《平面解析几何》复习试卷及答案解析
高考数学压轴专题(易错题)备战高考《平面解析几何》难题汇编及答案解析
【高中数学】数学《平面解析几何》复习知识要点一、选择题1.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F = )A .2213x y +=B .22132x y +=C .22196x y +=D .221129x y +=【答案】C 【解析】 【分析】利用椭圆的性质,根据4AB =,12F F =c =22 4b a=,求解a ,b 然后推出椭圆方程. 【详解】椭圆2222 10x y a b a b +=>>()的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F =c =,22 4b a=,222c a b =-,解得3a =,b =,所以所求椭圆方程为:22196x y +=,故选C .【点睛】本题主要考查椭圆的简单性质的应用,椭圆方程的求法,是基本知识的考查.2.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C 于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A B .2C D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得AF =u u u v【详解】根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以()2212112AF n u u u v =-+=+=故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.3.已知直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,直线l 经过2:2(0)C y px p =>的焦点,M 为C 上的一个动点,若点N 的坐标为()4,0,则MN 的最小值为( ) A .3B 3C .2D .22【答案】A 【解析】 【分析】联立直线与抛物线方程利用弦长公式列方程,结合直线过抛物线的焦点,解方程可得2p =,再利用两点的距离公式,结合二次函数配方法即可得结果.【详解】 由22224(42)02y x b x b p x b y px=+⎧⇒+-+=⎨=⎩, 121222,24b p b x x x x +=-=-,因为直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,125x =-,所以()22222512424b p b ⎡⎤-⎛⎫=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(1) 又直线l 经过C 的焦点,则,22b pb p -=∴=- (2)由(1)(2)解得2p =,故抛物线方程为24y x =.设()20000,,4M x y y x ∴=.则()()()2222200000||444212MN x y x x x =-+=-+=-+,故当02x =时,min ||MN = 故选:A. 【点睛】本题主要考查直线与抛物线的位置关系,考查了弦长公式以及配方法的应用,意在考查综合应用所学知识解答问题的能力,属于中档题.4.设抛物线E :26y x =的弦AB 过焦点F ,||3||AF BF =,过A ,B 分别作E 的准线的垂线,垂足分别是A ',B ',则四边形AA B B ''的面积等于( )A .B .C .D .【答案】C 【解析】 【分析】由抛物线的方程可得焦点坐标及准线方程,设直线AB 的方程,与抛物线联立求出两根之和及两根之积,进而求出弦长AB ,由抛物线的性质可得梯形的上下底之和求出,求出A ,B 的纵坐标之差的绝对值,代入梯形的面积公式即可求出梯形的面积. 【详解】解:由抛物线的方程 可得焦点3(2F ,0),准线方程:32x =-,由题意可得直线AB 的斜率存在且不为0,设直线AB 的方程为:32x my =+,1(A x ,1)y ,2(B x ,2)y ,联立直线与抛物线的方程:2326x my y x⎧=+⎪⎨⎪=⎩,整理可得:2690y my --=,所以126y y m +=,129y y =-,21212()363x x m y y m +=++=+,因为||3||AF BF =,所以3AF FB =uu u r uu r,即13(2x -,123)3(2y x -=-,2)y ,可得:123y y =-, 所以可得:2222639y m y -=⎧⎨-=-⎩即213m =, 由抛物线的性质可得: 21233166668223AA BB AB x x m ''+==+++=+=+=g , 221212121||()436363636433y y y y y y m -=+-=+=+=g ,由题意可知,四边形AA B B ''为直角梯形,所以1211()||84316322AA B B S AA BB y y ''''=+-==gg g , 故选:C .【点睛】本题考查抛物线的性质及直线与抛物线的相交弦长,梯形的面积公式,属于中档题.5.已知抛物线C :212y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,FA 为半径的圆交C 的准线于B ,D 两点,且A ,F ,B 三点共线,则AF =( )A .16B .10C .12D .8【答案】C 【解析】 【分析】根据题意可知AD BD ⊥,利用抛物线的定义,可得30ABD ∠=︒,所以||||2612AF BF ==⨯=.解:因为A ,F ,B 三点共线,所以AB 为圆F 的直径,AD BD ⊥. 由抛物线定义知1||||||2AD AF AB ==,所以30ABD ∠=︒.因为F 到准线的距离为6, 所以||||2612AF BF ==⨯=. 故选:C .【点睛】本题考查抛物线的性质,抛物线的定义,考查转化思想,属于中档题.6.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( ) A .①③ B .②④ C .①②③ D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x yx y +=联立解得222x y ==可判断①③;由图可判断④.()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当222x y ==时取等号),则②正确; 将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点()2,2,()2,2-,()2,2--,()2,2-,则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.7.已知直线()0y kx k =≠与双曲线()222210,0x y a b a b-=>>交于,A B 两点,以AB 为直径的圆恰好经过双曲线的右焦点F ,若ABF ∆的面积为24a ,则双曲线的离心率为 A .2 B .3C .2D .5【答案】D 【解析】 【分析】通过双曲线和圆的对称性,将ABF ∆的面积转化为FBF ∆'的面积;利用焦点三角形面积公式可以建立a 与b 的关系,从而推导出离心率. 【详解】由题意可得图像如下图所示:F '为双曲线的左焦点AB Q 为圆的直径 90AFB ∴∠=o根据双曲线、圆的对称性可知:四边形AFBF '为矩形12ABF AFBF FBF S S S ''∆∆∴== 又2224tan 45FBF b S b a ∆'===o,可得:225c a = 25e ∴= 5e ⇒=本题正确选项:D 【点睛】本题考查双曲线的离心率求解,离心率问题的求解关键在于构造出关于,a c 的齐次方程,从而配凑出离心率的形式.8.如图,设椭圆E :22221(0)x y a b a b+=>>的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆E 于点C ,若直线BF 平分线段AC 于M ,则椭圆E 的离心率是( ) A .12B .23C .13D .14【答案】C 【解析】如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线, 于是△OFM ∽△AFB ,且OF OM 1FAAB2==, 即c c a -=12可得e=c a =13. 故答案为13. 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.9.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.10.已知双曲线2222:1(0,0)x y C a b a b-=>>,点()00,P x y 是直线40bx ay a -+=上任意一点,若圆()()22001x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率取值范围是( ). A .(]1,2 B .(]1,4 C .[)2,+∞ D .[)4,+∞ 【答案】B 【解析】 【分析】先求出双曲线的渐近线方程,可得则直线bx ay 2a 0-+=与直线bx ay 0-=的距离d ,根据圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,可得d 1≥,解得即可. 【详解】由题意,双曲线2222x y C :1(a 0,b 0)a b-=>>的一条渐近线方程为b y x a =,即bx ay 0-=,∵()00P x ,y 是直线bx ay 4a 0-+=上任意一点,则直线bx ay 4a 0-+=与直线bx ay 0-=的距离224a 4a d ca b ==+, ∵圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,则d 1≥, ∴41a c ≥,即4ce a=≤,又1e > 故e 的取值范围为(]1,4, 故选:B . 【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线C 的右支没有公共点得出d 1≥是解答的关键,着重考查了推理与运算能力,属于基础题.11.若函数1()ln (0,0)a a f x x a b b b+=-->>的图象在x =1处的切线与圆x 2+y 2=1相切,则a +b 的最大值是( ) A .4 B .2 C .2 D . 【答案】D 【解析】()1ln (0,0)a a f x x a b b b+=-->>,所以()'a f x bx =-,则f ′(1)=-ab为切线的斜率, 切点为(1,-1a b+), 所以切线方程为y +1a b +=-ab(x -1), 整理得ax +by +1=0.因为切线与圆相切,所以22a b+=1,即a 2+b 2=1.由基本不等式得a 2+b 2=1≥2ab , 所以(a +b )2=a 2+b 2+2ab =1+2ab ≤2, 所以a +b ≤,即a +b 的最大值为.故选D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.12.已知抛物线24x y =的焦点为F ,准线为l ,抛物线的对称轴与准线交于点Q ,P 为抛物线上的动点,PF m PQ =,当m 最小时,点P 恰好在以,F Q 为焦点的椭圆上,则椭圆的离心率为( )A .3-B .2-CD 1【答案】D 【解析】由已知,(01)(01)F Q ,,,-,过点P 作PM 垂直于准线,则PM PF =.记PQM α∠=,则sin PF PM m PQPQα===,当α最小时,m 有最小值,此时直线PQ与抛物线相切于点P .设204x P x ⎛⎫ ⎪⎝⎭,,可得(21)P ,±,所以2PQ PF ,==,则2PF PQ a +=,∴1a =,1c =,∴1ce a==,故选D .13.已知曲线()2222:100x y C a b a b-=>,>的左、右焦点分别为12,,F F O 为坐标原点,P是双曲线在第一象限上的点,MO OP =u u u u v u u u v,直线2PF 交双曲线C 于另一点N ,若122PF PF =,且2120MF N ∠=︒则双曲线C 的离心率为( )A BC D【答案】B 【解析】 【分析】由题意结合双曲线的定义可得124,2PF a PF a == ,在三角形12PF F 中,由余弦定理可得2224208c a a =+,据此计算双曲线的离心率即可. 【详解】由题意,122PF PF =,由双曲线的定义可得,122PF PF a -= ,可得124,2PF a PF a == ,由四边形12PF MF 为平行四边形,又2120MF N ∠=︒,可得12120F PF ∠=︒, 在三角形12PF F 中,由余弦定理可得2224164242cos120c a a a a =+-⋅⋅⋅︒ ,即有2224208c a a =+,即227c a =,可得c =,即ce a==【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a =; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).14.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A【解析】 【分析】 设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由b y x a =±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =,所以2212||46413F F =+=13c ⇒=因为2521a x a =-=⇒=,所以23b =所以双曲线的渐近线方程为b y x a=±=±. 【点睛】 本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.15.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225*********n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立. 12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.16.过坐标轴上的点M 且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为M 的个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】设出直线方程,根据弦长公式,转化为圆心到直线的距离建立等量关系求解.【详解】由直线的斜率为tan 60k ︒==y b =+.圆2240x y y +-=可化为22(2)4x y +-=,圆心为(0,2),半径为2r =, 则由弦长公式得:圆心(0,2)到直线y b =+的距离为1d ===,即|2|12b -+=,解得0b =,4b =,故直线的方程为y =或4y =+.直线y =过坐标轴上的点(0,0),直线4y =+过坐标轴上的点()0,4与3⎛⎫- ⎪ ⎪⎝⎭,故点M 的个数为3.故选:C.【点睛】此题考查直线与圆的位置关系,根据弦长公式将弦长问题转化为圆心到直线的距离求解.17.已知1F ,2F 是双曲线22221x y a b-=(0a >,0b >)的左、右焦点,点A 是双曲线上第二象限内一点,且直线1AF 与双曲线的一条渐近线b y x a=平行,12AF F ∆的周长为9a ,则该双曲线的离心率为( )A .2B C .3D .【答案】A【解析】【分析】根据双曲线的定义,结合三角形的周长可以求出1AF 和2AF 的表达式,根据线线平行,斜率的关系,结合余弦定理进行求解即可.【详解】 由题意知212AF AF a -=,2192AF AF a c +=-,解得21122a c AF -=,1722a c AF -=, 直线1AF 与b y x a =平行,则12tan b AF F a ∠=,得12cos a AF F c∠=, 222121214cos 22AF c AF a AF F c AF c+-∠==⋅, 化简得22280c ac a +-=,即2280e e +-=,解得2e =.故选:A【点睛】本题考查求双曲线的离心率,考查了双曲线的定义的应用,考查了余弦定理的应用,考查了数学运算能力.18.设椭圆22221(0)x y a b a b+=>>的右焦点为F ,过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点,且满足AP BP <u u u v u u u v ,设O 为坐标原点,若(,)OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,29λμ=,则该椭圆的离心率为( )A .35B .1213C .35或1213D .45【答案】A【解析】 分析:根据向量共线定理及29λμ=,AP BP <u u u v u u u v ,可推出λ,μ的值,再根据过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),可推出P ,B 两点的坐标,然后求出过椭圆的左顶点和上顶点的直线1l 的方程,即可求得A 点的坐标,从而可得a ,b ,c 三者关系,进而可得椭圆的离心率. 详解:∵A 、P 、B 三点共线,(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v∴1λμ+= 又∵29λμ= ∴1323λμ⎧=⎪⎪⎨⎪=⎪⎩或2313λμ⎧=⎪⎪⎨⎪=⎪⎩ ∵AP BP <u u u v u u u v∴2313λμ⎧=⎪⎪⎨⎪=⎪⎩∵过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限) ∴2(,)b P c a ,2(,)b B c a - ∵过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点∴直线1l 的方程为为1x y a b +=- ∴()(,)a c b A c a+ ∵2133OP OA OB =+u u u r u u u r u u u r ∴222()1()33b a c b b a a a+=⋅+⋅-,即2b a c =+. ∴22224()2a c a ac c -=++,即223520a c ac --=.∴25230e e +-=∵(0,1)e ∈ ∴35e =故选A. 点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式c e a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).19.已知椭圆2221(1)x y a a+=>的左、右焦点分别为1F ,2F ,A 是椭圆在第一象限上的一个动点,圆C 与1F A 的延长线,12F F 的延长线以及线段2AF 都相切,且()3,0M 为其中一个切点.则椭圆的离心率为( )AB.3 C.2 D【答案】B【解析】【分析】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等和椭圆的定义,解方程得出3a =,求出c ,进而可得离心率.【详解】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等,得AN AT =, 11F N F M =,22F T F M =,1(,0)F c -,2(,0)F c ,由椭圆的定义可得,122AF AF a +=,()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+- 222(3)a F M a c =-=--,则26a =,即3a =,又1b =,所以2222c a b =-=,因此椭圆的离心率为223c e a ==. 故选:B.【点睛】本题主要考查求椭圆的离心率,熟记椭圆的定义,以及椭圆的简单性质即可,属于常考题型.20.已知平面向量,,a b c r r r 满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A 75-B 73-C .532-D 31- 【答案】A【解析】【分析】 根据题意,易知a r 与b r 的夹角为60︒,设(=13a ,r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r ,可得2212302x y x y +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果.【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r 的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为1⎛ ⎝⎭,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为=. 故选:A.【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.。
专题二 平面解析几何 A卷 必备知识全优+答案解析(附后)
专题二平面解析几何A卷必备知识全优一、单选题(本大题共8小题,共40分。
在每小题列出的选项中,选出符合题目的一项)1.已知过点,的直线的斜率为,则( )A. B. C. 1 D. 22.若直线平分圆的周长,则b的值为( )A. 2B.C.D. 33.椭圆的离心率为( )A. B. C. D.4.已知双曲线C:的一个焦点和抛物线的焦点相同,则双曲线C的渐近线方程为( )A. B. C. D.5.已知椭圆C:的左、右顶点分别为A、B,P为椭圆上异于A,B两点的动点,则( )A. B. C. D.6.已知椭圆C:的左、右焦点分别为,,焦距为2c,直线与椭圆C的一个交点为在第一象限满足,则该椭圆的离心率为( )A. B. C. D.7.抛物线上到直线的距离最短的点的坐标是( )A. B. C. D.8.我们把离心率等于黄金比的椭圆称为“优美椭圆”.设为优美椭圆,F、A 分别为它的左焦点和右顶点,B是短轴的一个端点,则等于( )A. B. C. D.二、多选题(本大题共4小题,共20分。
在每小题有多项符合题目要求)9.设直线l经过点,且在两坐标轴上的截距相等,则直线l的方程为( )A. B. C. D.10.下列说法正确的是( )A. 过,两点的直线方程为B. 点关于直线的对称点为C. 直线与两坐标轴围成的三角形的面积是2D. 经过点且在x轴和y轴上截距都相等的直线方程为11.2020年11月28日,“嫦娥五号”顺利进入环月轨道,其轨道是以月球的球心F为一个焦点的椭圆如图所示已知它的近月点离月球表面最近的点距离月球表面m千米,远月点离月球表面最远的点距离月球表面n千米,AB为椭圆的长轴,月球的半径为R千米.设该椭圆的长轴长,焦距分别为2a,2c,则下列结论正确的有( )A. B. C. D.12.在平面直角坐标系xOy中,动点P与两个定点和连线的斜率之积等于,记点P的轨迹为曲线E,直线l:与E交于A,B两点,则( )A. E的方程为B. E的离心率为C. E的渐近线与圆相切D. 满足的直线l有2条三、填空题(本大题共4小题,共20分)13.设双曲线的渐近线方程为,则a的值为__________.14.已知圆C:及直线l:,当直线l被圆C截得的弦长最短时,直线l的方程为__________.15.若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为__________.16.已知抛物线E:的焦点F到准线的距离为4,则__________;过点F作斜率为k的直线l交抛物线E于两个不同点A、B,若,则实数k的值为__________.四、解答题(本大题共6小题,共70分。
最新高中平面解析几何习题(含答案与解析)
平面解析几何式卷七一、选择题1、从点P (m , 3)向圆(x + 2)2+ (y + 2)2= 1引切线, 则一条切线长的最小值为A .B .5C .D .2、若曲线x 2-y 2= a 2与(x -1)2+ y 2= 1恰有三个不同的公共点, 则a 的值为A .-1B .0C .1D .不存在3、曲线有一条准线的方程是x = 9, 则a 的值为A .B .C .D .4、参数方程 所表示的曲线是A .椭圆的一部分B .双曲线的一部分C .抛物线的一部分, 且过点D .抛物线的一部分, 且过点5、过点(2, 3)作直线l , 使l 与双曲线恰有一个公共点, 这样的直线l 共有A .一条B .二条C .三条D .四条6、定义离心率为的椭圆为“优美椭圆”, 设(a > b > 0)为“优美椭圆”, F 、A 分别是它的左焦点和右顶点, B是它的短轴的一个端点, 则ÐABF 为A .60°B .75°C .90°D .120°7、在圆x 2 + y 2= 5x 内, 过点有n 条弦的长度成等差数列, 最小弦长为数列的首项a , 最大弦长为a n , 若公差, 则n 的取值集合为A .B .C .D .8、直线与圆x 2 + y 2= 1在第一象限内有两个不同的交点, 则m 的取值范围是A .1 < m < 2B .C .D .二、填空题1若直线过点(1,2),(3,24),则此直线的倾斜角是2、已知直线l 的斜率[]3,1-∈k ,则直线l 的倾斜角α的取值范围是 。
3、设直线过点()a ,0,其斜率为1,且与圆222=+y x 相切,则a 的值为 。
4、若过点A (4,0)的直线l 与曲线()1222=+-y x 有公共点,则直线l 的斜率的取值范围为 。
5、“1=a ”是“直线0=+y x 和直线0=-ay x 互相垂直”的 条件。
专题四平面解析几何(大4+答案)
专题四 平面解析几何(解答题4+)1.【解析】设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --=,得78t =-. 所以l 的方程为3728y x =-.(2)由3AP PB =可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.故||AB =. 2.【解析】(1)设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23a b =.由||AB =,从而3,2a b ==.所以,椭圆的方程为22194x y +=.(2)设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>, 点Q 的坐标为11(,)x y --.由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ , 从而21112[()]x x x x -=--,即215x x =. 易知直线AB 的方程为236x y +=, 由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y,可得1x = 由215x x =5(32)k =+,两边平方,整理得2182580k k ++=, 解得89k =-,或12k =-. 当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意. 所以,k 的值为12-.3.【解析】(1)由题意得2c =,所以c =c e a ==,所以a = 所以2221b a c =-=,所以椭圆M 的标准方程为2213x y +=.(2)设直线AB 的方程为y x m =+,由2213y x mx y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||2AB x x =-==,易得当20m =时,max ||6AB =,故||AB 的最大值为6. (3)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PAyk k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+,所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-,4471(,)44QD x y =+-, 因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 4.【解析】(1)椭圆22:143x yE +=的长轴长为2a ,短轴长为2b ,焦距为2c ,则2224,3,1a b c ===.所以12AF F △的周长为226a c +=.则(2)椭圆E 的右准线为4x =.设(,0),(4,)P x Q y ,(,0),(4,)OP x QP x y ==--,2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍.由此得|343||30403|355x y -+⨯-⨯+=⨯,则34120x y -+=或3460x y --=. 由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据213S S =推出95d =是解答本题的关键.。
第08练-平面解析几何(解析版)
第08练-平面解析几何一、单选题1.已知点F 为椭圆2221(1)x y a a+=>的一个焦点,过点F 作圆221x y +=的两条切线,若这两条切线互相垂直,则a =( )A .2B .1C .2D .3【答案】D【解析】【分析】根据切线垂直,推导出F 点至坐标原点的距离,即可求得交点坐标和a .【详解】由题可设(),0F c ,根据题意,作图如下:因为过F 点的两条切线垂直,故可得45OFH ∠=︒,则1OH HF ==,故可得2OF =,即点F 坐标为)2,0. 则2,1c b ==,故2223a b c =+=,解得3a =故选:D.【点睛】 本题考查椭圆方程的求解,涉及直线与圆相切时的几何性质,属基础题.2.已知圆C :(x ﹣a )2+(y ﹣2)2=4(a >0)及直线l :x ﹣y+3=0,当直线l 被圆C 截得的弦长为23时,a 的值等于( )A B .2-C 1 D 1【答案】C【解析】【分析】由题意,结合垂径定理算出圆心到直线l :x ﹣y+3=0的距离d =1,利用点到直线的距离公式建立关于a 的方程,求解即可.【详解】∵圆C :(x ﹣a )2+(y ﹣2)2=4的圆心为C (a ,2),半径r =2∴圆心到直线l :x ﹣y+3=0的距离d=∵l 被圆C 截得的弦长为∴2d +2=22,解得d =1,因此,d=1,得1a =或1a =(舍) 故选C .【点睛】本题考查了圆的方程、点到直线的距离公式和直线与圆的位置等知识,属于基础题.3.已知两点()1,0A -,()10B ,以及圆C :222(3)(4)(0)x y r r -+-=>,若圆C 上存在点P ,满足0AP PB ⋅=u u u v u u u v ,则r 的取值范围是( )A .[]3,6B .[]3,5C .[]4,5D .[]4,6【答案】D【解析】【分析】由题意可知:以AB 为直径的圆与圆()()22234(0)x y r r -+-=>有公共点,从而得出两圆圆心距与半径的关系,列出不等式得出r 的范围.【详解】 Q 0AP PB ⋅=u u u v u u u v,∴点P 在以()1,0A -,()1,0B 两点为直径的圆上,该圆方程为:221x y +=,又点P 在圆C 上,∴两圆有公共点.两圆的圆心距5d ==∴151r r -≤≤+解得:46r ≤≤故选D【点睛】本题考查了圆与圆的位置关系,还考查了向量垂直的数量积表示,属于中档题.4.已知椭圆22221(0)x y a b a b+=>>的离心率为35,直线2100x y ++=过椭圆的左顶点,则椭圆方程为( )A .22154x y += B .221259x y += C .221169x y += D .2212516x y += 【答案】D【解析】【分析】直线2100x y ++=过椭圆的左顶点,则椭圆的左顶点为(5,0)-,所以椭圆中5a =,由离心率为35,则3c =,可求出椭圆的b ,从而可得椭圆的方程.【详解】直线2100x y ++=与x 轴的交点为(5,0)-,直线2100x y ++=过椭圆的左顶点,即椭圆的左顶点为(5,0)-.所以椭圆中5a =,由椭圆的离心率为35,则3c =. 则4b =,所以椭圆的方程为:2212516x y +=. 故答案为:D【点睛】本题考椭圆的简单几何性质,根据离心率求,,a b c ,属于基础题.5.已知双曲线的标准方程为2222x y a b-=1(a >0,b >0),若渐近线方程为y =,则双曲线的离心率为( )A .3B .2CD .4【答案】B【解析】【分析】由双曲线22221(0,0)x y a b a b -=>>的渐近线方程是y =,可得b a=c e a == 【详解】Q 双曲线22221(0,0)x y a b a b-=>>的渐近线方程是y =,∴b a=∴双曲线的离心率2c e a ===. 故选:B .【点睛】本题考查双曲线的简单性质,考查学生的计算能力,确定b a= 6.已知点F 是抛物线24x y =的焦点,点P 为抛物线上的任意一点,(1,2)M 为平面上点,则PM PF +的最小值为( )A .3B .2C .4D .【答案】A【解析】【分析】作PN 垂直准线于点N ,根据抛物线的定义,得到+=+PM PF PM PN ,当,,P M N 三点共线时,PM PF +的值最小,进而可得出结果.【详解】如图,作PN 垂直准线于点N ,由题意可得+=+≥PM PF PM PN MN ,显然,当,,P M N 三点共线时,PM PF +的值最小;因为(1,2)M ,(0,1)F ,准线1y =-,所以当,,P M N 三点共线时,(1,1)-N ,所以3MN =.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.7.已知椭圆22221x y a b +=(a >b >0)与双曲线222212x y a b -=(a >0,b >0)的焦点相同,则双曲线渐近线方程为( )A .3y x =±B .3y x =C .2y x =D .2y x = 【答案】A【解析】【分析】由题意可得222222a b a b -=+,即223a b =,代入双曲线的渐近线方程可得答案.【详解】依题意椭圆22221(a b 0)x y a b +=>>与双曲线22221(a 0,b 0)2x y a b -=>>即22221(a 0,b 022)x y a b -=>>的焦点相同,可得:22221122a b a b -=+, 即223a b =,∴3b a =3=双曲线的渐近线方程为:3x y x =±=, 故选:A .【点睛】本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题.8.已知双曲线221169x y C -=:的右焦点为F ,过原点O 的直线与双曲线C 交于,A B 两点,且60AFB ∠=︒,则BOF V 的面积为( )A.2 B.2 C .32 D .92【答案】A【解析】【分析】根据题意画出图像,设双曲线的左焦点为1F ,连接11,AF BF ,即可得四边形1AFBF 为平行四边形,从而求出1F BF ∠,利用余弦定理和双曲线的定义联立方程可求出1|BF ||BF|的值,利用面积公式可求出1F BF V 的面积,根据1F BF V 和BOF V 的关系即可得到答案.【详解】如图,设双曲线的左焦点为1F ,连接11,AF BF ,依题可知四边形1AFBF 的对角线互相平分,则四边形1AFBF 为平行四边形,由60AFB ∠=︒可得1120F BF ∠=︒, 依题可知12||2216910F F c ==+=, 由余弦定理可得:2221111|BF |+|BF|-2|BF ||BF|cos |||F BF F F ∠=即2211|BF |+|BF|+|BF ||BF|100=;又因为点B 在椭圆上,则1||BF |-|BF||28a ==,所以2211|BF |+|BF|-2|BF ||BF|64=.两式相减得13|BF ||BF|36=,即1|BF ||BF|12=,所以1F BF V 的面积为:111113||||sin 123322F BF S BF BF F BF =∠=⨯=V 因为O 为1F F 的中点,所以11332OBF F BF S S ==V V 故选:A【点睛】本题主要考查双曲线的几何性质,涉及到了双曲线的定义,余弦定理和面积公式,考查学生转化和化归的能力,属中档题.9.已知椭圆2221(02)4x y b b+=<<的左、右焦点分别为1F ,2F ,过1F 的直线交椭圆于A ,B 两点,若22BF AF +的最大值为5,则b 的值为()A .1BCD .3【答案】C【解析】【分析】由题意可知椭圆是焦点在x 轴上的椭圆,利用椭圆定义得到228||BF AF AB +=-,再由过椭圆焦点的弦中通径的长最短,可知当AB 垂直于x 轴时||AB 最小,把||AB 的最小值2b 代入228||BF AF AB +=-,由22BF AF +的最大值等于5可求b 的值.【详解】由02b <<可知,焦点在x 轴上,∴2a =,∵过1F 的直线交椭圆于A ,B 两点,∴22112248BF AF BF AF a a a +++=+== ∴228||BF AF AB +=-.当AB 垂直x 轴时||AB 最小,22BF AF +值最大,此时222||b AB b a==,∴258b =-,解得b =C . 【点睛】 本题主要考查椭圆的定义,解题的关键是得出22114BF AF BF AF a +++=,属于一般题.10.过双曲线2213y x -=的右支上一点P 分别向圆1C :22(2)4x y ++=和圆2C :22(2)1x y -+=作切线,切点分别为,M N ,则22||||PM PN -的最小值为( )A .5B .4C .3D .2【答案】A【解析】【分析】 求得两圆的圆心和半径,设双曲线2213y x -=的左右焦点为1(2,0)F -,2(2,0)F ,连接1PF , 2PF ,1F M ,2F N ,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值.【详解】圆221:(2)4C x y ++=的圆心为(2,0)-,半径为12r =;圆222:(2)1C x y -+=的圆心为(2,0),半径为21r =, 设双曲线2213y x -=的左右焦点为1(2,0)F -,2(2,0)F , 连接1PF ,2PF ,1F M ,2F N ,可得2222221122||||(||)(||)PM PN PF r PF r -=---2212(||4)(||1)PF PF =---22121212||||3(||||)(||||)3PF PF PF PF PF PF =--=-+-12122(||||32(||||)32232435a PF PF PF PF c =+-=+--=-=g g )….当且仅当P 为右顶点时,取得等号,即最小值5.故选A .【点睛】本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力,属于中档题.二、多选题11.已知点A 是直线:20l x y +=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .()0,2B .()1,21-C .()2,0D .()21,1- 【答案】AC【解析】【分析】 设点A 的坐标为(),2t t -,可得知当AP 、AQ 均为圆221x y +=的切线时,PAQ ∠取得最大值90o ,可得出四边形APOQ 为正方形,可得出2OA =,进而可求出点A 的坐标.【详解】如下图所示:原点到直线l 的距离为222111d ==+,则直线l 与圆221x y +=相切, 由图可知,当AP 、AQ 均为圆221x y +=的切线时,PAQ ∠取得最大值,连接OP 、OQ ,由于PAQ ∠的最大值为90o ,且90APO AQO ∠=∠=o ,1OP OQ ==,则四边形APOQ 为正方形,所以22OA == 由两点间的距离公式得()2222OA t t =+-=整理得22220t t -=,解得0t =2,因此,点A 的坐标为(2或)2,0. 故选:AC.【点睛】 本题考查直线与圆的位置关系的综合问题,考查利用角的最值来求点的坐标,解题时要找出直线与圆相切这一临界位置来进行分析,考查数形结合思想的应用,属于中等题.12.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点,A B 的距离之比为定值()1λλ≠的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系xOy 中,()()2,0,4,0,A B -点12PA P PB=满足.设点P 的轨迹为C ,下列结论正确的是( ) A .C 的方程为()2249x y ++=B .在x 轴上存在异于,A B 的两定点,D E ,使得12PD PE=C .当,,A B P 三点不共线时,射线PO 是APB ∠的平分线D .在C 上存在点M ,使得2||MO MA = 【答案】BC 【解析】 【分析】通过设出点P 坐标,利用12PA PB=即可得到轨迹方程,找出两点,D E 即可判断B 的正误,设出M 点坐标,利用2||MO MA =与圆的方程表达式解出就存在,解不出就不存在. 【详解】设点(),P x y ,则12PA PB=,化简整理得2280x y x ++=,即()22416x y ++=,故A错误;当()()1,0,2,0,D B -时,12PDPE =,故B 正确;对于C 选项,222cos =2AP PO AO APO AP PO+-∠⋅,222cos =2BP PO BO BPO BP PO+-∠⋅,要证PO 为角平分线,只需证明cos =cos APO BPO ∠∠,即证22222222AP PO AO BP PO BO AP PO BP PO+-+-=⋅⋅,化简整理即证2228PO AP =-,设(),P x y ,则222PO x y =+, ()()222222222282828AP x x y x x y x y x y -=++=++++=+,则证cos =cos APO BPO ∠∠,故C 正确;对于D 选项,设()00,M x y ,由2||MO MA =可得()22220000=2x y x y +++,整理得220003316+160x y x ++=,而点M 在圆上,故满足2280x y x ++=,联立解得0=2x ,0y 无实数解,于是D 错误.故答案为BC. 【点睛】本题主要考查阿氏圆的相关应用,轨迹方程的求解,意在考查学生的转化能力,计算能力,难度较大.三、填空题 13.直线与圆交于两点,则________.【答案】【解析】 【分析】首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形半弦长、弦心距和圆的半径构成直角三角形,利用勾股定理求得弦长. 【详解】根据题意,圆的方程可化为,所以圆的圆心为,且半径是,根据点到直线的距离公式可以求得,结合圆中的特殊三角形,可知,故答案为.【点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.14.已知抛物线()220y px p =>的焦点为F(4,0),过F 作直线l 交抛物线于M ,N 两点,则p=_______,49NF MF-的最小值为______. 【答案】8p =13【解析】 【分析】利用抛物线的定义可得8p =,设直线l 的方程为4x my =+,联立直线与抛物线方程消元,根据韦达定理和抛物线的的定义可得1114MF NF +=,代入到49NF MF-,再根据基本不等式求最值. 【详解】解:∵ 抛物线()220y px p =>的焦点为F(4,0),∴ 8p =,∴ 抛物线的方程为216y x =,设直线l 的方程为4x my =+,设()11,M x y ,()22,N x y ,由2164y x x my ⎧=⎨=+⎩得216640y my --=, ∴1216y y m +=,1264y y =-, 由抛物线的定义得11MF NF +121144x x =+++()()21124444x x x x +++=++()()211244888my my my my ++++=++()()122121216864m y y m y y m y y ++=+++22216166412864m m m +=-++()()22161641m m +=+14=, ∴49NF MF -11494NF NF ⎛⎫=-- ⎪ ⎪⎝⎭419NF NF =+-4?19NF NF ≥13=, 当且仅当49NF NF=即6NF =时,等号成立,故答案为:13. 【点睛】本题主要考查直线与抛物线的位置关系,考查抛物线定义的应用,属于中档题.四、解答题15.已知抛物线21:2(0)C y px p =>与椭圆222:143x y C +=有一个相同的焦点,过点(2,0)A 且与x 轴不垂直的直线l 与抛物线1C 交于P ,Q 两点,P 关于x 轴的对称点为M . (1)求抛物线1C 的方程;(2)试问直线MQ 是否过定点?若是,求出该定点的坐标;若不是,请说明理由. 【答案】(1)24y x =;(2)(2,0)-【解析】 【分析】(1)求出椭圆的焦点,容易求得抛物线的方程.(2)解法一:设直线PQ 的方程为()2y k x =-与抛物线联立,得到,P Q 横坐标关系,设直线MQ 的方程为y mx n =+与抛物线联立,得到,M Q 横坐标关系,从而得到,m n 的关系,找出定点.解法二:直线PQ 的方程为2x ty =+,与抛物线联立,得到,P Q 纵坐标关系,设直线MQ 的方程为x my n =+,与抛物线联立,得到,M Q 纵坐标关系,从而可以解出n ,得到定点.【详解】(1)由题意可知抛物线的焦点为椭圆的右焦点,坐标为()1,0,所以2p =,所以抛物线的方程为24y x =;(2)【解法一】因为点P 与点M 关于x 轴对称 所以设()11,P x y ,()22,Q x y ,()11,M x y -, 设直线PQ 的方程为()2y k x =-,代入24y x =得:()22224140k x k x k -++=,所以124x x =,设直线MQ 的方程为y mx n =+,代入24y x =得:()222240m x mn x n +-+=,所以21224n x x m==,因为10x >,20x >,所以2nm=,即2n m =, 所以直线MQ 的方程为()2y m x =+,必过定点()2,0-. 【解法二】设()11,P x y ,()22,Q x y ,()33,M x y , 因为点P 与点M 关于x 轴对称,所以31y y =-, 设直线PQ 的方程为2x ty =+,代入24y x =得:2480y ty --=,所以128y y =-,设直线MQ 的方程为x my n =+,代入24y x =得:2440y my n --=,所以234y y n =-,因为31y y =-,所以()211248y y y y n -=-=-=,即2n =-, 所以直线MQ 的方程为2x my =-,必过定点()2,0-. 【点睛】本题主要考查直线与抛物线的关系,直线过定点问题,比较综合,对计算能力要求较高,属于难题.16.如图,已知椭圆Γ:()222210x y a b a b +=>>经过点()2,0A ,离心率3e =.(Ⅰ)求椭圆Γ的方程;(Ⅱ)设点B 为椭圆与y 轴正半轴的交点,点C 为线段AB 的中点,点P 是椭圆Γ上的动点(异于椭圆顶点)且直线PA ,PB 分别交直线OC 于M ,N 两点,问OM ON ⋅是否为定值?若是,求出定值;若不是,请说明理由.【答案】(Ⅰ)2214x y +=;(Ⅱ)是定值,52【解析】 【分析】(Ⅰ)根据已知条件列方程组2222a ca abc =⎧⎪⎪=⎨⎪=+⎪⎩,求解椭圆方程;(Ⅱ)由(Ⅰ)求得点C 的坐标,并求直线OC 的方程20x y -=,设()00,P x y ,()112,M y y ,()222,N y y ,根据三点共线求1y 和2y,并表示2125OM ON y y y y ==.【详解】(Ⅰ)由题意可知:22222a ca abc =⎧⎪⎪=⎨⎪=+⎪⎩,解得21a b =⎧⎨=⎩,所以椭圆Γ的方程:2214x y +=;(Ⅱ)由已知,点C 的坐标为11,2⎛⎫⎪⎝⎭,得直线OC 的方程为20x y -=, 设()00,P x y ,()112,M y y ,()222,N y y ,因P ,A ,M 三点共线,故0110222y y y x =--,整理得0100222y y x y -=--,因P ,B ,N 三点共线,故0220112y y y x --=,整理得020022x y x y =-+, 因点P 在椭圆Γ上,故220044x y +=,从而()000012200000022222224y x x y y y x y x y x y --=⋅=---+--00220000214442x y x y x y -==+--,所以1212552OM ON y y ===为定值.【点睛】本题考查椭圆方程以及椭圆直线与椭圆位置关系的综合问题,本题所涉及直线比较多,分析问题时抓住关键求点,M N 的纵坐标并用点P 的纵坐标表示,并将OM ON 2125y y y ,这样问题迎刃而解.。
平面解析几何经典题(含答案解析)
平面解析几何一、直线的倾斜角与斜率1、直线的倾斜角与斜率(1)倾斜角α的围000180α≤<(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线12,l l,其斜率分别为12,k k,则有1212//l l k k⇔=。
特别地,当直线12,l l的斜率都不存在时,12l l与的关系为平行。
(2)两条直线垂直如果两条直线12,l l斜率存在,设为12,k k,则12121l l k k⊥⇔=-注:两条直线12,l l垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l与互相垂直。
二、直线的方程1、直线方程的几种形式名称方程的形式已知条件局限性点斜式为直线上一定点,k为斜率不包括垂直于x轴的直线斜截式k为斜率,b是直线在y轴上的截距不包括垂直于x轴的直线两点式是直线上两定点不包括垂直于x轴和y轴的直线截距式a是直线在x轴上的非零截距,b是直线在y轴上的非零截距不包括垂直于x轴和y轴或过原点的直线一般式A,B,C为系数无限制,可表示任何位置的直线三、直线的交点坐标与距离公式三、直线的交点坐标与距离公式1.两条直线的交点设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。
2.几种距离(1)两点间的距离平面上的两点间的距离公式(2)点到直线的距离点到直线的距离;(3)两条平行线间的距离两条平行线间的距离注:(1)求点到直线的距离时,直线方程要化为一般式;(2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算(二)直线的斜率及应用利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x yB x yC x y若123AB ACx x x k k===或,则有A、B、C三点共线。
高考数学压轴专题人教版备战高考《平面解析几何》全集汇编含答案
【高中数学】数学《平面解析几何》复习资料一、选择题1.设P 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点,延长1FP 至点Q ,使得2PQ PF =,则动点Q 的轨迹方程为( )A .22(x 2)y 28-+=B .22(x 2)y 7++=C .22(x 2)y 28++=D .22(x 2)y 7-+=【答案】C【解析】【分析】推导出12PF PF 2a +==2PQ PF =,从而11PFPQ FQ +==Q 的轨迹为圆,由此能求出动点Q 的轨迹方程.【详解】P Q 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点, 延长1FP 至点Q ,使得2PQ PF =,12PF PF 2a ∴+==2PQ PF =,11PF PQ FQ ∴+==, Q ∴的轨迹是以()1F 2,0-为圆心,为半径的圆,∴动点Q 的轨迹方程为22(x 2)y 28++=.故选:C .【点睛】本题考查动点的轨迹方程的求法,考查椭圆的定义、圆的标准方程等基础知识,考查运算求解能力,是中档题.2.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( ) A .12k > B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D【解析】【分析】 联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】 解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021k k k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<. 故选:D .【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.3.已知直线(3)(0)y k x k =+>与抛物线2:4C y x =相交于A ,B 两点,F 为C 的焦点.若5FA FB =,则k 等于( )A.3 B .12 C .23 D.2【答案】B【解析】【分析】由2(3)4y k x y x=+⎧⎨=⎩,得()22226490k x k x k +-+=,()22464360k k ∆=-->,得213k <,129x x =①,再利用抛物线的定义根据5FA FB =,得到1254x x =+②,从而求得21x =,代入抛物线方程得到(1,2)B ,再代入直线方程求解.【详解】设()11,A x y ,()22,B x y ,易知1 0x >,20x >,10y >,20y >,由2(3)4y k x y x=+⎧⎨=⎩,得()22226490k x k x k +-+=,()22464360k k ∆=-->, 所以213k <,129x x =①. 因为1112p FA x x =+=+,2212p FB x x =+=+,且5FA FB =,所以1254x x =+②.由①②及20x >得21x =,所以(1,2)B ,代入(3)y k x =+, 得12k =. 故选:B【点睛】 本题考查抛物线的定义,几何性质和直线与抛物线的位置关系,还考查了运算求解的能力,属于中档题.4.如图,O 是坐标原点,过(,0)E p 的直线分别交抛物线22(0)y px p =>于A 、B 两点,直线BO 与过点A 平行于x 轴的直线相交于点M ,过点M 与此抛物线相切的直线与直线x p =相交于点N .则22||ME NE -=( )A .2pB .2pC .22pD .24p【答案】C【解析】【分析】 过E (p ,0)的直线分别交抛物线y 2=2px (p >0)于A 、B 两点,不妨设直线AB 为x =p ,分别求出M ,N 的坐标,即可求出答案. 【详解】过E (p ,0)的直线分别交抛物线y 2=2px (p >0)于A 、B ,两点为任意的,不妨设直线AB 为x =p ,由2y 2px x p ⎧=⎨=⎩,解得y =2p , 则A (p 2p ),B (p 2p ),∵直线BM 的方程为y 2x ,直线AM 的方程为y =2x ,解得M (﹣p 2p ),∴|ME |2=(2p )2+2p 2=6p 2,设过点M 与此抛物线相切的直线为y 2p =k (x +p ),由()2y 2=k px x p ⎧=⎪⎨+⎪⎩,消x 整理可得ky 2﹣2py ﹣+2p 2k =0, ∴△=4p 2﹣4k (﹣+2p 2k )=0,解得k=2, ∴过点M 与此抛物线相切的直线为yp=2(x +p ),由()=2x p x p =⎧⎪⎨+⎪⎩,解得N (p ,2p ), ∴|NE |2=4p 2,∴|ME |2﹣|NE |2=6p 2﹣4p 2=2p 2,故选C .【点睛】本题考查了直线和抛物线位置关系,以及直线和直线的交点坐标问题,属于难题.5.已知1F 、2F 分别为双曲线22146x y -=的左、右焦点,M 为双曲线右支上一点且满足120MF MF ⋅=u u u u v u u u u v ,若直线2MF 与双曲线的另一个交点为N ,则1MF N ∆的面积为( ) A .12B. C .24 D.【答案】C【解析】【分析】 设1MF m =,2MF n =,根据双曲线的定义和12MFMF ⊥,可求出6m =,2n =,再设2NF t =,则14NF t =+根据勾股定理求出6t =即可求出三角形的面积.【详解】 解:设1MF m =,2MF n =, ∵1F 、2F 分别为双曲线22146x y -=的左、右焦点, ∴24m n a -==,122F F c ==∵120MF MF ⋅=u u u u v u u u u v ,∴12MF MF ⊥,∴222440m n c +==,∴()2222m n m n mn -=+-,即2401624mn =-=,∴12mn =,解得6m =,2n =, 设2NF t =,则124NF a t t =+=+,在1Rt NMF ∆中可得()()222426t t +=++,解得6t =,∴628MN =+=,∴1MF N ∆的面积111862422S MN MF =⋅=⨯⨯=. 故选C .【点睛】本题考查了双曲线的定义和向量的数量积和三角形的面积,考查了运算能力和转化能力,属于中档题.6.已知双曲线22:1124x y C -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,P Q .若POQ ∆为直角三角形,则PQ =( )A .2B .4C .6D .8 【答案】C【解析】【分析】由题意不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒,解三角形即可.【详解】不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒.则易知30POF ∠=︒,4OF =,∴23OP =POQ n 中,60POQ ∠=︒,90OPQ ∠=︒,23OP =∴36PQ OP ==.故选C【点睛】本题主要考查双曲线的性质,根据双曲线的特征设出P ,Q 位置,以及POQ V 的直角,即可结合条件求解,属于常考题型.7.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( )A .125 B .65C .2D .5 【答案】A【解析】 试题分析:根据抛物线的定义可知抛物线24y x =上的点P 到抛物线的焦点距离1PF d =,所以122d d MF d +=+,其最小值为()1,0F 到直线3490x y -+=的距离,由点到直线的距离公式可知()()122min min 125d d MF d +=+==,故选A. 考点:抛物线定义的应用.8.已知椭圆221259x y +=上一点M 到椭圆的一个焦点的距离等于4,那么点M 到另一个焦点的距离等于( )A .1B .3C .6D .10【答案】C【解析】由椭圆方程可得225210a a =∴= ,由椭圆定义可得点M 到另一焦点的距离等于6.故选C .9.已知点P 在抛物线24y x =上,那么点P 到点(2,1)Q 的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A .(1,14)B .1(,1)4-C .(1,2)D .(1,2)-【答案】A【解析】【分析】【详解】试题分析:抛物线24y x =焦点为F (1,0),准线为1x =-,作PQ 垂直于准线,垂足为M 根据抛物线定义: ,PQ PF PQ PM +=+,根据三角形两边距离之和大于第三边,直角三角形斜边大于直角边知:PQ PM +的最小值是点Q 到抛物线准线1x =-的距离;所以点P 纵坐标为1,则横坐标为14,即(1,14),故选A考点:抛物线的定义及几何性质的运用.10.已知椭圆22:195x y C +=左右焦点分别为12F F 、,直线):2l y x =+与椭圆C 交于A B 、两点(A 点在x 轴上方),若满足11AF F B λ=u u u v u u u v ,则λ的值等于( ) A.B .3 C .2 D【答案】C【解析】由条件可知,直线l 过椭圆的左焦点()12,0F -.由)222195y x x y ⎧=+⎪⎨+=⎪⎩消去y 整理得232108630x x ++=, 解得34x =-或218x =-. 设1122(,),(,)A x y B x y ,由A 点在x 轴上方可得12321,48x x =-=-. ∵11AF F Bλ=u u u v u u u v , ∴1122(2,)(2,)x y x y λ---=+,∴122(2)x x λ--=+. ∴3212()(2)48λ---=-+, 解得2λ=.选C11.椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:221169x y +=,点A 、B 是它的两个焦点,当静止的小球放在点A 处,从点A 沿直线出发,经椭圆壁反弹后,再回到点A 时,小球经过的最短路程是( ).A .20B .18C .16D .以上均有可能【答案】C【解析】【分析】根据椭圆的光学性质可知,小球从点A 沿直线出发,经椭圆壁反弹到B 点继续前行碰椭圆壁后回到A 点,所走的轨迹正好是两次椭圆上的点到两焦点距离之和,进而根据椭圆的定义可求得答案.依题意可知小球经两次椭圆壁后反弹后回到A 点,根据椭圆的性质可知所走的路程正好是4a=4×4=16故选:C .【点睛】本题主要考查了椭圆的应用.解题的关键是利用了椭圆的第一定义,是基础题.12.已知抛物线22(0)y px p =>交双曲线22221(0,0)x y a b a b -=>>的渐近线于A ,B 两点(异于坐标原点OAOB ∆的面积为32,则抛物线的焦点为( )A .(2,0)B .(4,0)C .(6,0)D .(8,0)【答案】B【解析】【分析】 由题意可得2b a=,设点A 位于第一象限,且(),A m n ,结合图形的对称性列出方程组确定p 的值即可确定焦点坐标.【详解】 2222222215c a b b e a a a +===+=,∴2b a =, 设点A 位于第一象限,且(),A m n ,结合图形的对称性可得:22322n m mn n pm ⎧=⎪⎪=⎨⎪=⎪⎩,解得:8p =,∴抛物线的焦点为()4,0,故选B .【点睛】本题主要考查圆锥曲线的对称性,双曲线的渐近线,抛物线焦点坐标的求解等知识,意在考查学生的转化能力和计算求解能力.13.已知双曲线2219x y m-=的一个焦点在直线x +y =5上,则双曲线的渐近线方程为( )A .34y x =? B .43y x =± C.3y x =± D.4y x =±【解析】根据题意,双曲线的方程为2219x y m-=,则其焦点在x 轴上, 直线5x y +=与x 轴交点的坐标为()5,0,则双曲线的焦点坐标为()5,0,则有925m +=,解可得,16m =, 则双曲线的方程为:221916x y -=, 其渐近线方程为:43y x =±, 故选B.14.倾斜角为45︒的直线与双曲线22214x y b-=交于不同的两点P 、Q ,且点P 、Q 在x 轴上的投影恰好为双曲线的两个焦点,则该双曲线的焦距为( )A .2B .2C 1D 1【答案】B【解析】【分析】方法一;由双曲线的对称性可知直线过原点,可得2Rt QOF △为等腰三角形且245QOF ∠=︒,根据勾股定理及双曲线的定义可得:1c =.方法二:等腰2Rt QOF △中,可得22b QF a=,且2b c a =.又根据222b a c =-,联立可解得1c =. 【详解】方法一;由双曲线的对称性可知直线过原点,在等腰2Rt QOF △中,245QOF ∠=︒,则122F F c =,2QF c =,1QF =. 由双曲线的定义可得:122QF QF a-=,41c c -==,,故22c =.方法二:等腰2Rt QOF △中,22b QF a=, ∴2b c a=.又222b a c =-,∴2240c c --=,得1c =.∴22c =.故选:B .【点睛】本题考查双曲线的性质,解题关键是将题目条件进行转化,建立等量关系求解,属于中等题.15.若A ,B 分别是直线20x y --=与x 轴,y 轴的交点,圆C :()()22448x y -++=上有任意一点M ,则AMB ∆的面积的最大值是( ) A .6B .8C .10D .12【答案】C【解析】【分析】 先求出AB ,再求出M 到直线的最大距离为点M 到直线20x y --=加上半径,进而可得面积最大值.【详解】由已知()2,0A ,()0,2B -则AB ==,又点M =所以最大面积为1102⨯=. 故选:C.【点睛】 本题考查圆上一点到直线的最大距离问题,是基础题.16.已知12F F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,P 为双曲线上一点,2PF 与x 轴垂直,1230PF F ∠=︒,且焦距为 )A .y =B .y =C .2y x =±D .3y x =± 【答案】B【解析】【分析】先求出c 的值,再求出点P 的坐标,可得22b PF a =,再由已知求得1PF ,然后根据双曲线的定义可得b a 的值,则答案可求. 【详解】 解:由题意,223c =,解得3c =,∵()2,0F c ,设(),P c y ,∴22221x y a b-=,解得2b y a =±, ∴22b PF a=, ∵1230PF F ∠=︒,∴21222b PF PF a==, 由双曲线定义可得:2122b PF PF a a-==, 则222a b =,即2b a=. ∴双曲线的渐近线方程为2y x =±.故选:B .【点睛】本题考查双曲线渐近线方程的求解,难度一般.求解双曲线的渐近线方程,可通过找到,,a b c 中任意两个量的倍数关系进行求解.17.已知点1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,1e ,2e 分别是1C 和2C 的离心率,点P 为1C 和2C 的一个公共点,且1223F PF π∠=,若22e =,则1e 的值是( )ABC.7 D【答案】D【解析】【分析】利用椭圆和双曲线的定义以及余弦定理可得到方程2221243c a a =+,由此得到关于离心率的方程求得结果.【详解】设椭圆长半轴长为1a ,双曲线实半轴长为2a ,焦点坐标为()1,0F c -,()2,0F c , 不妨设P 为第一象限内的点,则1212+=PF PF a ,1222-=PF PF a , 则221212PF PF a a =-, 由余弦定理得:2222212121212242cos3c PF PF PF PF PF PF PF PF π=+-=++, ()22222211212443c a a a a a ∴=--=+,2212314e e ∴+=,又22e =,2145e ∴=,15e ∴=. 故选:D .【点睛】本题考查共焦点的椭圆与双曲线问题的求解,关键是能够熟练应用椭圆和双曲线的定义,利用余弦定理构造等量关系,配凑出关于椭圆和双曲线离心率的方程.18.过坐标轴上的点M 且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为M 的个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】设出直线方程,根据弦长公式,转化为圆心到直线的距离建立等量关系求解.【详解】由直线的斜率为tan 60k ︒==y b =+.圆2240x y y +-=可化为22(2)4x y +-=,圆心为(0,2),半径为2r =,则由弦长公式得: 圆心(0,2)到直线y b =+的距离为1d ===,即|2|12b -+=,解得0b =,4b =,故直线的方程为y =或4y =+.直线y =过坐标轴上的点(0,0),直线4y =+过坐标轴上的点()0,4与⎛⎫ ⎪ ⎪⎝⎭,故点M 的个数为3.故选:C.【点睛】此题考查直线与圆的位置关系,根据弦长公式将弦长问题转化为圆心到直线的距离求解.19.已知双曲线()2222100x y C a b a b-=:>,>的一条渐近线与圆22(4x y +-=相交于A ,B 两点,若|AB |=2,则C 的离心率为( )A B C .2 D .4【答案】C【解析】【分析】求出双曲线的渐近线方程,圆的圆心与半径,利用距离公式得到a 、b 关系式,然后求解离心率即可.【详解】由题意可知不妨设双曲线的一条渐近线方程为:bx +ay =0,圆22(4x y +-=的圆心为(0,,半径为2,由题意及|AB |=2,可得22212+=,222123a a b=+,即b 2=3a 2,可得c 2﹣a 2=3a 2,即224c a = 所以e c a==2. 故选:C .【点睛】 本题主要考查求双曲线离心率的问题,此类问题的解题关键是建立,,a b c 的方程或不等关系,考查学生的运算求解能力,是一道中档题.20.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP →→g 的最大值为( )A .4B .5C .6D .7【答案】C【解析】【分析】 设(),P x y ,由数量积的运算及点P 在椭圆上,可把OP FP ⋅u u u r u u u r 表示成为x 的二次函数,根据二次函数性质可求出其最大值.【详解】设(),P x y ,()()1,0,0,0F O -,则()(),,+1,OP x y FP x y ==u u u r u u u r ,则22OP FP x x y ⋅=++u u u r u u u r ,因为点P 为椭圆上,所以有:22143x y +=即22334y x =-, 所以()222223132244x x y x x x FP x OP =++=⋅++-=++u u u r u u u r 又因为22x -≤≤,所以当2x =时,OP FP ⋅u u u r u u u r 的最大值为6故选:C【点睛】本题考查了数量积的坐标运算,求二次函数的最大值,属于一般题.。
平面解析几何初步复习题参考答案
平面解析几何初步复习题参考答案1.解析:a -2+-2=5,∴a =4或-2.答案:D2.解析:|AB |2=(5-a -1)2+(2a -1-a +4)2=2a 2-2a +25=2(a -12)2+492,所以当a =12时,|AB |取得最小值.答案:123.∵平行四边形的对角线互相平分,∴平行四边形对角线的中点坐标相同.设C 点坐标为C (x ,y ),则⎩⎪⎨⎪⎧0+x 2=2+12=32,0+y 2=0+32=32,∴⎩⎪⎨⎪⎧x =3,y =3,即C (3,3).4. 解析:因为直线AB 的倾斜角为90°,所以直线的斜率不存在,即a =3.又因为A ,B 两点确定一条直线,两点不重合,所以b +1≠2,即b ≠1.答案:D5. 解析:∵直线l 的倾斜角为锐角,∴斜率k =m 2-11-2>0,∴-1<m <1.答案:C6.解析:由斜率公式得k AB =1-11--=0,k BC =3+1-12-1=3,k AC =3+1-12--=33.如图,当斜率k 变化时,直线CD 绕C 点旋转.当直线CD 由CA 逆时针转到CB 时,直线CD 与AB 恒有交点,即D 在线段AB 上,此时k 由k CA 增大到k CB ,∴k 的取值范围为⎣⎢⎡⎦⎥⎤33,3. 7.解:y +1x +1=y --x --的几何意义是过M (x ,y ),N (-1,-1)两点的直线的斜率.∵点M 在函数y =-2x +8的图象上,且x ∈[2,5], ∴设该线段为AB ,且A (2,4),B (5,-2). ∵k NA =53,k NB =-16,∴-16≤y +1x +1≤53.∴y +1x +1的取值范围为[-16,53]. 8.解:设点A (x,0),点B (0,y ),由AB 的中点为P (4,1),可得点A (8,0),点B (0,2).由直线方程的两点式可得y -02-0=x -80-8,整理可得x +4y -8=0.也可利用截距式得x 8+y2=1,即x+4y -8=0.9.解析:考虑到直线的点斜式方程、斜截式方程、截距式方程的适用条件,可知A ,C ,D 都不正确;当直线的两点式方程y -y 1y 2-y 1=x -x 1x 2-x 1化为(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1)时,它就可以表示过任意不同两点P 1(x 1,y 1),P 2(x 2,y 2)的所有直线,故B 正确.10.解析:由题意可知直线的斜率存在,方程可变为y =-ab x -c b ,由题意结合图形有-a b<0,-c b>0⇒ab >0且bc <0.答案:A11.解析:若k 1=k 2,则这两条直线平行或重合,所以①错;当两条直线垂直于x 轴时,两条直线平行,但斜率不存在,所以②错;若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,这两条直线相交,所以③正确;④正确.答案:B12.解析:直线l 与y 轴垂直,则直线l 的斜率为0,直线l 的方程可化为y =-a 2+4a +3a 2+a -6x+8a 2+a -6,所以a 2+4a +3=0,解得a =-1或a =-3.由a 2+a -6≠0,解得a ≠2且a ≠-3,综上可得a =-1.答案:D13.解析:由题意,设直线l 的斜率为k ,则k ²k AB =-1,且直线l 过AB 的中点(1,6).又k AB =7-5-2-4=-13,则k =3,所以直线l 的方程为y -6=3(x -1),即3x -y +3=0.答案:3x -y +3=014. 解:设点A ,C 的坐标分别为A (x 1,y 1)、C (x 2,y 2).∵AB ⊥CE ,k CE =-23,∴k AB =-1k EC =32.∴直线AB 的方程为3x -2y -1=0.由⎩⎪⎨⎪⎧3x 1-2y 1-1=0,2x 1-3y 1+1=0,得A (1,1).∵D 是BC 的中点,∴D (x 2+32,y 2+42).而点C 在直线CE 上,点D 在直线AD 上, ∴⎩⎪⎨⎪⎧2x 2+3y 2-16=0,2²x 2+32-3²y 2+42+1=0.∴C (5,2).|AC |=-2+-2= 17.15.∵A ,B 两点纵坐标不相等,∴AB 与x 轴不平行.∵AB ⊥CD , ∴CD 与x 轴不垂直,-m ≠3,m ≠-3.①当AB 与x 轴垂直时,-m -3=-2m -4,解得m =-1,而m =-1时,点C ,D 纵坐标均为-1,∴CD ∥x 轴,此时AB ⊥CD ,满足题意.②当AB 与x 轴不垂直时,由斜率公式得k AB =4-2-2m -4--m -=2-+,k CD =3m +2-m3--=+m +3.∵AB ⊥CD ,∴k AB ²k CD =-1, 即2-+²+m +3=-1,解得m =1.综上,m 的值为1或-1.16.解:由直线l 与直线y =43x +53垂直,可设直线l 的方程为y =-34x +b .直线l 在x 轴,y 轴上的截距分别为x 0=43b ,y 0=b .又因为直线l 与两坐标轴围成的三角形的面积为24, 所以S =12|x 0||y 0|=24,即12|43b ||b |=24,b 2=36,解得b =6,或b =-6. 故所求直线的方程为y =-34x +6,或y =-34x -6.17.解析:由已知,分析得两直线的交点在x -ay =0上.由⎩⎪⎨⎪⎧x -2y +3=0,2x -y +3=0,得⎩⎪⎨⎪⎧x =-1,y =1,代入x -ay =0,得-1-a =0,即a =-1.18.解析:由平面几何知识易知所求直线与已知直线2x +3y -6=0平行,则可设所求直线方程为2x +3y +C =0.在直线2x +3y -6=0上任取一点(3,0),其关于点(1,-1)的对称点为(-1,-2), 则点(-1,-2)必在所求直线上, ∴2³(-1)+3³(-2)+C =0,C =8. ∴所求直线方程为2x +3y +8=0. 答案:D19.法一:设直线的方程为y -1=k (x +2),即kx -y +2k +1=0.由|-k -2+2k +1|k 2+1=|3k +2k +1|k 2+1,解得k =0,或k =-12.故直线的方程为y =1,或x +2y =0.当直线的斜率不存在时,不存在符合题意的直线l .法二:当l ∥AB 或l 过AB 中点时,满足点A ,B 到l 的距离相等. 若l ∥AB ,由于k AB =-12,则直线l 的方程为x +2y =0. 若l 过AB 的中点N (1,1), 则直线l 的方程为y =1.故直线l 的方程为y =1,或x +2y =0.20. 解:若直线l 的斜率不存在,则l 的方程为x =0,点(1,-3)到l 的距离为1,不满足题意,从而可知直线l 的斜率一定存在,设为k ,则其方程为y =kx -1.由点到直线的距离公式,得|k +3-1|1+k 2=322,解得k =1或k =17.所以直线l 的方程为y =x -1或y =17x -1, 21. 法一:设所求直线的方程为 5x -12y +C =0.在直线5x -12y +6=0上取一点P 0(0,12),则点P 0到直线5x -12y +C =0的距离为|-12³12+C |52+-2=|C -6|13. 由题意,得|C -6|13=2,所以C =32,或C =-20.故所求直线的方程为5x -12y +32=0,或5x -12y -20=0. 法二:设所求直线的方程为5x -12y +C =0, 由两平行直线间的距离公式得2=|C -6|52+-2,解得C =32,或C =-20.故所求直线的方程为5x -12y +32=0,或5x -12y -20=0.22.设点C (x 0,y 0),∵点C 在直线3x -y +3=0上,∴y 0=3x 0+3.∵A (3,2),B (-1,5),∴|AB |=-2+-1-2=5.设C 到AB 的距离为d ,则12d ²|AB |=10,∴d =4.又直线AB 的方程为y -25-2=x -3-1-3,即3x +4y -17=0,∴d =|3x 0+x 0+-17|32+42=|15x 0-5|5=|3x 0-1|=4.∴3x 0-1=±4,解得x 0=-1或53.当x 0=-1时,y 0=0;当x 0=53时,y 0=8.∴C 点坐标为(-1,0)或(53,8).23.解析:a -2+b -2即为(a ,b )到(1,1)的距离,距离最小时即为点(1,1)到直线x +y +1=0的距离,此时d =|1+1+1|12+12=322. 24解析:当AB 最短时,AB 与直线x +y =0垂直.又A (0,1),∴AB :x -y +1=0.联立x +y =0,解得⎩⎪⎨⎪⎧x =-12,y =12,故点B 的坐标为(-12,12).25.解析:由已知可知,l 是过A 且与AB 垂直的直线.∵k AB =2-4-3-3=13,∴k l =-3.由点斜式得y -4=-3(x -3),即3x +y -13=0.答案:C 26.解析:点M 一定在直线x +y -7+52=0,即x +y -6=0上,所以M 到原点距离的最小值为|-6|2=3 2.答案:A27.解析:设点(x ,y )与圆C 1的圆心(-1,1)关于直线x -y -1=0对称,则⎩⎪⎨⎪⎧y -1x +1=-1,x -12-y +12-1=0,解得⎩⎪⎨⎪⎧x =2,y =-2,从而可知圆C 2的圆心坐标为(2,-2).又知其半径为1,故所求圆C 2的方程为(x -2)2+(y +2)2=1.答案:B 28.法一:设圆的标准方程为(x -a )2+(y -b )2=r 2,则⎩⎪⎨⎪⎧2a -b -3=0,-a 2+-b 2=r 2,-a 2+-2-b 2=r 2⇒⎩⎨⎧a=2,b =1,r =10.所以圆的标准方程为(x -2)2+(y -1)2=10.法二:因为圆过A ,B 两点,所以圆心一定在AB 的垂直平分线上,线段AB 的垂直平分线方程为y =-12(x -4),则⎩⎪⎨⎪⎧y =-12x -,2x -y -3=0⇒⎩⎪⎨⎪⎧x =2,y =1,即圆心为(2,1),r =-2+-2=10.所以圆的标准方程为(x -2)2+(y -1)2=10.29.解析:方程可化为 (x -1)2+y 2=-2k -2,只有-2k -2>0,即k <-1时才能表示圆. 答案:A30.解析:直线AB 的方程为x -y +2=0,圆心到直线AB 的距离为d =│1-0+2│2=322.所以,C 到直线AB 的最小距离为322-1,S △ABC 的最小值为12³│AB │³(322-1)=12³22³(322-1)=3- 2. 答案:A31.解:设动点P 的坐标为(x ,y ),根据题意可知AP ⊥OP .当AP 垂直于x 轴时,P 的坐标为(1,0).当x =0时,y =0.当x ≠1且x ≠0时,k AP ²k OP =-1.∵k AP =y -2x -1,k OP =yx, ∴y -2x -1³yx=-1, 即x 2+y 2-x -2y =0(x ≠0,且x ≠1).点(1,0),(0,0)适合上式.综上所述,P 点的轨迹是以(12,1)为圆心,以52为半径的圆.32.解析:由题意知,直线mx -y +1-m =0过定点(1,1).又因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆C 是相交的.答案:A33.解析:当该点是过圆心向直线所引的垂线的垂足时,切线长最小.因圆心(3,0)到直线的距离为d =|3+1|2=22,所以切线长的最小值是l =22-1=7.答案:C34.解:设圆的方程为(x -a )2+(y -b )2=r 2.由已知可知,直线x +2y =0过圆心,则a +2b =0,① 又点A 在圆上,故(2-a )2+(3-b )2=r 2,② ∵直线x -y +1=0与圆相交所得弦长为2 2. ∴(2)2+(a -b +112+-2)2=r 2.③解由①②③所组成的方程组得 ⎩⎪⎨⎪⎧a =6,b =-3,r 2=52或⎩⎪⎨⎪⎧a =14,b =-7,r 2=244.故所求方程为(x -6)2+(y +3)2=52或(x -14)2+(y +7)2=244.35.解析:x 2+y 2=50与x 2+y 2-12x -6y +40=0作差,得两圆公共弦所在的直线方程为2x +y -15=0.圆x 2+y 2=50的圆心(0,0)到2x +y -15=0的距离d =35,因此公共弦长为222-52=2 5.答案:C36.解析:圆C 1:x 2+y 2-8x -4y +11=0,即(x -4)2+(y -2)2=9,圆心为C 1(4,2);圆C 2:x 2+y 2+4x +2y +1=0,即(x +2)2+(y +1)2=4,圆心为C 2(-2,-1).两圆相离,|PQ |的最小值为|C 1C 2|-(r 1+r 2)=35-5.答案:C37.解析:由已知,两个圆的方程作差可以得到公共弦所在的直线方程为y =1a.圆心(0,0)到直线的距离d =⎪⎪⎪⎪⎪⎪1a 1= 22-32=1,解得a =1.答案:138.解析:圆与x 轴,y 轴正半轴的交点为A (1,0),B (0,5),则可知kMA =0,k MB=0-5-1=5,则k ∈(0,5).答案:(0,5)39.解:公共弦所在直线的斜率为23,已知圆的圆心坐标为(0,72),故两圆圆心所在直线的方程为y -72=-32x ,即3x +2y -7=0.设所求圆的方程为x 2+y 2+Dx +Ey +F =0,由⎩⎪⎨⎪⎧-2+32-2D +3E +F =0,12+42+D +4E +F =0,-D 2+-E 2-7=0,解得⎩⎪⎨⎪⎧D =2,E =-10,F =21.所以所求圆的方程为x 2+y 2+2x -10y +21=0.40.解析:点P (3,4,5)与Q (3,-4,-5)两点的x 坐标相同,而y ,z 坐标互为相反数,所以两点关于x 轴对称.答案:A41.解:(1)∵平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF =AB ,AB ⊥BE ,∴BE ⊥平面ABCD .∴AB ,BC ,BE 两两垂直.∴以B 为原点,以BA ,BE ,BC 所在的直线分别作为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系.则M (22a,0,1-22a ),N (22a ,22a,0). 由空间两点间的距离公式, 得|MN |=22a -22a 2+-22a 2+-22a -2= a 2-2a +1=a -222+12. (2)∵|MN |= a -222+12, ∴a =22时,|MN |min =22.。
平面解析几何测试题及答案
平面解析几何测试题一、选择题(本大题20个小题,每小题3分,共60分) 1.直线3x+4y-24=0在x 轴,y 轴上的截距为 ( ) A.6,8 B.-6,8 C.8,6 D.-8,6 2.x=29y -表示的曲线是 ( )A.一条直线B.两条直线C.半个圆D.一个圆3.已知直线x-ay+8=0与直线2x-y-2=0垂直,则a 的值是 ( )A.-1B.2C.1D.-24.已知圆x 2+y 2+ax+by=0的圆心为(-4,3),则a,b 的值分别是 ( )A.8,6B.8,-6C.-8,-6D.-8,6 5.已知A (3,-6),B (-5,2),C (6,y )三点共线,则点C 的纵坐标是 ( )A.-13B.9C.-9D.136.已知过点P (2,2)的直线与圆(x-1)2+y 2 =5相切,且与直线ax-y+1=0垂直,则a 的值为( )A.2B.1C.-21D.21 7. 直线2x-y=0与圆x 2+y 2-2x-4y-1=0的位置关系为 ( ) A. 相交但不过圆心 B.相离 C.相切 D.相交过圆心8.已知双曲线22a x -22b y =1的渐近线的斜率k=±34,则离心率等于 ( )A.53B.45C.34D.359.若椭圆22a x +22by =1(a>b>0)的左右焦点分别为F 1,F 2,点A 是椭圆上一点,若▲AF 1F 2为正三角形,则椭圆的离心率为 ) A.22 B.21 C.41D.3-1 10.已知双曲线22x -22by =1(b>0)的左右焦点分别为F 1,F 2,其中一条渐近线方程为y=x ,点P (3,y 0)在双曲线上,则1PF •2PF 等于 ( ) A.-12 B.-2 C.0 D.4 11.已知椭圆焦点在x 轴上,长轴长为18,且焦点将长轴三等分,则椭圆的方程为( )A.812x +722y =1B.812x +92y =1 C.812x +452y =1 D.812x +162y12.设点F 为抛物线y 2=3x 的焦点,过点F 且倾斜角为30°的直线交抛物线于A ,B 两点,则|AB|等于 ( ) A.330B.6C.12D.37 13.已知圆x 2+y 2-4x-4y=0与x 轴相交于A ,B 两点,则弦AB 所对的圆心角的大小为( )A.6π B.3π C.2π D.3π2 14.已知椭圆的中心在原点,焦点在x 轴上,长轴是短轴的3倍,且过点(-3,1),则椭圆的方程为 ( )A.92x +y 2=1 B.121822=+x y .121822=+y x D.92y +x 2=1 15.关于x ,y 的方程x 2+my 2=1,给出下列命题: ①当m<0时,方程表示双曲线; ②当m=0时,方程表示抛物线; ③当0<m<1时,方程表示椭圆; ④当m=1时,方程表示等轴双曲线; ⑤当m>1时,方程表示椭圆. 其中真命题的个数是 ( )A.2个B.3个C.4个D.5个x-y-1≦016.已知变量x ,y 满足的约束条件是 x+y ≦1,目标函数z=10x+y 的最优解是 ( ) x ≧0 A. (0,1),(1,0) B.(0,1),(0,-1) C.(0,-1),(1,0) D.(0,-1),(0,0) 17.已知双曲线17922=-y x ,直线AB 过焦点F 1,且|AB|=4,则▲ABF 2的周长是 ( )A.12B.20C.24D.48 18.已知椭圆的焦点F 1(0,-1),F 2(0,1),P 是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|,构成等差数列,则椭圆的方程为 ( )A.191622=+y x B.1121622=+y x C.13422=+x y D.13422=+y x 19. 已知点P 是等轴双曲线上除顶点外的任一点,A 1,A 2是双曲线的顶点,则直线PA 1与PA 2的斜率之积是( )A.1B.-1C.2D.-2 20.圆(x+1)2+(y+2)2=8上到直线x+y+1=0的距离等于2的点共有 ( )A.1个B.2个C.3个D.4个 二、填空题(本大题5个小题,每小题4分,共20分) 21.圆x 2+y 2=1上的点到直线3x+4y-25=0的最大距离为 . 22.已知点(2,-1)与点(a ,-2)在直线3x+y-4=0的两侧,则a 的取值范围是 .23.物线的顶点在原点,焦点是双曲线3x 2-y 2=12的左顶点,则其标准方程为 .24.若方程142222=-+-m y m x 表示椭圆,则m 的取值范围是 . 25.设点F 1,F 2为双曲线1422=-y x 的两焦点,点P 在双曲线上,且∠F 1PF 2=90°,则▲F 1F 2P 的面积等于 . 三、解答题(本大题5个小题,共40分)26.(本小题6分)已知抛物线y=241x ,点P (0,2)作直线l 交抛物线A ,B 两点,O 为坐标原点.(1)求证:OA •OB 为定值;(2)直线l 与向量n=(1,2)平行,求▲AOB 的面积.27.(本小题8分)已知点P 是椭圆16410022=+y x 上一点,点F 1,F 2是左、右焦点,若∠F 1PF 2=60°,求▲PF 1F 2的面积.28.(本小题8分)在抛物线y=2x 2上求一点P ,使P 到直线l :y=2x-3的距离最短,求P 点的坐标.29.(本小题8分)已知椭圆22a x +22by =1(a>b>0)经过点(0,3),离心率为21.(1)求椭圆的标准方程;(2)已知直线l :y=2x+m 与椭圆相交于A ,B 两点,以OA ,OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆上,O 为坐标原点,求直线l 的方程.30.(本小题10分)已知双曲线22a x -22by =1(a>0,b>0)的离心率为2,两顶点的距离为4.(1)求双曲线的标准方程;(2)已知直线l 过圆x 2+y 2-6x+2y+6=0的圆心并与双曲线交于A ,B 两点,且点A ,B 关于点M 对称,求直线l 的方程.第八章 平面解析几何测试题答案一、选择题1.C2.C3.D4.B5.C6.A7.D8.D9.B 10.C 11.A 12.C 13.C 14.C 15.B 16.C 17.B 18.C 19.A 20.C 二、填空题 21. 6 22. (2,∞-) 23. y 2=-8x24. (2,3)U (3,4) 25. 1三、解答题 26.(1)-4 (2)4627.3364 28.(21,21) 29.(1)13422=+y x (2)y=2x+219或y=2x -21930.(1)112422=-y x (2)0269=-+y x。
高考数学压轴专题新备战高考《平面解析几何》解析含答案
数学《平面解析几何》期末复习知识要点一、选择题1.设P 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点,延长1FP 至点Q ,使得2PQ PF =,则动点Q 的轨迹方程为( )A .22(x 2)y 28-+=B .22(x 2)y 7++=C .22(x 2)y 28++=D .22(x 2)y 7-+= 【答案】C 【解析】 【分析】推导出12PF PF 2a +==2PQ PF =,从而11PFPQ FQ +==Q 的轨迹为圆,由此能求出动点Q 的轨迹方程. 【详解】P Q 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点, 延长1FP 至点Q ,使得2PQ PF =,12PF PF 2a ∴+==2PQ PF =,11PF PQ FQ ∴+==,Q ∴的轨迹是以()1F 2,0-为圆心,为半径的圆, ∴动点Q 的轨迹方程为22(x 2)y 28++=.故选:C . 【点睛】本题考查动点的轨迹方程的求法,考查椭圆的定义、圆的标准方程等基础知识,考查运算求解能力,是中档题.2.已知双曲线22x a-22y b =1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .B .C .D .【答案】A 【解析】 【分析】 【详解】解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1), 即点(-2,-1)在抛物线的准线上,又由抛物线y 2=2px 的准线方程为2px =-,则p=4,则抛物线的焦点为(2,0);则双曲线的左顶点为(-2,0),即a=2;点(-2,-1)在双曲线的渐近线上,则其渐近线方程为12y x =±, 由双曲线的性质,可得b=1;则c =故选A .3.已知一条抛物线恰好经过等腰梯形ABCD 的四个顶点,其中4AB =,2BC CD AD ===,则该抛物线的焦点到其准线的距离是( )ABCD.【答案】B 【解析】 【分析】不妨设抛物线标准方程22(0)x py p =>,将条件转化为坐标,代入解出p ,即得结果. 【详解】不妨设抛物线标准方程22(0)x py p =>,可设(1,),(2,C m B m ,则123242(pm p p m =⎧⎪∴==⎨=+⎪⎩B. 【点睛】本题考查抛物线方程及其性质,考查基本分析求解能力,属基本题.4.设抛物线E :26y x =的弦AB 过焦点F ,||3||AF BF =,过A ,B 分别作E 的准线的垂线,垂足分别是A ',B ',则四边形AA B B ''的面积等于( ) A.B.C.D.【答案】C 【解析】 【分析】由抛物线的方程可得焦点坐标及准线方程,设直线AB 的方程,与抛物线联立求出两根之和及两根之积,进而求出弦长AB ,由抛物线的性质可得梯形的上下底之和求出,求出A ,B 的纵坐标之差的绝对值,代入梯形的面积公式即可求出梯形的面积.【详解】解:由抛物线的方程 可得焦点3(2F ,0),准线方程:32x =-,由题意可得直线AB的斜率存在且不为0,设直线AB的方程为:32x my=+,1(A x,1)y,2(B x,2)y,联立直线与抛物线的方程:2326x myy x⎧=+⎪⎨⎪=⎩,整理可得:2690y my--=,所以126y y m+=,129y y=-,21212()363x x m y y m+=++=+,因为||3||AF BF=,所以3AF FB=uu u r uu r,即13(2x-,123)3(2y x-=-,2)y,可得:123y y=-,所以可得:2222639y my-=⎧⎨-=-⎩即213m=,由抛物线的性质可得:21233166668223AA BB AB x x m''+==+++=+=+=g,221212121||()436363636433y y y y y y m-=+-=+=+=g,由题意可知,四边形AA B B''为直角梯形,所以1211()||84316322AA B BS AA BB y y''''=+-==g g g,故选:C.【点睛】本题考查抛物线的性质及直线与抛物线的相交弦长,梯形的面积公式,属于中档题.5.已知双曲线2222:1(0,0)x yC a ba b-=>>)的左,右焦点分别为12,F F,其右支上存在一点M,使得21MF MF⋅=u u u u r u u u r,直线:0l bx ay+=,若直线2//MF l则双曲线C的离心率为()A2B.2 C5D.5【答案】C【解析】【分析】易得且1MF l ⊥,从而l 是线段1MF 的垂直平分线求出直线1MF 的方程与渐近线方程联立求出交点坐标,进而求得M 坐标,根据勾股定理即可求解离心率. 【详解】由120MF MF ⋅=u u u u v u u u u v 可得12MF MF ⊥易知直线:0l bx ay +=为双曲线的一条渐近线,可知l 的方程为by x a=-,且1MF l ⊥,从而l 是线段1MF 的垂直平分线,且直线1MF 的方程为()ay x c b=+设1MF ,与l 相交 于点(),N x y .由 ()a y x c b b y x a ⎧=+⎪⎪⎨⎪=-⎪⎩得2a x c aby c ⎧=-⎪⎪⎨⎪=⎪⎩即2,a ab N c c ⎛⎫-⎪⎝⎭,又()1,0F c -,由中点坐标公式,得222,.a ab M c c c ⎛⎫- ⎪⎝⎭由双曲线性质可得122MF MF a -=①,由12MF MF ⊥得222124MF MF c +=②,①②联立,可得2122MF MF b ⋅=所以点M 的纵坐标为2b c ,所以22b ab c c =即2b a =所以21 5.b e a ⎛⎫=+= ⎪⎝⎭故选:C 【点睛】本题考查双曲线性质的综合问题,考查数形结合思想,对于学生的数学运算和逻辑推理能力要求较高,属于一般性题目.6.如图,O 是坐标原点,过(,0)E p 的直线分别交抛物线22(0)y px p =>于A 、B 两点,直线BO 与过点A 平行于x 轴的直线相交于点M ,过点M 与此抛物线相切的直线与直线x p =相交于点N .则22||ME NE -=( )A .2pB .2pC .22pD .24p【答案】C 【解析】 【分析】过E (p ,0)的直线分别交抛物线y 2=2px (p >0)于A 、B 两点,不妨设直线AB 为x =p ,分别求出M ,N 的坐标,即可求出答案. 【详解】过E (p ,0)的直线分别交抛物线y 2=2px (p >0)于A 、B ,两点为任意的,不妨设直线AB 为x =p ,由2y 2pxx p⎧=⎨=⎩,解得y =2p ,则A (p 2p ),B (p 2p ),∵直线BM 的方程为y 2x ,直线AM 的方程为y =2x , 解得M (﹣p 2p ),∴|ME |2=(2p )2+2p 2=6p 2, 设过点M 与此抛物线相切的直线为y 2p =k (x +p ),由()2y 2y+2=k px x p ⎧=⎪⎨+⎪⎩,消x 整理可得ky 2﹣2py ﹣2p +2p 2k =0, ∴△=4p 2﹣4k (﹣2p +2p 2k )=0, 解得k =2+22, ∴过点M 与此抛物线相切的直线为y 2p 2+2(x +p ), 由()2+2y+2=2x p x p =⎧⎪⎨+⎪⎩,解得N (p ,2p ), ∴|NE |2=4p 2,∴|ME |2﹣|NE |2=6p 2﹣4p 2=2p 2, 故选C . 【点睛】本题考查了直线和抛物线位置关系,以及直线和直线的交点坐标问题,属于难题.7.在平面直角坐标系中,已知双曲线的中心在原点,焦点在轴上,实轴长为8,离心率为,则它的渐近线的方程为( ) A . B .C .D .【答案】D 【解析】试题分析:渐近线的方程为,而,因此渐近线的方程为,选D.考点:双曲线渐近线8.已知点P 是椭圆22221(0,0)x y a b xy a b+=>>≠上的动点,1(,0)F c -、2(,0)F c 为椭圆的左、右焦点,O 为坐标原点,若M 是12F pF ∠的角平分线上的一点,且F 1M ⊥MP ,则|OM|的取值范围是( ) A .(0,)c B .(0,)aC .(,)b aD .(,)c a【答案】A 【解析】 【分析】 【详解】解:如图,延长PF 2,F 1M ,交与N 点,∵PM 是∠F 1PF 2平分线,且F 1M ⊥MP , ∴|PN|=|PF 1|,M 为F 1F 2中点,连接OM ,∵O 为F 1F 2中点,M 为F 1F 2中点 ∴|OM|=|F 2N|=||PN|﹣|PF 2||=||PF 1|﹣|PF 2|| ∵在椭圆中,设P 点坐标为(x 0,y 0)则|PF 1|=a+ex 0,|PF 2|=a ﹣ex 0,∴||PF 1|﹣|PF 2||=|a+ex 0+a ﹣ex 0|=|2ex 0|=|ex 0| ∵P 点在椭圆上,∴|x 0|∈(0,a],又∵当|x 0|=a 时,F 1M ⊥MP 不成立,∴|x 0|∈(0,a ) ∴|OM|∈(0,c ).故选A .9.已知点P 在抛物线24y x =上,那么点P 到点(2,1)Q 的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A .(1,14) B .1(,1)4-C .(1,2)D .(1,2)-【答案】A 【解析】 【分析】 【详解】试题分析:抛物线24y x =焦点为F (1,0),准线为1x =-,作PQ 垂直于准线,垂足为M 根据抛物线定义: ,PQ PF PQ PM +=+,根据三角形两边距离之和大于第三边,直角三角形斜边大于直角边知:PQ PM +的最小值是点Q 到抛物线准线1x =-的距离;所以点P 纵坐标为1,则横坐标为14,即(1,14),故选A 考点:抛物线的定义及几何性质的运用.10.已知平面向量,,a b c r r r满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( ) A 75- B .732C .532-D .312【答案】A 【解析】 【分析】根据题意,易知a r 与b r的夹角为60︒,设(=13a ,r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r,可得2212302x y x y +-+=,所以原问题等价于,圆2212302x y x y +--+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果. 【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r的夹角为60︒,设()=13a ,r ,()20b =,r ,(),c x y =r, 因为()()21a c b c -⋅-=r r r r ,所以2212302x y x y +--+=,又()222b c x y -=-+r r ,所以原问题等价于,圆2212302x y x y +--+=上一动点与点()20,之间距离的最小值,又圆2212302x y x y +--+=的圆心坐标为31⎛⎫ ⎪ ⎪⎝⎭,,半径为5,所以点()20,与圆2212302x y x y +--+=上一动点距离的最小值为()223575212⎛⎫--+-= ⎪ ⎪⎝⎭. 故选:A. 【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.11.双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于( ). A .2 B .22C .4D .42【答案】C 【解析】试题分析:设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .考点:双曲线的方程与几何性质12.点为椭圆的一个焦点,若椭圆上存在点使(为坐标原点)为正三角形,则椭圆的离心率为( ) A .B .C .D .【答案】B 【解析】 【分析】为正三角形,点在椭圆上,代入椭圆方程,计算得到.【详解】由题意,可设椭圆的焦点坐标为, 因为为正三角形,则点在椭圆上,代入得,即,得,解得,故选B . 【点睛】本题考查了椭圆离心率的计算,意在考查学生的计算能力.13.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n+的最小值为( ) A .92B .9C .6D .3【答案】D 【解析】 【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=,又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=.Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m m n +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立.12m n ∴+的最小值为3. 故选:D . 【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.14.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v( )A .-16B .0C .16D .32【答案】B 【解析】 【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解. 【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x ⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-,则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.已知双曲线222:41(0)x C y a a -=>的右顶点到其一条渐近线的距离等于3,抛物线2:2E y px =的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线1:4360l x y -+=和2:1l x =-距离之和的最小值为( )A .1B .2C .3D .4 【答案】B【解析】分析:由双曲线的右顶点到渐近线的距离求出234a =,从而可确定双曲线的方程和焦点坐标,进而得到抛物线的方程和焦点,然后根据抛物线的定义将点M 到直线2l 的距离转化为到焦点的距离,最后结合图形根据“垂线段最短”求解.详解:由双曲线方程22241(0)x y a a-=>可得, 双曲线的右顶点为(,0)a ,渐近线方程为12y x a =±,即20x ay ±=. ∵双曲线的右顶点到渐近线的距离等于3, ∴2314a =+,解得234a =, ∴双曲线的方程为224413x y -=, ∴双曲线的焦点为(1,0).又抛物线2:2E y px =的焦点与双曲线C 的右焦点重合,∴2p =,∴抛物线的方程为24y x =,焦点坐标为(1,0)F .如图,设点M 到直线1l 的距离为||MA ,到直线2l 的距离为||MB ,则MB MF =, ∴MA MB MA MF +=+.结合图形可得当,,A M F 三点共线时,MA MB MA MF +=+最小,且最小值为点F到直线1l 的距离2d ==.故选B . 点睛:与抛物线有关的最值问题一般情况下都与抛物线的定义有关,根据定义实现由点到点的距离与点到直线的距离的转化,具体有以下两种情形:(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决.16.已知直线1:(1)(1)20l a x a y -++-=和2:(1)210l a x y +++=互相垂直,则a 的值为( )A .-1B .0C .1D .2【答案】A【解析】分析:对a 分类讨论,利用两条直线相互垂直的充要条件即可得出. 详解:1a =-时,方程分别化为:10210x y +=+=,, 此时两条直线相互垂直,因此1a =-满足题意.1a ≠-时,由于两条直线相互垂直,可得:11()112a a a -+-⨯-=-+, 解得1a =-,舍去.综上可得:1a =-.故选A .点睛:本题考查了两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题17.过双曲线()222210,0x y a b a b-=>>的右焦点F ,作渐近线b y x a =的垂线与双曲线左右两支都相交,则双曲线离心率e 的取值范围为( )A .()1,2B .(C .)+∞D .()2,+∞【答案】C【解析】【分析】 设过双曲线的右焦点F 与渐近线b y x a=垂直的直线为AF ,根据垂线与双曲线左右两支都相交,得AF 的斜率要小于双曲线另一条渐近线的斜率 ,由此建立关于,a b 的不等式,解之可得22b a >,从而可得双曲线的离心率e 的取值范围 .【详解】过双曲线的右焦点F 作渐近线b y x a=垂线,设垂足为A , Q 直线为AF 与双曲线左右两支都相交, ∴直线AF 与渐近线b y x a =-必定有交点B , 因此,直线b y x a=-的斜率要小于直线AF 的斜率, Q 渐近线b y x a =的斜率为b a, ∴直线AF 的斜率a k b =-,可得b a a b -<-, 即22,b a b a a b>>,可得222c a >, 两边都除以2a ,得22e >,解得2e >双曲线离心率e 的取值范围为)2,+∞,故选C. 【点睛】 本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率范围问题应先将 e 用有关的一些量表示出来,再利用其中的一些关系构造出关于e 的不等式,从而求出e 的范围.18.已知1F ,2F 分别为双曲线C :22221(0,0)x y a b a b-=>>的左,右焦点,点P 是C 右支上一点,若120PF PF ⋅=u u u v u u u u v ,且124cos 5PF F ∠=,则C 的离心率为( ) A .257B .4C .5D .57 【答案】C【解析】【分析】在12PF F △中,求出1PF ,2PF ,然后利用双曲线的定义列式求解.【详解】 在12PF F △中,因为120PF PF ⋅=u u u r u u u u r ,所以1290F PF ∠=o , 1121248cos 255c PF F F PF F c =⋅∠=⋅=,2121236sin 255c PF F F PF F c =⋅∠=⋅=, 则由双曲线的定义可得128622555c c c a PF PF =-=-= 所以离心率5c e a==,故选C. 【点睛】 本题考查双曲线的定义和离心率,解题的关键是求出1PF ,2PF ,属于一般题.19.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC 2aD .22a 【答案】D【解析】【分析】 设H ,I 分别为1CC 、11C D 边上的中点,由面面平行的性质可得F 落在线段HI 上,再求HI 的长度即可.【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点, 则ABEG 四点共面,且平面1//A BGE 平面1B HI ,又1//B F Q 面1A BE ,F ∴落在线段HI 上,Q 正方体1111ABCD A B C D -中的棱长为a ,1122HI CD ∴==,即F 在侧面11CDD C 上的轨迹的长度是22a . 故选D .【点睛】 本题考查了面面平行的性质及动点的轨迹问题,属中档题.20.如图,12,F F 是双曲线221:13y C x -=与椭圆2C 的公共焦点,点A 是1C ,2C 在第一象限的公共点,若112F A F F =,则2C 的离心率是( )A .13B .15C .23D .25【答案】C【解析】由221:13y C x -=知2c =,1124F A F F == ∵122F A F A -=∴22F A =∵由椭圆得定义知1226a F A F A =+=∴23,3c a e a === 故选C。
高考数学压轴专题新备战高考《平面解析几何》难题汇编附解析
【最新】数学《平面解析几何》高考复习知识点一、选择题1.已知椭圆22:195x y C +=左右焦点分别为12F F 、,直线):2l y x =+与椭圆C 交于A B 、两点(A 点在x 轴上方),若满足11AF F B λ=u u u v u u u v,则λ的值等于( )A.B .3C .2D【答案】C 【解析】由条件可知,直线l 过椭圆的左焦点()12,0F -.由)222195y x x y ⎧=+⎪⎨+=⎪⎩消去y 整理得232108630x x ++=,解得34x =-或218x =-. 设1122(,),(,)A x y B x y ,由A 点在x 轴上方可得12321,48x x =-=-. ∵11AF F Bλ=u u u v u u u v, ∴1122(2,)(2,)x y x y λ---=+, ∴122(2)x x λ--=+. ∴3212()(2)48λ---=-+, 解得2λ=.选C2.已知椭圆22:12y C x +=,直线:l y x m =+,若椭圆C 上存在两点关于直线l 对称,则m 的取值范围是( )A.33⎛- ⎝⎭B.,44⎛- ⎝⎭C.33⎛⎫- ⎪ ⎪⎝⎭D.44⎛- ⎝⎭【答案】C 【解析】 【分析】设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y ,根据椭圆C 上存在两点关于直线:l y x m =+对称,将A ,B 两点代入椭圆方程,两式作差可得002y x =,点M 在椭圆C 内部,可得2221m m +<,解不等式即可.【详解】设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y , 则1202x x x +=,1202y y y +=,1AB k =-.又因为A ,B 在椭圆C 上,所以221112y x +=,222212y x +=,两式相减可得121212122y y y y x x x x -+⋅=--+,即002y x =. 又点M 在l 上,故00y x m =+,解得0x m =,02y m =. 因为点M 在椭圆C 内部,所以2221m m +<,解得33,33m ⎛⎫∈-⎪ ⎪⎝⎭. 故选:C 【点睛】本题考查了直线与椭圆的位置关系以及在圆锥曲线中“设而不求”的思想,属于基础题.3.如图,12,F F 是椭圆221:14x C y +=与双曲线2C 的公共焦点,,A B 分别是12,C C 在第二、四象限的公共点,若四边形12AF BF 为矩形,则2C 的离心率是( )A 2B 3C .32D 6【答案】D 【解析】 【分析】 【详解】试题分析:由椭圆与双曲线的定义可知,|AF 2|+|AF 1|=4,|AF 2|-|AF 1|=2a(其中2a 为双曲线的长轴长),∴|AF 2|=a +2,|AF 1|=2-a ,又四边形AF 1BF 2是矩形,∴|AF 1|2+|AF 2|2=|F 1F 2|2=32,∴a 2,∴e 32=62. 考点:椭圆的几何性质.4.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C 于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A .2B .2C .3D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得2AF =u u u v【详解】 根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以()2212112AF n u u u v =-+=+=故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.5.已知直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,直线l 经过2:2(0)C y px p =>的焦点,M 为C 上的一个动点,若点N 的坐标为()4,0,则MN 的最小值为( )A .BC .2D .【答案】A 【解析】 【分析】联立直线与抛物线方程利用弦长公式列方程,结合直线过抛物线的焦点,解方程可得2p =,再利用两点的距离公式,结合二次函数配方法即可得结果.【详解】由22224(42)02y x bx b p x b y px=+⎧⇒+-+=⎨=⎩, 121222,24b p b x x x x +=-=-,因为直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,125x =-,所以()22222512424b p b ⎡⎤-⎛⎫=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(1) 又直线l 经过C 的焦点,则,22b pb p -=∴=- (2)由(1)(2)解得2p =,故抛物线方程为24y x =.设()20000,,4M x y y x ∴=.则()()()2222200000||444212MN x y x x x =-+=-+=-+,故当02x =时,min ||MN = 故选:A. 【点睛】本题主要考查直线与抛物线的位置关系,考查了弦长公式以及配方法的应用,意在考查综合应用所学知识解答问题的能力,属于中档题.6.设D 为椭圆2215y x +=上任意一点,A (0,-2),B (0,2),延长AD 至点P ,使得|PD|=|BD|,则点P 的轨迹方程为( ) A .x 2+(y -2)2=20 B .x 2+(y -2)2=5C .x 2+(y +2)2=20D .x 2+(y +2)2=5【答案】C 【解析】 【分析】由题意得25PA PD DA DB DA =+=+=,从而得到点P 的轨迹是以点A 为圆心,半径为25的圆,进而可得其轨迹方程. 【详解】由题意得PA PD DA DB DA =+=+,又点D 为椭圆2215y x +=上任意一点,且()()0,2,0,2A B -为椭圆的两个焦点,∴25DB DA +=, ∴25PA =,∴点P 的轨迹是以点A 为圆心,半径为25的圆, ∴点P 的轨迹方程为()22220x y ++=. 故选C . 【点睛】本题考查圆的方程的求法和椭圆的定义,解题的关键是根据椭圆的定义得到25PA =,然后再根据圆的定义得到所求轨迹,进而求出其方程.考查对基础知识的理解和运用,属于基础题.7.已知双曲线2221(0)2x y b b-=>的左右焦点分别为12,F F ,其一条渐近线方程为y x =,点0(3,)P y 在该双曲线上,则12PF PF ⋅u u u r u u u u r=( )A .12-B .2-C .0D .4【答案】C 【解析】 由题知,故,∴12(23,1)(23,1)3410PF PF ⋅=-±⋅±=-+=u u u r u u u u r,故选择C .8.已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( )A .[]4,10B .[]3,5C .[]8,10D .[]6,10【答案】D【解析】 【分析】由直线()()21110k x k y ++++=,得出直线恒过定点()1,2P -,再结合直线与圆的位置关系,即可求解. 【详解】由直线()()():21110l k x k y k R ++++=∈,可得()210k x y x y ++++=,又由2010x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即直线恒过定点()1,2P -,圆心()1,2C ,当CP l ⊥时弦长最短,此时2222AB CP r ⎛⎫+=⎪⎝⎭,解得min 6AB =, 再由l 经过圆心时弦长最长为直径210r =, 所以弦长AB 的取值范围是[]6,10. 故选:D. 【点睛】本题主要考查了直线系方程的应用,以及直线与圆的位置关系的应用,其中解答中熟练利用直线的方程,得出直线恒过定点,再结合直线与圆的位置关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.9.已知点P 在抛物线24y x =上,那么点P 到点(2,1)Q 的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A .(1,14) B .1(,1)4-C .(1,2)D .(1,2)-【答案】A 【解析】 【分析】 【详解】试题分析:抛物线24y x =焦点为F (1,0),准线为1x =-,作PQ 垂直于准线,垂足为M 根据抛物线定义: ,PQ PF PQ PM +=+,根据三角形两边距离之和大于第三边,直角三角形斜边大于直角边知:PQ PM +的最小值是点Q 到抛物线准线1x =-的距离;所以点P 纵坐标为1,则横坐标为14,即(1,14),故选A 考点:抛物线的定义及几何性质的运用.10.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( )A .125 B .65C .2D .5【答案】A 【解析】试题分析:根据抛物线的定义可知抛物线24y x =上的点P 到抛物线的焦点距离1PF d =,所以122d d MF d +=+,其最小值为()1,0F 到直线3490x y -+=的距离,由点到直线的距离公式可知()()122min min125d d MF d +=+==,故选A. 考点:抛物线定义的应用.11.已知(cos ,sin )P αα,(cos ,sin )Q ββ,则||PQ 的最大值为( )A B .2C .4D .【答案】B 【解析】 【分析】由两点的距离公式表示PQ ,再运用两角差的余弦公式化简,利用余弦函数的值域求得最值. 【详解】∵(cos ,sin )P αα,(cos ,sin )Q ββ,∴||PQ ====∵cos()[1,1]αβ-∈-,∴||[0,2]PQ ∈. 故选B . 【点睛】本题综合考查两点的距离公式、同角三角函数的平方关系、两角差的余弦公式和余弦的值域,属于中档题.12.已知0mn ≠,则方程是221mx ny +=与20mx ny +=在同一坐标系内的图形可能是 ( )A .B .C .D .【答案】A 【解析】方程20mx ny +=即2my x n=-,表示抛物线,方程()2210mx ny mn +=≠表示椭圆或双曲线,当m 和n 同号时,抛物线开口向左,方程()2210mx ny mn +=≠表示椭圆,无符合条件的选项,当m 和n 异号时,抛物线2my x n=-开口向右,方程221mx ny +=表示双曲线,故选A.13.已知平面向量,,a b c r r r满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( ) A 75- B 73-C .532-D 31- 【答案】A 【解析】 【分析】根据题意,易知a r 与b r的夹角为60︒,设(=13a ,r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r,可得2212302x y x y +-+=,所以原问题等价于,圆2212302x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果. 【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r的夹角为60︒,设(=13a ,r ,()20b =,r ,(),c x y =r, 因为()()21a c b c -⋅-=r r r r ,所以2212302x y x +-+=,又()222b c x y -=-+r r ,所以原问题等价于,圆2212302x y x y +--+=上一动点与点()20,之间距离的最小值,又圆2212302x y x y +--+=的圆心坐标为31⎛⎫ ⎪ ⎪⎝⎭,,半径为5,所以点()20,与圆2212302x y x y +--+=上一动点距离的最小值为()223575212⎛⎫--+-= ⎪ ⎪⎝⎭. 故选:A. 【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.14.点为椭圆的一个焦点,若椭圆上存在点使(为坐标原点)为正三角形,则椭圆的离心率为( ) A .B .C .D .【答案】B 【解析】 【分析】为正三角形,点在椭圆上,代入椭圆方程,计算得到.【详解】由题意,可设椭圆的焦点坐标为, 因为为正三角形,则点在椭圆上,代入得,即,得,解得,故选B . 【点睛】本题考查了椭圆离心率的计算,意在考查学生的计算能力.15.已知抛物线22(0)y px p =>交双曲线22221(0,0)x y a b a b-=>>的渐近线于A ,B 两点(异于坐标原点OAOB ∆的面积为32,则抛物线的焦点为( ) A .(2,0) B .(4,0)C .(6,0)D .(8,0)【答案】B 【解析】 【分析】由题意可得2ba=,设点A 位于第一象限,且(),A m n ,结合图形的对称性列出方程组确定p 的值即可确定焦点坐标. 【详解】2222222215c a b b e a a a+===+=,∴2b a =, 设点A 位于第一象限,且(),A m n ,结合图形的对称性可得:22322nm mn n pm ⎧=⎪⎪=⎨⎪=⎪⎩,解得:8p =,∴抛物线的焦点为()4,0,故选B . 【点睛】本题主要考查圆锥曲线的对称性,双曲线的渐近线,抛物线焦点坐标的求解等知识,意在考查学生的转化能力和计算求解能力.16.过点(11)M , 的直线与椭圆22143x y += 交于A ,B 两点,且点M 平分AB ,则直线AB 的方程为( ) A .3470x y +-= B .3410x y -+=C .4370x y +-=D .4310x y --=【答案】A 【解析】设1122(,),(,)A x y B x y ,代入椭圆的方程可得222211221,14343x y x y +=+=,两式相减可得12121212()()()()044x x x x y y y y +-+-+=,又121212122,2,y y x x y y k x x -+=+==-,即为12123()34()4x x k y y +=-=-+,则直线AB 的方程为:31(1)4y x -=--,化为3470x y +-=,故选A . 点睛:本题考查了直线与椭圆的位置关系,注意运用“点差法”的应用,考查了学生的推理与计算能力,试题比较基础,属于基础题,解答此类问题的关键在于把握弦的中点,恰当的选择“点差法”是解答的关键.17.已知12F F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,P 为双曲线上一点,2PF 与x 轴垂直,1230PF F ∠=︒,且焦距为 ) A.y = B.y =C .2y x =±D .3y x =±【答案】B 【解析】 【分析】先求出c 的值,再求出点P 的坐标,可得22bPF a=,再由已知求得1PF ,然后根据双曲线的定义可得ba的值,则答案可求. 【详解】解:由题意,2c =解得c =,∵()2,0F c ,设(),P c y ,∴22221x y a b -=,解得2b y a =±,∴22b PF a=,∵1230PF F ∠=︒,∴21222b PF PF a==,由双曲线定义可得:2122b PF PF a a-==,则222a b =,即ba=∴双曲线的渐近线方程为y =. 故选:B .【点睛】本题考查双曲线渐近线方程的求解,难度一般.求解双曲线的渐近线方程,可通过找到,,a b c 中任意两个量的倍数关系进行求解.18.已知点1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,1e ,2e 分别是1C 和2C 的离心率,点P 为1C 和2C 的一个公共点,且1223F PF π∠=,若22e =,则1e 的值是( ) A 5B .54C 25D 25【答案】D 【解析】 【分析】利用椭圆和双曲线的定义以及余弦定理可得到方程2221243c a a =+,由此得到关于离心率的方程求得结果. 【详解】设椭圆长半轴长为1a ,双曲线实半轴长为2a ,焦点坐标为()1,0F c -,()2,0F c , 不妨设P 为第一象限内的点,则1212+=PF PF a ,1222-=PF PF a , 则221212PF PF a a =-,由余弦定理得:2222212121212242cos3c PF PF PF PF PF PF PF PF π=+-=++, ()22222211212443c a a a a a ∴=--=+,2212314e e ∴+=,又22e =,2145e ∴=, 125e ∴=故选:D .【点睛】本题考查共焦点的椭圆与双曲线问题的求解,关键是能够熟练应用椭圆和双曲线的定义,利用余弦定理构造等量关系,配凑出关于椭圆和双曲线离心率的方程.19.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线()222713664x y --=的左支上,若船P 上接到A 台发射的电磁波比B 台电磁波早185.2μs (已知电磁波在空气中的传播速度约为0.3km/μs ,1海里 1.852km =),则点P 的坐标(单位:海里)为( )A .9011,77⎛⎫±⎪⎪⎝⎭B .135322,77⎛⎫±⎪⎪⎝⎭C .3217,3⎛⎫±⎪⎝⎭D .(45,162±【答案】B 【解析】 【分析】根据双曲线的定义求出点P 所在的双曲线的标准方程()2211522564x y x -=>,将方程与()222713664x y --=联立,求解即可. 【详解】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥,因为船P 上接到A 台发射的电磁波比B 台电磁波早185.2μs ,则船P 到B 台和到A 台的距离差为185.20.32301.852a PB PA ⨯===-海里,故15a =,又=17c ,故8b =,故由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>,联立()()()222227121366411522564x yxx yx⎧--=<⎪⎪⎨⎪-=>⎪⎩,解得135322,7P⎛⎫±⎪⎪⎝⎭,故选:B.【点睛】本题考查了双曲线的定义、圆锥曲线在生活中的应用,考查了理解转化能力,属于中档题. 20.在矩形ABCD中,已知3AB=,4=AD,E是边BC上的点,1EC=,EF CD∥,将平面EFDC绕EF旋转90︒后记为平面α,直线AB绕AE旋转一周,则旋转过程中直线AB与平面α相交形成的点的轨迹是()A.圆B.双曲线C.椭圆D.抛物线【答案】D【解析】【分析】利用圆锥被平面截的轨迹特点求解【详解】由题将平面EFDC绕EF旋转90︒后记为平面α,则平面α⊥平面ABEF,,又直线AB 绕AE旋转一周,则AB直线轨迹为以AE为轴的圆锥,且轴截面为等腰直角三角形,且面AEF始终与面EFDC垂直,即圆锥母线AF⊥平面EFDC则则与平面α相交形成的点的轨迹是抛物线故选:D【点睛】本题考查立体轨迹,考查圆锥的几何特征,考查空间想象能力,是难题。
专题11平面解析几何(第一部分)
专题11平面解析几何(第一部分)一、单选题1.在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A .1B .2C .3D .42.圆22260x y x y +-+=的圆心到直线20x y -+=的距离为( )A B .2 C .3 D .3.圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为 ( )A .1B .2C D .4.数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C③曲线C 所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是A .①B .②C .①②D .①②③ 5.圆心为()1,1且过原点的圆的方程是A .()()22111x y -+-=B .()()22111x y +++=C .()()22112x y +++=D .()()22112x y -+-=6.若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则=a ( )A .12 B .12- C .1 D .1-7.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ).A .4B .5C .6D .78.已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m =A .1±B .C .D .2±9.已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则 A .a 2=2b 2 B .3a 2=4b 2 C .a =2b D .3a =4b二、填空题10.已知椭圆22221(0)x y M a b a b+=>>:,双曲线22221x y N m n -=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为;双曲线N 的离心率为.三、解答题11.已知椭圆E :()222210x y a b a b+=>>,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.四、单选题12.若双曲线2222:1x y C a b -=离心率为2,过点,则该双曲线的方程为( )A .2221x y -=B .2213y x -= C .22531x y -= D .22126x y -=五、填空题13.已知双曲线C 的焦点为(2,0)-和(2,0)C 的方程为.14.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线为20x y +=,一个焦点为,则=a ;b =.15.已知双曲线221x y m +=的渐近线方程为y =,则m =. 16.已知双曲线22:163x y C -=,则C 的右焦点的坐标为;C 的焦点到其渐近线的距离是. 17.已知双曲线2221x y a-= (a >0)+y =0,则a =.六、单选题18.已知双曲线2221x y a-=(a >0则a =A B .4 C .2 D .12七、填空题19.若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为 .20.若双曲线2221(0)4x y a a -=>a =. 21.若双曲线221y xm -=m =. 22.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a=.23.已知()2,0是双曲线2221y x b -=(0b >)的一个焦点,则b =.。
高中数学平面解析几何真题(解析版)
专题09平面解析几何真题汇编1.设A,B为椭圆的长轴顶点,E,F为的两个焦点,|ABl=4,,P为上一点,满足,则△PEF的面积为.【答案】1【解析】由题意知该椭圆可设为.由余弦定理,.所以.2.在平面直角坐标系xOy中,椭圆的左、右焦点分别是,椭圆C的弦ST与UV分别平行于x轴与y轴,且相交于点P.已知线段PU,PS,PV,PT的长分别为1,2,3,6,则的面积为【答案】【解析】由对称性,不妨设在第一象限,则由条件知.即P(2,1).进而由得U(2,2)),S(4,1),代入椭圆C的方程知,解得a2=20,b2=5.从而.3.在平面直角坐标系中,椭圆C的方程为,F、A分别为椭圆C的上焦点、右顶点.若P为椭圆C上位于第一象限内的动点,则四边形面积的最大值为___________。
【答案】【解析】易知,,设则其中,当时,四边形OAPF面积的最大值为.故答案为:4.在平面直角坐标系中,点集,在点集K中随机取出三个点,则这三点中存在两点之间距离为的概率为___________。
【答案】【解析】易知,点集K中有9个点,故在点集K中随机取出三个点的种数为。
将点集K中的点按图标记为其中有8对点之间的距离为。
由对称性,考虑取两点的情形.则剩下的一个点有7种取法,这样有个三点组(不计每组中三点的次序)。
对每个,点集中恰有两点与距离为,因而,恰有这8个三点组被计算了两次。
故满足条件的三点组个数为从而所求概率为.故答案为:5.已知双曲线C:,左、右焦点分别为F1、F2.过点F2作一直线与双曲线C的右半支交于点P、Q,使得.则的内切圆半径为________.【答案】【解析】如图所示.由双曲线的性质知:.由.从而,的内切圆半径为:.6.设椭圆的两个焦点为,过点的直线与椭圆交于点P、Q.若,且,则椭圆的短轴与长轴的比值为__________.【答案】【解析】不妨设.设椭圆的长轴、短轴的长度分别为,焦距为.则,且由椭圆的定义知.故.如图所示,设H为线段的中点.则,且.由勾股定理知:7.抛物线的焦点为,准线为是抛物线上的两个动点,且满足.设线段的中点上的投影为,则的最大值是_______.【答案】1【解析】根据抛物线的定义可知,,故,在三角形中,根据余弦定理有,由于,所以,即,故.点睛:本题主要考查直线与抛物线的位置关系,考查基本不等式求最值的方法,考查化归与转化的数学思想方法.抛物线的定义是:动点到定点的距离等于到定直线的距离,这是在有关抛物线的小题中常考考知识点.本题中利用抛物线的定义,进行转化后,利用余弦定理和基本不等式来求解最值.8.直线与抛物线交于两点,为抛物线上的一点,.则点的坐标为______.【答案】【解析】设.由.则①又,则②因为,所以,.故.将方程组①、②代入上式并整理得.显然,.否则,.于是,点在直线上,即点重合.所以,.故所求点.故答案为:9.双曲线的右半支与直线围成的区域内部(不含边界)整点(横纵坐标均为整数的点)的个数是________. 【答案】9800 【解析】由对称性知,只需先考虑轴上方的情况. 设与双曲线右半支交于点,与直线交于点.则线段内部的整点的个数为.从而,在轴上方区域内部整点的个数为. 又轴上有98个整点,则所求整点的个数为.10.已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】[]36,【解析】设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M 相交,得342d ≤. 解得36a ≤≤. 11.椭圆上任意两点,若,则乘积的最小值为 .【答案】【解析】 设,.由在椭圆上,有①②得.于是当时,达到最小值.12.在平面直角坐标系xOy中,圆与抛物线:y2=4x恰有一个公共点,且圆与x轴相切于的焦点F.求圆的半径.【答案】【解析】设圆的半径为R,圆心为(1,R)(-1,R),则圆的方程可写作.不妨设圆与抛物线相切于点,则过该切点的切线方程:以圆为对象,得以抛物线为对象,得.于是可得①②又切点在抛物线y2=4x上,③由①得,由②得.解得:.故圆半径为.13.如图,在锐角△ABC中,M是BC边的中点.点P在△A BC内,使得AP平分∠BAC.直线MP与△ABP,△ACP的外接圆分别相交于不同于点P的两点D,E.证明:若DE=MP,则BC=2BP.【答案】证明见解析【解析】如图:只要证明两小黄全等△DBP,△EMC。
高中数学平面解析几何练习题(含解析)
高中数学平面解析几何练习题(含解析)一、单选题1.若曲线C :2224100x y ax ay a ++--=表示圆,则实数a 的取值范围为( ) A .()2,0- B .()(),20,-∞-⋃+∞ C .[]2,0-D .(][),20,-∞-+∞2.过点1,2,且焦点在y 轴上的抛物线的标准方程是( ) A .24y x =B .24y x =-C .212=-x yD .212x y =3.过 ()()1320A B --,,,两点的直线的倾斜角是( )A .45︒B .60︒C .120D .1354.已知()3,3,3A ,()6,6,6B ,O 为原点,则OA 与BO 的夹角是( ) A .0B .πC .π2D .2π35.已知抛物线2:4C y x =与圆22:(1)4E x y -+=交于A ,B 两点,则||AB =( )A .2B .C .4D .6.已知抛物线2x my =焦点的坐标为(0,1)F ,P 为抛物线上的任意一点,(2,2)B ,则||||PB PF +的最小值为( )A .3B .4C .5D .1127.动点P ,Q 分别在抛物线24x y =和圆228130+-+=x y y 上,则||PQ 的最小值为( )A .B C D 8.直线2360x y +-=关于点(1,1)对称的直线方程为( ) A .3220x y -+= B .2370x y ++= C .32120x y --=D .2340x y +-=9.已知椭圆2222:1()0x c bb y a a +>>=的上顶点为A ,左、右焦点分别为12,F F ,连接2AF 并延长交椭圆C 于另一点B ,若12:7:3F B F B =,则椭圆C 的离心率为( )A .14B .13C .12D 10.“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题11.直线2310x y -+=与5100x y +-=的夹角为________.12.已知圆:C 2220x y x ++=,若直线y kx =被圆C 截得的弦长为1,则k =_______. 13.过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________. 14.写出与圆221x y +=和圆()()224316x y -++=都相切的一条切线方程___________.三、解答题15.已知△ABC 底边两端点(0,6)B 、(0,6)C -,若这个三角形另外两边所在直线的斜率之积为49-,求点A 的轨迹方程.16.已知1F 、2F 是椭圆()2222:10x yC a b a b+=>>的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥.若12PF F △的面积为9,求实数b 的值.17.已知圆C :22120x y Dx Ey +++-=关于直线x +2y -4=0对称,且圆心在y 轴上,求圆C 的标准方程.18.已知椭圆C :22142x y +=,()0,1A ,过点A 的动直线l 与椭圆C 交于P 、Q 两点.(1)求线段PQ 的中点M 的轨迹方程;(2)是否存在常数,使得AP AQ OP OQ λ⋅+⋅为定值?若存在,求出λ的值;若不存在,说明理由.参考答案:1.B【分析】根据圆的一般式变形为标准式,进而可得参数范围. 【详解】由2224100x y ax ay a ++--=, 得()()2222510x a y a a a ++-=+, 由该曲线表示圆, 可知25100a a +>, 解得0a >或2a <-, 故选:B. 2.C【分析】设抛物线方程为2x my =,代入点的坐标,即可求出m 的值,即可得解; 【详解】解:依题意设抛物线方程为2x my =,因为抛物线过点1,2, 所以()212m =⨯-,解得12m =-,所以抛物线方程为212=-x y ;故选:C 3.D【分析】根据两点坐标求出直线的斜率,结合直线倾斜角的范围即可得出结果. 【详解】由已知直线的斜率为 ()03tan 1018021k αα--===-≤<--,,所以倾斜角135α=. 故选:D. 4.B【分析】求出OA 和BO ,利用向量关系即可求出.【详解】因为()3,3,3A ,()6,6,6B ,则()3,3,3OA =,()6,6,6BO =---, 则3cos ,1OA BO OA BO OA BO⨯⋅<>===-⋅,所以OA 与BO 的夹角是π. 故选:B. 5.C【分析】先联立抛物线与圆求出A ,B 横坐标,再代入抛物线求出纵坐标即可求解.【详解】由对称性易得A ,B 横坐标相等且大于0,联立()222414y xx y ⎧=⎪⎨-+=⎪⎩得2230x x +-=,解得123,1x x =-=,则1A B x x ==,将1x =代入24y x =可得2y =±,则||4AB =. 故选:C. 6.A【分析】先根据焦点坐标求出m ,结合抛物线的定义可求答案. 【详解】因为抛物线2x my =焦点的坐标为()0,1,所以14m=,解得4m =. 记抛物线的准线为l ,作PN l ⊥于N ,作BAl 于A ,则由抛物线的定义得||||||||||3PB PF PB PN BA +=+=,当且仅当P 为BA 与抛物线的交点时,等号成立.故选:A. 7.B【分析】设2001,4P x x ⎛⎫⎪⎝⎭,根据两点间距离公式,先求得P 到圆心的最小距离,根据圆的几何性质,即可得答案.【详解】设2001,4P x x ⎛⎫⎪⎝⎭,圆化简为22(4)3x y +-=,即圆心为(0,4)所以点P 到圆心的距离d = 令20t x =,则0t ≥, 令21()1616f t t t =-+,0t ≥,为开口向上,对称轴为8t =的抛物线, 所以()f t 的最小值为()812f =,所以min d所以||PQ的最小值为min d =故选:B 8.D【分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,1对称的点的坐标为(2,2)x y --,代入已知直线即可求得结果.【详解】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,1对称的点的坐标为(2,2)x y --,以(2,2)x y --代换原直线方程中的(,)x y 得()()223260x y -+--=,即2340x y +-=.故选:D. 9.C【分析】根据椭圆的定义求得12,F B F B ,在1ABF 中,利用余弦定理求得22cos F AF ∠,在12AF F △中,再次利用余弦定理即可得解.【详解】解:由题意可得122F B F B a +=, 因为12:7:3F B F B =, 所以1273,55F B a F B a ==, 因为A 为椭圆的上顶点,所以12AF AF a ==,则85AB a =,在1ABF 中,22222211221644912525cos 82225a a a AF AB BF F AF AF ABa a +-+-∠===⨯⨯,在12AF F △中,122212121222cos F F AF AF A F A F A F F =+∠-, 即222224c a a a a =+-=,所以12c a =,即椭圆C 的离心率为12. 故选:C.10.A【分析】根据给定直线方程求出12l l ⊥的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】依题意,12(4)(2)0l l m m m m ⊥⇔-++=,解得0m =或1m =,所以“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的充分不必要条件. 故选:A 11.4π##45︒ 【分析】根据直线方程可得各直线斜率,进而可得倾斜角之间的关系,从而得夹角. 【详解】直线2310x y -+=的斜率123k ,即倾斜角α满足2tan 3α=, 直线5100x y +-=的斜率215k =-,即倾斜角β满足1tan 5β=-,所以()12tan tan 53tan 1121tan tan 153βαβαβα----===-+⎛⎫+-⨯ ⎪⎝⎭, 所以34βαπ-=,又两直线夹角的范围为0,2π⎡⎤⎢⎥⎣⎦,所以两直线夹角为4π,故答案为:4π. 12.【分析】将圆C 一般方程化为标准方程,先求圆心到直线的距离,再由圆的弦长公式即可解出k 的值.【详解】解:将2220x y x ++=化为标准式得()2211x y ++=,故半径为1;圆心()1,0-到直线y kx =,由弦长为1可得1=,解得k =故答案为:13.()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. 【分析】方法一:设圆的方程为220x y Dx Ey F ++++=,根据所选点的坐标,得到方程组,解得即可;【详解】[方法一]:圆的一般方程依题意设圆的方程为220x y Dx Ey F ++++=,(1)若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;(2)若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;(3)若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;(4)若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或 ()()22215x y -+-=或 224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. [方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心) 设()()()()0,04,01,14,2A B C D -点,,,(1)若圆过、、A B C 三点,圆心在直线2x =,设圆心坐标为(2,)a ,则()224913,a a a r +=+-⇒===22(2)(3)13x y -+-=; (2)若圆过A B D 、、三点, 设圆心坐标为(2,)a,则2244(2)1,a a a r +=+-⇒==22(2)(1)5x y -+-=;(3)若圆过 A C D 、、三点,则线段AC 的中垂线方程为1y x =+,线段AD 的中垂线方程 为25y x =-+,联立得47,33x y r ==⇒,所以圆的方程为224765()()339x y -+-=;(4)若圆过B C D 、、三点,则线段BD 的中垂线方程为1y =, 线段BC 中垂线方程为57y x =-,联立得813,155x y r ==⇒=,所以圆的方程为()228169()1525x -y +-=. 故答案为:()()222313x y -+-=或 ()()22215x y -+-=或 224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. 【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.14.1y =或247250x y ++=或4350x y --=【分析】先判断两圆位置关系,再分情况依次求解可得.【详解】圆221x y +=的圆心为()0,0O ,半径为1;圆()()224316x y -++=的圆心为()4,3C -,半径为4,圆心距为5OC =,所以两圆外切,如图,有三条切线123,,l l l , 易得切线1l 的方程为1y =,因为3l OC ⊥,且34OC k =-,所以343l k =,设34:3l y x b =+,即4330x y b -+=,则()0,0O 到3l 的距离315b =,解得53b =(舍去)或53-,所以343:50x y l --=,可知1l 和2l 关于3:4OC y x =-对称,联立341y x y ⎧=-⎪⎨⎪=⎩,解得4,13⎛⎫- ⎪⎝⎭在2l 上, 在1l 上任取一点()0,1,设其关于OC 的对称点为()00,x y , 则0000132421314y x y x +⎧=-⨯⎪⎪⎨-⎛⎫⎪⨯-=- ⎪⎪⎝⎭⎩,解得002425725x y ⎧=-⎪⎪⎨⎪=-⎪⎩,则27124252447253l k --==--+,所以直线2244:173l y x ⎛⎫-=-+ ⎪⎝⎭,即247250x y ++=, 综上,切线方程为1y =或247250x y ++=或4350x y --=. 故答案为:1y =或247250x y ++=或4350x y --=.15.()22108136x y x +=≠【分析】设(,)A x y ,利用斜率的两点式列方程并整理可得轨迹方程,注意0x ≠. 【详解】设(,)A x y 且0x ≠,则22663649AB ACy y y k k x x x -+-=⋅==-, 整理得:A 的轨迹方程()22108136x y x +=≠. 16.3b =【分析】由题意以及椭圆的几何性质列方程即可求解. 【详解】因为12PF PF ⊥,所以1290F PF ∠=︒, 所以12F PF △为直角三角形,22212(2)PF PF c +=,122PF PF a +=, ()2221212122PF PF PF PF PF PF +=+-⋅,即()()221212242c a PF PF =-⨯⋅, 1212192F PF S PF PF =⋅=△, 所以2244490c a =-⨯=,所以2449b =⨯.所以3b =; 综上,b =3.17.22(2)16x y +-=. 【分析】由题设知圆心(,)22D EC --,且在已知直线和y 轴上,列方程求参数D 、E ,写出一般方程,进而可得其标准方程. 【详解】由题意知:圆心(,)22D EC --在直线x +2y -4=0上,即-2D -E -4=0. 又圆心C 在y 轴上,所以-2D=0. 由以上两式得:D =0, E =-4,则224120x y y +--=, 故圆C 的标准方程为22(2)16x y +-=.18.(1)2211222x y ⎛⎫+-= ⎪⎝⎭ (2)存在,1λ=【分析】(1)①当直线l 存在斜率时,设()11,P x y 、()22,Q x y 、()00,M x y ,00x ≠,利用点差法求解; ②当直线l 不存在斜率时,易知()0,0M ,验证即可;(2)①当直线l 存在斜率时,设直线l 的方程为:1y kx =+,与椭圆方程联立,结合韦达定理,利用数量积运算求解; ②当直线l 不存在斜率时,直线l 的方程为:0x =,易得(P、(0,Q ,验证即可.【详解】(1)解:①当直线l 存在斜率时,设()11,P x y 、()22,Q x y 、()00,M x y ,00x ≠,则应用点差法:22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式联立作差得:12121212()()()()042x x x x y y y y -+-++=, ∴()()()()121200121212121212002122PQ PQ PQ OM y y y y y y y y y y k k k k x x x x x x x x x x -+-+=⋅=⋅=⋅=⋅=--+-+, 又∵001PQ MA y k k x -==, ∴0000112y y x x -⋅=-,化简得22000220x y y +-=(00x ≠), ②当直线l 不存在斜率时,()0,0M ,综上,无论直线是否有斜率,M 的轨迹方程为2211222x y ⎛⎫+-= ⎪⎝⎭;(2)①当直线l 存在斜率时,设直线l 的方程为:1y kx =+,联立221142y kx x y =+⎧⎪⎨+=⎪⎩并化简得:22(21)420k x kx ++-=,∴0∆>恒成立,∴122421k x x k +=-+,122221x x k ⋅=-+,又AP ()11,x k x =⋅,AQ ()22,x k x =⋅,OP ()11,1x k x =⋅+,OQ ()22,1x k x =⋅+,∴AP AQ OP OQ λ⋅+⋅()()()22121212111k x x k x x k x x λ=+⋅⋅++⋅⋅+++,()()()222222211222141212121k k k k k k λλλ-+++++=-+=-+++, 若使AP AQ OP OQ λ⋅+⋅为定值, 只需()222121λλ++=,即1λ=,其定值为3-, ②当直线l 不存在斜率时,直线l 的方程为:0x =,则有(P、(0,Q , 又AP ()1=,AQ ()0,1=,OP (=,OQ (0,=, ∴2λλ⋅+⋅=--AP AQ OP OQ ,当1λ=时,AP AQ OP OQ λ⋅+⋅也为定值3-, 综上,无论直线是否有斜率,一定存在一个常数1λ=, 使AP AQ OP OQ λ⋅+⋅为定值3-.。
高考数学压轴专题最新备战高考《平面解析几何》真题汇编及解析
数学《平面解析几何》复习资料一、选择题1.在圆M :224410x y x y +---=中,过点(0,1)E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .6B .12C .24D .36【答案】B 【解析】 【分析】先将圆M 的方程化为标准方程,得到其圆心坐标与半径,再结合直线与圆的位置关系可得AC 、BD 的值,进而求出答案. 【详解】圆M 的标准方程为:22(2)(2)9x y -+-=,其圆心为(2,2)M ,半径3r =, 过点E 最长的弦长是直径,故6AC =,最短的弦是与ME 垂直的弦,又ME ==所以122BD ===,即4BD =, 所以四边形的面积11641222S AC BD =⋅⋅=⨯⨯=, 故选:B. 【点睛】本题考查直线与圆相交的性质,解题关键是明确AC 和BD 的位置关系,难度不大.2.已知双曲线2222:1(0,0)x y C a b a b-=>>,过其右焦点F 作渐近线的垂线,垂足为B ,交y轴于点C ,交另一条渐近线于点A ,并且满足点C 位于A ,B 之间.已知O 为原点,且53OA a =,则||||FB FC =( ) A .45B .23C .34D .13【答案】A 【解析】 【分析】设出直线AB 的方程,联立直线AB 方程和渐近线方程,由此求得,A B 两点的坐标,以及求得C 点的坐标,根据53OA a =列方程,求得,,a b c 的关系,由此求得||||FB FC 的值.【详解】由于双曲线渐近线为b y x a =±,不妨设直线AB 的斜率为ab-,故直线AB 的方程为()a y x c b =--.令0x =,得0,ac C b ⎛⎫ ⎪⎝⎭.由()a y x c bb y x a ⎧=--⎪⎪⎨⎪=⎪⎩解得2,a ab B c c ⎛⎫ ⎪⎝⎭,.由()a y x c bb y x a ⎧=--⎪⎪⎨⎪=-⎪⎩解得22222,a c abc A a b a b ⎛⎫- ⎪--⎝⎭,由53OA a =得22222222259a c abc a a b a b ⎛⎫-⎛⎫+= ⎪ ⎪--⎝⎭⎝⎭,化简得()()2222440a b a b --=,解得12b a =或2b a =.由于C 位于,A B 之间,故12b a =舍去,所以2b a=,即2b a =.故22222222||44||45B C aby FB b b a c ac FC y c a b a a b======++. 故选:A.【点睛】本小题主要考查双曲线的渐近线方程,考查直线和直线相交所得交点坐标的求法,考查双曲线的几何性质,考查运算求解能力,考查数形结合的数学思想方法,属于中档题.3.已知双曲线2222:1(0)x y E a b a b-=>>的左、右焦点分别为1F ,2F ,P 是双曲线E 上的一点,且212||PF PF =.若直线2PF 与双曲线E 的渐近线交于点M ,且M 为2PF 的中点,则双曲线E 的渐近线方程为( )A .13y x =±B .12y x =±C .2y x =±D .3y x =±【答案】C 【解析】 【分析】由双曲线定义得24PF a =,12PF a =,OM 是12PF F △的中位线,可得OM a =,在2OMF △中,利用余弦定理即可建立,a c 关系,从而得到渐近线的斜率.【详解】根据题意,点P 一定在左支上.由212PF PF =及212PF PF a -=,得12PF a =,24PF a =, 再结合M 为2PF 的中点,得122PF MF a ==,又因为OM 是12PF F △的中位线,又OM a =,且1//OM PF , 从而直线1PF 与双曲线的左支只有一个交点.在2OMF △中22224cos 2a c aMOF ac+-∠=.——① 由2tan b MOF a ∠=,得2cos aMOF c∠=. ——② 由①②,解得225c a=,即2b a =,则渐近线方程为2y x =±.故选:C. 【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.4.已知点(,)P x y 是直线240x y -+=上一动点,直线,PA PB 是圆22:20C x y y ++=的两条切线,,A B 为切点,C 为圆心,则四边形PACB 面积的最小值是( ) A .2 BC.D .4【答案】A 【解析】圆22:20C x y y ++=即22(y 1)1x ++=,表示以C (0,-1)为圆心,以1为半径的圆。
高考数学-平面解析几何(含22年真题讲解)
高考数学-平面解析几何(含22年真题讲解)1.【2022年全国甲卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1→⋅BA 2→=−1,则C 的方程为( ) A .x 218+y 216=1 B .x 29+y 28=1 C .x 23+y 22=1 D .x 22+y 2=1【答案】B 【解析】 【分析】根据离心率及BA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =−1,解得关于a 2,b 2的等量关系式,即可得解.【详解】解:因为离心率e =c a =√1−b 2a 2=13,解得b 2a 2=89,b 2=89a 2,A 1,A 2分别为C 的左右顶点,则A 1(−a,0),A 2(a,0),B 为上顶点,所以B(0,b).所以BA 1⃑⃑⃑⃑⃑⃑⃑⃑ =(−a,−b),BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =(a,−b),因为BA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =−1 所以−a 2+b 2=−1,将b 2=89a 2代入,解得a 2=9,b 2=8, 故椭圆的方程为x 29+y 28=1.故选:B.2.【2022年全国甲卷】椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP,AQ 的斜率之积为14,则C 的离心率为( ) A .√32B .√22C .12D .13【答案】A 【解析】 【分析】设P (x 1,y 1),则Q (−x 1,y 1),根据斜率公式结合题意可得y 12−x 12+a 2=14,再根据x 12a 2+y 12b 2=1,将y 1用x 1表示,整理,再结合离心率公式即可得解. 【详解】解:A(−a,0),设P(x1,y1),则Q(−x1,y1),则k AP=y1x1+a ,k AQ=y1−x1+a,故k AP⋅k AQ=y1x1+a ⋅y1−x1+a=y12−x12+a2=14,又x12a2+y12b2=1,则y12=b2(a2−x12)a2,所以b2(a2−x12)a2−x12+a2=14,即b2a2=14,所以椭圆C的离心率e=ca =√1−b2a2=√32.故选:A.3.【2022年全国乙卷】设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=()A.2 B.2√2C.3 D.3√2【答案】B【解析】【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点A的横坐标,进而求得点A坐标,即可得到答案.【详解】由题意得,F(1,0),则|AF|=|BF|=2,即点A到准线x=−1的距离为2,所以点A的横坐标为−1+2=1,不妨设点A在x轴上方,代入得,A(1,2),所以|AB|=√(3−1)2+(0−2)2=2√2.故选:B4.【2022年全国乙卷】(多选)双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D的切线与C的两支交于M,N两点,且cos∠F1NF2=35,则C的离心率为()A.√52B.32C.√132D.√172【答案】AC 【解析】【分析】依题意不妨设双曲线焦点在x轴,设过F1作圆D的切线切点为G,利用正弦定理结合三角变换、双曲线的定义得到2b=3a或a=2b,即可得解,注意就M,N在双支上还是在单支上分类讨论.【详解】解:依题意不妨设双曲线焦点在x轴,设过F1作圆D的切线切点为G,若M,N分别在左右支,因为OG⊥NF1,且cos∠F1NF2=35>0,所以N在双曲线的右支,又|OG|=a,|OF1|=c,|GF1|=b,设∠F1NF2=α,∠F2F1N=β,在△F1NF2中,有|NF2|sinβ=|NF1|sin(α+β)=2csinα,故|NF1|−|NF2|sin(α+β)−sinβ=2csinα即asin(α+β)−sinβ=csinα,所以asinαcosβ+cosαsinβ−sinβ=csinα,而cosα=35,sinβ=ac,cosβ=bc,故sinα=45,代入整理得到2b=3a,即ba =32,所以双曲线的离心率e=ca =√1+b2a2=√132若M,N均在左支上,同理有|NF 2|sinβ=|NF 1|sin (α+β)=2c sinα,其中β为钝角,故cosβ=−bc ,故|NF 2|−|NF 1|sinβ−sin (α+β)=2c sinα即a sinβ−sinαcosβ−cosαsinβ=csinα, 代入cosα=35,sinβ=ac ,sinα=45,整理得到:a4b+2a =14, 故a =2b ,故e =√1+(b a)2=√52,故选:AC.5.【2022年北京】若直线2x +y −1=0是圆(x −a)2+y 2=1的一条对称轴,则a =( ) A .12 B .−12C .1D .−1【答案】A 【解析】 【分析】若直线是圆的对称轴,则直线过圆心,将圆心代入直线计算求解. 【详解】由题可知圆心为(a,0),因为直线是圆的对称轴,所以圆心在直线上,即2a +0−1=0,解得a =12. 故选:A .6.【2022年新高考1卷】(多选)已知O 为坐标原点,点A(1,1)在抛物线C:x 2=2py(p >0)上,过点B(0,−1)的直线交C 于P ,Q 两点,则( ) A .C 的准线为y =−1B .直线AB 与C 相切C .|OP|⋅|OQ|>|OA |2D .|BP|⋅|BQ|>|BA|2【答案】BCD 【解析】 【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C 、D. 【详解】将点A 的代入抛物线方程得1=2p ,所以抛物线方程为x 2=y ,故准线方程为y =−14,A 错误; k AB =1−(−1)1−0=2,所以直线AB 的方程为y =2x −1,联立{y =2x −1x 2=y ,可得x 2−2x +1=0,解得x =1,故B 正确;设过B 的直线为l ,若直线l 与y 轴重合,则直线l 与抛物线C 只有一个交点, 所以,直线l 的斜率存在,设其方程为y =kx −1,P(x 1,y 1),Q(x 2,y 2), 联立{y =kx −1x 2=y,得x 2−kx +1=0,所以{Δ=k 2−4>0x 1+x 2=k x 1x 2=1,所以k >2或k <−2,y 1y 2=(x 1x 2)2=1,又|OP|=√x 12+y 12=√y 1+y 12,|OQ|=√x 22+y 22=√y 2+y 22, 所以|OP|⋅|OQ|=√y 1y 2(1+y 1)(1+y 2)=√kx 1×kx 2=|k|>2=|OA|2,故C 正确; 因为|BP|=√1+k 2|x 1|,|BQ|=√1+k 2|x 2|,所以|BP|⋅|BQ|=(1+k 2)|x 1x 2|=1+k 2>5,而|BA|2=5,故D 正确. 故选:BCD7.【2022年新高考2卷】(多选)已知O 为坐标原点,过抛物线C:y 2=2px(p >0)焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点M(p,0),若|AF|=|AM|,则( ) A .直线AB 的斜率为2√6 B .|OB|=|OF|C .|AB|>4|OF|D .∠OAM +∠OBM <180°【答案】ACD 【解析】 【分析】由|AF |=|AM |及抛物线方程求得A(3p 4,√6p2),再由斜率公式即可判断A 选项;表示出直线AB的方程,联立抛物线求得B(p 3,−√6p3),即可求出|OB |判断B 选项;由抛物线的定义求出|AB |=25p 12即可判断C 选项;由OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ <0,MA ⃑⃑⃑⃑⃑⃑ ⋅MB ⃑⃑⃑⃑⃑⃑ <0求得∠AOB ,∠AMB 为钝角即可判断D 选项. 【详解】对于A ,易得F(p2,0),由|AF |=|AM |可得点A 在FM 的垂直平分线上,则A 点横坐标为p2+p2=3p 4,代入抛物线可得y 2=2p ⋅3p 4=32p2,则A(3p 4,√6p2),则直线AB 的斜率为√6p23p 4−p2=2√6,A 正确; 对于B ,由斜率为2√6可得直线AB 的方程为x =2√6+p2,联立抛物线方程得y 2−√6−p 2=0,设B(x 1,y 1),则√62p +y 1=√66p ,则y 1=−√6p3,代入抛物线得(−√6p 3)2=2p ⋅x 1,解得x 1=p3,则B(p 3,−√6p3),则|OB |=√(p 3)2+(−√6p 3)2=√7p 3≠|OF |=p 2,B 错误; 对于C ,由抛物线定义知:|AB |=3p 4+p 3+p =25p 12>2p =4|OF |,C 正确;对于D ,OA⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =(3p 4,√6p 2)⋅(p 3,−√6p 3)=3p 4⋅p 3+√6p 2⋅(−√6p 3)=−3p 24<0,则∠AOB 为钝角, 又MA ⃑⃑⃑⃑⃑⃑ ⋅MB ⃑⃑⃑⃑⃑⃑ =(−p 4,√6p 2)⋅(−2p 3,−√6p 3)=−p 4⋅(−2p 3)+√6p 2⋅(−√6p 3)=−5p 26<0,则∠AMB 为钝角,又∠AOB +∠AMB +∠OAM +∠OBM =360∘,则∠OAM +∠OBM <180∘,D 正确. 故选:ACD.8.【2022年全国甲卷】设点M在直线2x+y−1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M 的方程为______________.【答案】(x−1)2+(y+1)2=5【解析】【分析】设出点M的坐标,利用(3,0)和(0,1)均在⊙M上,求得圆心及半径,即可得圆的方程.【详解】解:∵点M在直线2x+y−1=0上,∴设点M为(a,1−2a),又因为点(3,0)和(0,1)均在⊙M上,∴点M到两点的距离相等且为半径R,∴√(a−3)2+(1−2a)2=√a2+(−2a)2=R,a2−6a+9+4a2−4a+1=5a2,解得a=1,∴M(1,−1),R=√5,⊙M的方程为(x−1)2+(y+1)2=5.故答案为:(x−1)2+(y+1)2=59.【2022年全国甲卷】记双曲线C:x2a2−y2b2=1(a>0,b>0)的离心率为e,写出满足条件“直线y=2x与C无公共点”的e的一个值______________.【答案】2(满足1<e≤√5皆可)【解析】【分析】根据题干信息,只需双曲线渐近线y=±ba x中0<ba≤2即可求得满足要求的e值.【详解】解:C:x2a2−y2b2=1(a>0,b>0),所以C的渐近线方程为y=±bax,结合渐近线的特点,只需0<ba ≤2,即b2a2≤4,可满足条件“直线y=2x与C无公共点”所以e=ca =√1+b2a2≤√1+4=√5,又因为e>1,所以1<e≤√5,故答案为:2(满足1<e≤√5皆可)10.【2022年全国甲卷】若双曲线y 2−x 2m 2=1(m >0)的渐近线与圆x 2+y 2−4y +3=0相切,则m =_________.【答案】√33【解析】 【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可. 【详解】解:双曲线y 2−x 2m2=1(m >0)的渐近线为y =±xm ,即x ±my =0,不妨取x +my =0,圆x 2+y 2−4y +3=0,即x 2+(y −2)2=1,所以圆心为(0,2),半径r =1,依题意圆心(0,2)到渐近线x +my =0的距离d =√1+m 2=1,解得m =√33或m =−√33(舍去).故答案为:√33.11.【2022年全国乙卷】过四点(0,0),(4,0),(−1,1),(4,2)中的三点的一个圆的方程为____________.【答案】(x −2)2+(y −3)2=13或(x −2)2+(y −1)2=5或(x −43)2+(y −73)2=659或(x−85)2+(y −1)2=16925;【解析】 【分析】设圆的方程为x 2+y 2+Dx +Ey +F =0,根据所选点的坐标,得到方程组,解得即可; 【详解】解:依题意设圆的方程为x 2+y 2+Dx +Ey +F =0,若过(0,0),(4,0),(−1,1),则{F =016+4D +F =01+1−D +E +F =0 ,解得{F =0D =−4E =−6 ,所以圆的方程为x 2+y 2−4x −6y =0,即(x −2)2+(y −3)2=13;若过(0,0),(4,0),(4,2),则{F =016+4D +F =016+4+4D +2E +F =0 ,解得{F =0D =−4E =−2 , 所以圆的方程为x 2+y 2−4x −2y =0,即(x −2)2+(y −1)2=5; 若过(0,0),(4,2),(−1,1),则{F =01+1−D +E +F =016+4+4D +2E +F =0 ,解得{F =0D =−83E =−143 ,所以圆的方程为x 2+y 2−83x −143y =0,即(x −43)2+(y −73)2=659;若过(−1,1),(4,0),(4,2),则{1+1−D +E +F =016+4D +F =016+4+4D +2E +F =0,解得{F =−165D =−165E =−2 , 所以圆的方程为x 2+y 2−165x −2y −165=0,即(x −85)2+(y −1)2=16925;故答案为:(x −2)2+(y −3)2=13或(x −2)2+(y −1)2=5或(x −43)2+(y −73)2=659或(x −85)2+(y −1)2=16925;12.【2022年新高考1卷】写出与圆x 2+y 2=1和(x −3)2+(y −4)2=16都相切的一条直线的方程________________.【答案】y =−34x +54或y =724x −2524或x =−1 【解析】 【分析】先判断两圆位置关系,分情况讨论即可. 【详解】圆x 2+y 2=1的圆心为O (0,0),半径为1,圆(x −3)2+(y −4)2=16的圆心O 1为(3,4),半径为4,两圆圆心距为√32+42=5,等于两圆半径之和,故两圆外切, 如图,当切线为l 时,因为k OO 1=43,所以k l =−34,设方程为y =−34x +t(t >0)O 到l 的距离d =√1+916=1,解得t =54,所以l 的方程为y =−34x +54,当切线为m 时,设直线方程为kx +y +p =0,其中p >0,k <0,由题意{√1+k 2=1√1+k2=4 ,解得{k =−724p =2524,y =724x −2524 当切线为n 时,易知切线方程为x =−1, 故答案为:y =−34x +54或y =724x −2524或x =−1.13.【2022年新高考1卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE|=6,则△ADE 的周长是________________. 【答案】13 【解析】 【分析】利用离心率得到椭圆的方程为x 24c 2+y 23c 2=1,即3x 2+4y 2−12c 2=0,根据离心率得到直线AF 2的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE 的方程:x =√3y −c ,代入椭圆方程3x 2+4y 2−12c 2=0,整理化简得到:13y 2−6√3cy −9c 2=0,利用弦长公式求得c =138,得a =2c =134,根据对称性将△ADE 的周长转化为△F 2DE 的周长,利用椭圆的定义得到周长为4a =13. 【详解】∵椭圆的离心率为e =ca =12,∴a =2c ,∴b 2=a 2−c 2=3c 2,∴椭圆的方程为x 24c 2+y 23c 2=1,即3x 2+4y 2−12c 2=0,不妨设左焦点为F 1,右焦点为F 2,如图所示,∵AF 2=a ,OF 2=c ,a =2c ,∴∠AF 2O =π3,∴△AF 1F 2为正三角形,∵过F 1且垂直于AF 2的直线与C 交于D ,E 两点,DE 为线段AF 2的垂直平分线,∴直线DE 的斜率为√33,斜率倒数为√3, 直线DE 的方程:x =√3y −c ,代入椭圆方程3x 2+4y 2−12c 2=0,整理化简得到:13y 2−6√3cy −9c 2=0,判别式∆=(6√3c)2+4×13×9c 2=62×16×c 2, ∴|CD |=√1+(√3)2|y 1−y 2|=2×√∆13=2×6×4×c 13=6,∴ c =138, 得a =2c =134,∵DE 为线段AF 2的垂直平分线,根据对称性,AD =DF 2,AE =EF 2,∴△ADE 的周长等于△F 2DE 的周长,利用椭圆的定义得到△F 2DE 周长为|DF 2|+|EF 2|+|DE|=|DF 2|+|EF 2|+|DF 1|+|EF 1|=|DF 1|+|DF 2|+|EF 1|+|EF 2|=2a +2a =4a =13. 故答案为:13.14.【2022年新高考2卷】设点A(−2,3),B(0,a),若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是________. 【答案】[13,32] 【解析】 【分析】首先求出点A 关于y =a 对称点A ′的坐标,即可得到直线l 的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可; 【详解】解:A (−2,3)关于y =a 对称的点的坐标为A ′(−2,2a −3),B (0,a )在直线y =a 上, 所以A ′B 所在直线即为直线l ,所以直线l 为y =a−3−2x +a ,即(a −3)x +2y −2a =0;圆C:(x +3)2+(y +2)2=1,圆心C (−3,−2),半径r =1, 依题意圆心到直线l 的距离d =√(a−3)2+22≤1,即(5−5a )2≤(a −3)2+22,解得13≤a ≤32,即a ∈[13,32]; 故答案为:[13,32]15.【2022年新高考2卷】已知直线l 与椭圆x 26+y 23=1在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且|MA|=|NB|,|MN|=2√3,则l 的方程为___________. 【答案】x +√2y −2√2=0 【解析】 【分析】令AB 的中点为E ,设A (x 1,y 1),B (x 2,y 2),利用点差法得到k OE ⋅k AB =−12,设直线AB:y =kx +m ,k <0,m >0,求出M 、N 的坐标,再根据|MN |求出k 、m ,即可得解; 【详解】解:令AB 的中点为E ,因为|MA |=|NB |,所以|ME |=|NE |, 设A (x 1,y 1),B (x 2,y 2),则x 126+y 123=1,x 226+y 223=1,所以x 126−x 226+y 123−y 223=0,即(x 1−x 2)(x 1+x 2)6+(y 1+y 2)(y 1−y 2)3=0所以(y 1+y 2)(y 1−y 2)(x 1−x 2)(x 1+x 2)=−12,即k OE ⋅k AB =−12,设直线AB:y =kx +m ,k <0,m >0,令x =0得y =m ,令y =0得x =−m k ,即M (−m k ,0),N (0,m ),所以E (−m 2k ,m2), 即k ×m2−m 2k=−12,解得k =−√22或k =√22(舍去),又|MN |=2√3,即|MN |=√m 2+(√2m)2=2√3,解得m =2或m =−2(舍去), 所以直线AB:y =−√22x +2,即x +√2y −2√2=0;故答案为:x+√2y−2√2=016.【2022年北京】已知双曲线y2+x2m =1的渐近线方程为y=±√33x,则m=__________.【答案】−3【解析】【分析】首先可得m<0,即可得到双曲线的标准方程,从而得到a、b,再跟渐近线方程得到方程,解得即可;【详解】解:对于双曲线y2+x2m =1,所以m<0,即双曲线的标准方程为y2−x2−m=1,则a=1,b=√−m,又双曲线y2+x2m =1的渐近线方程为y=±√33x,所以ab =√33,即√−m=√33,解得m=−3;故答案为:−317.【2022年浙江】已知双曲线x2a2−y2b2=1(a>0,b>0)的左焦点为F,过F且斜率为b4a的直线交双曲线于点A(x1,y1),交双曲线的渐近线于点B(x2,y2)且x1<0<x2.若|FB|=3|FA |,则双曲线的离心率是_________.【答案】3√64【解析】【分析】联立直线AB 和渐近线l 2:y =ba x 方程,可求出点B ,再根据|FB|=3|FA|可求得点A ,最后根据点A 在双曲线上,即可解出离心率. 【详解】过F 且斜率为b4a 的直线AB:y =b4a (x +c),渐近线l 2:y =ba x , 联立{y =b4a (x +c)y =b a x,得B (c 3,bc 3a ),由|FB|=3|FA|,得A (−5c 9,bc 9a), 而点A 在双曲线上,于是25c 281a 2−b 2c 281a 2b 2=1,解得:c 2a 2=8124,所以离心率e =3√64. 故答案为:3√64.18.【2022年全国甲卷】设抛物线C:y 2=2px(p >0)的焦点为F ,点D (p,0),过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,|MF |=3. (1)求C 的方程;(2)设直线MD,ND 与C 的另一个交点分别为A ,B ,记直线MN,AB 的倾斜角分别为α,β.当α−β取得最大值时,求直线AB 的方程. 【答案】(1)y 2=4x ; (2)AB:x =√2y +4. 【解析】 【分析】(1)由抛物线的定义可得|MF|=p +p2,即可得解;(2)设点的坐标及直线MN:x =my +1,由韦达定理及斜率公式可得k MN =2k AB ,再由差角的正切公式及基本不等式可得k AB =√22,设直线AB:x =√2y +n ,结合韦达定理可解.(1)抛物线的准线为x =−p2,当MD 与x 轴垂直时,点M 的横坐标为p , 此时|MF|=p +p2=3,所以p =2, 所以抛物线C 的方程为y 2=4x ; (2)设M(y 124,y 1),N(y 224,y 2),A(y 324,y 3),B(y 424,y 4),直线MN:x =my +1,由{x =my +1y 2=4x 可得y 2−4my −4=0,Δ>0,y 1y 2=−4,由斜率公式可得k MN =y 1−y 2y 124−y 224=4y1+y 2,k AB =y 3−y 4y 324−y 424=4y3+y 4,直线MD:x =x 1−2y 1⋅y +2,代入抛物线方程可得y 2−4(x 1−2)y 1⋅y −8=0,Δ>0,y 1y 3=−8,所以y 3=2y 2,同理可得y 4=2y 1, 所以k AB =4y3+y 4=42(y1+y 2)=k MN 2又因为直线MN 、AB 的倾斜角分别为α,β, 所以k AB =tanβ=k MN 2=tanα2,若要使α−β最大,则β∈(0,π2), 设k MN =2k AB=2k >0,则tan(α−β)=tanα−tanβ1+tanαtanβ=k 1+2k 2=11k+2k ≤2√1k⋅2k=√24,当且仅当1k =2k 即k =√22时,等号成立,所以当α−β最大时,k AB =√22,设直线AB:x =√2y +n ,代入抛物线方程可得y 2−4√2y −4n =0, Δ>0,y 3y 4=−4n =4y 1y 2=−16,所以n =4, 所以直线AB:x =√2y +4. 【点睛】关键点点睛:解决本题的关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间的关系.19.【2022年全国乙卷】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,−2),B (32,−1)两点.(1)求E 的方程;(2)设过点P (1,−2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT ⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ .证明:直线HN 过定点. 【答案】(1)y 24+x 23=1(2)(0,−2) 【解析】 【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解. (1)解:设椭圆E 的方程为mx 2+ny 2=1,过A (0,−2),B (32,−1), 则{4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.(2)A(0,−2),B(32,−1),所以AB:y +2=23x ,①若过点P(1,−2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M(1,2√63),N(1,−2√63),代入AB 方程y =23x −2,可得T(√6+3,2√63),由MT ⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ 得到H(2√6+5,2√63).求得HN 方程:y =(2−2√63)x −2,过点(0,−2).②若过点P(1,−2)的直线斜率存在,设kx −y −(k +2)=0,M(x 1,y 1),N(x 2,y 2). 联立{kx −y −(k +2)=0x 23+y 24=1,得(3k 2+4)x 2−6k(2+k)x +3k(k +4)=0,可得{x 1+x 2=6k(2+k)3k 2+4x 1x 2=3k(4+k)3k 2+4 ,{y 1+y 2=−8(2+k)3k 2+4y 2y 2=4(4+4k−2k 2)3k 2+4 , 且x 1y 2+x 2y 1=−24k3k 2+4(∗) 联立{y =y 1y =23x −2 ,可得T(3y 12+3,y 1),H(3y 1+6−x 1,y 1).可求得此时HN:y−y2=y1−y23y1+6−x1−x2(x−x2),将(0,−2),代入整理得2(x1+x2)−6(y1+y2)+x1y2+x2y1−3y1y2−12=0,将(∗)代入,得24k+12k2+96+48k−24k−48−48k+24k2−36k2−48=0,显然成立,综上,可得直线HN过定点(0,−2).【点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.20.【2022年新高考1卷】已知点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2√2,求△PAQ的面积.【答案】(1)−1;(2)16√29.【解析】【分析】(1)由点A(2,1)在双曲线上可求出a,易知直线l的斜率存在,设l:y=kx+m,P(x1,y1),Q (x2,y2),再根据k AP+k BP=0,即可解出l的斜率;(2)根据直线AP,AQ的斜率之和为0可知直线AP,AQ的倾斜角互补,再根据tan∠PAQ=2√2即可求出直线AP,AQ的斜率,再分别联立直线AP,AQ与双曲线方程求出点P,Q的坐标,即可得到直线PQ的方程以及PQ的长,由点到直线的距离公式求出点A到直线PQ的距离,即可得出△PAQ的面积.(1)因为点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,所以4a2−1a2−1=1,解得a2=2,即双曲线C:x22−y2=1易知直线l的斜率存在,设l:y=kx+m,P(x1,y1),Q(x2,y2),联立{y =kx +m x 22−y 2=1可得,(1−2k 2)x 2−4mkx −2m 2−2=0,所以,x 1+x 2=−4mk 2k 2−1,x 1x 2=2m 2+22k 2−1,Δ=16m 2k 2+4(2m 2+2)(2k 2−1)>0⇒m 2−1+2k 2>0.所以由k AP +k BP =0可得,y 2−1x2−2+y 1−1x 1−2=0,即(x 1−2)(kx 2+m −1)+(x 2−2)(kx 1+m −1)=0, 即2kx 1x 2+(m −1−2k )(x 1+x 2)−4(m −1)=0, 所以2k ×2m 2+22k 2−1+(m −1−2k )(−4mk2k 2−1)−4(m −1)=0,化简得,8k 2+4k −4+4m (k +1)=0,即(k +1)(2k −1+m )=0, 所以k =−1或m =1−2k ,当m =1−2k 时,直线l:y =kx +m =k (x −2)+1过点A (2,1),与题意不符,舍去, 故k =−1. (2)不妨设直线PA,PB 的倾斜角为α,β(α<β),因为k AP +k BP =0,所以α+β=π, 因为tan∠PAQ =2√2,所以tan (β−α)=2√2,即tan2α=−2√2, 即√2tan 2α−tanα−√2=0,解得tanα=√2,于是,直线PA:y =√2(x −2)+1,直线PB:y =−√2(x −2)+1, 联立{y =√2(x −2)+1x 22−y 2=1可得,32x 2+2(1−2√2)x +10−4√2=0,因为方程有一个根为2,所以x P =10−4√23,y P = 4√2−53,同理可得,x Q =10+4√23,y Q = −4√2−53.所以PQ:x +y −53=0,|PQ |=163,点A 到直线PQ 的距离d =|2+1−53|√2=2√23, 故△PAQ 的面积为12×163×2√23=16√29.21.【2022年新高考2卷】已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x . (1)求C 的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P(x1,y1),Q(x2,y2)在C上,且x1> x2>0,y1>0.过P且斜率为−√3的直线与过Q且斜率为√3的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在AB上;②PQ∥AB;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.=1【答案】(1)x2−y23(2)见解析【解析】【分析】(1)利用焦点坐标求得c的值,利用渐近线方程求得a,b的关系,进而利用a,b,c的平方关系求得a,b的值,得到双曲线的方程;(2)先分析得到直线AB的斜率存在且不为零,设直线AB的斜率为k,M(x0,y0),由③|AM|=| BM|等价分析得到x0+ky0=8k2;由直线PM和QM的斜率得到直线方程,结合双曲线的方k2−3,由②PQ//AB等价转化为ky0=3x0,由程,两点间距离公式得到直线PQ的斜率m=3x0y①M在直线AB上等价于ky0=k2(x0−2),然后选择两个作为已知条件一个作为结论,进行证明即可.(1)=√3,∴b=√3a,∴c2=a2+右焦点为F(2,0),∴c=2,∵渐近线方程为y=±√3x,∴bab2=4a2=4,∴a=1,∴b=√3.=1;∴C的方程为:x2−y23(2)由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB的斜率存在且不为零;若选①③推②,则M为线段AB的中点,假若直线AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F,此时由对称性可知P、Q关于x轴对称,与从而x1=x2,已知不符;总之,直线AB的斜率存在且不为零.设直线AB的斜率为k,直线AB方程为y=k(x−2),则条件①M在AB上,等价于y0=k(x0−2)⇔ky0=k2(x0−2);两渐近线的方程合并为3x2−y2=0,联立消去y并化简整理得:(k2−3)x2−4k2x+4k2=0设A(x3,y3),B(x3,y4),线段中点为N(x N,y N),则x N=x3+x42=2k2k2−3,y N=k(x N−2)=6kk2−3,设M(x0,y0),则条件③|AM|=|BM|等价于(x0−x3)2+(y0−y3)2=(x0−x4)2+(y0−y4)2, 移项并利用平方差公式整理得:(x3−x4)[2x0−(x3+x4)]+(y3−y4)[2y0−(y3+y4)]=0,[2x0−(x3+x4)]+y3−y4x3−x4[2y0−(y3+y4)]=0,即x−x N+k(y0−y N)=0,即x0+ky0=8k2k2−3;由题意知直线PM的斜率为−√3, 直线QM的斜率为√3, ∴由y1−y0=−√3(x1−x0),y2−y0=√3(x2−x0), ∴y1−y2=−√3(x1+x2−2x0),所以直线PQ的斜率m=y1−y2x1−x2=−√3(x1+x2−2x0)x1−x2,直线PM:y=−√3(x−x0)+y0,即y=y0+√3x0−√3x,代入双曲线的方程3x2−y2−3=0,即(√3x+y)(√3x−y)=3中,得:(y0+√3x0)[2√3x−(y0+√3x0)]=3,解得P的横坐标:x1=2√3(y+√3x+y0+√3x0),同理:x2=2√3(y−√3xy0−√3x0),∴x1−x2=√3(3y0y02−3x02+y0),x1+x2−2x0=−3x0y02−3x02−x0,∴m=3x0y,∴条件②PQ//AB等价于m=k⇔ky0=3x0,综上所述:条件①M在AB上,等价于ky0=k2(x0−2);条件②PQ//AB等价于ky0=3x0;条件③|AM|=|BM|等价于x0+ky0=8k2k2−3;选①②推③:由①②解得:x 0=2k 2k 2−3,∴x 0+ky 0=4x 0=8k 2k 2−3,∴③成立;选①③推②:由①③解得:x 0=2k 2k 2−3,ky 0=6k 2k 2−3, ∴ky 0=3x 0,∴②成立; 选②③推①:由②③解得:x 0=2k 2k 2−3,ky 0=6k 2k 2−3,∴x 0−2=6k 2−3, ∴ky 0=k 2(x 0−2),∴①成立. 22.【2022年北京】已知椭圆:E:x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A(0,1),焦距为2√3. (1)求椭圆E 的方程;(2)过点P(−2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN|=2时,求k 的值. 【答案】(1)x 24+y 2=1(2)k =−4 【解析】 【分析】(1)依题意可得{b =12c =2√3c 2=a 2−b 2,即可求出a ,从而求出椭圆方程;(2)首先表示出直线方程,设B (x 1,y 1)、C (x 2,y 2),联立直线与椭圆方程,消元列出韦达定理,由直线AB 、AC 的方程,表示出x M 、x N ,根据|MN |=|x N −x M |得到方程,解得即可; (1)解:依题意可得b =1,2c =2√3,又c 2=a 2−b 2, 所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P (−2,1)的直线为y −1=k (x +2),设B (x 1,y 1)、C (x 2,y 2),不妨令−2≤x 1<x 2≤2,由{y −1=k (x +2)x 24+y 2=1 ,消去y 整理得(1+4k 2)x 2+(16k 2+8k )x +16k 2+16k =0, 所以Δ=(16k 2+8k )2−4(1+4k 2)(16k 2+16k )>0,解得k <0,所以x 1+x 2=−16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k 1+4k 2,直线AB 的方程为y −1=y 1−1x 1x ,令y =0,解得x M =x11−y 1, 直线AC 的方程为y −1=y 2−1x 2x ,令y =0,解得x N =x21−y 2, 所以|MN |=|x N −x M |=|x21−y 2−x11−y 1|=|x 21−[k (x 2+2)+1]−x 11−[k (x 1+2)+1]| =|x 2−k (x 2+2)+x 1k (x 1+2)| =|(x 2+2)x 1−x 2(x 1+2)k (x 2+2)(x 1+2)|=2|x 1−x 2||k |(x 2+2)(x 1+2)=2,所以|x 1−x 2|=|k |(x 2+2)(x 1+2),即√(x 1+x 2)2−4x 1x 2=|k |[x 2x 1+2(x 2+x 1)+4] 即√(−16k 2+8k1+4k 2)2−4×16k 2+16k 1+4k 2=|k |[16k 2+16k 1+4k 2+2(−16k 2+8k 1+4k 2)+4]即81+4k 2√(2k 2+k )2−(1+4k 2)(k 2+k )=|k |1+4k2[16k 2+16k −2(16k 2+8k )+4(1+4k 2)]整理得8√−k =4|k |,解得k =−4 23.【2022年浙江】如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P(0,1)的两点,且点Q (0,12)在线段AB 上,直线PA,PB 分别交直线y =−12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求|CD|的最小值.【答案】(1)12√1111;(2)6√55.【解析】 【分析】(1)设Q(2√3cosθ,sinθ)是椭圆上任意一点,再根据两点间的距离公式求出|PQ|2,再根据二次函数的性质即可求出;(2)设直线AB:y =kx +12与椭圆方程联立可得x 1x 2,x 1+x 2,再将直线y =−12x +3方程与PA 、PB 的方程分别联立,可解得点C,D 的坐标,再根据两点间的距离公式求出|CD |,最后代入化简可得|CD |=3√52⋅√16k 2+1|3k+1|,由柯西不等式即可求出最小值. (1)设Q(2√3cosθ,sinθ)是椭圆上任意一点,P(0,1),则|PQ|2=12cos 2θ+(1−sinθ)2=13−11sin 2θ−2sinθ=−11(sinθ+111)2+14411≤14411,当且仅当sinθ=−111时取等号,故|PQ|的最大值是12√1111.(2)设直线AB:y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得(k 2+112)x 2+kx −34=0,设A (x 1,y 1),B (x 2,y 2),所以{x 1+x 2=−kk 2+112x 1x 2=−34(k 2+112), 因为直线PA:y =y 1−1x 1x +1与直线y =−12x +3交于C ,则x C =4x 1x1+2y 1−2=4x 1(2k+1)x 1−1,同理可得,x D =4x 2x 2+2y 2−2=4x 2(2k+1)x 2−1.则|CD|=√1+14|x C −x D |=√52|4x 1(2k +1)x 1−1−4x 2(2k +1)x 2−1|=2√5|x 1−x 2[(2k +1)x 1−1][(2k +1)x 2−1]|=2√5|x 1−x 2(2k +1)2x 1x 2−(2k +1)(x 1+x 2)+1|=3√52⋅√16k 2+1|3k+1|=6√55⋅√16k 2+1√916+1|3k+1|≥6√55×√(4k×34+1×1)2|3k+1|=6√55, 当且仅当k =316时取等号,故|CD |的最小值为6√55.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.1.(2022·全国·模拟预测)设M 是椭圆C :()222210x y a b a b+=>>的上顶点,P 是C 上的一个动点,当P 运动到下顶点时,PM 取得最大值,则C 的离心率的取值范围是( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C 【解析】 【分析】设()00,P x y ,由()0,M b ,求出()2220PM x y b =+-消元可得,22342220222c b b PM y a b b c c⎛⎫=-++++ ⎪⎝⎭,再根据0b y b -≤≤以及二次函数的性质可知,32b bc -≤-,即可解出. 【详解】设()00,P x y ,()0,M b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PM x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,0b y b -≤≤,由题意知当0y b =-时,2PM 取得最大值,所以32b b c -≤-,可得222a c ≥,即0e 2<≤故选:C .2.(2022·福建·三明一中模拟预测)已知圆229:4O x y +=,圆22:()(1)1M x a y -+-=,若圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得π3APB ∠=,则实数a的取值范围是( )A .[B .[C .D .[[3,15]【答案】D【解析】 【分析】由题意求出OP 的距离,得到 P 的轨迹,再由圆与圆的位置关系求得答案. 【详解】由题可知圆O 的半径为32,圆M 上存在点P ,过点P 作圆 O 的两条切线,切点分别为A ,B ,使得60APB ∠=︒,则30APO ∠=︒, 在Rt PAO △中,3PO =, 所以点 P 在圆229x y +=上,由于点 P 也在圆 M 上,故两圆有公共点. 又圆 M 的半径等于1,圆心坐标(),1M a , 3131OM -≤≤+∴,∴24≤≤,∴a ∈[[3,15]. 故选:D.3.(2022·全国·模拟预测(文))已知双曲线22221x y a b-=(0a >,0b >)一个虚轴的顶点为()0,B b ,右焦点为F ,分别以B ,F 为圆心作圆与双曲线的一条斜率为正值的渐近线相切于M ,N 两点,若ON =,则该渐近线的斜率为( )A .12 B .1 C D 【答案】A 【解析】 【分析】根据渐近线倾斜角的正切值表达出ON =,再化简得到4224200b a b a --=求解即可 【详解】由题意,如图,设NOF θ∠=,则因为该渐近线的斜率为ba ,故tanb aθ=,cos acθ==,sin bcθ==,又因为圆与渐近线相切,故BM OM ⊥,FN ON ⊥,故2cos sin 2b OM OB OB c π-θθ⎛⎫=== ⎪⎝⎭,cos ON OF a θ==,所以a =,即2,所以4224200b a b a --=,即()()2222450b a b a -+=,故2240b a -=,即2a b =,故该渐近线的斜率为12b k a ==故选:A4.(2022·河南·开封市东信学校模拟预测(理))已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左焦点和右焦点,过2F 的直线l 与双曲线的右支交于A ,B 两点,12AF F △的内切圆半径为1r ,12BF F △的内切圆半径为2r ,若12r r >,且直线l 的倾斜角为60︒,则12r r 的值为( ) A .2 B .3CD.【答案】B 【解析】 【分析】根据内切圆的性质及双曲线的定义求出两内切圆圆心的横坐标,由正切函数求解即可. 【详解】记12AF F △的内切圆圆心为C ,边1212,,AF AF F F 上的切点分别为M ,N ,E ,则C ,E 横坐标相等,则1122||||,,AM AN F M F E F N F E ===,由122AF AF a -=,即()12||||2AM MF AN NF a +-+=,得122MF NF a -=,即122F E F E a -=,记C 的横坐标为0x ,则()0,0E x ,于是()002x c c x a +--=,得0x a =,同理12BF F △的内心D 的横坐标也为a , 则有CD x ⊥轴,由直线的倾斜角为60︒,则230OF D ∠=︒,260CF O ∠=︒, 在2CEF △中,122tan tan 60r CF O EF ∠=︒=,可得12r =, 在2DEF △中,222tan tan 30r DF O EF ∠=︒=,可得22r =,可得123r r ==.故选:B5.(2022·贵州·贵阳一中模拟预测(文))已知双曲线22214x y b-=的左、右焦点分别为12,,F F 过左焦点1F 作斜率为2的直线与双曲线交于A ,B 两点,P 是AB 的中点,O 为坐标原点,若直线OP 的斜率为14,则b 的值是( )A .2 BC .32D【答案】D 【解析】 【分析】利用点差法设()11,A x y 、()22,B x y ,作差即可得到2121212124y y y y b x x x x -+⋅=-+,再根据斜率公式,从而得到2124b =,即可得解;【详解】解:设()11,A x y 、()22,B x y ,则2211214x y b -=,2222214x y b-=, 两式相减可得()()()()1212121221104x x x x y y y y b-+--+=,P 为线段AB 的中点,122p x x x ∴=+,122p y y y =+, 2121212124y y y y b x x x x -+∴⋅=-+,又12122AB y y k x x -==-,121214y y x x +=+, 2124b ∴=,即22b =,b ∴= 故选:D.6.(2022·全国·模拟预测(理))已知双曲线2222:1(0,0)x y C a b a b-=>>的左、有焦点分别为1F ,2F ,实轴长为4,离心率2e =,点Q 为双曲线右支上的一点,点(0,4)P .当1||QF PQ +取最小值时,2QF 的值为( ) A.1) B.1) C.1 D.1【答案】B 【解析】 【分析】由题意求得a,b,c ,即可得双曲线的方程,结合双曲线的定义确定当1||QF PQ +取最小值时Q 点的位置,利用方程组求得Q 点坐标,再利用两点间的距离公式求得答案. 【详解】由题意可得24,2a a == ,又2e =,故4c = , 所以22212b c a =-= ,则双曲线方程为221412x y -= ,结合双曲线定义可得221||4||||4QF PQ QF PQ QF PQ +=++=++, 如图示,连接2PF ,交双曲线右支于点M ,即当2,,P Q F 三点共线, 即Q 在M 位置时,1||QF PQ +取最小值,此时直线2PF 方程为4y x =-+ ,联立221412x y-=,解得点Q的坐标为2,6-,( Q 为双曲线右支上的一点),故21)QF =, 故选:B7.(2022·上海市七宝中学模拟预测)若双曲线221112211:1(0,0)x y C a b a b -=>>和双曲线222222222:1(0,0)x y C a b a b -=>>的焦点相同,且12a a >给出下列四个结论:①22221221a a b b -=-;②1221a b a b >; ③双曲线1C 与双曲线2C 一定没有公共点; ④2112a a b b +>+;其中所有正确的结论序号是( ) A .①② B .①③C .②③D .①④【答案】B 【解析】 【分析】对于①,根据双曲线的焦点相同,可知焦距相同,可判断22221221a a b b -=-;对于②,举反例可说明1122a b a b <;对于③,根据120a a >>可推得12<b b ,继而推得1212b ba a <,可判断双曲线1C 与双曲线2C 一定没有公共点;对于④,举反例可判断.【详解】对于①:∵两双曲线的焦点相同,∴焦距相同,∴22221122a b a b +=+,即22221221a a b b -=-,故①正确;对于②:若1a =,2a =11b =,2b 1122a b a b <,故②错误; 对于③:∵120a a >>,∴22221221a a b b -=->0,∴2221b b > ,即12<b b ,即1212b b a a <,双曲线1C 与双曲线2C 一定没有公共点,故③正确; 对于④:∵22221221a a b b -=-,∴12121221()()()()a a a a b b b b +-=+-,∵12a a >且12<b b ,∴12211212a ab b b b a a +-=+- , 若12a =,21a =,11b =,22b =,则1212a a b b +=+,故④错误. 故选:B8.(2022·陕西·宝鸡中学模拟预测(理))已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,M 为双曲线右支上的一点,若M 在以12F F 为直径的圆上,且215,312MF F ππ⎡⎤∠∈⎢⎥⎣⎦,则该双曲线离心率的取值范围为( ) A.(B.)+∞C.()1D.1⎤⎦【答案】D 【解析】 【分析】由12MF MF ⊥可得1212sin MF c MF F =∠、2212cos MF c MF F =∠,由双曲线定义可构造方程得到2114caMF F π=⎛⎫∠- ⎪⎝⎭;由正弦型函数值域的求法可求得离心率的取值范围.【详解】M 在以12F F 为直径的圆上,12MF MF ∴⊥,12112sin MF MF F F F ∴∠=,22112cos MF MF F F F ∠=,1212sin MF c MF F ∴=∠,2212cos MF c MF F =∠, 由双曲线定义知:122MF MF a -=,即21212sin 2cos 2c MF F c MF F a ∠-∠=,21212111sin cos 4c a MF F MF F MF F π∴==∠-∠⎛⎫∠- ⎪⎝⎭; 215,312MF F ππ⎡⎤∠∈⎢⎥⎣⎦,21,4126MF F πππ⎡⎤∴∠-∈⎢⎥⎣⎦,211sin 42MF F π⎤⎛⎫∴∠-∈⎥ ⎪⎝⎭⎣⎦,214MF F π⎛⎫∠-∈ ⎪⎝⎭⎣⎦,1c a ⎤∴∈⎦,即双曲线离心率的取值范围为1⎤⎦.故选:D.9.(2022·河南·通许县第一高级中学模拟预测(文))已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,F F ,过点1F 的直线l 与C 的左、右两支分别交于点,A B ,若2ABF 是边长为4的等边三角形,则C 的离心率为( ) A .3 BCD .2【答案】B 【解析】 【分析】由双曲线定义可推导得244AF a ==,求得1a =;在12BF F △中,利用余弦定理可求得12F F ,进而得到c ,由ce a=可求得离心率. 【详解】224AB BF AF ===,1212BF BF AF a ∴-==,又212AF AF a -=,244AF a ∴==,解得:1a =,16BF ∴=, 在12BF F △中,由余弦定理得:2221212122cos 283F F BF BF BF BF π=+-⋅=,解得:12F F =2c =,c ∴=∴双曲线C 的离心率ce a==故选:B.10.(2022·四川省泸县第二中学模拟预测(文))已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P 为等腰三角形,则椭圆C 的离心率的取值范围是( ) A .111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭B .110,,132⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】A 【解析】 【分析】由题可知六个P 点,有两个是短轴端点,因此在四个象限各一个,设(,)P x y 是第一象限内的点,分112PF F F =或212PF F F =,列方程组求得P 点横坐标x ,由0x a <<可得离心率范围;或结合椭圆的性质列出不等关系即得. 【详解】法一:显然,P 是短轴端点时,12PF PF =,满足12F F P 为等腰三角形,因此由对称性,还有四个点在四个象限内各有一个,设(,)P x y 是第一象限内使得12F F P 为等腰三角形的点,若112PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+, 消去y 整理得:222224240c x a cx a c a +-+=, 解得22a ac x c --=(舍去)或22a acx c -+=, 由0x a <<得220a aca c-+<<,所以112c a <<,即112e <<,若212PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+, 消去y 整理得:222224240c x a cx a c a --+=, 解得22a ac x c -=或22a ac x c +=,22a aca c +>舍去.所以220a aca c-<<,所以1132c a <<,即1132e <<,12e =时,2a c =,12PF F △是等边三角形,P 只能是短轴端点,只有2个,不合题意. 综上,e 的范围是111(,)(,1)322⋃.法二:①当点P 与短轴的顶点重合时,12F F P 构成以12F F 为底边的等腰三角形,此种情况有2个满足条件的12F F P ;②当12F F P 构成以12F F 为一腰的等腰三角形时,根据椭圆的对称性,只要在第一象限内的椭圆上恰好有一点P 满足12F F P 为等腰三角形即可,则1122PF F F c ==或2122PF F F c == 当12PF c =时,则2c a >,即12c e a =>,则112e <<,当22PF c =时,则有22c a c c a>-⎧⎨<⎩,则1132e <<,。
高考数学压轴专题新备战高考《平面解析几何》分类汇编附答案
数学《平面解析几何》试卷含答案一、选择题1.已知12F F 分别为双曲线()222210,0x y a b a b -=>>的左、右焦点,P 为双曲线上一点,2PF 与x 轴垂直,1230PF F ∠=︒,且焦距为 )A .y =B .y =C .2y x =±D .3y x =±【答案】B 【解析】 【分析】先求出c 的值,再求出点P 的坐标,可得22bPF a=,再由已知求得1PF ,然后根据双曲线的定义可得ba的值,则答案可求. 【详解】解:由题意,2c =解得c =,∵()2,0F c ,设(),P c y ,∴22221x y a b-=,解得2b y a =±,∴22b PF a=,∵1230PF F ∠=︒,∴21222b PF PF a==,由双曲线定义可得:2122b PF PF a a-==,则222a b =,即ba=∴双曲线的渐近线方程为y =. 故选:B .【点睛】本题考查双曲线渐近线方程的求解,难度一般.求解双曲线的渐近线方程,可通过找到,,a b c 中任意两个量的倍数关系进行求解.2.若双曲线上存在四点,使得以这四点为顶点的四边形是菱形,则该双曲线的离心率的取值范围是( ) A .2) B .3)C .(2,)+∞D .3,)+∞【答案】C 【解析】 【分析】根据题意,双曲线与直线y x =±相交且有四个交点,由此得1ba>.结合双曲线的基本量的平方关系和离心率的定义,化简整理即得该双曲线的离心率的取值范围. 【详解】解:不妨设该双曲线方程为22221(0,0)x y a b a b-=>>,由双曲线的对称性质可知,该四边形为正方形, 所以直线y x =与双曲线有交点, 所以其渐近线与x 轴的夹角大于45︒,即1ba>. 离心率21()2be a=+所以该双曲线的离心率的取值范围是(2)+∞. 故选:C . 【点睛】本题考查双曲线的离心率取值范围以及双曲线的标准方程和简单几何性质等知识,属于基础题.3.抛物线y 2=8x 的焦点为F ,设A ,B 是抛物线上的两个动点, 233AF BF +=, 则∠AFB 的最大值为( )A .3π B .34π C .56π D .23π 【答案】D 【解析】 【分析】设|AF |=m ,|BF |=n ,再利用基本不等式求解mn 的取值范围,再利用余弦定理求解即可. 【详解】设|AF |=m ,|BF |=n ,∵AF BF +=,AB ≥∴213mn AB ≤,在△AFB 中,由余弦定理得22222()2cos 22m n ABm n mn ABAFB mnmn+-+--∠==212213222AB mnmn mn mn mn --=≥=-∴∠AFB 的最大值为23π. 故选:D 【点睛】本题主要考查了抛物线的焦半径运用,同时也考查了解三角形与基本不等式的混合运用,属于中等题型.4.已知双曲线2222:1(0,0)x y C a b a b-=>>)的左,右焦点分别为12,F F ,其右支上存在一点M ,使得210MF MF ⋅=u u u u r u u u r,直线:0l bx ay +=,若直线2//MF l 则双曲线C 的离心率为( ) AB .2CD .5【答案】C 【解析】 【分析】易得且1MF l ⊥,从而l 是线段1MF 的垂直平分线求出直线1MF 的方程与渐近线方程联立求出交点坐标,进而求得M 坐标,根据勾股定理即可求解离心率. 【详解】由120MF MF ⋅=u u u u v u u u u v可得12MF MF ⊥易知直线:0l bx ay +=为双曲线的一条渐近线,可知l 的方程为by x a=-,且1MF l ⊥,从而l 是线段1MF 的垂直平分线,且直线1MF 的方程为()ay x c b=+设1MF ,与l 相交 于点(),N x y .由 ()a y x c b b y x a ⎧=+⎪⎪⎨⎪=-⎪⎩得2a x c aby c ⎧=-⎪⎪⎨⎪=⎪⎩即2,a ab N c c ⎛⎫-⎪⎝⎭,又()1,0F c -,由中点坐标公式,得222,.a ab M c c c ⎛⎫- ⎪⎝⎭由双曲线性质可得122MF MF a -=①,由12MF MF ⊥得222124MF MF c +=②,①②联立,可得2122MF MF b ⋅=所以点M 的纵坐标为2b c ,所以22b ab c c =即2b a =所以21 5.b e a ⎛⎫=+= ⎪⎝⎭故选:C 【点睛】本题考查双曲线性质的综合问题,考查数形结合思想,对于学生的数学运算和逻辑推理能力要求较高,属于一般性题目.5.设抛物线()2:20C y px p =>的焦点为F ,抛物线C 与圆22525:()416C x y +-='于,A B 两点,且5AB =C 的焦点的弦MN 的长为8,则弦MN 的中点到直线2x =-的距离为( )A .2B .5C .7D .9【答案】B 【解析】 【分析】易得圆C '过原点,抛物线22y px =也过原点,联立圆和抛物线方程由AB 求得交点坐标,从而解出抛物线方程,根据抛物线定义即可求得弦MN 的中点到直线2x =-的距离. 【详解】圆:22525:,416C x y ⎛⎫+-= ⎪⎝⎭'即为2252x y y +=,可得圆经过原点.抛物线22y px =也过原点. 设()()0,0,,,0A B m n m >. 由5AB =可得225m n +=, 又2252m n n +=联立可解得2,1n m ==. 把()1,2B 代人22y px =,解得2p =,故抛物线方程为24y x =,焦点为()1,0F ,准线l 的方程为1x =-. 如图,过,M N 分别作ME l ⊥于E ,NK l ⊥于K ,可得,MF ME NK NF ==,即有MN MF NF ME KN =+=+|. 设MN 的中点为0P ,则0P 到准线l 的距离11(|)422EM KNI MN +==, 则MN 的中点0P ,到直线2x =-的距离是415+=. 故选:B 【点睛】本题考查抛物线的几何性质,考查学生的分析问题,解决问题的能力,数形结合思想.属于一般性题目.6.直线3y kx =+与圆22(3)(2)4x y -+-=相交于M ,N 两点,若||3MN ≥k 的取值范围是( )A .3,04⎡⎤-⎢⎥⎣⎦B .30,4⎡⎤⎢⎥⎣⎦C .33⎡⎤-⎢⎥⎣⎦D .2,03⎡⎤-⎢⎥⎣⎦【答案】A 【解析】 【分析】可通过将弦长转化为弦心距问题,结合点到直线距离公式和勾股定理进行求解 【详解】如图所示,设弦MN 中点为D ,圆心C(3,2),330y kx kx y =+⇒-+=Q∴弦心距222(1)1CD k k ==+-+,又2||23||33MN DN DN 厖?,∴由勾股定理可得222222231DN CN CD k ⎛⎫=-=-+…,222231|31|1(31)1(43)0041k k k k k k k k ⇒++++⇒+⇒-+剟剟答案选A 【点睛】圆与直线的位置关系解题思路常从两点入手:弦心距、勾股定理。
高考数学压轴专题专题备战高考《平面解析几何》全集汇编及答案解析
数学高考《平面解析几何》试题含答案一、选择题1.当点P 在圆221x y +=上变动时,它与定点(3,0)Q 的连结线段PQ 的中点的轨迹方程是( )A .22(3)4x y ++=B .22(23)41x y -+=C .22(3)1x y -+=D .22(23)41x y ++=【答案】B 【解析】 【分析】根据已知条件可设()00,P x y ,线段PQ 的中点为(),M x y ,再利用中点坐标公式可得到0023,2x x y y =-=,再代入圆的方程221x y +=即可得到线段PQ 的中点的轨迹方程.【详解】设()00,P x y ,线段PQ 的中点为(),M x y ,(如图)则00322x x y y +⎧=⎪⎪⎨⎪=⎪⎩即00232x x y y =-⎧⎨=⎩,Q 点()00,P x y 在圆221x y +=上变动,即22001x y +=()()222321x y ∴-+=即()222341x y -+=故选:B 【点睛】本题考查了中点坐标公式,动点轨迹方程求法,属于一般题.2.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C 于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A 2B .2C 3D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得2AF =u u u v【详解】 根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以()2212112AF n u u u v =-+=+=故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.3.已知抛物线x 2=16y 的焦点为F ,双曲线22145x y -=的左、右焦点分别为F 1、F 2,点P是双曲线右支上一点,则|PF|+|PF 1|的最小值为( ) A .5 B .7C .9D .11【答案】C 【解析】 【分析】由题意并结合双曲线的定义可得1222(4)44PF PF PF PF PF PF FF +=++=++≥+,然后根据两点间的距离公式可得所求最小值. 【详解】由题意得抛物线216x y =的焦点为()0,4F ,双曲线22145x y -=的左、右焦点分别为()()123,0,3,0F F -.∵点P 是双曲线右支上一点, ∴124PF PF =+.∴1222(4)44549PF PF PF PF PF PF FF +=++=++≥+=+=,当且仅当2,,F P F 三点共线时等号成立,∴1PF PF +的最小值为9. 故选C . 【点睛】解答本题的关键是认真分析题意,然后结合图形借助数形结合的方法求解.另外在解题中注意利用双曲线的定义将所求问题进行转化,考查分析理解能力和解决问题的能力,属于基础题.4.已知双曲线2222:1x y C a b-=(0,0)a b >>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( )A .2BC .2D【答案】D 【解析】 【分析】设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,根据对称性可得出P ⎫⎪⎪⎝⎭,将点P 的坐标代入双曲线C 的方程,即可求出双曲线C 的离心率. 【详解】设双曲线C 的焦距为()20c c >,设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,由双曲线的对称性可知,点P 、Q 关于y 轴对称,P 、M 关于原点对称,P 、N 关于x 轴对称,由于四边形PQMN 为正方形,则直线PM 的倾斜角为4π,可得P ⎫⎪⎪⎝⎭, 将点P 的坐标代入双曲线C 的方程得2222122c c a b-=,即()22222122c c a c a -=-, 设该双曲线的离心率为()1e e >,则()2221221e e e -=-,整理得42420e e -+=,解得22e =,因此,双曲线C故选:D. 【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题.5.设抛物线E :26y x =的弦AB 过焦点F ,||3||AF BF =,过A ,B 分别作E 的准线的垂线,垂足分别是A ',B ',则四边形AA B B ''的面积等于( ) A.B.C.D.【答案】C 【解析】 【分析】由抛物线的方程可得焦点坐标及准线方程,设直线AB 的方程,与抛物线联立求出两根之和及两根之积,进而求出弦长AB ,由抛物线的性质可得梯形的上下底之和求出,求出A ,B 的纵坐标之差的绝对值,代入梯形的面积公式即可求出梯形的面积. 【详解】解:由抛物线的方程 可得焦点3(2F ,0),准线方程:32x =-,由题意可得直线AB 的斜率存在且不为0,设直线AB 的方程为:32x my =+,1(A x ,1)y ,2(B x ,2)y ,联立直线与抛物线的方程:2326x my y x⎧=+⎪⎨⎪=⎩,整理可得:2690y my --=,所以126y y m +=,129y y =-,21212()363x x m y y m +=++=+,因为||3||AF BF =,所以3AF FB =uu u r uu r,即13(2x -,123)3(2y x -=-,2)y ,可得:123y y =-, 所以可得:2222639y m y -=⎧⎨-=-⎩即213m =, 由抛物线的性质可得: 21233166668223AA BB AB x x m ''+==+++=+=+=g , 221212121||()436363636433y y y y y y m -=+-=+=+=g ,由题意可知,四边形AA B B ''为直角梯形,所以1211()||84316322AA B B S AA BB y y ''''=+-==gg g , 故选:C .【点睛】本题考查抛物线的性质及直线与抛物线的相交弦长,梯形的面积公式,属于中档题.6.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( )A .①③B .②④C .①②③D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当222x y ==时取等号),则②正确; 将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点,(,(,,则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.7.已知双曲线2222:1(0)x y E a b a b-=>>的左、右焦点分别为1F ,2F ,P 是双曲线E 上的一点,且212||PF PF =.若直线2PF 与双曲线E 的渐近线交于点M ,且M 为2PF 的中点,则双曲线E 的渐近线方程为( )A .13y x =±B .12y x =±C .2y x =±D .3y x =±【答案】C 【解析】 【分析】由双曲线定义得24PF a =,12PF a =,OM 是12PF F △的中位线,可得OM a =,在2OMF △中,利用余弦定理即可建立,a c 关系,从而得到渐近线的斜率.【详解】根据题意,点P 一定在左支上.由212PF PF =及212PF PF a -=,得12PF a =,24PF a =, 再结合M 为2PF 的中点,得122PF MF a ==,又因为OM 是12PF F △的中位线,又OM a =,且1//OM PF , 从而直线1PF 与双曲线的左支只有一个交点.在2OMF △中22224cos 2a c aMOF ac+-∠=.——① 由2tan b MOF a ∠=,得2cos aMOF c∠=. ——② 由①②,解得225c a=,即2b a =,则渐近线方程为2y x =±.故选:C. 【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.8.设抛物线()2:20C y px p =>的焦点为F ,抛物线C 与圆22525:()416C x y +-='于,A B 两点,且AB =C 的焦点的弦MN 的长为8,则弦MN 的中点到直线2x =-的距离为( )A .2B .5C .7D .9【答案】B 【解析】 【分析】易得圆C '过原点,抛物线22y px =也过原点,联立圆和抛物线方程由AB 求得交点坐标,从而解出抛物线方程,根据抛物线定义即可求得弦MN 的中点到直线2x =-的距离. 【详解】圆:22525:,416C x y ⎛⎫+-= ⎪⎝⎭'即为2252x y y +=,可得圆经过原点.抛物线22y px =也过原点. 设()()0,0,,,0A B m n m >.由AB =可得225m n +=, 又2252m n n +=联立可解得2,1n m ==. 把()1,2B 代人22y px =,解得2p =,故抛物线方程为24y x =,焦点为()1,0F ,准线l 的方程为1x =-.如图,过,M N 分别作ME l ⊥于E ,NK l ⊥于K ,可得,MF ME NK NF ==,即有MN MF NF ME KN =+=+|. 设MN 的中点为0P ,则0P 到准线l 的距离11(|)422EM KNI MN +==, 则MN 的中点0P ,到直线2x =-的距离是415+=. 故选:B 【点睛】本题考查抛物线的几何性质,考查学生的分析问题,解决问题的能力,数形结合思想.属于一般性题目.9.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】 【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限,∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.10.已知点P 是椭圆22221(0,0)x y a b xy a b+=>>≠上的动点,1(,0)F c -、2(,0)F c 为椭圆的左、右焦点,O 为坐标原点,若M 是12F pF ∠的角平分线上的一点,且F 1M ⊥MP ,则|OM|的取值范围是( ) A .(0,)c B .(0,)aC .(,)b aD .(,)c a【答案】A 【解析】 【分析】 【详解】解:如图,延长PF 2,F 1M ,交与N 点,∵PM 是∠F 1PF 2平分线,且F 1M ⊥MP , ∴|PN|=|PF 1|,M 为F 1F 2中点,连接OM ,∵O 为F 1F 2中点,M 为F 1F 2中点 ∴|OM|=|F 2N|=||PN|﹣|PF 2||=||PF 1|﹣|PF 2|| ∵在椭圆中,设P 点坐标为(x 0,y 0)则|PF 1|=a+ex 0,|PF 2|=a ﹣ex 0,∴||PF 1|﹣|PF 2||=|a+ex 0+a ﹣ex 0|=|2ex 0|=|ex 0| ∵P 点在椭圆上,∴|x 0|∈(0,a],又∵当|x 0|=a 时,F 1M ⊥MP 不成立,∴|x 0|∈(0,a ) ∴|OM|∈(0,c ). 故选A .11.已知12,F F 分别双曲线22233(0)x y a a -=>的左右焦点,是P 抛物线28y ax =与双曲线的一个交点,若1212PF PF += ,则抛物线的准线方程为( ) A .4x =- B .3x=-C .2x =-D .1x =-【答案】C 【解析】由题得双曲线的方程为222213x y a a-=,所以222234,2c a a a c a =+=∴=.所以双曲线的右焦点和抛物线的焦点重合.由题得1221212,62PF PF PF a PF PF a⎧+=⎪∴=-⎨+=⎪⎩. 联立双曲线的方程和抛物线的方程得223830,(33ax ax a x x a --=∴=-=舍)或. 由抛物线的定义得6-a=3a-(-2a),所以a=1,所以抛物线的准线方程为x=-2,故选C.点睛:本题的难点在于如何找到关于a 的方程,本题利用的就是抛物线的定义得到6-a=3a-(-2a).在解析几何里,看到曲线上的点到焦点的距离,要联想到圆锥曲线的定义解题,这个技巧大家要理解掌握并做到灵活运用.12.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =, 所以2212||46413F F =+=13c ⇒=因为2521a x a =-=⇒=,所以23b = 所以双曲线的渐近线方程为23by x x a=±=±. 【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.13.已知双曲线()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点,若121cos 4F MF ∠=,122MF MF =,则此双曲线渐近线方程为( ) A .3y x = B .3y x = C .y x =± D .2y x =±【答案】A 【解析】 【分析】因为M 为双曲线上一点,可得122MF MF a -=,在12F MF ∆使用余弦定理,结合已知条件即可求得答案. 【详解】Q 双曲线()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点 ∴ 121222MF MF a MF MF ⎧-=⎪⎨=⎪⎩,解得:14MF a =,22MF a = 在12F MF ∆中,根据余弦定理可得:∴ 12121222122c 2os F F MF MF M MF MF F F ∠=+-⋅⋅可得:2221(2)(4)(2)2424c a a a a =+-⋅⋅⋅ 化简可得:2c a =由双曲线性质可得:22222243b c a a a a =-=-=可得:b =Q 双曲线渐近线方程为:b y x a=±则双曲线渐近线方程为: y = 故选:A. 【点睛】本题考查了求双曲线渐近线方程问题,解题关键是掌握双曲线的基本知识,数形结合,考查分析能力和计算能力,属于中档题.14.已知双曲线2219x y m-=的一个焦点在直线x +y =5上,则双曲线的渐近线方程为( )A .34y x =? B .43y x =±C .y x =D .y x = 【答案】B 【解析】根据题意,双曲线的方程为2219x y m-=,则其焦点在x 轴上,直线5x y +=与x 轴交点的坐标为()5,0, 则双曲线的焦点坐标为()5,0, 则有925m +=, 解可得,16m =,则双曲线的方程为:221916x y -=,其渐近线方程为:43y x =±, 故选B.15.过双曲线22134x y -=的左焦点1F 引圆223x y +=的切线,切点为T ,延长1F T 交双曲线右支于P 点,M 为线段1F P 的中点,O 为坐标原点,则MO MT -=( )A .1B .23-C .13+D .2【答案】B 【解析】 【分析】根据三角形的中位线性质,双曲线的定义,及圆的切线性质,即可得到结论. 【详解】由图象可得()1111||MO MT MO MF TF MO MF TF -=--=-+=()()22211112322322PF PF OF OT -+-=⋅-+=-. 故选:B. 【点睛】本题考查圆与双曲线的综合,解题的关键是正确运用双曲线的定义,三角形的中位线性质.16.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线()222713664x y --=的左支上,根据船P 接收到A 台和B 台电磁波的时间差,计算出船P 到B 发射台的距离比到A 发射台的距离远30海里,则点P 的坐标(单位:海里)为( )A .9011,77⎛⎫± ⎪ ⎪⎝⎭B .135322,77⎛⎫± ⎪ ⎪⎝⎭C .3217,3⎛⎫±⎪⎝⎭D.(45,±【答案】B 【解析】 【分析】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥,根据双曲线的定义得出15a =,再得出由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>,与双曲线()222713664x y --=联立,即可得出点P 坐标. 【详解】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥由于船P 到B 台和到A 台的距离差为30海里,故15a =,又=17c ,故8b =故由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>联立()()()222227121366411522564x y x x y x ⎧--=<⎪⎪⎨⎪-=>⎪⎩,解得135,77P ⎛⎫± ⎪ ⎪⎝⎭ 故选:B 【点睛】本题主要考查了双曲线的应用,属于中档题.17.已知双曲线()2222100x y C a b a b-=:>,>的一条渐近线与圆22(4x y +-=相交于A ,B 两点,若|AB |=2,则C 的离心率为( )A.3BC .2D .4【答案】C 【解析】 【分析】求出双曲线的渐近线方程,圆的圆心与半径,利用距离公式得到a 、b 关系式,然后求解离心率即可. 【详解】由题意可知不妨设双曲线的一条渐近线方程为:bx +ay =0,圆22(4x y +-=的圆心为(0,,半径为2,由题意及|AB |=2,可得2222223()12a a b +=+,222123a ab =+,即b 2=3a 2,可得c 2﹣a 2=3a 2,即224c a = 所以e ca==2. 故选:C . 【点睛】本题主要考查求双曲线离心率的问题,此类问题的解题关键是建立,,a b c 的方程或不等关系,考查学生的运算求解能力,是一道中档题.18.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2a C 2aD .22a 【答案】D 【解析】 【分析】设H ,I 分别为1CC 、11C D 边上的中点,由面面平行的性质可得F 落在线段HI 上,再求HI 的长度即可. 【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点, 则ABEG 四点共面, 且平面1//A BGE 平面1B HI , 又1//B F Q 面1A BE ,F ∴落在线段HI 上,Q 正方体1111ABCD A B C D -中的棱长为a ,11222HI CD a ∴==,即F 在侧面11CDD C 上的轨迹的长度是22a . 故选D .【点睛】本题考查了面面平行的性质及动点的轨迹问题,属中档题.19.已知F 是抛物线24x y =的焦点,P 为抛物线上的动点,且A 的坐标为()0,1-,则PF PA的最小值是( )A .14B .12C .22D .32【答案】C 【解析】由题意可得,抛物线24x y =的焦点(0,1)F ,准线方程为1y =-.过点P 作PM 垂直于准线,M 为垂足,则由抛物线的定义可得PF PM =,则sin PF PM PAM PAPA==∠,PAM ∠为锐角.∴当PAM ∠最小时,PF PA 最小,则当PA 和抛物线相切时,PFPA最小.设切点(2,)P a a ,由214y x =的导数为12y x '=,则PA 的斜率为1222a a a ⋅==.∴1a =,则(2,1)P . ∴2PM =,22PA = ∴2sin 2PM PAM PA∠==故选C .点睛:本题主要考查抛物线的定义和几何性质,与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到焦点的距离与点到准线的距离的转化, 这样可利用三角形相似,直角三角形中的锐角三角函数或是平行线段比例关系可求得距离弦长以及相关的最值等问题.20.在矩形ABCD 中,已知3AB =,4=AD ,E 是边BC 上的点,1EC =,EF CD ∥,将平面EFDC 绕EF 旋转90︒后记为平面α,直线AB 绕AE 旋转一周,则旋转过程中直线AB 与平面α相交形成的点的轨迹是( )A .圆B .双曲线C .椭圆D .抛物线【答案】D 【解析】 【分析】利用圆锥被平面截的轨迹特点求解 【详解】由题将平面EFDC 绕EF 旋转90︒后记为平面α,则平面α⊥平面ABEF ,,又直线AB 绕AE 旋转一周,则AB 直线轨迹为以AE 为轴的圆锥,且轴截面为等腰直角三角形,且面AEF 始终与面EFDC 垂直,即圆锥母线AF ⊥平面EFDC 则 则与平面α相交形成的点的轨迹是抛物线 故选:D【点睛】本题考查立体轨迹,考查圆锥的几何特征,考查空间想象能力,是难题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年新高考数学总复习第九章《平面解析几何》
复习试卷及答案解析
一、选择题
1.已知椭圆C :16x 2+4y 2=1,则下列结论正确的是( )
A .长轴长为12
B .焦距为34
C .短轴长为14
D .离心率为
32 答案 D
解析 由椭圆方程16x 2+4y 2=1化为标准方程可得
x 2116+y 214
=1,所以a =12,b =14,c =34
, 长轴2a =1,焦距2c =32,短轴2b =12, 离心率e =c a =32
.故选D. 2.双曲线x 23-y 2
9
=1的渐近线方程是( ) A .y =±3x
B .y =±13x
C .y =±3x
D .y =±33
x 答案 C
解析 因为x 23-y 2
9
=1, 所以a =3,b =3,渐近线方程为y =±b a
x , 即为y =±3x ,故选C.
3.已知双曲线my 2-x 2=1(m ∈R )与抛物线x 2=8y 有相同的焦点,则该双曲线的渐近线方程为( )
A .y =±3x
B .y =±3x
C .y =±13
x D .y =±33x 答案 A
解析 ∵抛物线x 2=8y 的焦点为(0,2),
∴双曲线的一个焦点为(0,2),∴1m +1=4,∴m =13
, ∴双曲线的渐近线方程为y =±3x ,故选A.
4.(2019·河北衡水中学模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)和直线l :x 4+y 3
=1,若过C 的左焦点和下顶点的直线与l 平行,则椭圆C 的离心率为( )
A.45
B.35
C.34
D.15
答案 A
解析 直线l 的斜率为-34,过C 的左焦点和下顶点的直线与l 平行,所以b c =34
, 又b 2+c 2=a 2⇒⎝⎛⎭⎫34c 2+c 2=a 2⇒2516c 2=a 2,
所以e =c a =45
,故选A. 5.(2019·洛阳、许昌质检)若双曲线x 2-y 2
b 2=1(b >0)的一条渐近线与圆x 2+(y -2)2=1至多有一个交点,则双曲线离心率的取值范围是( )
A .(1,2]
B .[2,+∞)
C .(1,3]
D .[3,+∞) 答案 A
解析 双曲线x 2-y 2
b 2=1(b >0)的一条渐近线方程是bx -y =0,由题意圆x 2+(y -2)2=1的圆心(0,2)到bx -y =0的距离不小于1,即
2b 2+1≥1,则b 2≤3,那么离心率e ∈(1,2],故选A. 6.(2019·河北武邑中学调研)已知直线l :y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点,若|F A |=2|FB |,则k 等于( )
A.13
B.23
C.23
D.223
答案 D
解析 由⎩⎪⎨⎪⎧
y =k (x +2),y 2=8x ,消去y 得 k 2x 2+(4k 2-8)x +4k 2=0,
Δ=(4k 2-8)2-16k 4>0,又k >0,解得0<k <1,
设A (x 1,y 1),B (x 2,y 2),x 1+x 2=8k
2-4, ① x 1x 2=4, ②。