.试求所有满足条件的点P的坐标.解:(1)由于直线_=4与圆C1不相交,所以直线l的斜率存在.设直线l的方程为y=k(_-4),圆C1的圆心到直线l的距离为d,因为圆C1被直线l截得的弦长为23,所以d=22-32=1.由点到直线的距离公式得d=|1-k-3-4|1+k2,从而k(24k+7)=0,即k=0或k=-724,所以直线l的方程为y=0或7_+24y-28=0.(2)设点P(a,b)满足条件,不妨设直线l1的方程为y-b=k(_-a),k0,则直线l2的方程为y-b=-1k(_-a).因为圆C1和C2的半径相等,且圆C1被直线l1截得的弦长与圆C2被直线l2截得的弦长相等,所以圆C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等,即|1-k-3-a-b|1+k2=|5+1k4-a-b|1+1k2,整理得|1+3k+ak-b|=|5k+4-a-bk|,从而1+3k+ak-b=5k+4-a-bk 或1+3k+ak-b=-5k-4+a+bk,即(a+b-2)k=b-a+3或(a-b+8)k=a+b-5,因为k的取值有无穷多个,所以a+b-2=0,b-a+3=0,或a-b+8=0,a+b-5=0,解得a=52,b=-12,或a=-32,b=132.这样点P只可能是点P152,-12或点P2-32,132.经检验点P1和P2满足题目条件.。

平面解析几何测试题带答案

平面解析几何测试题带答案

1.(本小题满分12分)已知:圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=22时,求直线l的方程.2.设椭圆ax2+by2=1与直线x+y-1=0相交于A、B两点,点C是AB的中点,若|AB|=22,OC的斜率为22,求椭圆的方程.3.(本小题满分12分)(2010·南通模拟)已知动圆过定点F(0,2),且与定直线l:y=-2相切.(1)求动圆圆心的轨迹C的方程;(2)若AB是轨迹C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q,证明:AQ⊥BQ.4.已知圆(x-2)2+(y-1)2=203,椭圆b2x2+a2y2=a2b2(a>b>0)的离心率为22,若圆与椭圆相交于A、B,且线段AB是圆的直径,求椭圆的方程.5.已知m 是非零实数,抛物线)0(2:2>=p px y C 的焦点F 在直线2:02m l x my --=上. (I )若m=2,求抛物线C 的方程(II )设直线l 与抛物线C 交于A 、B 两点,F AA 1∆,F BB 1∆的重心分别为G,H.求证:对任意非零实数m,抛物线C 的准线与x 轴的焦点在以线段GH 为直径的圆外。

6. (本小题满分14分)(2010·东北四市模拟)已知O 为坐标原点,点A 、B 分别在x 轴,y 轴上运动,且|AB |=8,动点P 满足AP =35PB ,设点P 的轨迹为曲线C ,定点为M (4,0),直线PM 交曲线C 于另外一点Q .(1)求曲线C 的方程; (2)求△OPQ 面积的最大值.7.(文)有一个装有进出水管的容器,每单位时间进出的水量各自都是一定的,设从某时刻开始10分钟内只进水、不出水,在随后的30分钟内既进水又出水,得到时间x(分)与水量y(升)之间的关系如图所示,若40分钟后只放水不进水,求y 与x 的函数关系.8(理)已知矩形ABCD 的两条对角线交于点M ⎝⎛⎭⎫12,0,AB 边所在直线的方程为3x -4y -4=0.点N ⎝⎛⎭⎫-1,13在AD 所在直线上.(1)求AD 所在直线的方程及矩形ABCD 的外接圆C1的方程;(2)已知点E ⎝⎛⎭⎫-12,0,点F 是圆C1上的动点,线段EF 的垂直平分线交F M 于点P ,求动点P 的轨迹方程.9.已知直线l1过点A(-1,0),且斜率为k ,直线l2过点B(1,0),且斜率为-2k ,其中k≠0,又直线l1与l2交于点M.(1)求动点M 的轨迹方程;(2)若过点N ⎝⎛⎭⎫12,1的直线l 交动点M 的轨迹于C 、D 两点,且N 为线段CD 的中点,求直线l 的方程.10.如图,在平面直角坐标系xOy 中,平行于x 轴且过点A(33,2)的入射光线l1被直线l :y =33x 反射,反射光线l2交y 轴于B 点,圆C 过点A 且与l1、l2都相切,求l2所在直线的方程和圆C 的方程.11设)1,0,2(),1,1,3(),0,0,1(C B A 为o ——xyz 内的点。

高一数学平面解析几何初步试题答案及解析

高一数学平面解析几何初步试题答案及解析

高一数学平面解析几何初步试题答案及解析1.设A(3,3,1),B(1,0,5),C(0,1,0),AB的中点M,则A.B.C.D.【答案】C【解析】先求得M(2,,3)点坐标,利用两点间距离公式计算得,故选C。

【考点】本题主要考查空间直角坐标系的概念及空间两点间距离公式的应用。

点评:简单题,应用公式计算。

2.已知ABCD为平行四边形,且A(4,1,3),B(2,-5,1),C(3,7,-5),则点D 的坐标为A.(,4,-1)B.(2,3,1)C.(-3,1,5)D.(5,13,-3)【答案】D【解析】设D的坐标为(x,y,z)。

AC的中点和BD的中点重合,所以有x+2=4+3,y-5=1+7,z+1=3-5所以,x="5," y="13," z=-3,D的坐标为(5,13,-3),故选D。

【考点】本题主要考查空间直角坐标系的概念及两点间距离公式的应用。

点评:本题解法利用了平行四边形的性质,也可利用向量知识。

3.点到坐标平面的距离是A.B.C.D.【答案】C【解析】点在坐标平面的正投影为,所以点到坐标平面的距离是,故选C。

【考点】本题主要考查空间直角坐标系的概念及两点间距离公式的应用。

点评:认识到点在坐标平面的正投影为,结合图形分析。

4.已知点,,三点共线,那么的值分别是A.,4B.1,8C.,-4D.-1,-8【答案】C【解析】因为点,,三点共线,=(3,4,-8),=(x-1,y+2,4),所以,,故选C。

【考点】本题主要考查空间直角坐标系的概念及其应用。

点评:利用空间向量知识,简化解题过程。

5.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是A.B.C.D.【答案】A【解析】依题意,构建正方体。

即求棱长为的正方体对角线长,计算得,故选A。

【考点】本题主要考查空间直角坐标系的概念及其应用。

点评:根据几何体的特征,认识点的坐标。

6.(12分)如图,长方体中,,,,设E为的中点,F为的中点,在给定的空间直角坐标系D-xyz下,试写出A,B,C,D,,,,,E,F各点的坐标.【答案】A(3,0,0),B(3,5,0),C(0,5,0),D(0,0,0);(3,0,3),(3,5,3),(0,5,3),(0,0,3); E();F(,5,)。

平面解析几何初步复习题参考答案

平面解析几何初步复习题参考答案

平面解析几何初步复习题参考答案1.解析:a -2+-2=5,∴a =4或-2.答案:D2.解析:|AB |2=(5-a -1)2+(2a -1-a +4)2=2a 2-2a +25=2(a -12)2+492,所以当a =12时,|AB |取得最小值.答案:123.∵平行四边形的对角线互相平分,∴平行四边形对角线的中点坐标相同.设C 点坐标为C (x ,y ),则⎩⎪⎨⎪⎧0+x 2=2+12=32,0+y 2=0+32=32,∴⎩⎪⎨⎪⎧x =3,y =3,即C (3,3).4. 解析:因为直线AB 的倾斜角为90°,所以直线的斜率不存在,即a =3.又因为A ,B 两点确定一条直线,两点不重合,所以b +1≠2,即b ≠1.答案:D5. 解析:∵直线l 的倾斜角为锐角,∴斜率k =m 2-11-2>0,∴-1<m <1.答案:C6.解析:由斜率公式得k AB =1-11--=0,k BC =3+1-12-1=3,k AC =3+1-12--=33.如图,当斜率k 变化时,直线CD 绕C 点旋转.当直线CD 由CA 逆时针转到CB 时,直线CD 与AB 恒有交点,即D 在线段AB 上,此时k 由k CA 增大到k CB ,∴k 的取值范围为⎣⎢⎡⎦⎥⎤33,3. 7.解:y +1x +1=y --x --的几何意义是过M (x ,y ),N (-1,-1)两点的直线的斜率.∵点M 在函数y =-2x +8的图象上,且x ∈[2,5], ∴设该线段为AB ,且A (2,4),B (5,-2). ∵k NA =53,k NB =-16,∴-16≤y +1x +1≤53.∴y +1x +1的取值范围为[-16,53]. 8.解:设点A (x,0),点B (0,y ),由AB 的中点为P (4,1),可得点A (8,0),点B (0,2).由直线方程的两点式可得y -02-0=x -80-8,整理可得x +4y -8=0.也可利用截距式得x 8+y2=1,即x+4y -8=0.9.解析:考虑到直线的点斜式方程、斜截式方程、截距式方程的适用条件,可知A ,C ,D 都不正确;当直线的两点式方程y -y 1y 2-y 1=x -x 1x 2-x 1化为(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1)时,它就可以表示过任意不同两点P 1(x 1,y 1),P 2(x 2,y 2)的所有直线,故B 正确.10.解析:由题意可知直线的斜率存在,方程可变为y =-ab x -c b ,由题意结合图形有-a b<0,-c b>0⇒ab >0且bc <0.答案:A11.解析:若k 1=k 2,则这两条直线平行或重合,所以①错;当两条直线垂直于x 轴时,两条直线平行,但斜率不存在,所以②错;若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,这两条直线相交,所以③正确;④正确.答案:B12.解析:直线l 与y 轴垂直,则直线l 的斜率为0,直线l 的方程可化为y =-a 2+4a +3a 2+a -6x+8a 2+a -6,所以a 2+4a +3=0,解得a =-1或a =-3.由a 2+a -6≠0,解得a ≠2且a ≠-3,综上可得a =-1.答案:D13.解析:由题意,设直线l 的斜率为k ,则k ²k AB =-1,且直线l 过AB 的中点(1,6).又k AB =7-5-2-4=-13,则k =3,所以直线l 的方程为y -6=3(x -1),即3x -y +3=0.答案:3x -y +3=014. 解:设点A ,C 的坐标分别为A (x 1,y 1)、C (x 2,y 2).∵AB ⊥CE ,k CE =-23,∴k AB =-1k EC =32.∴直线AB 的方程为3x -2y -1=0.由⎩⎪⎨⎪⎧3x 1-2y 1-1=0,2x 1-3y 1+1=0,得A (1,1).∵D 是BC 的中点,∴D (x 2+32,y 2+42).而点C 在直线CE 上,点D 在直线AD 上, ∴⎩⎪⎨⎪⎧2x 2+3y 2-16=0,2²x 2+32-3²y 2+42+1=0.∴C (5,2).|AC |=-2+-2= 17.15.∵A ,B 两点纵坐标不相等,∴AB 与x 轴不平行.∵AB ⊥CD , ∴CD 与x 轴不垂直,-m ≠3,m ≠-3.①当AB 与x 轴垂直时,-m -3=-2m -4,解得m =-1,而m =-1时,点C ,D 纵坐标均为-1,∴CD ∥x 轴,此时AB ⊥CD ,满足题意.②当AB 与x 轴不垂直时,由斜率公式得k AB =4-2-2m -4--m -=2-+,k CD =3m +2-m3--=+m +3.∵AB ⊥CD ,∴k AB ²k CD =-1, 即2-+²+m +3=-1,解得m =1.综上,m 的值为1或-1.16.解:由直线l 与直线y =43x +53垂直,可设直线l 的方程为y =-34x +b .直线l 在x 轴,y 轴上的截距分别为x 0=43b ,y 0=b .又因为直线l 与两坐标轴围成的三角形的面积为24, 所以S =12|x 0||y 0|=24,即12|43b ||b |=24,b 2=36,解得b =6,或b =-6. 故所求直线的方程为y =-34x +6,或y =-34x -6.17.解析:由已知,分析得两直线的交点在x -ay =0上.由⎩⎪⎨⎪⎧x -2y +3=0,2x -y +3=0,得⎩⎪⎨⎪⎧x =-1,y =1,代入x -ay =0,得-1-a =0,即a =-1.18.解析:由平面几何知识易知所求直线与已知直线2x +3y -6=0平行,则可设所求直线方程为2x +3y +C =0.在直线2x +3y -6=0上任取一点(3,0),其关于点(1,-1)的对称点为(-1,-2), 则点(-1,-2)必在所求直线上, ∴2³(-1)+3³(-2)+C =0,C =8. ∴所求直线方程为2x +3y +8=0. 答案:D19.法一:设直线的方程为y -1=k (x +2),即kx -y +2k +1=0.由|-k -2+2k +1|k 2+1=|3k +2k +1|k 2+1,解得k =0,或k =-12.故直线的方程为y =1,或x +2y =0.当直线的斜率不存在时,不存在符合题意的直线l .法二:当l ∥AB 或l 过AB 中点时,满足点A ,B 到l 的距离相等. 若l ∥AB ,由于k AB =-12,则直线l 的方程为x +2y =0. 若l 过AB 的中点N (1,1), 则直线l 的方程为y =1.故直线l 的方程为y =1,或x +2y =0.20. 解:若直线l 的斜率不存在,则l 的方程为x =0,点(1,-3)到l 的距离为1,不满足题意,从而可知直线l 的斜率一定存在,设为k ,则其方程为y =kx -1.由点到直线的距离公式,得|k +3-1|1+k 2=322,解得k =1或k =17.所以直线l 的方程为y =x -1或y =17x -1, 21. 法一:设所求直线的方程为 5x -12y +C =0.在直线5x -12y +6=0上取一点P 0(0,12),则点P 0到直线5x -12y +C =0的距离为|-12³12+C |52+-2=|C -6|13. 由题意,得|C -6|13=2,所以C =32,或C =-20.故所求直线的方程为5x -12y +32=0,或5x -12y -20=0. 法二:设所求直线的方程为5x -12y +C =0, 由两平行直线间的距离公式得2=|C -6|52+-2,解得C =32,或C =-20.故所求直线的方程为5x -12y +32=0,或5x -12y -20=0.22.设点C (x 0,y 0),∵点C 在直线3x -y +3=0上,∴y 0=3x 0+3.∵A (3,2),B (-1,5),∴|AB |=-2+-1-2=5.设C 到AB 的距离为d ,则12d ²|AB |=10,∴d =4.又直线AB 的方程为y -25-2=x -3-1-3,即3x +4y -17=0,∴d =|3x 0+x 0+-17|32+42=|15x 0-5|5=|3x 0-1|=4.∴3x 0-1=±4,解得x 0=-1或53.当x 0=-1时,y 0=0;当x 0=53时,y 0=8.∴C 点坐标为(-1,0)或(53,8).23.解析:a -2+b -2即为(a ,b )到(1,1)的距离,距离最小时即为点(1,1)到直线x +y +1=0的距离,此时d =|1+1+1|12+12=322. 24解析:当AB 最短时,AB 与直线x +y =0垂直.又A (0,1),∴AB :x -y +1=0.联立x +y =0,解得⎩⎪⎨⎪⎧x =-12,y =12,故点B 的坐标为(-12,12).25.解析:由已知可知,l 是过A 且与AB 垂直的直线.∵k AB =2-4-3-3=13,∴k l =-3.由点斜式得y -4=-3(x -3),即3x +y -13=0.答案:C 26.解析:点M 一定在直线x +y -7+52=0,即x +y -6=0上,所以M 到原点距离的最小值为|-6|2=3 2.答案:A27.解析:设点(x ,y )与圆C 1的圆心(-1,1)关于直线x -y -1=0对称,则⎩⎪⎨⎪⎧y -1x +1=-1,x -12-y +12-1=0,解得⎩⎪⎨⎪⎧x =2,y =-2,从而可知圆C 2的圆心坐标为(2,-2).又知其半径为1,故所求圆C 2的方程为(x -2)2+(y +2)2=1.答案:B 28.法一:设圆的标准方程为(x -a )2+(y -b )2=r 2,则⎩⎪⎨⎪⎧2a -b -3=0,-a 2+-b 2=r 2,-a 2+-2-b 2=r 2⇒⎩⎨⎧a=2,b =1,r =10.所以圆的标准方程为(x -2)2+(y -1)2=10.法二:因为圆过A ,B 两点,所以圆心一定在AB 的垂直平分线上,线段AB 的垂直平分线方程为y =-12(x -4),则⎩⎪⎨⎪⎧y =-12x -,2x -y -3=0⇒⎩⎪⎨⎪⎧x =2,y =1,即圆心为(2,1),r =-2+-2=10.所以圆的标准方程为(x -2)2+(y -1)2=10.29.解析:方程可化为 (x -1)2+y 2=-2k -2,只有-2k -2>0,即k <-1时才能表示圆. 答案:A30.解析:直线AB 的方程为x -y +2=0,圆心到直线AB 的距离为d =│1-0+2│2=322.所以,C 到直线AB 的最小距离为322-1,S △ABC 的最小值为12³│AB │³(322-1)=12³22³(322-1)=3- 2. 答案:A31.解:设动点P 的坐标为(x ,y ),根据题意可知AP ⊥OP .当AP 垂直于x 轴时,P 的坐标为(1,0).当x =0时,y =0.当x ≠1且x ≠0时,k AP ²k OP =-1.∵k AP =y -2x -1,k OP =yx, ∴y -2x -1³yx=-1, 即x 2+y 2-x -2y =0(x ≠0,且x ≠1).点(1,0),(0,0)适合上式.综上所述,P 点的轨迹是以(12,1)为圆心,以52为半径的圆.32.解析:由题意知,直线mx -y +1-m =0过定点(1,1).又因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆C 是相交的.答案:A33.解析:当该点是过圆心向直线所引的垂线的垂足时,切线长最小.因圆心(3,0)到直线的距离为d =|3+1|2=22,所以切线长的最小值是l =22-1=7.答案:C34.解:设圆的方程为(x -a )2+(y -b )2=r 2.由已知可知,直线x +2y =0过圆心,则a +2b =0,① 又点A 在圆上,故(2-a )2+(3-b )2=r 2,② ∵直线x -y +1=0与圆相交所得弦长为2 2. ∴(2)2+(a -b +112+-2)2=r 2.③解由①②③所组成的方程组得 ⎩⎪⎨⎪⎧a =6,b =-3,r 2=52或⎩⎪⎨⎪⎧a =14,b =-7,r 2=244.故所求方程为(x -6)2+(y +3)2=52或(x -14)2+(y +7)2=244.35.解析:x 2+y 2=50与x 2+y 2-12x -6y +40=0作差,得两圆公共弦所在的直线方程为2x +y -15=0.圆x 2+y 2=50的圆心(0,0)到2x +y -15=0的距离d =35,因此公共弦长为222-52=2 5.答案:C36.解析:圆C 1:x 2+y 2-8x -4y +11=0,即(x -4)2+(y -2)2=9,圆心为C 1(4,2);圆C 2:x 2+y 2+4x +2y +1=0,即(x +2)2+(y +1)2=4,圆心为C 2(-2,-1).两圆相离,|PQ |的最小值为|C 1C 2|-(r 1+r 2)=35-5.答案:C37.解析:由已知,两个圆的方程作差可以得到公共弦所在的直线方程为y =1a.圆心(0,0)到直线的距离d =⎪⎪⎪⎪⎪⎪1a 1= 22-32=1,解得a =1.答案:138.解析:圆与x 轴,y 轴正半轴的交点为A (1,0),B (0,5),则可知kMA =0,k MB=0-5-1=5,则k ∈(0,5).答案:(0,5)39.解:公共弦所在直线的斜率为23,已知圆的圆心坐标为(0,72),故两圆圆心所在直线的方程为y -72=-32x ,即3x +2y -7=0.设所求圆的方程为x 2+y 2+Dx +Ey +F =0,由⎩⎪⎨⎪⎧-2+32-2D +3E +F =0,12+42+D +4E +F =0,-D 2+-E 2-7=0,解得⎩⎪⎨⎪⎧D =2,E =-10,F =21.所以所求圆的方程为x 2+y 2+2x -10y +21=0.40.解析:点P (3,4,5)与Q (3,-4,-5)两点的x 坐标相同,而y ,z 坐标互为相反数,所以两点关于x 轴对称.答案:A41.解:(1)∵平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF =AB ,AB ⊥BE ,∴BE ⊥平面ABCD .∴AB ,BC ,BE 两两垂直.∴以B 为原点,以BA ,BE ,BC 所在的直线分别作为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系.则M (22a,0,1-22a ),N (22a ,22a,0). 由空间两点间的距离公式, 得|MN |=22a -22a 2+-22a 2+-22a -2= a 2-2a +1=a -222+12. (2)∵|MN |= a -222+12, ∴a =22时,|MN |min =22.。

精选2020高考数学专题训练《平面解析几何初步》完整考试题(含参考答案)

精选2020高考数学专题训练《平面解析几何初步》完整考试题(含参考答案)

2019年高中数学单元测试卷平面解析几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、填空题1.已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且|PA|=|PB|,则点P 的坐标为 ;2.若3条直线2380,10,0x y x y x ky ++=--=+=相交于一点,则实数k =_____3.已知||8,||15==a b ,那么||+a b 的取值范围是__________________4.若原点O 在直线l 射影为点(2,1)M -,则直线l 的方程为____________5.正方形ABCD 的中心为(3,0),AB 所在直线的方程为220x y -+=,则正方形ABCD 的外接圆的方程为 .6.直线20x y +与圆222x y +=相交于,A B 两点,O 为原点,则OA OB ⋅= ★ ;7.设直线l 1、l 2的倾斜角分别为θ1、θ2,斜率分别为k 1、k 2,且θ1+θ2=90°,则k 1+k 2的最小值是 ▲8.若直径为2的半圆上有一点P ,则点P 到直径两端点,A B距离之和的最大值为 ▲ .9.将圆02222=-++y x y x 按向量(1,1)a =-平移得到圆O ,直线l 与圆O 相交于A 、 B 两点,若在圆O 上存在点C ,使0,.OC OA OB OC a l ++==且求直线l 的方程.少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围为11.在平面直角坐标系xOy 中,圆C 的方程为2240x y x +-=.若直线(1)y k x =+上存在一点P ,使过P 所作的圆的两条切线相互垂直,则实数k 的取值范围是 ▲ .12.设集合}16|),{(22≤+=y x y x A ,}1)2(|),{(22-≤-+=a y x y x B ,若A B B =,则实数a 的取值范围为 ▲ . 13.过点()1,2P 作直线l ,使直线l 与点()2,3M 和点()4,5N -的距离相等,则直线l 的方程是 ▲ .14.已知圆m y x =+22与圆0118622=--++y x y x 相内切,则实数m 的值为 .15.平面上有两点(10,0),(10,0)A B -,动点P 在圆周22(3)(4)4x y -+-=上,则使得22AP BP +取得最大值时点P 的坐标是 ▲ .答案 2128,55⎛⎫ ⎪⎝⎭16. 过点()1,2M 的直线l 与圆C :25)4()3(22=-+-y x 交于,A B 两点,点C 为圆心,当ACB ∠最小时,直线l 的方程是 。

高中数学第2章平面解析几何初步 直线的一般式方程同步练习湘教版选择性必修第一册

高中数学第2章平面解析几何初步 直线的一般式方程同步练习湘教版选择性必修第一册

2.2.3 直线的一般式方程A级必备知识基础练1.若ac<0,bc<0,则直线ax+by+c=0的图象只能是()2.点M(x0,y0)是直线Ax+By+C=0上的点,则直线方程可表示为()A.A(x-x0)+B(y-y0)=0B.A(x-x0)-B(y-y0)=0C.B(x-x0)+A(y-y0)=0D.B(x-x0)-A(y-y0)=03.如果方程Ax+By+C=0表示的直线是x轴,则A,B,C满足()A.A·C=0B.B≠0C.B≠0且A=C=0D.A·C=0且B≠04.(2022江苏阜宁中学高二月考)已知直线l经过点(0,1),其倾斜角与直线x-4y+1=0的倾斜角互补,则直线l的方程为()A.x+4y-4=0B.4x+y-1=0C.x+4y+4=0D.4x+y+1=05.(多选题)(2022山东曲阜一中高二月考)关于直线l:x-y-1=0,下列说法正确的有()A.过点(,-2)B.斜率为C.倾斜角为D.在y轴上的截距为16.(多选题)对于直线l:x-my-1=0,下列说法错误的是()A.直线l恒过定点(1,0)B.直线l斜率必定存在C.m=时,直线l的倾斜角为D.m=2时,直线l与两坐标轴围成的三角形面积为7.已知直线l的斜率是直线2x-3y+12=0的斜率的,直线l在y轴上的截距是直线2x-3y+12=0在y轴上的截距的2倍,则直线l的方程为.8.在三角形ABC中,已知点A(4,0),B(-3,4),C(1,2).(1)求BC边上中线的方程;(2)若某一直线过B点,且x轴上截距是y轴上截距的2倍,求该直线的一般式方程.B级关键能力提升练9.若点P(a+b,ab)在第二象限内,则直线bx+ay-ab=0不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.(2022四川外国语大学附属学校高二月考)把直线2x-3y+1=0向左平移2个单位长度后,再向下平移3个单位长度,所得的直线方程为()A.2x-3y+4=0B.2x-3y-12=0C.2x-3y-4=0D.2x-3y+6=011.已知直线l1,l2的方程分别为l1:x+ay+b=0,l2:x+cy+d=0,它们在坐标系中的位置如图所示,则()A.b>0,d<0,a<cB.b>0,d<0,a>cC.b<0,d>0,a>cD.b<0,d>0,a<c12.已知直线Ax+By+C=0的斜率为5,且A-2B+3C=0,则该直线方程为()A.15x-3y-7=0B.15x+3y-7=0C.3x-15y-7=0D.3x+15y-7=013.(多选题)(2022山东巨野实验中学高二月考)已知直线l的方程为ax+by-2=0,则下列判断正确的是()A.若ab>0,则直线l的斜率小于0B.若b=0,a≠0,则直线l的倾斜角为90°C.直线l可能经过坐标原点D.若a=0,b≠0,则直线l的倾斜角为0°14.已知△ABC的三个顶点都在第一象限内,A(1,1),B(5,1),∠A=,∠B=,则直线AC的一般式方程为,BC的一般式方程为.15.设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若直线l在两坐标轴上的截距相等,求直线l的方程;(2)若直线l不经过第二象限,求实数a的取值范围.C级学科素养创新练16.(2022江西九江高二期中)已知直线a1x+b1y+1=0和直线a2x+b2y+1=0都过点A(3,2),则过点P1(a1,b1)和点P2(a2,b2)的直线方程是()A.3x+2y-1=0B.2x+3y+1=0C.3x-2y+1=0D.3x+2y+1=017.若kxy-x+6y-3=0表示两条直线,则实数k的值为()A.3B.2C.1D.0参考答案2.2.3直线的一般式方程1.C由ac<0,bc<0,得abc2>0,所以ab>0,则该直线的斜率k=-<0,故排除B,D;又与y轴的截距为->0,故排除A.故选C.2.A由点M(x0,y0)在直线上得Ax0+By0+C=0,得C=-Ax0-By0,将C代入直线方程Ax+By+C=0,得A(x-x0)+B(y-y0)=0.故选A.3.C Ax+By+C=0表示的直线是x轴,直线可化为y=0,则系数A,B,C满足的条件是B≠0且A=C=0.故选C.4.A因为直线l的倾斜角与直线x-4y+1=0的倾斜角互补,且直线x-4y+1=0的斜率为,所以直线l的斜率为-.又直线l过点(0,1),所以直线l的方程为y-1=-x,即x+4y-4=0.故选A.5.BC当x=时,-y-1=0,解得y=2,所以直线l不经过点(,-2),故选项A错误; 由题得y=x-1,所以直线l的斜率为,故选项B正确;由B知直线l的斜率为,又倾斜角的取值范围是0≤α<π,所以直线l的倾斜角为,故选项C 正确;当x=0时,得y=-1,所以直线l在y轴上的截距为-1,故选项D错误.故选BC.6.BC由直线方程可化为x-1=my,因此直线l恒过定点(1,0),故A正确;当m=0时,直线l斜率不存在,故B错误;m=时,有y=(x-1),即直线l的斜率为,则直线l的倾斜角为θ=,故C错误;m=2时,直线l:x=2y+1,则直线l与x轴,y轴的交点坐标分别为(1,0),0,-,所以直线l 与两坐标轴围成的三角形面积为,故D正确.故选B C.7.x-3y+24=0由2x-3y+12=0知,该直线斜率为,在y轴上截距为4,则直线l的斜率为,在y 轴上截距为8,所以直线l的方程为y=x+8,整理得x-3y+24=0.8.解(1)线段BC中点为M(-1,3),所以直线AM的方程为,整理得3x+5y-12=0.故BC边上中线的方程为3x+5y-12=0.(2)当直线过坐标原点时,设所求直线方程为y=kx,将点B的坐标代入直线方程可得-3k=4,解得k=-,故所求直线方程为y=-x,即4x+3y=0;当直线不过坐标原点,设直线方程为=1(b≠0),将点B代入直线方程得-=1,即=1,解得b=.此时,所求直线方程为=1,即x+2y-5=0.综上所述,所求直线方程为4x+3y=0或x+2y-5=0.9.A由题意可得a+b<0,ab>0,因此,a,b均为负数.由直线的方程bx+ay-ab=0可得直线的斜率k=-<0,在y轴上的截距为-=b<0,故直线不经过第一象限.故选A.10.C将直线向左平移2个单位长度,可得2(x+2)-3y+1=2x-3y+5=0,再向下平移3个单位长度,可得2x-3(y+3)+5=2x-3y-4=0,因此所求直线方程为2x-3y-4=0.故选C.11.C由题图,可知直线l1的斜率大于0,其在y轴上的截距小于0,所以解得直线l2的斜率大于0,其在y轴上的截距大于0,所以解得又直线l1的斜率大于直线l2的斜率,即->->0,所以a>c.故选C.12.A∵直线Ax+By+C=0的斜率为5,∴-=5,即A=-5B.又A-2B+3C=0,∴-5B-2B+3C=0,∴C=,则直线Ax+By+C=0可化为-5Bx+By+=0,即5x-y-=0,整理得15x-3y-7=0.故选A.13.ABD对于A选项,若ab>0,则直线l的斜率-<0,故A正确;对于B选项,若b=0,a≠0,则直线l的方程为x=,其倾斜角为90°,故B正确;对于C选项,将(0,0)代入ax+by-2=0中,显然不成立,故C错误;对于D选项,若a=0,b≠0,则直线l的方程为y=,其倾斜角为0°,故D正确.故选ABD.14.x-y=0x+y-6=0由题意知,直线AC的倾斜角为∠A=,所以k AC=tan=1.又直线AC过点A(1,1),所以直线AC的方程为y-1=1×(x-1),整理得x-y=0.同理可知,直线BC的倾斜角为π-∠B=,所以k BC=tan=-1.又直线BC过点B(5,1),所以直线BC的方程为y-1=-1×(x-5),整理得x+y-6=0.15.解(1)若直线与两坐标轴的截距为零,则2-a=0,解得a=2,因此直线l的方程为3x+y=0.若a+1=0,解得a=-1,整理得y+3=0,不符合题意,舍去.若a≠-1且a≠2,原方程化为=1,令=a-2,即为a+1=1,解得a=0,可得直线l的方程为x+y+2=0.综上所述,直线l的方程为x+y+2=0或3x+y=0.(2)将直线的一般式方程化为斜截式,得y=-(a+1)x+a-2.∵直线l不经过第二象限,∴解得a≤-1.∴实数a的取值范围是(-∞,-1].16.D(方法1)∵直线a1x+b1y+1=0和直线a2x+b2y+1=0都过点A(3,2),∴3a1+2b1+1=0,且3a2+2b2+1=0.∴过点P1(a1,b1)和点P2(a2,b2)的直线方程是3x+2y+1=0,故选D.(方法2)3a1+2b1+1=0,且3a2+2b2+1=0两式相减可得3(a1-a2)+2(b1-b2)=0,由题意a1≠a2,因此k==-,所以直线的方程为y-b1=-(x-a1),即2y+3x-(3a1+2b1)=0,结合3a1+2b1+1=0可知过点P1(a1,b1)和点P2(a2,b2)的直线方程是3x+2y+1=0.故选D.17.B∵kxy-x+6y-3=0表示两条直线,则令kxy-x+6y-3=(ax+b)(cy+d)=acxy+adx+bcy+bd,其中,abcd≠0,∴k=ac,ad=-1,bc=6,bd=-3,∴b=,c==-2d,a=-,∴k=ac=×(-2d)=2.故选B.。

高中数学第2章平面解析几何初步-两条直线平行与垂直的判定同步练习湘教版选择性必修第一册

高中数学第2章平面解析几何初步-两条直线平行与垂直的判定同步练习湘教版选择性必修第一册

2.3 两条直线的位置关系2.3.1 两条直线平行与垂直的判定A级必备知识基础练1.下列各组直线中,互相垂直的一组是()A.2x-3y-5=0与4x-6y-5=0B.2x-3y-5=0与4x+6y+5=0C.2x+3y-6=0与3x-2y+6=0D.2x+3y-6=0与2x-3y-6=02.(多选题)下列各直线中,与直线2x-y-3=0平行的是()A.2ax-ay+6=0(a≠0,a≠-2)B.y=2xC.2x-y+5=0D.2x+y-3=03.(多选题)(2022山东五莲高二期中)已知直线l:x-2y-2=0,()A.直线x-2y-1=0与直线l平行B.直线x-2y+1=0与直线l平行C.直线x+2y-1=0与直线l垂直D.直线2x+y-2=0与直线l垂直4.(2022四川成都七中高二入学测试)已知A(3,1),B(1,-2),C(1,1),则过点C且与线段AB平行的直线方程为()A.3x+2y-5=0B.3x-2y-1=0C.2x-3y+1=0D.2x+3y-5=05.如果直线l1的斜率为a,l1⊥l2,则直线l2的斜率为()A. B.aC.-D.-或不存在6.(2022河北唐山五十九中高二月考)已知△ABC三个顶点坐标分别为A(-2,-4),B(6,6),C(0,6),则AB边上的高所在直线的斜率为.7.若直线l1,l2的斜率是一元二次方程x2-7x+t=0的两根,若直线l1,l2垂直,则t= .8.在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(1,2),B(n-1,3),C(-1,3-n).(1)若∠A是直角,求实数n的值;(2)求过坐标原点,且与△ABC的高AD垂直的直线l的方程.B级关键能力提升练9.已知点M(1,-2),N(m,2),若线段MN的垂直平分线的方程是+y=1,则实数m的值是()A.-2B.-7C.3D.110.(2022广州大学附属中学高二月考)已知直线l1过点A(-2,m)和点B(m,4),直线l2为2x+y-1=0,直线l3为x+ny+1=0.若l1∥l2,l2⊥l3,则实数m+n的值为()A.-10B.-2C.0D.811.(多选题)(2022山东济南山师附中高二期中)已知直线l1:x+my-1=0,l2:(m-2)x+3y+1=0,则下列说法正确的是()A.若l1∥l2,则m=-1或m=3B.若l1∥l2,则m=-1C.若l1⊥l2,则m=-D.若l1⊥l2,则m=12.(多选题)(2022湖北荆州高二期末)已知直线l1:3x+y-3=0,直线l2:6x+my+1=0,则下列表述正确的有()A.直线l2的斜率为-B.若直线l1垂直于直线l2,则实数m=-18C.直线l1倾斜角的正切值为3D.若直线l1平行于直线l2,则实数m=213.点M(1,2)在直线l上的射影是H(-1,4),则直线l的方程为,线段MH的垂直平分线的方程为.14.已知A(1,0),B(3,2),C(0,4),点D满足AB⊥CD,且AD∥BC,试求点D的坐标.15.若△ABC的顶点A的坐标为(2,3),三角形其中两条高所在的直线方程为x-2y+3=0和x+y-4=0,试求此三角形的边AB,AC所在直线的方程.C级学科素养创新练16.已知直线l1:x cos2α+y+2=0,若l1⊥l2,则直线l2的倾斜角的取值范围是()A. B.C. D.17.(多选题)(2022河北高二学情监测)已知直线l1:x sin α+y=0与直线l2:x+3y+c=0,则下列结论中正确的是()A.直线l1与直线l2可能相交B.直线l1与直线l2可能重合C.直线l1与直线l2可能垂直D.直线l1与直线l2可能平行参考答案2.3两条直线的位置关系2.3.1两条直线平行与垂直的判定1.C对于A,k1k2=≠-1,因此l1与l2不垂直;对于B,k1k2==-≠-1,因此l1与l2不垂直;对于C,k1k2==-1,因此l1⊥l2;对于D,k1k2==-≠-1,因此l1与l2不垂直.故选C.2.ABC与直线2x-y-3=0平行的直线都可以化为2x-y+m=0(m≠-3)的形式,因此选项A,B,C符合,故选ABC.3.ABD直线l:x-2y-2=0的斜率k=,在y轴上截距为-1.对于A,直线x-2y-1=0的斜率为,在y轴上截距为-,∴直线x-2y-1=0与直线l平行,故A正确;对于B,直线x-2y+1=0的斜率为,在y轴上截距为,∴直线x-2y+1=0与直线l平行,故B正确;对于C,直线x+2y-1=0的斜率为-,∴直线x+2y-1=0与直线l不垂直,故C错误;对于D,直线2x+y-2=0的斜率为-2,∴直线2x+y-2=0与直线l垂直,故D正确.故选ABD.4.B由题可知,k AB=,则过点C且与线段AB平行的直线的斜率为.又该直线过点(1,1),则该直线方程为y-1=(x-1),整理得3x-2y-1=0.5.D当a≠0时,由l1⊥l2得k1·k2=a·k2=-1,解得k2=-;当a=0时,l1与x轴平行或重合,则l2与y 轴平行或重合,故直线l2的斜率不存在.故直线l2的斜率为-或不存在.6.-由题可得k AB=.设AB边上高线的斜率为k,则k·k AB=-1,即k·=-1,解得k=-.所以AB边上的高所在直线的斜率为-.7.-1设直线l1,l2的斜率分别是k1,k2.因为k1,k2是一元二次方程x2-7x+t=0的两根,则k1·k2=t.又直线l1,l2垂直,所以k1·k2=-1.故可得t=-1.8.解(1)当n=2时,∠A不是直角,不合题意;当n≠2时,∵∠A是直角,∴k AB·k AC=-1,即=-1,解得n=.综上所述,实数n的值为.(2)∵直线l与△ABC的高AD垂直,∴直线l与直线BC平行或重合.∵B,C不重合,∴n≠0,∴直线l的斜率k=k BC==1,又直线l过坐标原点,∴直线l的方程为x-y=0.9.C由题知直线+y=1的斜率为-,则直线MN的斜率为2,即k MN==2,解得m=3.10.A由题意可得直线l1,l2,l3的斜率存在,分别设为k1,k2,k3.因为l1∥l2,所以k1=k2,即=-2,解得m=-8.因为l2⊥l3,所以k2·k3=-1,即(-2)×-=-1,解得n=-2.所以m+n=-8+(-2)=-10.故选A.11.AD若l1∥l2,则1×3-m(m-2)=0,解得m=3或m=-1,故A正确,B不正确;若l1⊥l2,则1×(m-2)+m×3=0,解得m=,故C不正确,D正确.故选AD.12.BD当m=0时,直线l2的斜率不存在,故A错误;当直线l1垂直于直线l2,则有3×6+1×m=0,解得m=-18,故B正确;由题知,直线l1的斜率为-3,故倾斜角的正切值为-3,故C错误;当直线l1平行于直线l2,则-3=-,且3≠-,解得m=2,故D正确.故选BD.13.x-y+5=0x-y+3=0由题得,k MH==-1.又点M在直线l上的射影是点H,则直线l与直线MH垂直,所以直线l的斜率为k=1.故直线l的方程为y-4=x+1,整理得x-y+5=0.由于线段MH的垂直平分线过MH的中点.由题知,线段MH的中点为(0,3),且垂直平分线的斜率等于直线l的斜率,所以垂直平分线的方程为y-3=x,整理得x-y+3=0.14.解设D(x,y),则k AB==1,k BC==-,k CD=,k DA=.因为AB⊥CD,AD∥BC,所以k AB·k CD=-1,k DA=k BC,即解得故点D的坐标为(10,-6).15.解因为点A的坐标不满足所给的两条高所在直线的方程,所以所给的两条直线方程是过顶点B,C的高所在直线的方程.又所给两条直线的斜率分别为,-1,若k AB=-2,则k AC=1,则直线AB的方程为y-3=-2(x-2),整理得2x+y-7=0,直线AC的方程为y-3=x-2,整理得x-y+1=0.同理,若k AC=-2,则k AB=1,则直线AC的方程为2x+y-7=0,直线AB的方程为x-y+1=0.16.C当cos2α≠0时,k1=-.∵l1⊥l2,∴k1·k2=-1,∴k2=.∵0<cos2α≤1,∴k2=.设l2的倾斜角为θ,θ∈[0,π),则tanθ≥,∴≤θ<;当cos2α=0时,直线l1的斜率为0,倾斜角为0.∵l1⊥l2,∴l2的倾斜角θ=.综上,直线l2的倾斜角的取值范围为.故选C.17.ABD由题知,直线l1:x sinα+y=0的斜率为k1=-sinα,过定点(0,0),直线l2:x+3y+c=0斜率为k2=-,过点(-c,0).若直线l1与直线l2相交,则sinα≠,而-1≤sinα≤1,即sinα≠成立,故选项A正确;若直线l1与直线l2重合,则c=0,且sinα=,而-1≤sinα≤1,故选项B正确;若直线l1与直线l2垂直,则k1k2=sinα=-1,则sinα=-3,与-1≤sinα≤1矛盾,则直线l1与直线l2不可能垂直,故选项C错误;若直线l1与直线l2平行,则sinα=且c≠0,而-1≤sinα≤1,可以有sinα=,故选项D正确.故选ABD.。

高中数学第二章平面解析几何初步2.4.2空间两点的距离公式练习(含解析)新人教B版必修2

高中数学第二章平面解析几何初步2.4.2空间两点的距离公式练习(含解析)新人教B版必修2

对应学生用书P75知识点一空间两点间的距离高中数学第二章平面解析几何初步2.4.2空间两点的距离公式练习(含解析)新人教B版必修21.在空间直角坐标系中,点A(3,2,-5)到x轴的距离d等于( )A.32+22 B.22+-52C.32+-52 D.32+22+-52答案 B解析过点A作AB⊥x轴于点B,则B(3,0,0),所以点A到x轴的距离d=|AB|=22+-52.2.如图,在空间直角坐标系中,有一棱长为a的正方体ABCO-A′B′C′O′,则A′C 的中点E与AB的中点F的距离为( )A.2aB.22aC.aD.12a答案 B解析A′(a,0,a),C(0,a,0),点E的坐标为a2,a2,a2,而F⎝⎛⎭⎪⎫a,a2,0,∴|EF|=a24+02+a24=22a,故选B.知识点二空间两点间距离公式的应用3.点P(x ,y ,z)满足x -12+y -12+z +12=2,则点P 在( )A .以点(1,1,-1)为球心,以2为半径的球面上 B .以点(1,1,-1)为中心,以2为棱长的正方体内 C .以点(1,1,-1)为球心,以2为半径的球面上 D .以上都不正确 答案 C 解析x -12+y -12+z +12表示P(x ,y ,z)到点M(1,1,-1)的距离,即|PM|=2为定值.故点P 在以点(1,1,-1)为球心,以2为半径的球面上.4.如图所示,PA ,AB ,AD 两两垂直,四边形ABCD 为矩形,M ,N 分别为AB ,PC 的中点.求证:MN⊥AB.证明 如图所示,以A 为坐标原点,分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A(0,0,0),设B(a ,0,0),D(0,b ,0),C(a ,b ,0),P(0,0,c),连接AN .因为M ,N 分别是AB ,PC 的中点,所以M ⎝ ⎛⎭⎪⎫a 2,0,0,N ⎝ ⎛⎭⎪⎫a 2,b 2,c 2,则|AM|2=a 24,|MN|2=b 2+c 24,|AN|2=a 2+b 2+c24,所以|AN|2=|MN|2+|AM|2,所以MN⊥AB.对应学生用书P75一、选择题1.在空间直角坐标系中,一定点P 到三个坐标轴的距离都是1,则该点到原点的距离是( )A .62 B . 3 C .32 D .63答案 A解析 如图所示,在正方体OABC -O 1A 1B 1C 1中,设正方体的棱长为a(a >0),则点P 在顶点B 1处,建立分别以OA ,OC ,OO 1所在直线为x 轴,y 轴,z 轴的空间直角坐标系,则点P 的坐标为(a ,a ,a),由题意得a 2+a 2=1,∴a 2=12,∴|OP|=3a 2=3×12=62. 2.与两点A(3,4,5),B(-2,3,0)距离相等的点M(x ,y ,z)满足的条件是( ) A .10x +2y +10z -37=0 B .5x -y +5z -37=0 C .10x -y +10z +37=0 D .10x -2y +10z +37=0 答案 A解析 由|MA|=|MB|,即(x -3)2+(y -4)2+(z -5)2=(x +2)2+(y -3)2+z 2,化简得10x +2y +10z -37=0,故选A .3.到定点(1,0,0)的距离小于或等于2的点的集合是( ) A .{(x ,y ,z)|(x -1)2+y 2+z 2≤2} B .{(x ,y ,z)|(x -1)2+y 2+z 2≤4} C .{(x ,y ,z)|(x -1)2+y 2+z 2≥4}D .{(x ,y ,z)|x 2+y 2+z 2≤4} 答案 B解析 由空间两点间的距离公式可得,点P(x ,y ,z)到定点(1,0,0)的距离应满足x -12+y 2+z 2≤2,即(x -1)2+y 2+z 2≤4.4.△ABC 的顶点坐标是A(3,1,1),B(-5,2,1),C ⎝ ⎛⎭⎪⎫-83,2,3,则它在yOz 平面上射影的面积是( )A .4B .3C .2D .1 答案 D解析 △ABC 的顶点在yOz 平面上的射影点的坐标分别为A′(0,1,1),B′(0,2,1),C′(0,2,3),∵|A′B′|=0-02+1-22+1-12=1,|B′C′|=0-02+2-22+3-12=2, |A′C′|=0-02+2-12+3-12=5,∴|A′B′|2+|B′C′|2=|A′C′|2,∴△ABC 在yOz 平面上的射影△A′B′C′是一个直角三角形,它的面积为1.5.已知A(x ,5-x ,2x -1),B(1,x +2,2-x),当|AB|取最小值时,x 的值为( ) A .19 B .-87 C .87 D .1914答案 C 解析 |AB|=x -12+3-2x2+3x -32=14x 2-32x +19=14⎝ ⎛⎭⎪⎫x -872+57, ∴当x =87时,|AB|最小.二、填空题6.在空间直角坐标系中,设A(m ,1,3),B(1,-1,1),且|AB|=22,则m =________. 答案 1 解析 |AB|=m -12+[1--1]2+3-12=22,解得m =1.7.已知点P 32,52,z 到线段AB 中点的距离为3,其中A(3,5,-7),B(-2,4,3),则z =________.答案 0或-4解析 由中点坐标公式,得线段AB 中点的坐标为12,92,-2.又点P 到线段AB 中点的距离为3,所以32-122+52-922+[z--2]2=3,解得z=0或-4.8.点B(3,0,0)是点A(m,2,5)在x轴上的射影,则点A到原点的距离为________.答案4 2解析由点B(3,0,0)是点A(m,2,5)在x轴上的射影,得m=3,所以点A到原点的距离为d=32+22+52=32=42.三、解答题9.如图所示,直三棱柱ABC-A1B1C1中,|C1C|=|CB|=|CA|=2,AC⊥CB,D,E,F分别是棱AB,B1C1,AC的中点,求|DE|,|EF|.解以点C为坐标原点,CA,CB,CC1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.∵|CC1|=|CB|=|CA|=2,∴C(0,0,0),A(2,0,0),B(0,2,0),C1(0,0,2),B1(0,2,2),由空间直角坐标系中的中点坐标公式可得D(1,1,0),E(0,1,2),F(1,0,0),∴|DE|=1-02+1-12+0-22=5,|EF|=0-12+1-02+2-02=6.10.如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD,ABEF互相垂直.点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<2),(1)求MN的长;(2)当a为何值时,MN的长最小.解由于平面ABCD、ABEF互相垂直,其交线为AB,且CB⊥AB,所以CB⊥平面ABEF,故以B为原点O,BC所在直线为z轴正半轴,BA所在直线为x轴正半轴,BE所在直线为y轴正半轴,建立空间直角坐标系.由于N点在对角线BF上,且BN=a,N点到x轴和到y轴的距离相等,所以N点坐标为2 2a,22a,0.同理M点的坐标为M22a,0,1-22a.于是:(1)MN=22a-22a2+22a-02+22a-12=a-222+12,0<a<2.(2)由(1)知MN=a-222+12,故当a=22时,MN有最小值,且最小值为22.。

高中数学第二章平面解析几何初步2.2.4点到直线的距离练习(含解析)新人教B版必修2

高中数学第二章平面解析几何初步2.2.4点到直线的距离练习(含解析)新人教B版必修2

对应学生用书P59【知识点一点到直线的距离高中数学第二章平面解析几何初步点到直线的距离练习(含解析)新人教B 版必修21.若点(1,a)到直线x -y +1=0的距离是322,则实数a 为( ) A .-1 B .5,C .-1或5D .-3或3 答案 C解析 由点到直线的距离公式得|1-a +1|2=322,∴a =-1或5.2.已知两点A(3,2)和B(-1,4)到直线mx +y +3=0的距离相等,则m 为( );A .0或-12B .12或-6 C .-12或12 D .0或12 答案 B解析 由题意知直线mx +y +3=0与AB 平行或过AB 的中点,则有-m =4-2-1-3或m×3-12+2+42+3=0,∴m =12或m =-6.{知识点二两平行线间的距离…A .1110B .85C .157D .45 答案 A解析 由两直线平行,得m =6,所以mx -8y +5=0可化成3x -4y +52=0,因此两条平行线间的距离d =⎪⎪⎪⎪-3-5232+42=1110,故选A .4.已知直线l 与两直线l 1:2x -y +3=0和l 2:2x -y -1=0平行且距离相等,则l 的方程为________.答案 2x -y +1=0.解析 设所求的直线方程为2x -y +c =0(c≠3,c≠-1),分别在l 1:2x -y +3=0和l 2:2x -y -1=0上取点A(0,3)和B(0,-1),则此两点到2x -y +c =0的距离相等,即|-3+c|22+-12=|1+c|22+-12,解得c =1,故直线l 的方程为2x -y +1=0.】知识点三距离公式的综合应用5.已知点P(m ,n)是直线2x +y +5=0上任意一点,则m 2+n 2的最小值为________. 答案5,解析 因为m 2+n 2是点P(m ,n)与原点O 间的距离,所以根据直线的性质,原点O 到直线2x +y +5=0的距离就是m 2+n 2的最小值.根据点到直线的距离公式可得d =522+12=5.故答案为5.6.已知直线l 1:x +y -1=0,现将直线l 1向上平移到l 2的位置,若l 1,l 2和两坐标轴围成的梯形的面积为4,求直线l 2的方程(如图).解 ∵l 1∥l 2,可设l 2的方程为x +y -m =0. l 2与x 轴,y 轴分别交于B ,C , [l 1与x 轴,y 轴分别交于A ,D ,得A(1,0),D(0,1),B(m,0),C(0,m).∵l2在l1的上方,∴m>1.∵S梯形ABCD=S△OBC-S△AOD,∴4=12m2-12,解得m=3或m=-3(舍去).)故所求直线的方程为x+y-3=0.~对应学生用书P59一、选择题,1.到直线3x-4y-1=0的距离为2的点的轨迹方程是()A.3x-4y-11=0B.3x-4y+11=0C.3x-4y-11=0或3x-4y+9=0D.3x-4y+11=0或3x-4y+9=0:答案C解析到直线3x-4y-1=0的距离为2的点的轨迹是与3x-4y-1=0平行的直线,设直线方程为3x-4y+C=0,则|C+1|32+-42=2,∴C=9或C=-11.2.点P(x,y)在直线x+y-4=0上,则x2+y2的最小值是() A.8 B.2 2 C. 2 D.16答案A-解析由题知所求即为原点到直线x+y-4=0的距离的平方,即0+0-4212+12=162=8.故选A .3.若动点A(x 1,y 1),B(x 2,y 2)分别在直线l 1:x +y -11=0和l 2:x +y -1=0上移动,则AB 中点M 所在直线的方程为( )A .x -y -6=0B .x +y +6=0C .x -y +6=0D .x +y -6=0答案 D ·解析 由题意,得点M 所在的直线与直线l 1,l 2平行,所以设为x +y +n =0,此直线到直线l 1和l 2的距离相等,所以|n +11|2=|n +1|2,解得n =-6,所以所求直线的方程为x +y-6=0.故选D .4.若直线l 1:y =k(x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A .(0,4) B .(0,2) C .(-2,4) D .(4,-2) 答案 B(解析 由于直线l 1:y =k(x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l 1:y =k(x -4)与直线l 2关于点(2,1)对称,∴直线l 2恒过定点(0,2).5.若动点A(x 1,y 1),B(x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点距离的最小值为( )A .3 2B .2C . 2D .4 答案 A解析 由题意,知点M 在直线l 1与l 2之间且与两直线距离相等的直线上,设该直线方程为x +y +c =0,则|c +7|2=|c +5|2,即c =-6,∴点M 在直线x +y -6=0上,∴点M 到原点的距离的最小值就是原点到直线x +y -6=0的距离,即|-6|2=32.、二、填空题6.如果已知两点O(0,0),A(4,-1)到直线mx +m 2y +6=0的距离相等,那么m 可取不同实数值的个数为________.答案 3解析 解方程6m 2+m 4=|4m -m 2+6|m 2+m 4(m≠0),得m =6或m =-2或m =4.7.直线l 在x 轴上的截距为1,又点A(-2,-1),B(4,5)到l 的距离相等,则l 的方程为________.\答案 x -y -1=0或x =1解析 显然l ⊥x 轴时符合要求,此时l 的方程为x =1.设l 的斜率为k ,则l 的方程为y =k(x -1),即kx -y -k =0.∵点A ,B 到l 的距离相等, ∴|-2k +1-k|k 2+1=|4k -5-k|k 2+1,∴|1-3k|=|3k -5|,∴k =1,∴l 的方程为x -y -1=0.:8.已知平面上一点M(5,0),若直线上存在点P 使|PM|=4,则称该直线为“切割型直线”.下列直线是“切割型直线”的有________.①y =x +1 ②y =2 ③y =43x ④y =2x +1 答案 ②③解析 可通过求各直线上的点到点M 的最小距离,即点M 到直线的距离d 来分析.①d =5+12=32>4,故直线上不存在点到点M 的距离等于4,不是“切割型直线”;②d =2<4,所以在直线上可以找到两个不同的点,使之到点M 的距离等于4,是“切割型直线”;③d =2032+42=4,直线上存在一点,使之到点M 的距离等于4,是“切割型直线”;④d =115=1155>4,故直线上不存在点到点M 的距离等于4,不是“切割型直线”.故填②③.三、解答题:9.已知直线l 1:ax +by +1=0(a ,b 不同时为0),l 2:(a -2)x +y +a =0. (1)若b =0且l 1⊥l 2,求实数a 的值;(2)当b =3且l 1∥l 2时,求直线l 1与l 2间的距离.解 (1)当b =0时,l 1:ax +1=0,由l 1⊥l 2知a -2=0,解得a =2. (2)当b =3时,l 1:ax +3y +1=0, .当l 1∥l 2时,联立⎩⎪⎨⎪⎧a -3a -2=0,3a -1≠0,解得a =3,此时,l 1的方程为3x +3y +1=0,l 2的方程为x +y +3=0,即3x +3y +9=0,则 它们之间的距离为d =|9-1|32+32=423. 10.过点M(2,4)作两条互相垂直的直线,分别交x ,y 轴的正半轴于点A ,B ,若四边形OAMB 的面积被直线AB 平分,求直线AB 的方程.解 设直线AB 的方程为x a +yb =1(a>0,b>0), ∴A(a ,0),B(0,b). ∵MA ⊥MB ,∴(a -2)×(-2)+(-4)×(b -4)=0, 即a =10-2b .∵a>0,b>0,∴0<b<5,0<a<10.∵直线AB 的一般式方程为bx +ay -ab =0, ∴点M 到直线AB 的距离d =|2b +4a -ab|a 2+b 2.∴△MAB 的面积S 1=12d|AB|=12|2b +4a -ab|=|b 2-8b +20|=b 2-8b +20, △OAB 的面积S 2=12ab =5b -b 2. ∵直线AB 平分四边形OAMB 的面积, ∴S 1=S 2,可得2b 2-13b +20=0,解得⎩⎪⎨⎪⎧b =4,a =2或⎩⎪⎨⎪⎧b =52,a =5.∴所求直线AB 的方程为x +2y -5=0或2x +y -4=0.。

2022_2023学年高中数学第2章平面解析几何初步-圆与圆的位置关系同步练习湘教版选择性必修第一册

2022_2023学年高中数学第2章平面解析几何初步-圆与圆的位置关系同步练习湘教版选择性必修第一册

2.6.2 圆与圆的位置关系A级必备知识基础练1.(2022甘肃庆阳宁县期末)已知圆C1:x2+y2=1和C2:x2+y2-5x+4=0,则两圆的位置关系是( )A.内切B.相交C.外切D.相离2.若圆C1:(x+1)2+y2=2与圆C2:x2+y2-4x+6y+m=0内切,则实数m=( )A.-8B.-19C.-5D.63.圆心在直线x-y-4=0上,且经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点的圆的方程为( )A.x2+y2-x+7y-32=0B.x2+y2-x+7y-16=0C.x2+y2-4x+4y+9=0D.x2+y2-4x+4y-8=04.(2022四川广安高二期末)设圆C1:(x-1)2+(y-1)2=9和圆C2:(x+2)2+(y+1)2=4交于A,B两点,则线段AB的垂直平分线所在直线的方程为( )A.3x-2y-1=0B.2x-3y+1=0C.2x+3y-1=0D.3x+2y+4=05.若圆C:x2+(y-4)2=18与圆D:(x-1)2+(y-1)2=R2的公共弦长为6,则圆D的半径为( )A.5B.2C.2D.26.(多选题)已知圆C:x2-2ax+y2+a2-1=0与圆D:x2+y2=4有且仅有两条公共切线,则实数a的取值可以是( )A.-3B.3C.2D.-27.已知圆(x-a)2+y2=4与圆x2+y2=25没有公共点,则正数a的取值范围为 .B级关键能力提升练8.(2022安徽宣城高二期末)已知圆A:x2+y2-2x-4y-4=0,圆B:x2+y2+2x+2y-2=0,则两圆的公切线的条数是( )A.1条B.2条C.3条D.4条9.(2022广西北海高二期末)已知半径为2的圆M与圆x2+y2=5外切于点P(1,2),则点M的坐标为( )A.(-6,3)B.(3,6)C.(-3,-6)D.(6,3)10.若直线l与圆C1:(x+1)2+y2=1,圆C2:(x-1)2+y2=4都相切,切点分别为A,B,则|AB|=( )A.1B.C. D.211.(2022江苏常州三中等六校高二联考)已知圆O1:x2+y2-2x-3=0与圆O2:x2+y2-4x+2y+3=0相交于点A,B,则四边形AO1BO2的面积是( )A.1B.2C.3D.412.(多选题)(2022山东泰安宁阳高二期末)点P在圆C1:x2+y2=1上,点Q在圆C2:x2+y2-6x+8y+24=0上,则( )A.|PQ|的最小值为0B.|PQ|的最大值为7C.两个圆心所在的直线斜率为-D.两个圆相交弦所在直线的方程为6x-8y-25=013.(多选题)已知圆O:x2+y2=4和圆M:x2+y2+4x-2y+4=0相交于A,B两点,则( )A.直线AB的方程为y=2x+2B.两圆有两条公切线C.线段AB的长为D.圆O上点E,圆M上点F,则|EF|的最大值为+314.(2022河北张家口高二期中)若圆O1:x2+y2=5与圆O2:(x+m)2+y2=20(m>0)相交于A,B两点,且两圆在点A处的切线互相垂直,则AB的直线方程为 .15.(2022吉林长春二十九中等校期末)已知圆C1:x2+y2+2x=0,圆C2:x2+y2-2x-2y-2=0,点C1,C2分别为两圆的圆心.(1)求圆C1和圆C2的公共弦长;(2)过点C1的直线l交圆C2于A,B两点,且AB=,求直线l的方程.C级学科素养创新练16.在平面直角坐标系中,已知点A(2,0),B(0,2),圆C:(x-a)2+y2=1,若圆C上存在点M,使得|MA| 2+|MB|2=12,则实数a的取值范围为( )A.[1,1+2]B.[1-2,1+2]C.[1,1+2]D.[1-,1+]17.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别为圆C1,C2上的点,P为x轴上的动点,求|PM|+|PN|的最小值.参考答案2.6.2 圆与圆的位置关系1.C 根据题意,圆C1:x2+y2=1,其圆心为C1(0,0),半径为r=1,C2:x2+y2-5x+4=0,整理得+y2=,其圆心为C2,半径为R=,两圆的圆心距为|C1C2|=.又R+r=,故两圆外切.故选C.2.B 由题意得C1(-1,0),C2(2,-3),r1=,r2=,则|C1C2|==3.根据两圆内切得|C1C2|==3,解得m=-19.故选B.3.A 设所求圆的方程为(x2+y2+6x-4)+λ(x2+y2+6y-28)=0,变形可得(1+λ)x2+(1+λ)y2+6x+6λy-4-28λ=0,其圆心的坐标为.又由圆心在直线x-y-4=0上,则有-4=0,解得λ=-7.则圆的方程为(-6)x2+(-6)y2+6x-42y+192=0,即x2+y2-x+7y-32=0.故选A.4.B 由题得,圆心C1的坐标为(1,1),圆心C2的坐标为(-2,-1),两圆相交于A,B两点,则线段AB的垂直平分线所在直线就是直线C1C2.因为C1(1,1),C2(-2,-1),所以其斜率k=.则直线C1C2的方程为y-1=(x-1),即2x-3y+1=0.故选B.5.D 由圆C:x2+(y-4)2=18与圆D:(x-1)2+(y-1)2=R2,可得两圆公共弦所在直线的方程为2x-6y=4-R2.又由圆C的方程为x2+(y-4)2=18,其圆心的坐标为(0,4),半径r=3,两圆的公共弦长为6,则点C(0,4)在直线2x-6y=4-R2上,则有2×0-6×4=4-R2,解得R2=28,则圆D的半径为2.故选D.6.CD 根据题意,圆C:x2-2ax+y2+a2-1=0,即(x-a)2+y2=1,其圆心为(a,0),半径为R=1,圆D:x2+y2=4,其圆心的坐标为D(0,0),半径为r=2.若两个圆有且仅有两条公共切线,则两圆相交,则有2-1<|a|<2+1,即1<|a|<3,解得-3<a<-1或1<a<3,结合选项可知符合条件的是2,-2,故选CD.7.(0,3)∪(7,+∞) 根据题意,圆(x-a)2+y2=4的圆心的坐标为(a,0),半径为R=2,圆x2+y2=25圆心的坐标为(0,0),半径r=5,则两圆的圆心距d=|a|=a.若两个圆没有公共点,则有a>R+r=7或a<R-r=3,即正数a的取值范围为(0,3)∪(7,+∞).8.B 根据题意,圆A:x2+y2-2x-4y-4=0,即(x-1)2+(y-2)2=9,其圆心A(1,2),半径R=3,圆B:x2+y2+2x+2y-2=0,即(x+1)2+(y+1)2=4,其圆心B(-1,-1),半径r=2,则圆心距|AB|=.因为3-2<<3+2,则两圆相交,故两圆有2条公切线.故选B.9.B 设圆M的圆心坐标为M(a,b).因为圆x2+y2=5的圆心为O(0,0),半径r=.由圆M与圆x2+y2=5外切于点P(1,2),得M,P,O三点共线,且|OM|=3,即解得(不合题意,舍去)所以点M的坐标为(3,6).故选B.10.C 如图所示,设直线l交x轴于点M.由于直线l与圆C1:(x+1)2+y2=1,圆C2:(x-1)2+y2=4都相切,切点分别为A,B,则AC1⊥l,BC2⊥l,∴AC1∥BC2.∵|BC2|=2=2|AC1|,由中位线定理得C1为线段MC2的中点,则A为线段BM的中点,∴|MC1|=|C1C2|=2.由勾股定理可得|AB|=|MA|=.故选C.11.B 由题得,O1(1,0),O2(2,-1),所以|O1O2|=,圆O1的半径为2.圆O1:x2+y2-2x-3=0与圆O2:x2+y2-4x+2y+3=0相交于点A,B,直线AB的方程为2x-2y-6=0,整理得x-y-3=0.点O1到直线AB的距离为,则|AB|=2=2.因为O1O2⊥AB,所以四边形AO1BO2的面积为|AB||O1O2|=×2=2.故选B.12.BC 根据题意,圆C1:x2+y2=1,其圆心的坐标为C1(0,0),半径R=1.圆C2:x2+y2-6x+8y+24=0,即(x-3)2+(y+4)2=1,其圆心的坐标为C2(3,-4),半径r=1,则两圆的圆心距为|C1C2|==5,即圆C1与圆C2外离,则|PO|的最小值为|C1C2|-R-r=3,最大值为|C1C2| +R+r=7,故A错误,B正确;圆心C1(0,0),圆心C2(3,-4),则两个圆心所在的直线斜率k==-,故C正确;两圆圆心距|C1C2|=5,有|C1C2|>R+r=2,两圆外离,不存在公共弦,D错误.故选BC.13.BD 圆O:x2+y2=4和圆M:x2+y2+4x-2y+4=0作差得4x-2y+4=-4,整理得y=2x+4,即直线AB的方程为y=2x+4,故A错误;因为两圆相交于A,B两点,则两圆有两条公切线,故B正确;圆O:x2+y2=4的圆心O(0,0),半径为2,则圆心O到直线AB的距离d=,故AB=2,故C错误;圆M:x2+y2+4x-2y+4=0的圆心为M(-2,1),半径为1,|OM|=,则|EF|的最大值为|MO|+1+2=+3,故D正确.故选BD.14.x=-1 根据题意,圆O1:x2+y2=5,其圆心O1(0,0),半径r=,圆O2:(x+m)2+y2=20,其圆心O2(-m,0),半径R=2.若两圆在交点A处的切线互相垂直,则O1A⊥O2A,则有|O1O2|2=R2+r2,即m2=5+20=25,则m=5.故圆O2的方程为(x+5)2+y2=20,即x2+y2+10x+5=0.联立得方程组①-②,得-10x-10=0,整理得x+1=0,即x=-1,故公共弦AB所在的直线方程为x=-1.15.解(1)由题知,圆C1:x2+y2+2x=0,圆C2:x2+y2-2x-2y-2=0,两式相减可得公共弦所在的直线为2x+y+1=0.圆C1的圆心为(-1,0),半径为1,则圆心到直线的距离d=,故圆C1和圆C2的公共弦长=2.(2)圆C2的圆心为(1,1),半径为2,圆心到直线l的距离为.设直线l的方程为y=k(x+1),即kx-y+k=0,则,解得k=1或.故直线l的方程为y=x+1或y=(x+1).16.B 设M(x,y),∵|MA|2+|MB|2=12,∴(x-2)2+y2+x2+(y-2)2=12,∴(x-1)2+(y-1)2=4.∵圆C上存在点M,满足|MA|2+|MB|2=12,∴两圆相交或相切.∴1≤≤3,∴1-2≤a≤1+2.故选B.17.解由圆C1:(x-2)2+(y-3)2=1知圆C1的圆心坐标为(2,3),半径为1,由圆C2:(x-3)2+(y-4)2=9,知圆C2的圆心坐标为(3,4),半径为3.如图所示,设点C1关于x轴的对称点为C3,则C3(2,-3),且|PM| +|PN|≥|PC1|-1+|PC2|-3=|PC3|-1+|PC2|-3≥|C2C3|-4.而|C2C3|==5,所以|PM|+|PN|≥5-4,即|PM|+|PN|的最小值为5-4.。

解析几何试题及答案

解析几何试题及答案

《解析几何初步》检测试题命题人 周宗让一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( )A 、12B 、12-C 、13D 、13-3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( )A .21B .21-C .2 D .2-4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1)5.直线02032=+-=+-y x y x 关于直线对称的直线方程是( ) A .032=+-y xB .032=--y xC .210x y ++=D .210x y +-=6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( )A .0,4B .0,2C .2,4 D .4,27.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为31,则m ,n 的值分别为A.4和3B.-4和3C.- 4和-3D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是() A 相切B 直线过圆心C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是()A.(x -2)2+(y+3)2=12B.(x -2)2+(y+3)2=2C.(x +2)2+(y -3)2=12D.(x +2)2+(y -3)2=210.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242x y -++=的切线,则此切线段的长度为( ) A.2 B .32C .12D.2 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则弦AB 所在直线方程为() A .50x y --= B .50x y -+= C .50x y ++=D .50x y +-=12.直线3y kx =+与圆()()22324x y -+-=相交于M,N 两点,若MN ≥则k 的取值围是( )A.304⎡⎤-⎢⎥⎣⎦,B.[]304⎡⎤-∞-+∞⎢⎥⎣⎦,, C.33⎡-⎢⎣⎦, D.203⎡⎤-⎢⎥⎣⎦,二填空题:(本大题共4小题,每小题4分,共16分.)13.已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的值最小时,点P 的坐标是。

(完整版)平面解析几何初步单元测试卷及答案

(完整版)平面解析几何初步单元测试卷及答案

《平面解析几何初步》单元测试卷一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共12小题,每小题5分,共60分).1.(原创)已知点1)A -,(1,2B ,则直线AB 的倾斜角为( ) A .6πB .3πC .56pD .23π1. 【答案】D ,【解析】因为直线AB 的斜率为AB k =AB 的倾斜角为23π,选D. 2.(原创)若直线10x my -+=经过圆C :22220x y x y +-+=的圆心,则实数m 的值为( ) A .0 B .2 C .-2 D .-12.【答案】C ,【解析】因为圆C :22220x y x y +-+=的圆心为(1,-1),所以直线10x my -+=过点(1,-1),所以2m =-,选C.2.(原创)圆22(2)1x y +-=的圆心到直线10x x +-=的距离为( )A B .1C D .2.【答案】A,【解析】直线的直角方程为10x x +-=,所以圆心(0,2)2=,选A.3.(原创)若关于x 、y 的方程组40(21)30ax y a x y ì--=ïïíï-++=ïî无实数解,则实数a 的值为( )A .13B .1C . -13D .-1 3.【答案】A ,【解析】由已知得直线40ax y --=与直线(21)30a x y -++=平行,所以12a a =-,解得13a =,选A.4.(原创)当a 为任意实数时,直线(1)10a x y a ++-+=恒过定点M ,则以M 为圆心,半径为1的圆的方程为( ) A .2220x y x y ++-=B .2220x y x y +-+=C .222440x y x y ++--= D .222440x y x y +-+-=4.【答案】D ,【解析】直线的方程(1)10a x y a ++-+=可变形为()()110a x x y -+++=,令1010x x y -=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即定点M (1,-2),所以圆的方程为()()22121x y -++=,即222440x y x y +-+-=,选D.5.(原创)已知直线1l 与直线2:l 4310x y --=垂直,且与圆C :2220x y x ++=相切,则直线1l 的方程是( )A.3480x y ++=B.3480x y ++=或3420x y +-=C.3480x y -+=D.3480x y -+=或3420x y --=5.【答案】B ,【解析】由于直线1l 与直线2:l 4310x y --=垂直,于是可设直线1l 的方程为340x y m ++=,由圆C :2220x y x ++=的圆心坐标为(-1,0),半径为1,所以|3|15m -=,解得2m =-或8m =,选B.6.(原创)与圆1C :224x y +=和圆2C :228690x y x y +-++=都相切的直线共有( )A.1条B.2条C.3条D.4条6.【答案】C ,【解析】圆2C 的方程化为标准式为22(4)(3)16x y -++=,所以两圆心间的距离为22435d =+=,且12122||56r r d r r =-<=<+=,所以两圆相交,故与两圆都相切的直线共有3条,选C.8.(原创)已知动点(,)A a b 在直线4360x y --=上,则222a b a ++的最小值为( ) A.4 B.3 C.2 D.1 8.【答案】B ,【解析】因为()22222222(1)1(1)1a b a a b a b++=++-=++-,其中22(1)a b ++表示直线上的动点(,)A a b 到定点B (-1,0)的距离,其最小值为点B (-1,0)到直线22b a +可以看成是原点到直线4360x y --=的距离,即()22min(1)a b ++=224(1)306234⨯-+⨯-=+,所以222a b a ++的最小值为3,故选B.9.过圆外一点作圆的两条切线,切点分别为,则的外接圆方程是( )A .B .C .D .9.【答案】A ,【解析】根据题意,过圆外一点作圆的两条切线,切点分别为,设直线PA :y-2=k(x-4),利用圆心到直线的距离为半径2,可知圆心与点P 的中点为圆心(2,1),半径为OP 距离的一半,即为5,故选A.9.已知直线:,若以点为圆心的圆与直线相切于点,且在轴上,则该圆的方程为( ) A . B . C .D .9.【答案】A ,【解析】 由题意,又直线与圆相切于点,,且直线的倾斜角为,所以点的坐标为,,于是所求圆的方程为,故选A.9.若直线y x b =+与曲线234y x x =--有公共点,则b 的取值范围是( ) A.[122-,122+] B.[12-,3] C.[-1,122+] D.[122-,3];224x y +=(4,2)P ,A B ABP ∆22(2)(1)5x y -+-=22(2)4x y +-=22(2)(1)5x y +++=22(4)(2)1x y -+-=224x y +=(4,2)P ,A B l y x m =+()m ∈R (2,0)M l P P y 22(2)8x y -+=22(2)8x y ++=22(2)8x y +-=22(2)8x y ++=(0,)P m l P MP l ⊥45oP (0,2)||22MP =u u u r 22(2)8x y -+=9.【答案】D ,【解析】由曲线3y =2,3)为圆心,半径为2的半圆,故直线y x b =+与之有公共点介于图中两直线之间,求得直线与半圆相切时221-=b ,直线过点(0,3)时有一个交点.故选D.9.(原创)已知圆22:21C x y x +-=,直线:(1)1l y k x =-+,则直线l 与圆C 的位置关系是( )A .一定相离B .一定相切C .相交且一定不过圆心D .相交且可能过圆心9.【答案】C ,【解析】圆的标准方程为22(1)2x y -+=,圆心为(1,0),半径为.直线:(1)1l y k x =-+恒过定点(1,1),圆心到定点(1,1)的距离1d =<(1,1)在圆内,所以直线和圆相交.定点(1,1)和圆心(1,0)都在直线1x =上,且直线的斜率k 存在,所以直线一定不过圆心,选C.二、填空题(本大题共4各小题,每小题5分,共20分)13.(原创)若直线l 的倾斜角为135︒,在x 轴上的截距为,则直线l 的一般式方程为 . 13.【答案】10x y ++=,【解析】直线的斜率为tan1351k ==-o ,所以满足条件的直线方程为(1)y x =-+,即10x y ++=.14.(原创)直线210x y -+=与直线04=++b y ax 关于点(2,1)P 对称,则a b +=_______.14.【答案】0,【解析】由于两直线关于点(2,1)P 对称,两直线平行,故142a -=,解得2a =-;由直线210x y -+=上的点A (-1,0)关于点(2,1)P 的对称点(5,2)在直线04=++b y ax 上,所以280a b ++=,解得2b =.故a b +=0.15.已知直线:340l x y m ++=平分圆22221410740x y x y m n +-++--=的面积,且直线l 与圆222450x y x y n +--+-=相切,则m n += .15.【答案】3,【解析】根据题意,由于直线:340l x y m ++=平分圆22221410740x y x y m n +-++--=的面积,即可知圆心(7,-5)在直线:340l x y m ++=上,即m=1-.同时利用直线l 与圆222450x y x y n +--+-=相切,可得圆心(1,2)到直线l 的距离等于圆的半径,即d4n ∴=,所以m n +=3.16.(原创)设圆的切线与轴正半轴,轴正半轴分别交于点,当取最小值时,切线在轴上的截距为 .1-22(1)1x y +-=l x y ,A B AB l y16.,解析:设直线与坐标轴的交点分别为,,显然,.则直线:,依题意:,即,所以,所以,设,则 .设,则,,,又,故当时,单调递减;当时,单调递增;所以当,时,有最小值. 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共70分)17.(本小题10分)(原创)已知圆C 过两点M (2,0)和N (0,4),且圆心在直线30x y +-=上. ⑴求圆C 的方程;⑵已知过点(2,5)的直线l 被圆C 截得的弦长为4,求直线l 的方程.17.【解析】⑴由题可知,圆心C 落在线段MN 的垂直平分线上,且直线MN 垂直平分线方程为230x y -+=,于是解方程组30230x y x y ì+-=ïïíï-+=ïî,可得圆心C 的坐标为(1,2),且圆的半径为r =MC=C 的方程为22(1)(2)5x y -+-=.⑵因为圆心C 的坐标为(1,2)所以圆心到直线的距离为1d =.当直线l 的斜率不存在时,其方程为2x =,满足题意;当直线l 的斜率存在时,设直线方程为5(2)y k x -=-,即520kx y k -+-=,由1d =,解得43k =,此时方程为45(2)3y x -=-,即4370x y -+=.综上可得,直线l 的方程为20x -=或4370x y -+=.18.已知圆M:与轴相切。

平面解析几何初步复习题

平面解析几何初步复习题

平面解析几何初步复习题(共7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--平面解析几何初步复习题平面直角坐标系中的基本公式1.已知A(1,2),B(a,6),且|AB|=5,则a的值为()A.4 B.-4或2 C.-2 D.-2或42.已知点A(5,2a-1),B(a+1,a-4),则当|AB|取得最小值时,实数a等于________.3.已知平行四边形ABCD的三个顶点坐标分别为A(0,0),B(2,0),D(1,3),求顶点C的坐标.直线的方程4.已知A(a,2),B(3,b+1),且直线AB的倾斜角为90°,则a,b的值为()A.a=3,b=1 B.a=2,b=2C.a=2,b=3 D.a=3,b∈R且b≠15.经过两点A(2,1),B(1,m2)的直线l的倾斜角为锐角,则m的取值范围是() A.(-∞,1) B.(-1,+∞)C.(-1,1) D.(-∞,-1)∪(1,+∞) 6.△ABC的顶点坐标分别为A(-1,1),B(1,1),C(2,3+1).若D为△ABC的边AB 上一动点,则直线CD的斜率k的取值范围是________.7.点M(x,y)在函数y=-2x+8的图象上,当x∈[2,5]时,则y+1x+1的取值范围是________.8.已知直线与x轴、y轴分别交于A,B两点,且线段AB的中点为P(4,1),求直线l的方程.9.下列四个结论中正确的是()A.经过定点P1(x1,y1)的直线都可以用方程y-y1=k(x-x1)表示B.经过任意不同两点P1(x1,y1),P2(x2,y2)的直线都可以用方程(x2-x1)(y-y1)=(y2-y1)(x-x1)表示C.不过原点的直线都可以用方程xa+yb=1表示D.经过点A(0,b)的直线都可以用方程y=kx+b表示10.直线ax+by+c=0同时经过第一、第二、第四象限,则a,b,c应满足() A.ab>0,bc<0 B.ab<0,bc<0C.ab>0,bc>0 D.ab<0,bc>011.下列说法正确的有()①若两条直线的斜率相等,则这两条直线平行;②若l1∥l2,则k1=k2;③若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线相交;④若两条直线的斜率都不存在且两直线不重合,则这两条直线平行.A.1个B.2个 C.3个D.4个12.直线l:(a2+4a+3)x+(a2+a-6)y-8=0与y轴垂直,则实数a的值是() A.-3 B.-1或-3C.2 D.-113.点A(4,5)关于直线l的对称点为B(-2,7),则直线l的方程为________.14.如图,△ABC的顶点B(3,4),AB边上的高CE所在直线方程为2x+3y-16=0,BC 边上的中线AD所在直线方程为2x-3y+1=0,求边AC的长.15.已知点A(-m-3,2),B(-2m-4,4),C(-m,m),D(3,3m+2),若直线AB ⊥CD,求m的值.16.求与直线y=43x+53垂直,并且与两坐标轴围成的三角形的面积为24的直线l的方程.17.两条直线x-2y+3=0和2x-y+3=0关于直线x-ay=0对称,则实数a =()A.1 B.-1C.-2 D.218.与直线2x+3y-6=0关于点(1,-1)对称的直线方程是 ()A.3x-2y+2=0 B.2x+3y+7=0C.3x-2y-12=0 D.2x+3y+8=019.求过点M(-2,1),且与A(-1,2),B(3,0)两点距离相等的直线的方程.20.已知直线l过点(0,-1),且点(1,-3)到l的距离为322,求直线l的方程,并求出坐标原点到直线l的距离.21.求与直线l:5x-12y+6=0平行且与l的距离为2的直线方程.22.已知在△ABC中,A(3,2),B(-1,5),C点在直线3x-y+3=0上.若△ABC 的面积为10,求C点坐标.23.若点P(a,b)为直线x+y+1=0上任一点,则a-12+b-12的最小值为________.24.已知定点A(0,1),点B在直线x+y=0上运动.当线段AB最短时,点B的坐标是________.25.直线l过点A(3,4)且与点B(-3,2)的距离最远,那么l的方程为() A.3x-y-13=0 B.3x-y+13=0C.3x+y-13=0 D.3x+y+13=026.若动点A(x1,y1),B(x2,y2)分别在直线l1:x+y-7=0和l2:x+y-5=0上移动,则AB中点M到原点距离的最小值为()A.3 2 B.2 3 C.3 3 D.42圆的方程27.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为()A.(x+2)2+(y-2)2=1 B.(x-2)2+(y+2)2=1C.(x+2)2+(y+2)2=1 D.(x-2)2+(y-2)2=128.求圆心在直线2x-y-3=0上,且过点A(5,2),B(3,-2)的圆的标准方程.29.已知方程x2+y2-2x+2k+3=0表示圆,则k的取值范围是()A.(-∞,-1) B.(3,+∞)C.(-∞,-1)∪(3,+∞) D.(-32,+∞)30.已知两点A(-2,0),B(0,2),点C是圆x2+y2-2x=0上任意一点,则△ABC的面积最小值是()A.3- 2 B.3+ 2 C.3-2 231.已知圆O的方程为x2+y2=9,求过点A(1,2)的圆的弦的中点P的轨迹.32.直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是A.相交B.相切 C.相离D.不确定33.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为() A.1 B.2 2 D.334.设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且圆与直线x-y+1=0相交的弦长为22,求圆的方程.35.圆x2+y2=50与圆x2+y2-12x-6y+40=0的公共弦长为()C.2 5 D.2636.点P在圆C1:x2+y2-8x-4y+11=0上,点Q在圆C2:x2+y2+4x+2y+1=0上,则|PQ|的最小值是()A.5 B.1 C.35-5 D.35+537.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为23,则a=________. 38.若过定点M(-1,0)且斜率为k的直线与圆x2+4x+y2-5=0在第一象限有交点,则k 的取值范围为________.39.求与已知圆x2+y2-7y+10=0相交,所得公共弦平行于已知直线2x-3y-1=0,且过点(-2,3),(1,4)的圆的方程.空间直角坐标系40.在空间直角坐标系中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是()A.关于x轴对称 B.关于xOy平面对称 C.关于坐标原点对称 D.以上都不对41.如图,已知正方形ABCD、正方形ABEF的边长都是1,而且平面ABCD与平面ABEF 互相垂直,点M在AC上移动,点N在BF上移动.设CM=BN=a(0<a<2).(1)求MN的长;(2)a为何值时,MN的长最小。

平面解析几何初步(含有详解答案)

平面解析几何初步(含有详解答案)

平面解析几何初步一、单项选择1. 经过两点(341-,)、(3521-,)的直线的方程是( )A .123=-+y xB .123=+-y xC .123=+y x D .2.123=-+-y x 2. 已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 的值是 ( )A. 1或3B.1或5C.3或5D.1或2 3. 点(1, 1-)到直线x y -+1=0的距离是( )A.0.5B.1.5C.22 D.2234. 圆0222222=-++y x y x 关于( ) A. 直线2=x 成轴对称 B. 直线x y -=成轴对称C. 点)2,2(-成中心对称D. 点)0,2(-成中心对称 5. 已知直线2x+y-2=0和mx-y+1=0的夹角为4π,则m 值为( )A.31-或-3 B.-3或31C.-3或3D.31或36. 已知圆x 2+y 2+2x-6y+F=0与x+2y-5=0交于A, B 两点, O 为坐标原点, 若OA ⊥OB, 则F的值为( )A .0B .1C .-1D .2 7. 直线10x y ++=被圆221x y +=所截得的弦长为 ( )A .12B .1C D8. 若直线062:1=++y ax l 与直线0)1()1(:22=-+-+a y a x l 平行,则实数a =( ) A .32B .1-C .2D .1-,或29. 下列直线中与直线210x y ++=垂直的一条是( ) A .210x y --=B .210x y -+=C .210x y ++=D .1102x y +-=10. 若直线2320620tx y x ty ++=+-=与直线平行,则实数t 等于( )A .1122-或 B .12C .12-D .1411. 曲线c bx x y ++=2在点))(,(00x f x P 处切线的倾斜角的取值范围为]4,0[π,则点P 到该曲线对称轴距离的取值范围为A. ]1,0[B. ]21,0[ C. ]2||,0[b D. ]2|1|,0[-b12. 已知一圆的圆心为点(2,3)-,一条直径的两个端点分别在x 轴和y 轴上,则此圆的方程是( )A.22(2)(3)13x y -++=B.22(2)(3)13x y ++-=C.22(2)(3)52x y -++=D.22(2)(3)52x y ++-=二、填空题13. 已知点(,)P x y 在直线40x y +-=上,O 是原点,则O P 的最小值是__________. 14. 若圆2221:240C x y m x m +-+-=与圆2222:24480C x y x m y m ++-+-=相离,则m 的取值范围是 .15. 若直线1y kx =+与||y x =的一个交点为11,22⎛⎫⎪⎝⎭,则它们的另一个交点的坐标是_____.16. 由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0,,60A B APB ∠=,则动点P 的轨迹方程为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面解析几何初步测试题
一、选择题:(包括12个小题,每题5分,共60分)
1.已知直线l 过(1,2),(1,3),则直线l 的斜率( )
A. 等于0
B. 等于1
C. 等于21
D. 不存在
2. 若)0,(),4,9(),2,3(x C B A --三点共线,则x 的值是( )
A .1
B .-1
C .0
D .7
3. 已知A (x 1,y 1)、B (x 2,y 2)两点的连线平行y 轴,则|AB|=( )
A 、|x 1-x 2|
B 、|y 1-y 2|
C 、 x 2-x 1
D 、 y 2-y 1
4. 若0ac >,且0bc <,直线0ax by c ++=不通过( )
A.第三象限 B.第一象限
C.第四象限 D.第二象限
5. 经过两点(3,9)、(-1,1)的直线在x 轴上的截距为( )
A .23
- B .32- C .32
D .2
6.直线2x-y=7与直线3x+2y-7=0的交点是( )
A (3,-1)
B (-1,3)
C (-3,-1)
D (3,1)
7.满足下列条件的1l 与2l ,其中12l l //的是( )
(1)1l 的斜率为2,2l 过点(12)A ,,(48)B ,;
(2)1l 经过点(33)P ,,(53)Q -,,2l 平行于x 轴,但不经过P ,Q 两点;
(3)1l 经过点(10)M -,,(52)N --,,2l 经过点(43)R -,,(05)S ,.
A.(1)(2) B.(2)(3)
C.(1)(3) D.(1)(2)(3)
8.已知直线01:1=++ay x l 与直线221
:2+=x y l 垂直,则a 的值是(
) A 2 B -2 C .21
D .21
-
9. 下列直线中,与直线10x y +-=的相交的是
A 、226x y +=
B 、0x y +=
C 、3y x =--
D 、1
y x =-
10. 已知()2,1P -是圆()22125x y -+=的弦A B 的中点,则弦A B 所在的直线的方程是
A 、30x y --=
B 、10x y +-=
C 、230x y +-= 3
D 、250x y --=
11.圆x 2+2x+y 2+4y-3=0上到直线x+y+1=0的距离是2的点共有( )
A.1个
B.2个
C.3个
D.4个
12. 圆2286160x y x y +-++=与圆2264x y +=的位置关系是 ( )
A .相交
B .相离
C . 内切
D .外切
二、填空题:(4个小题,每题4分,共16分)
13.当a+b+c=0时,直线ax+by+c=0必过定点_______
14. 若A B C △面积等于3,且(11)A ,,(36)B ,,则C 所在直线方程为 .
15.直线y =x +b 与曲线x =1-y 2
有且仅有一个公共点,则b 的取值范围是 .
16.已知圆1)1()1(22=-+-y x 和圆外一点p(2,3),则过点 p 的圆的切线方程为
三、解答题(74分)
17.已知直线l 经过直线3420x y +-=与直线220x y ++=的交点P ,且垂直于直线
210x y --=. (1)求直线l 的方程;
(2)求直线l 与两坐标轴围成的三角形的面积S .
18. 已知三角形ABC 的顶点坐标为A (-1,5)、B (-2,-1)、C (4,3),M 是BC 边上的中点。

(1)求AB 边所在的直线方程;(2)求中线AM 的长.
19.已知,圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.
(1)当a 为何值时,直线l 与圆C 相切;
(2)当直线l 与圆C 相交于A 、B 两点,且AB =22时,求直线l 的方程.
20.已知圆C:1)2()3(22=-+-y x 和圆外一点A (-2,3),一条光线从A 射出经X 轴反射后与圆C 相切,求反射光线方程。

21. 已知圆C:25)2()1(22=-+-y x ,
直线l :047)1()12(=--+++m y m x m
(1)求证:直线l 过定点;
(2)判断该直线与圆的位置关系;
(3)当m 为何值时,直线l 被圆C 截得的弦最短。

22.O 为坐标原点,圆C:0622=+-++m y x y x 与直线01=-+y x 的两交点为A,B,当m 为何值时,OA ⊥OB.。

相关文档
最新文档