《平面解析几何》复习试卷及答案解析

合集下载

高考数学压轴专题(易错题)备战高考《平面解析几何》难题汇编及答案解析

高考数学压轴专题(易错题)备战高考《平面解析几何》难题汇编及答案解析

【高中数学】数学《平面解析几何》复习知识要点一、选择题1.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F = )A .2213x y +=B .22132x y +=C .22196x y +=D .221129x y +=【答案】C 【解析】 【分析】利用椭圆的性质,根据4AB =,12F F =c =22 4b a=,求解a ,b 然后推出椭圆方程. 【详解】椭圆2222 10x y a b a b +=>>()的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F =c =,22 4b a=,222c a b =-,解得3a =,b =,所以所求椭圆方程为:22196x y +=,故选C .【点睛】本题主要考查椭圆的简单性质的应用,椭圆方程的求法,是基本知识的考查.2.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C 于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A B .2C D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得AF =u u u v【详解】根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以()2212112AF n u u u v =-+=+=故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.3.已知直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,直线l 经过2:2(0)C y px p =>的焦点,M 为C 上的一个动点,若点N 的坐标为()4,0,则MN 的最小值为( ) A .3B 3C .2D .22【答案】A 【解析】 【分析】联立直线与抛物线方程利用弦长公式列方程,结合直线过抛物线的焦点,解方程可得2p =,再利用两点的距离公式,结合二次函数配方法即可得结果.【详解】 由22224(42)02y x b x b p x b y px=+⎧⇒+-+=⎨=⎩, 121222,24b p b x x x x +=-=-,因为直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,125x =-,所以()22222512424b p b ⎡⎤-⎛⎫=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(1) 又直线l 经过C 的焦点,则,22b pb p -=∴=- (2)由(1)(2)解得2p =,故抛物线方程为24y x =.设()20000,,4M x y y x ∴=.则()()()2222200000||444212MN x y x x x =-+=-+=-+,故当02x =时,min ||MN = 故选:A. 【点睛】本题主要考查直线与抛物线的位置关系,考查了弦长公式以及配方法的应用,意在考查综合应用所学知识解答问题的能力,属于中档题.4.设抛物线E :26y x =的弦AB 过焦点F ,||3||AF BF =,过A ,B 分别作E 的准线的垂线,垂足分别是A ',B ',则四边形AA B B ''的面积等于( )A .B .C .D .【答案】C 【解析】 【分析】由抛物线的方程可得焦点坐标及准线方程,设直线AB 的方程,与抛物线联立求出两根之和及两根之积,进而求出弦长AB ,由抛物线的性质可得梯形的上下底之和求出,求出A ,B 的纵坐标之差的绝对值,代入梯形的面积公式即可求出梯形的面积. 【详解】解:由抛物线的方程 可得焦点3(2F ,0),准线方程:32x =-,由题意可得直线AB 的斜率存在且不为0,设直线AB 的方程为:32x my =+,1(A x ,1)y ,2(B x ,2)y ,联立直线与抛物线的方程:2326x my y x⎧=+⎪⎨⎪=⎩,整理可得:2690y my --=,所以126y y m +=,129y y =-,21212()363x x m y y m +=++=+,因为||3||AF BF =,所以3AF FB =uu u r uu r,即13(2x -,123)3(2y x -=-,2)y ,可得:123y y =-, 所以可得:2222639y m y -=⎧⎨-=-⎩即213m =, 由抛物线的性质可得: 21233166668223AA BB AB x x m ''+==+++=+=+=g , 221212121||()436363636433y y y y y y m -=+-=+=+=g ,由题意可知,四边形AA B B ''为直角梯形,所以1211()||84316322AA B B S AA BB y y ''''=+-==gg g , 故选:C .【点睛】本题考查抛物线的性质及直线与抛物线的相交弦长,梯形的面积公式,属于中档题.5.已知抛物线C :212y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,FA 为半径的圆交C 的准线于B ,D 两点,且A ,F ,B 三点共线,则AF =( )A .16B .10C .12D .8【答案】C 【解析】 【分析】根据题意可知AD BD ⊥,利用抛物线的定义,可得30ABD ∠=︒,所以||||2612AF BF ==⨯=.解:因为A ,F ,B 三点共线,所以AB 为圆F 的直径,AD BD ⊥. 由抛物线定义知1||||||2AD AF AB ==,所以30ABD ∠=︒.因为F 到准线的距离为6, 所以||||2612AF BF ==⨯=. 故选:C .【点睛】本题考查抛物线的性质,抛物线的定义,考查转化思想,属于中档题.6.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( ) A .①③ B .②④ C .①②③ D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x yx y +=联立解得222x y ==可判断①③;由图可判断④.()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当222x y ==时取等号),则②正确; 将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点()2,2,()2,2-,()2,2--,()2,2-,则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.7.已知直线()0y kx k =≠与双曲线()222210,0x y a b a b-=>>交于,A B 两点,以AB 为直径的圆恰好经过双曲线的右焦点F ,若ABF ∆的面积为24a ,则双曲线的离心率为 A .2 B .3C .2D .5【答案】D 【解析】 【分析】通过双曲线和圆的对称性,将ABF ∆的面积转化为FBF ∆'的面积;利用焦点三角形面积公式可以建立a 与b 的关系,从而推导出离心率. 【详解】由题意可得图像如下图所示:F '为双曲线的左焦点AB Q 为圆的直径 90AFB ∴∠=o根据双曲线、圆的对称性可知:四边形AFBF '为矩形12ABF AFBF FBF S S S ''∆∆∴== 又2224tan 45FBF b S b a ∆'===o,可得:225c a = 25e ∴= 5e ⇒=本题正确选项:D 【点睛】本题考查双曲线的离心率求解,离心率问题的求解关键在于构造出关于,a c 的齐次方程,从而配凑出离心率的形式.8.如图,设椭圆E :22221(0)x y a b a b+=>>的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆E 于点C ,若直线BF 平分线段AC 于M ,则椭圆E 的离心率是( ) A .12B .23C .13D .14【答案】C 【解析】如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线, 于是△OFM ∽△AFB ,且OF OM 1FAAB2==, 即c c a -=12可得e=c a =13. 故答案为13. 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.9.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.10.已知双曲线2222:1(0,0)x y C a b a b-=>>,点()00,P x y 是直线40bx ay a -+=上任意一点,若圆()()22001x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率取值范围是( ). A .(]1,2 B .(]1,4 C .[)2,+∞ D .[)4,+∞ 【答案】B 【解析】 【分析】先求出双曲线的渐近线方程,可得则直线bx ay 2a 0-+=与直线bx ay 0-=的距离d ,根据圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,可得d 1≥,解得即可. 【详解】由题意,双曲线2222x y C :1(a 0,b 0)a b-=>>的一条渐近线方程为b y x a =,即bx ay 0-=,∵()00P x ,y 是直线bx ay 4a 0-+=上任意一点,则直线bx ay 4a 0-+=与直线bx ay 0-=的距离224a 4a d ca b ==+, ∵圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,则d 1≥, ∴41a c ≥,即4ce a=≤,又1e > 故e 的取值范围为(]1,4, 故选:B . 【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线C 的右支没有公共点得出d 1≥是解答的关键,着重考查了推理与运算能力,属于基础题.11.若函数1()ln (0,0)a a f x x a b b b+=-->>的图象在x =1处的切线与圆x 2+y 2=1相切,则a +b 的最大值是( ) A .4 B .2 C .2 D . 【答案】D 【解析】()1ln (0,0)a a f x x a b b b+=-->>,所以()'a f x bx =-,则f ′(1)=-ab为切线的斜率, 切点为(1,-1a b+), 所以切线方程为y +1a b +=-ab(x -1), 整理得ax +by +1=0.因为切线与圆相切,所以22a b+=1,即a 2+b 2=1.由基本不等式得a 2+b 2=1≥2ab , 所以(a +b )2=a 2+b 2+2ab =1+2ab ≤2, 所以a +b ≤,即a +b 的最大值为.故选D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.12.已知抛物线24x y =的焦点为F ,准线为l ,抛物线的对称轴与准线交于点Q ,P 为抛物线上的动点,PF m PQ =,当m 最小时,点P 恰好在以,F Q 为焦点的椭圆上,则椭圆的离心率为( )A .3-B .2-CD 1【答案】D 【解析】由已知,(01)(01)F Q ,,,-,过点P 作PM 垂直于准线,则PM PF =.记PQM α∠=,则sin PF PM m PQPQα===,当α最小时,m 有最小值,此时直线PQ与抛物线相切于点P .设204x P x ⎛⎫ ⎪⎝⎭,,可得(21)P ,±,所以2PQ PF ,==,则2PF PQ a +=,∴1a =,1c =,∴1ce a==,故选D .13.已知曲线()2222:100x y C a b a b-=>,>的左、右焦点分别为12,,F F O 为坐标原点,P是双曲线在第一象限上的点,MO OP =u u u u v u u u v,直线2PF 交双曲线C 于另一点N ,若122PF PF =,且2120MF N ∠=︒则双曲线C 的离心率为( )A BC D【答案】B 【解析】 【分析】由题意结合双曲线的定义可得124,2PF a PF a == ,在三角形12PF F 中,由余弦定理可得2224208c a a =+,据此计算双曲线的离心率即可. 【详解】由题意,122PF PF =,由双曲线的定义可得,122PF PF a -= ,可得124,2PF a PF a == ,由四边形12PF MF 为平行四边形,又2120MF N ∠=︒,可得12120F PF ∠=︒, 在三角形12PF F 中,由余弦定理可得2224164242cos120c a a a a =+-⋅⋅⋅︒ ,即有2224208c a a =+,即227c a =,可得c =,即ce a==【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a =; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).14.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A【解析】 【分析】 设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由b y x a =±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =,所以2212||46413F F =+=13c ⇒=因为2521a x a =-=⇒=,所以23b =所以双曲线的渐近线方程为b y x a=±=±. 【点睛】 本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.15.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225*********n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立. 12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.16.过坐标轴上的点M 且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为M 的个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】设出直线方程,根据弦长公式,转化为圆心到直线的距离建立等量关系求解.【详解】由直线的斜率为tan 60k ︒==y b =+.圆2240x y y +-=可化为22(2)4x y +-=,圆心为(0,2),半径为2r =, 则由弦长公式得:圆心(0,2)到直线y b =+的距离为1d ===,即|2|12b -+=,解得0b =,4b =,故直线的方程为y =或4y =+.直线y =过坐标轴上的点(0,0),直线4y =+过坐标轴上的点()0,4与3⎛⎫- ⎪ ⎪⎝⎭,故点M 的个数为3.故选:C.【点睛】此题考查直线与圆的位置关系,根据弦长公式将弦长问题转化为圆心到直线的距离求解.17.已知1F ,2F 是双曲线22221x y a b-=(0a >,0b >)的左、右焦点,点A 是双曲线上第二象限内一点,且直线1AF 与双曲线的一条渐近线b y x a=平行,12AF F ∆的周长为9a ,则该双曲线的离心率为( )A .2B C .3D .【答案】A【解析】【分析】根据双曲线的定义,结合三角形的周长可以求出1AF 和2AF 的表达式,根据线线平行,斜率的关系,结合余弦定理进行求解即可.【详解】 由题意知212AF AF a -=,2192AF AF a c +=-,解得21122a c AF -=,1722a c AF -=, 直线1AF 与b y x a =平行,则12tan b AF F a ∠=,得12cos a AF F c∠=, 222121214cos 22AF c AF a AF F c AF c+-∠==⋅, 化简得22280c ac a +-=,即2280e e +-=,解得2e =.故选:A【点睛】本题考查求双曲线的离心率,考查了双曲线的定义的应用,考查了余弦定理的应用,考查了数学运算能力.18.设椭圆22221(0)x y a b a b+=>>的右焦点为F ,过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点,且满足AP BP <u u u v u u u v ,设O 为坐标原点,若(,)OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,29λμ=,则该椭圆的离心率为( )A .35B .1213C .35或1213D .45【答案】A【解析】 分析:根据向量共线定理及29λμ=,AP BP <u u u v u u u v ,可推出λ,μ的值,再根据过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),可推出P ,B 两点的坐标,然后求出过椭圆的左顶点和上顶点的直线1l 的方程,即可求得A 点的坐标,从而可得a ,b ,c 三者关系,进而可得椭圆的离心率. 详解:∵A 、P 、B 三点共线,(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v∴1λμ+= 又∵29λμ= ∴1323λμ⎧=⎪⎪⎨⎪=⎪⎩或2313λμ⎧=⎪⎪⎨⎪=⎪⎩ ∵AP BP <u u u v u u u v∴2313λμ⎧=⎪⎪⎨⎪=⎪⎩∵过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限) ∴2(,)b P c a ,2(,)b B c a - ∵过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点∴直线1l 的方程为为1x y a b +=- ∴()(,)a c b A c a+ ∵2133OP OA OB =+u u u r u u u r u u u r ∴222()1()33b a c b b a a a+=⋅+⋅-,即2b a c =+. ∴22224()2a c a ac c -=++,即223520a c ac --=.∴25230e e +-=∵(0,1)e ∈ ∴35e =故选A. 点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式c e a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).19.已知椭圆2221(1)x y a a+=>的左、右焦点分别为1F ,2F ,A 是椭圆在第一象限上的一个动点,圆C 与1F A 的延长线,12F F 的延长线以及线段2AF 都相切,且()3,0M 为其中一个切点.则椭圆的离心率为( )AB.3 C.2 D【答案】B【解析】【分析】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等和椭圆的定义,解方程得出3a =,求出c ,进而可得离心率.【详解】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等,得AN AT =, 11F N F M =,22F T F M =,1(,0)F c -,2(,0)F c ,由椭圆的定义可得,122AF AF a +=,()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+- 222(3)a F M a c =-=--,则26a =,即3a =,又1b =,所以2222c a b =-=,因此椭圆的离心率为223c e a ==. 故选:B.【点睛】本题主要考查求椭圆的离心率,熟记椭圆的定义,以及椭圆的简单性质即可,属于常考题型.20.已知平面向量,,a b c r r r 满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A 75-B 73-C .532-D 31- 【答案】A【解析】【分析】 根据题意,易知a r 与b r 的夹角为60︒,设(=13a ,r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r ,可得2212302x y x y +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果.【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r 的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为1⎛ ⎝⎭,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为=. 故选:A.【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.。

专题二 平面解析几何 A卷 必备知识全优+答案解析(附后)

专题二  平面解析几何 A卷  必备知识全优+答案解析(附后)

专题二平面解析几何A卷必备知识全优一、单选题(本大题共8小题,共40分。

在每小题列出的选项中,选出符合题目的一项)1.已知过点,的直线的斜率为,则( )A. B. C. 1 D. 22.若直线平分圆的周长,则b的值为( )A. 2B.C.D. 33.椭圆的离心率为( )A. B. C. D.4.已知双曲线C:的一个焦点和抛物线的焦点相同,则双曲线C的渐近线方程为( )A. B. C. D.5.已知椭圆C:的左、右顶点分别为A、B,P为椭圆上异于A,B两点的动点,则( )A. B. C. D.6.已知椭圆C:的左、右焦点分别为,,焦距为2c,直线与椭圆C的一个交点为在第一象限满足,则该椭圆的离心率为( )A. B. C. D.7.抛物线上到直线的距离最短的点的坐标是( )A. B. C. D.8.我们把离心率等于黄金比的椭圆称为“优美椭圆”.设为优美椭圆,F、A 分别为它的左焦点和右顶点,B是短轴的一个端点,则等于( )A. B. C. D.二、多选题(本大题共4小题,共20分。

在每小题有多项符合题目要求)9.设直线l经过点,且在两坐标轴上的截距相等,则直线l的方程为( )A. B. C. D.10.下列说法正确的是( )A. 过,两点的直线方程为B. 点关于直线的对称点为C. 直线与两坐标轴围成的三角形的面积是2D. 经过点且在x轴和y轴上截距都相等的直线方程为11.2020年11月28日,“嫦娥五号”顺利进入环月轨道,其轨道是以月球的球心F为一个焦点的椭圆如图所示已知它的近月点离月球表面最近的点距离月球表面m千米,远月点离月球表面最远的点距离月球表面n千米,AB为椭圆的长轴,月球的半径为R千米.设该椭圆的长轴长,焦距分别为2a,2c,则下列结论正确的有( )A. B. C. D.12.在平面直角坐标系xOy中,动点P与两个定点和连线的斜率之积等于,记点P的轨迹为曲线E,直线l:与E交于A,B两点,则( )A. E的方程为B. E的离心率为C. E的渐近线与圆相切D. 满足的直线l有2条三、填空题(本大题共4小题,共20分)13.设双曲线的渐近线方程为,则a的值为__________.14.已知圆C:及直线l:,当直线l被圆C截得的弦长最短时,直线l的方程为__________.15.若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为__________.16.已知抛物线E:的焦点F到准线的距离为4,则__________;过点F作斜率为k的直线l交抛物线E于两个不同点A、B,若,则实数k的值为__________.四、解答题(本大题共6小题,共70分。

最新高中平面解析几何习题(含答案与解析)

最新高中平面解析几何习题(含答案与解析)

平面解析几何式卷七一、选择题1、从点P (m , 3)向圆(x + 2)2+ (y + 2)2= 1引切线, 则一条切线长的最小值为A .B .5C .D .2、若曲线x 2-y 2= a 2与(x -1)2+ y 2= 1恰有三个不同的公共点, 则a 的值为A .-1B .0C .1D .不存在3、曲线有一条准线的方程是x = 9, 则a 的值为A .B .C .D .4、参数方程 所表示的曲线是A .椭圆的一部分B .双曲线的一部分C .抛物线的一部分, 且过点D .抛物线的一部分, 且过点5、过点(2, 3)作直线l , 使l 与双曲线恰有一个公共点, 这样的直线l 共有A .一条B .二条C .三条D .四条6、定义离心率为的椭圆为“优美椭圆”, 设(a > b > 0)为“优美椭圆”, F 、A 分别是它的左焦点和右顶点, B是它的短轴的一个端点, 则ÐABF 为A .60°B .75°C .90°D .120°7、在圆x 2 + y 2= 5x 内, 过点有n 条弦的长度成等差数列, 最小弦长为数列的首项a , 最大弦长为a n , 若公差, 则n 的取值集合为A .B .C .D .8、直线与圆x 2 + y 2= 1在第一象限内有两个不同的交点, 则m 的取值范围是A .1 < m < 2B .C .D .二、填空题1若直线过点(1,2),(3,24),则此直线的倾斜角是2、已知直线l 的斜率[]3,1-∈k ,则直线l 的倾斜角α的取值范围是 。

3、设直线过点()a ,0,其斜率为1,且与圆222=+y x 相切,则a 的值为 。

4、若过点A (4,0)的直线l 与曲线()1222=+-y x 有公共点,则直线l 的斜率的取值范围为 。

5、“1=a ”是“直线0=+y x 和直线0=-ay x 互相垂直”的 条件。

专题四平面解析几何(大4+答案)

专题四平面解析几何(大4+答案)

专题四 平面解析几何(解答题4+)1.【解析】设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --=,得78t =-. 所以l 的方程为3728y x =-.(2)由3AP PB =可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.故||AB =. 2.【解析】(1)设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23a b =.由||AB =,从而3,2a b ==.所以,椭圆的方程为22194x y +=.(2)设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>, 点Q 的坐标为11(,)x y --.由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ , 从而21112[()]x x x x -=--,即215x x =. 易知直线AB 的方程为236x y +=, 由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y,可得1x = 由215x x =5(32)k =+,两边平方,整理得2182580k k ++=, 解得89k =-,或12k =-. 当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意. 所以,k 的值为12-.3.【解析】(1)由题意得2c =,所以c =c e a ==,所以a = 所以2221b a c =-=,所以椭圆M 的标准方程为2213x y +=.(2)设直线AB 的方程为y x m =+,由2213y x mx y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||2AB x x =-==,易得当20m =时,max ||6AB =,故||AB 的最大值为6. (3)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PAyk k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+,所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-,4471(,)44QD x y =+-, 因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 4.【解析】(1)椭圆22:143x yE +=的长轴长为2a ,短轴长为2b ,焦距为2c ,则2224,3,1a b c ===.所以12AF F △的周长为226a c +=.则(2)椭圆E 的右准线为4x =.设(,0),(4,)P x Q y ,(,0),(4,)OP x QP x y ==--,2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍.由此得|343||30403|355x y -+⨯-⨯+=⨯,则34120x y -+=或3460x y --=. 由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据213S S =推出95d =是解答本题的关键.。

第08练-平面解析几何(解析版)

第08练-平面解析几何(解析版)

第08练-平面解析几何一、单选题1.已知点F 为椭圆2221(1)x y a a+=>的一个焦点,过点F 作圆221x y +=的两条切线,若这两条切线互相垂直,则a =( )A .2B .1C .2D .3【答案】D【解析】【分析】根据切线垂直,推导出F 点至坐标原点的距离,即可求得交点坐标和a .【详解】由题可设(),0F c ,根据题意,作图如下:因为过F 点的两条切线垂直,故可得45OFH ∠=︒,则1OH HF ==,故可得2OF =,即点F 坐标为)2,0. 则2,1c b ==,故2223a b c =+=,解得3a =故选:D.【点睛】 本题考查椭圆方程的求解,涉及直线与圆相切时的几何性质,属基础题.2.已知圆C :(x ﹣a )2+(y ﹣2)2=4(a >0)及直线l :x ﹣y+3=0,当直线l 被圆C 截得的弦长为23时,a 的值等于( )A B .2-C 1 D 1【答案】C【解析】【分析】由题意,结合垂径定理算出圆心到直线l :x ﹣y+3=0的距离d =1,利用点到直线的距离公式建立关于a 的方程,求解即可.【详解】∵圆C :(x ﹣a )2+(y ﹣2)2=4的圆心为C (a ,2),半径r =2∴圆心到直线l :x ﹣y+3=0的距离d=∵l 被圆C 截得的弦长为∴2d +2=22,解得d =1,因此,d=1,得1a =或1a =(舍) 故选C .【点睛】本题考查了圆的方程、点到直线的距离公式和直线与圆的位置等知识,属于基础题.3.已知两点()1,0A -,()10B ,以及圆C :222(3)(4)(0)x y r r -+-=>,若圆C 上存在点P ,满足0AP PB ⋅=u u u v u u u v ,则r 的取值范围是( )A .[]3,6B .[]3,5C .[]4,5D .[]4,6【答案】D【解析】【分析】由题意可知:以AB 为直径的圆与圆()()22234(0)x y r r -+-=>有公共点,从而得出两圆圆心距与半径的关系,列出不等式得出r 的范围.【详解】 Q 0AP PB ⋅=u u u v u u u v,∴点P 在以()1,0A -,()1,0B 两点为直径的圆上,该圆方程为:221x y +=,又点P 在圆C 上,∴两圆有公共点.两圆的圆心距5d ==∴151r r -≤≤+解得:46r ≤≤故选D【点睛】本题考查了圆与圆的位置关系,还考查了向量垂直的数量积表示,属于中档题.4.已知椭圆22221(0)x y a b a b+=>>的离心率为35,直线2100x y ++=过椭圆的左顶点,则椭圆方程为( )A .22154x y += B .221259x y += C .221169x y += D .2212516x y += 【答案】D【解析】【分析】直线2100x y ++=过椭圆的左顶点,则椭圆的左顶点为(5,0)-,所以椭圆中5a =,由离心率为35,则3c =,可求出椭圆的b ,从而可得椭圆的方程.【详解】直线2100x y ++=与x 轴的交点为(5,0)-,直线2100x y ++=过椭圆的左顶点,即椭圆的左顶点为(5,0)-.所以椭圆中5a =,由椭圆的离心率为35,则3c =. 则4b =,所以椭圆的方程为:2212516x y +=. 故答案为:D【点睛】本题考椭圆的简单几何性质,根据离心率求,,a b c ,属于基础题.5.已知双曲线的标准方程为2222x y a b-=1(a >0,b >0),若渐近线方程为y =,则双曲线的离心率为( )A .3B .2CD .4【答案】B【解析】【分析】由双曲线22221(0,0)x y a b a b -=>>的渐近线方程是y =,可得b a=c e a == 【详解】Q 双曲线22221(0,0)x y a b a b-=>>的渐近线方程是y =,∴b a=∴双曲线的离心率2c e a ===. 故选:B .【点睛】本题考查双曲线的简单性质,考查学生的计算能力,确定b a= 6.已知点F 是抛物线24x y =的焦点,点P 为抛物线上的任意一点,(1,2)M 为平面上点,则PM PF +的最小值为( )A .3B .2C .4D .【答案】A【解析】【分析】作PN 垂直准线于点N ,根据抛物线的定义,得到+=+PM PF PM PN ,当,,P M N 三点共线时,PM PF +的值最小,进而可得出结果.【详解】如图,作PN 垂直准线于点N ,由题意可得+=+≥PM PF PM PN MN ,显然,当,,P M N 三点共线时,PM PF +的值最小;因为(1,2)M ,(0,1)F ,准线1y =-,所以当,,P M N 三点共线时,(1,1)-N ,所以3MN =.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.7.已知椭圆22221x y a b +=(a >b >0)与双曲线222212x y a b -=(a >0,b >0)的焦点相同,则双曲线渐近线方程为( )A .3y x =±B .3y x =C .2y x =D .2y x = 【答案】A【解析】【分析】由题意可得222222a b a b -=+,即223a b =,代入双曲线的渐近线方程可得答案.【详解】依题意椭圆22221(a b 0)x y a b +=>>与双曲线22221(a 0,b 0)2x y a b -=>>即22221(a 0,b 022)x y a b -=>>的焦点相同,可得:22221122a b a b -=+, 即223a b =,∴3b a =3=双曲线的渐近线方程为:3x y x =±=, 故选:A .【点睛】本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题.8.已知双曲线221169x y C -=:的右焦点为F ,过原点O 的直线与双曲线C 交于,A B 两点,且60AFB ∠=︒,则BOF V 的面积为( )A.2 B.2 C .32 D .92【答案】A【解析】【分析】根据题意画出图像,设双曲线的左焦点为1F ,连接11,AF BF ,即可得四边形1AFBF 为平行四边形,从而求出1F BF ∠,利用余弦定理和双曲线的定义联立方程可求出1|BF ||BF|的值,利用面积公式可求出1F BF V 的面积,根据1F BF V 和BOF V 的关系即可得到答案.【详解】如图,设双曲线的左焦点为1F ,连接11,AF BF ,依题可知四边形1AFBF 的对角线互相平分,则四边形1AFBF 为平行四边形,由60AFB ∠=︒可得1120F BF ∠=︒, 依题可知12||2216910F F c ==+=, 由余弦定理可得:2221111|BF |+|BF|-2|BF ||BF|cos |||F BF F F ∠=即2211|BF |+|BF|+|BF ||BF|100=;又因为点B 在椭圆上,则1||BF |-|BF||28a ==,所以2211|BF |+|BF|-2|BF ||BF|64=.两式相减得13|BF ||BF|36=,即1|BF ||BF|12=,所以1F BF V 的面积为:111113||||sin 123322F BF S BF BF F BF =∠=⨯=V 因为O 为1F F 的中点,所以11332OBF F BF S S ==V V 故选:A【点睛】本题主要考查双曲线的几何性质,涉及到了双曲线的定义,余弦定理和面积公式,考查学生转化和化归的能力,属中档题.9.已知椭圆2221(02)4x y b b+=<<的左、右焦点分别为1F ,2F ,过1F 的直线交椭圆于A ,B 两点,若22BF AF +的最大值为5,则b 的值为()A .1BCD .3【答案】C【解析】【分析】由题意可知椭圆是焦点在x 轴上的椭圆,利用椭圆定义得到228||BF AF AB +=-,再由过椭圆焦点的弦中通径的长最短,可知当AB 垂直于x 轴时||AB 最小,把||AB 的最小值2b 代入228||BF AF AB +=-,由22BF AF +的最大值等于5可求b 的值.【详解】由02b <<可知,焦点在x 轴上,∴2a =,∵过1F 的直线交椭圆于A ,B 两点,∴22112248BF AF BF AF a a a +++=+== ∴228||BF AF AB +=-.当AB 垂直x 轴时||AB 最小,22BF AF +值最大,此时222||b AB b a==,∴258b =-,解得b =C . 【点睛】 本题主要考查椭圆的定义,解题的关键是得出22114BF AF BF AF a +++=,属于一般题.10.过双曲线2213y x -=的右支上一点P 分别向圆1C :22(2)4x y ++=和圆2C :22(2)1x y -+=作切线,切点分别为,M N ,则22||||PM PN -的最小值为( )A .5B .4C .3D .2【答案】A【解析】【分析】 求得两圆的圆心和半径,设双曲线2213y x -=的左右焦点为1(2,0)F -,2(2,0)F ,连接1PF , 2PF ,1F M ,2F N ,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值.【详解】圆221:(2)4C x y ++=的圆心为(2,0)-,半径为12r =;圆222:(2)1C x y -+=的圆心为(2,0),半径为21r =, 设双曲线2213y x -=的左右焦点为1(2,0)F -,2(2,0)F , 连接1PF ,2PF ,1F M ,2F N ,可得2222221122||||(||)(||)PM PN PF r PF r -=---2212(||4)(||1)PF PF =---22121212||||3(||||)(||||)3PF PF PF PF PF PF =--=-+-12122(||||32(||||)32232435a PF PF PF PF c =+-=+--=-=g g )….当且仅当P 为右顶点时,取得等号,即最小值5.故选A .【点睛】本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力,属于中档题.二、多选题11.已知点A 是直线:20l x y +=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .()0,2B .()1,21-C .()2,0D .()21,1- 【答案】AC【解析】【分析】 设点A 的坐标为(),2t t -,可得知当AP 、AQ 均为圆221x y +=的切线时,PAQ ∠取得最大值90o ,可得出四边形APOQ 为正方形,可得出2OA =,进而可求出点A 的坐标.【详解】如下图所示:原点到直线l 的距离为222111d ==+,则直线l 与圆221x y +=相切, 由图可知,当AP 、AQ 均为圆221x y +=的切线时,PAQ ∠取得最大值,连接OP 、OQ ,由于PAQ ∠的最大值为90o ,且90APO AQO ∠=∠=o ,1OP OQ ==,则四边形APOQ 为正方形,所以22OA == 由两点间的距离公式得()2222OA t t =+-=整理得22220t t -=,解得0t =2,因此,点A 的坐标为(2或)2,0. 故选:AC.【点睛】 本题考查直线与圆的位置关系的综合问题,考查利用角的最值来求点的坐标,解题时要找出直线与圆相切这一临界位置来进行分析,考查数形结合思想的应用,属于中等题.12.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点,A B 的距离之比为定值()1λλ≠的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系xOy 中,()()2,0,4,0,A B -点12PA P PB=满足.设点P 的轨迹为C ,下列结论正确的是( ) A .C 的方程为()2249x y ++=B .在x 轴上存在异于,A B 的两定点,D E ,使得12PD PE=C .当,,A B P 三点不共线时,射线PO 是APB ∠的平分线D .在C 上存在点M ,使得2||MO MA = 【答案】BC 【解析】 【分析】通过设出点P 坐标,利用12PA PB=即可得到轨迹方程,找出两点,D E 即可判断B 的正误,设出M 点坐标,利用2||MO MA =与圆的方程表达式解出就存在,解不出就不存在. 【详解】设点(),P x y ,则12PA PB=,化简整理得2280x y x ++=,即()22416x y ++=,故A错误;当()()1,0,2,0,D B -时,12PDPE =,故B 正确;对于C 选项,222cos =2AP PO AO APO AP PO+-∠⋅,222cos =2BP PO BO BPO BP PO+-∠⋅,要证PO 为角平分线,只需证明cos =cos APO BPO ∠∠,即证22222222AP PO AO BP PO BO AP PO BP PO+-+-=⋅⋅,化简整理即证2228PO AP =-,设(),P x y ,则222PO x y =+, ()()222222222282828AP x x y x x y x y x y -=++=++++=+,则证cos =cos APO BPO ∠∠,故C 正确;对于D 选项,设()00,M x y ,由2||MO MA =可得()22220000=2x y x y +++,整理得220003316+160x y x ++=,而点M 在圆上,故满足2280x y x ++=,联立解得0=2x ,0y 无实数解,于是D 错误.故答案为BC. 【点睛】本题主要考查阿氏圆的相关应用,轨迹方程的求解,意在考查学生的转化能力,计算能力,难度较大.三、填空题 13.直线与圆交于两点,则________.【答案】【解析】 【分析】首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形半弦长、弦心距和圆的半径构成直角三角形,利用勾股定理求得弦长. 【详解】根据题意,圆的方程可化为,所以圆的圆心为,且半径是,根据点到直线的距离公式可以求得,结合圆中的特殊三角形,可知,故答案为.【点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.14.已知抛物线()220y px p =>的焦点为F(4,0),过F 作直线l 交抛物线于M ,N 两点,则p=_______,49NF MF-的最小值为______. 【答案】8p =13【解析】 【分析】利用抛物线的定义可得8p =,设直线l 的方程为4x my =+,联立直线与抛物线方程消元,根据韦达定理和抛物线的的定义可得1114MF NF +=,代入到49NF MF-,再根据基本不等式求最值. 【详解】解:∵ 抛物线()220y px p =>的焦点为F(4,0),∴ 8p =,∴ 抛物线的方程为216y x =,设直线l 的方程为4x my =+,设()11,M x y ,()22,N x y ,由2164y x x my ⎧=⎨=+⎩得216640y my --=, ∴1216y y m +=,1264y y =-, 由抛物线的定义得11MF NF +121144x x =+++()()21124444x x x x +++=++()()211244888my my my my ++++=++()()122121216864m y y m y y m y y ++=+++22216166412864m m m +=-++()()22161641m m +=+14=, ∴49NF MF -11494NF NF ⎛⎫=-- ⎪ ⎪⎝⎭419NF NF =+-4?19NF NF ≥13=, 当且仅当49NF NF=即6NF =时,等号成立,故答案为:13. 【点睛】本题主要考查直线与抛物线的位置关系,考查抛物线定义的应用,属于中档题.四、解答题15.已知抛物线21:2(0)C y px p =>与椭圆222:143x y C +=有一个相同的焦点,过点(2,0)A 且与x 轴不垂直的直线l 与抛物线1C 交于P ,Q 两点,P 关于x 轴的对称点为M . (1)求抛物线1C 的方程;(2)试问直线MQ 是否过定点?若是,求出该定点的坐标;若不是,请说明理由. 【答案】(1)24y x =;(2)(2,0)-【解析】 【分析】(1)求出椭圆的焦点,容易求得抛物线的方程.(2)解法一:设直线PQ 的方程为()2y k x =-与抛物线联立,得到,P Q 横坐标关系,设直线MQ 的方程为y mx n =+与抛物线联立,得到,M Q 横坐标关系,从而得到,m n 的关系,找出定点.解法二:直线PQ 的方程为2x ty =+,与抛物线联立,得到,P Q 纵坐标关系,设直线MQ 的方程为x my n =+,与抛物线联立,得到,M Q 纵坐标关系,从而可以解出n ,得到定点.【详解】(1)由题意可知抛物线的焦点为椭圆的右焦点,坐标为()1,0,所以2p =,所以抛物线的方程为24y x =;(2)【解法一】因为点P 与点M 关于x 轴对称 所以设()11,P x y ,()22,Q x y ,()11,M x y -, 设直线PQ 的方程为()2y k x =-,代入24y x =得:()22224140k x k x k -++=,所以124x x =,设直线MQ 的方程为y mx n =+,代入24y x =得:()222240m x mn x n +-+=,所以21224n x x m==,因为10x >,20x >,所以2nm=,即2n m =, 所以直线MQ 的方程为()2y m x =+,必过定点()2,0-. 【解法二】设()11,P x y ,()22,Q x y ,()33,M x y , 因为点P 与点M 关于x 轴对称,所以31y y =-, 设直线PQ 的方程为2x ty =+,代入24y x =得:2480y ty --=,所以128y y =-,设直线MQ 的方程为x my n =+,代入24y x =得:2440y my n --=,所以234y y n =-,因为31y y =-,所以()211248y y y y n -=-=-=,即2n =-, 所以直线MQ 的方程为2x my =-,必过定点()2,0-. 【点睛】本题主要考查直线与抛物线的关系,直线过定点问题,比较综合,对计算能力要求较高,属于难题.16.如图,已知椭圆Γ:()222210x y a b a b +=>>经过点()2,0A ,离心率3e =.(Ⅰ)求椭圆Γ的方程;(Ⅱ)设点B 为椭圆与y 轴正半轴的交点,点C 为线段AB 的中点,点P 是椭圆Γ上的动点(异于椭圆顶点)且直线PA ,PB 分别交直线OC 于M ,N 两点,问OM ON ⋅是否为定值?若是,求出定值;若不是,请说明理由.【答案】(Ⅰ)2214x y +=;(Ⅱ)是定值,52【解析】 【分析】(Ⅰ)根据已知条件列方程组2222a ca abc =⎧⎪⎪=⎨⎪=+⎪⎩,求解椭圆方程;(Ⅱ)由(Ⅰ)求得点C 的坐标,并求直线OC 的方程20x y -=,设()00,P x y ,()112,M y y ,()222,N y y ,根据三点共线求1y 和2y,并表示2125OM ON y y y y ==.【详解】(Ⅰ)由题意可知:22222a ca abc =⎧⎪⎪=⎨⎪=+⎪⎩,解得21a b =⎧⎨=⎩,所以椭圆Γ的方程:2214x y +=;(Ⅱ)由已知,点C 的坐标为11,2⎛⎫⎪⎝⎭,得直线OC 的方程为20x y -=, 设()00,P x y ,()112,M y y ,()222,N y y ,因P ,A ,M 三点共线,故0110222y y y x =--,整理得0100222y y x y -=--,因P ,B ,N 三点共线,故0220112y y y x --=,整理得020022x y x y =-+, 因点P 在椭圆Γ上,故220044x y +=,从而()000012200000022222224y x x y y y x y x y x y --=⋅=---+--00220000214442x y x y x y -==+--,所以1212552OM ON y y ===为定值.【点睛】本题考查椭圆方程以及椭圆直线与椭圆位置关系的综合问题,本题所涉及直线比较多,分析问题时抓住关键求点,M N 的纵坐标并用点P 的纵坐标表示,并将OM ON 2125y y y ,这样问题迎刃而解.。

平面解析几何经典题(含答案解析)

平面解析几何经典题(含答案解析)

平面解析几何一、直线的倾斜角与斜率1、直线的倾斜角与斜率(1)倾斜角α的围000180α≤<(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线12,l l,其斜率分别为12,k k,则有1212//l l k k⇔=。

特别地,当直线12,l l的斜率都不存在时,12l l与的关系为平行。

(2)两条直线垂直如果两条直线12,l l斜率存在,设为12,k k,则12121l l k k⊥⇔=-注:两条直线12,l l垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。

如果12,l l中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l与互相垂直。

二、直线的方程1、直线方程的几种形式名称方程的形式已知条件局限性点斜式为直线上一定点,k为斜率不包括垂直于x轴的直线斜截式k为斜率,b是直线在y轴上的截距不包括垂直于x轴的直线两点式是直线上两定点不包括垂直于x轴和y轴的直线截距式a是直线在x轴上的非零截距,b是直线在y轴上的非零截距不包括垂直于x轴和y轴或过原点的直线一般式A,B,C为系数无限制,可表示任何位置的直线三、直线的交点坐标与距离公式三、直线的交点坐标与距离公式1.两条直线的交点设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。

2.几种距离(1)两点间的距离平面上的两点间的距离公式(2)点到直线的距离点到直线的距离;(3)两条平行线间的距离两条平行线间的距离注:(1)求点到直线的距离时,直线方程要化为一般式;(2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算(二)直线的斜率及应用利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x yB x yC x y若123AB ACx x x k k===或,则有A、B、C三点共线。

高考数学压轴专题人教版备战高考《平面解析几何》全集汇编含答案

高考数学压轴专题人教版备战高考《平面解析几何》全集汇编含答案

【高中数学】数学《平面解析几何》复习资料一、选择题1.设P 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点,延长1FP 至点Q ,使得2PQ PF =,则动点Q 的轨迹方程为( )A .22(x 2)y 28-+=B .22(x 2)y 7++=C .22(x 2)y 28++=D .22(x 2)y 7-+=【答案】C【解析】【分析】推导出12PF PF 2a +==2PQ PF =,从而11PFPQ FQ +==Q 的轨迹为圆,由此能求出动点Q 的轨迹方程.【详解】P Q 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点, 延长1FP 至点Q ,使得2PQ PF =,12PF PF 2a ∴+==2PQ PF =,11PF PQ FQ ∴+==, Q ∴的轨迹是以()1F 2,0-为圆心,为半径的圆,∴动点Q 的轨迹方程为22(x 2)y 28++=.故选:C .【点睛】本题考查动点的轨迹方程的求法,考查椭圆的定义、圆的标准方程等基础知识,考查运算求解能力,是中档题.2.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( ) A .12k > B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D【解析】【分析】 联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】 解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021k k k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<. 故选:D .【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.3.已知直线(3)(0)y k x k =+>与抛物线2:4C y x =相交于A ,B 两点,F 为C 的焦点.若5FA FB =,则k 等于( )A.3 B .12 C .23 D.2【答案】B【解析】【分析】由2(3)4y k x y x=+⎧⎨=⎩,得()22226490k x k x k +-+=,()22464360k k ∆=-->,得213k <,129x x =①,再利用抛物线的定义根据5FA FB =,得到1254x x =+②,从而求得21x =,代入抛物线方程得到(1,2)B ,再代入直线方程求解.【详解】设()11,A x y ,()22,B x y ,易知1 0x >,20x >,10y >,20y >,由2(3)4y k x y x=+⎧⎨=⎩,得()22226490k x k x k +-+=,()22464360k k ∆=-->, 所以213k <,129x x =①. 因为1112p FA x x =+=+,2212p FB x x =+=+,且5FA FB =,所以1254x x =+②.由①②及20x >得21x =,所以(1,2)B ,代入(3)y k x =+, 得12k =. 故选:B【点睛】 本题考查抛物线的定义,几何性质和直线与抛物线的位置关系,还考查了运算求解的能力,属于中档题.4.如图,O 是坐标原点,过(,0)E p 的直线分别交抛物线22(0)y px p =>于A 、B 两点,直线BO 与过点A 平行于x 轴的直线相交于点M ,过点M 与此抛物线相切的直线与直线x p =相交于点N .则22||ME NE -=( )A .2pB .2pC .22pD .24p【答案】C【解析】【分析】 过E (p ,0)的直线分别交抛物线y 2=2px (p >0)于A 、B 两点,不妨设直线AB 为x =p ,分别求出M ,N 的坐标,即可求出答案. 【详解】过E (p ,0)的直线分别交抛物线y 2=2px (p >0)于A 、B ,两点为任意的,不妨设直线AB 为x =p ,由2y 2px x p ⎧=⎨=⎩,解得y =2p , 则A (p 2p ),B (p 2p ),∵直线BM 的方程为y 2x ,直线AM 的方程为y =2x ,解得M (﹣p 2p ),∴|ME |2=(2p )2+2p 2=6p 2,设过点M 与此抛物线相切的直线为y 2p =k (x +p ),由()2y 2=k px x p ⎧=⎪⎨+⎪⎩,消x 整理可得ky 2﹣2py ﹣+2p 2k =0, ∴△=4p 2﹣4k (﹣+2p 2k )=0,解得k=2, ∴过点M 与此抛物线相切的直线为yp=2(x +p ),由()=2x p x p =⎧⎪⎨+⎪⎩,解得N (p ,2p ), ∴|NE |2=4p 2,∴|ME |2﹣|NE |2=6p 2﹣4p 2=2p 2,故选C .【点睛】本题考查了直线和抛物线位置关系,以及直线和直线的交点坐标问题,属于难题.5.已知1F 、2F 分别为双曲线22146x y -=的左、右焦点,M 为双曲线右支上一点且满足120MF MF ⋅=u u u u v u u u u v ,若直线2MF 与双曲线的另一个交点为N ,则1MF N ∆的面积为( ) A .12B. C .24 D.【答案】C【解析】【分析】 设1MF m =,2MF n =,根据双曲线的定义和12MFMF ⊥,可求出6m =,2n =,再设2NF t =,则14NF t =+根据勾股定理求出6t =即可求出三角形的面积.【详解】 解:设1MF m =,2MF n =, ∵1F 、2F 分别为双曲线22146x y -=的左、右焦点, ∴24m n a -==,122F F c ==∵120MF MF ⋅=u u u u v u u u u v ,∴12MF MF ⊥,∴222440m n c +==,∴()2222m n m n mn -=+-,即2401624mn =-=,∴12mn =,解得6m =,2n =, 设2NF t =,则124NF a t t =+=+,在1Rt NMF ∆中可得()()222426t t +=++,解得6t =,∴628MN =+=,∴1MF N ∆的面积111862422S MN MF =⋅=⨯⨯=. 故选C .【点睛】本题考查了双曲线的定义和向量的数量积和三角形的面积,考查了运算能力和转化能力,属于中档题.6.已知双曲线22:1124x y C -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,P Q .若POQ ∆为直角三角形,则PQ =( )A .2B .4C .6D .8 【答案】C【解析】【分析】由题意不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒,解三角形即可.【详解】不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒.则易知30POF ∠=︒,4OF =,∴23OP =POQ n 中,60POQ ∠=︒,90OPQ ∠=︒,23OP =∴36PQ OP ==.故选C【点睛】本题主要考查双曲线的性质,根据双曲线的特征设出P ,Q 位置,以及POQ V 的直角,即可结合条件求解,属于常考题型.7.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( )A .125 B .65C .2D .5 【答案】A【解析】 试题分析:根据抛物线的定义可知抛物线24y x =上的点P 到抛物线的焦点距离1PF d =,所以122d d MF d +=+,其最小值为()1,0F 到直线3490x y -+=的距离,由点到直线的距离公式可知()()122min min 125d d MF d +=+==,故选A. 考点:抛物线定义的应用.8.已知椭圆221259x y +=上一点M 到椭圆的一个焦点的距离等于4,那么点M 到另一个焦点的距离等于( )A .1B .3C .6D .10【答案】C【解析】由椭圆方程可得225210a a =∴= ,由椭圆定义可得点M 到另一焦点的距离等于6.故选C .9.已知点P 在抛物线24y x =上,那么点P 到点(2,1)Q 的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A .(1,14)B .1(,1)4-C .(1,2)D .(1,2)-【答案】A【解析】【分析】【详解】试题分析:抛物线24y x =焦点为F (1,0),准线为1x =-,作PQ 垂直于准线,垂足为M 根据抛物线定义: ,PQ PF PQ PM +=+,根据三角形两边距离之和大于第三边,直角三角形斜边大于直角边知:PQ PM +的最小值是点Q 到抛物线准线1x =-的距离;所以点P 纵坐标为1,则横坐标为14,即(1,14),故选A考点:抛物线的定义及几何性质的运用.10.已知椭圆22:195x y C +=左右焦点分别为12F F 、,直线):2l y x =+与椭圆C 交于A B 、两点(A 点在x 轴上方),若满足11AF F B λ=u u u v u u u v ,则λ的值等于( ) A.B .3 C .2 D【答案】C【解析】由条件可知,直线l 过椭圆的左焦点()12,0F -.由)222195y x x y ⎧=+⎪⎨+=⎪⎩消去y 整理得232108630x x ++=, 解得34x =-或218x =-. 设1122(,),(,)A x y B x y ,由A 点在x 轴上方可得12321,48x x =-=-. ∵11AF F Bλ=u u u v u u u v , ∴1122(2,)(2,)x y x y λ---=+,∴122(2)x x λ--=+. ∴3212()(2)48λ---=-+, 解得2λ=.选C11.椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:221169x y +=,点A 、B 是它的两个焦点,当静止的小球放在点A 处,从点A 沿直线出发,经椭圆壁反弹后,再回到点A 时,小球经过的最短路程是( ).A .20B .18C .16D .以上均有可能【答案】C【解析】【分析】根据椭圆的光学性质可知,小球从点A 沿直线出发,经椭圆壁反弹到B 点继续前行碰椭圆壁后回到A 点,所走的轨迹正好是两次椭圆上的点到两焦点距离之和,进而根据椭圆的定义可求得答案.依题意可知小球经两次椭圆壁后反弹后回到A 点,根据椭圆的性质可知所走的路程正好是4a=4×4=16故选:C .【点睛】本题主要考查了椭圆的应用.解题的关键是利用了椭圆的第一定义,是基础题.12.已知抛物线22(0)y px p =>交双曲线22221(0,0)x y a b a b -=>>的渐近线于A ,B 两点(异于坐标原点OAOB ∆的面积为32,则抛物线的焦点为( )A .(2,0)B .(4,0)C .(6,0)D .(8,0)【答案】B【解析】【分析】 由题意可得2b a=,设点A 位于第一象限,且(),A m n ,结合图形的对称性列出方程组确定p 的值即可确定焦点坐标.【详解】 2222222215c a b b e a a a +===+=,∴2b a =, 设点A 位于第一象限,且(),A m n ,结合图形的对称性可得:22322n m mn n pm ⎧=⎪⎪=⎨⎪=⎪⎩,解得:8p =,∴抛物线的焦点为()4,0,故选B .【点睛】本题主要考查圆锥曲线的对称性,双曲线的渐近线,抛物线焦点坐标的求解等知识,意在考查学生的转化能力和计算求解能力.13.已知双曲线2219x y m-=的一个焦点在直线x +y =5上,则双曲线的渐近线方程为( )A .34y x =? B .43y x =± C.3y x =± D.4y x =±【解析】根据题意,双曲线的方程为2219x y m-=,则其焦点在x 轴上, 直线5x y +=与x 轴交点的坐标为()5,0,则双曲线的焦点坐标为()5,0,则有925m +=,解可得,16m =, 则双曲线的方程为:221916x y -=, 其渐近线方程为:43y x =±, 故选B.14.倾斜角为45︒的直线与双曲线22214x y b-=交于不同的两点P 、Q ,且点P 、Q 在x 轴上的投影恰好为双曲线的两个焦点,则该双曲线的焦距为( )A .2B .2C 1D 1【答案】B【解析】【分析】方法一;由双曲线的对称性可知直线过原点,可得2Rt QOF △为等腰三角形且245QOF ∠=︒,根据勾股定理及双曲线的定义可得:1c =.方法二:等腰2Rt QOF △中,可得22b QF a=,且2b c a =.又根据222b a c =-,联立可解得1c =. 【详解】方法一;由双曲线的对称性可知直线过原点,在等腰2Rt QOF △中,245QOF ∠=︒,则122F F c =,2QF c =,1QF =. 由双曲线的定义可得:122QF QF a-=,41c c -==,,故22c =.方法二:等腰2Rt QOF △中,22b QF a=, ∴2b c a=.又222b a c =-,∴2240c c --=,得1c =.∴22c =.故选:B .【点睛】本题考查双曲线的性质,解题关键是将题目条件进行转化,建立等量关系求解,属于中等题.15.若A ,B 分别是直线20x y --=与x 轴,y 轴的交点,圆C :()()22448x y -++=上有任意一点M ,则AMB ∆的面积的最大值是( ) A .6B .8C .10D .12【答案】C【解析】【分析】 先求出AB ,再求出M 到直线的最大距离为点M 到直线20x y --=加上半径,进而可得面积最大值.【详解】由已知()2,0A ,()0,2B -则AB ==,又点M =所以最大面积为1102⨯=. 故选:C.【点睛】 本题考查圆上一点到直线的最大距离问题,是基础题.16.已知12F F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,P 为双曲线上一点,2PF 与x 轴垂直,1230PF F ∠=︒,且焦距为 )A .y =B .y =C .2y x =±D .3y x =± 【答案】B【解析】【分析】先求出c 的值,再求出点P 的坐标,可得22b PF a =,再由已知求得1PF ,然后根据双曲线的定义可得b a 的值,则答案可求. 【详解】 解:由题意,223c =,解得3c =,∵()2,0F c ,设(),P c y ,∴22221x y a b-=,解得2b y a =±, ∴22b PF a=, ∵1230PF F ∠=︒,∴21222b PF PF a==, 由双曲线定义可得:2122b PF PF a a-==, 则222a b =,即2b a=. ∴双曲线的渐近线方程为2y x =±.故选:B .【点睛】本题考查双曲线渐近线方程的求解,难度一般.求解双曲线的渐近线方程,可通过找到,,a b c 中任意两个量的倍数关系进行求解.17.已知点1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,1e ,2e 分别是1C 和2C 的离心率,点P 为1C 和2C 的一个公共点,且1223F PF π∠=,若22e =,则1e 的值是( )ABC.7 D【答案】D【解析】【分析】利用椭圆和双曲线的定义以及余弦定理可得到方程2221243c a a =+,由此得到关于离心率的方程求得结果.【详解】设椭圆长半轴长为1a ,双曲线实半轴长为2a ,焦点坐标为()1,0F c -,()2,0F c , 不妨设P 为第一象限内的点,则1212+=PF PF a ,1222-=PF PF a , 则221212PF PF a a =-, 由余弦定理得:2222212121212242cos3c PF PF PF PF PF PF PF PF π=+-=++, ()22222211212443c a a a a a ∴=--=+,2212314e e ∴+=,又22e =,2145e ∴=,15e ∴=. 故选:D .【点睛】本题考查共焦点的椭圆与双曲线问题的求解,关键是能够熟练应用椭圆和双曲线的定义,利用余弦定理构造等量关系,配凑出关于椭圆和双曲线离心率的方程.18.过坐标轴上的点M 且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为M 的个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】设出直线方程,根据弦长公式,转化为圆心到直线的距离建立等量关系求解.【详解】由直线的斜率为tan 60k ︒==y b =+.圆2240x y y +-=可化为22(2)4x y +-=,圆心为(0,2),半径为2r =,则由弦长公式得: 圆心(0,2)到直线y b =+的距离为1d ===,即|2|12b -+=,解得0b =,4b =,故直线的方程为y =或4y =+.直线y =过坐标轴上的点(0,0),直线4y =+过坐标轴上的点()0,4与⎛⎫ ⎪ ⎪⎝⎭,故点M 的个数为3.故选:C.【点睛】此题考查直线与圆的位置关系,根据弦长公式将弦长问题转化为圆心到直线的距离求解.19.已知双曲线()2222100x y C a b a b-=:>,>的一条渐近线与圆22(4x y +-=相交于A ,B 两点,若|AB |=2,则C 的离心率为( )A B C .2 D .4【答案】C【解析】【分析】求出双曲线的渐近线方程,圆的圆心与半径,利用距离公式得到a 、b 关系式,然后求解离心率即可.【详解】由题意可知不妨设双曲线的一条渐近线方程为:bx +ay =0,圆22(4x y +-=的圆心为(0,,半径为2,由题意及|AB |=2,可得22212+=,222123a a b=+,即b 2=3a 2,可得c 2﹣a 2=3a 2,即224c a = 所以e c a==2. 故选:C .【点睛】 本题主要考查求双曲线离心率的问题,此类问题的解题关键是建立,,a b c 的方程或不等关系,考查学生的运算求解能力,是一道中档题.20.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP →→g 的最大值为( )A .4B .5C .6D .7【答案】C【解析】【分析】 设(),P x y ,由数量积的运算及点P 在椭圆上,可把OP FP ⋅u u u r u u u r 表示成为x 的二次函数,根据二次函数性质可求出其最大值.【详解】设(),P x y ,()()1,0,0,0F O -,则()(),,+1,OP x y FP x y ==u u u r u u u r ,则22OP FP x x y ⋅=++u u u r u u u r ,因为点P 为椭圆上,所以有:22143x y +=即22334y x =-, 所以()222223132244x x y x x x FP x OP =++=⋅++-=++u u u r u u u r 又因为22x -≤≤,所以当2x =时,OP FP ⋅u u u r u u u r 的最大值为6故选:C【点睛】本题考查了数量积的坐标运算,求二次函数的最大值,属于一般题.。

平面解析几何初步复习题参考答案

平面解析几何初步复习题参考答案

平面解析几何初步复习题参考答案1.解析:a -2+-2=5,∴a =4或-2.答案:D2.解析:|AB |2=(5-a -1)2+(2a -1-a +4)2=2a 2-2a +25=2(a -12)2+492,所以当a =12时,|AB |取得最小值.答案:123.∵平行四边形的对角线互相平分,∴平行四边形对角线的中点坐标相同.设C 点坐标为C (x ,y ),则⎩⎪⎨⎪⎧0+x 2=2+12=32,0+y 2=0+32=32,∴⎩⎪⎨⎪⎧x =3,y =3,即C (3,3).4. 解析:因为直线AB 的倾斜角为90°,所以直线的斜率不存在,即a =3.又因为A ,B 两点确定一条直线,两点不重合,所以b +1≠2,即b ≠1.答案:D5. 解析:∵直线l 的倾斜角为锐角,∴斜率k =m 2-11-2>0,∴-1<m <1.答案:C6.解析:由斜率公式得k AB =1-11--=0,k BC =3+1-12-1=3,k AC =3+1-12--=33.如图,当斜率k 变化时,直线CD 绕C 点旋转.当直线CD 由CA 逆时针转到CB 时,直线CD 与AB 恒有交点,即D 在线段AB 上,此时k 由k CA 增大到k CB ,∴k 的取值范围为⎣⎢⎡⎦⎥⎤33,3. 7.解:y +1x +1=y --x --的几何意义是过M (x ,y ),N (-1,-1)两点的直线的斜率.∵点M 在函数y =-2x +8的图象上,且x ∈[2,5], ∴设该线段为AB ,且A (2,4),B (5,-2). ∵k NA =53,k NB =-16,∴-16≤y +1x +1≤53.∴y +1x +1的取值范围为[-16,53]. 8.解:设点A (x,0),点B (0,y ),由AB 的中点为P (4,1),可得点A (8,0),点B (0,2).由直线方程的两点式可得y -02-0=x -80-8,整理可得x +4y -8=0.也可利用截距式得x 8+y2=1,即x+4y -8=0.9.解析:考虑到直线的点斜式方程、斜截式方程、截距式方程的适用条件,可知A ,C ,D 都不正确;当直线的两点式方程y -y 1y 2-y 1=x -x 1x 2-x 1化为(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1)时,它就可以表示过任意不同两点P 1(x 1,y 1),P 2(x 2,y 2)的所有直线,故B 正确.10.解析:由题意可知直线的斜率存在,方程可变为y =-ab x -c b ,由题意结合图形有-a b<0,-c b>0⇒ab >0且bc <0.答案:A11.解析:若k 1=k 2,则这两条直线平行或重合,所以①错;当两条直线垂直于x 轴时,两条直线平行,但斜率不存在,所以②错;若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,这两条直线相交,所以③正确;④正确.答案:B12.解析:直线l 与y 轴垂直,则直线l 的斜率为0,直线l 的方程可化为y =-a 2+4a +3a 2+a -6x+8a 2+a -6,所以a 2+4a +3=0,解得a =-1或a =-3.由a 2+a -6≠0,解得a ≠2且a ≠-3,综上可得a =-1.答案:D13.解析:由题意,设直线l 的斜率为k ,则k ²k AB =-1,且直线l 过AB 的中点(1,6).又k AB =7-5-2-4=-13,则k =3,所以直线l 的方程为y -6=3(x -1),即3x -y +3=0.答案:3x -y +3=014. 解:设点A ,C 的坐标分别为A (x 1,y 1)、C (x 2,y 2).∵AB ⊥CE ,k CE =-23,∴k AB =-1k EC =32.∴直线AB 的方程为3x -2y -1=0.由⎩⎪⎨⎪⎧3x 1-2y 1-1=0,2x 1-3y 1+1=0,得A (1,1).∵D 是BC 的中点,∴D (x 2+32,y 2+42).而点C 在直线CE 上,点D 在直线AD 上, ∴⎩⎪⎨⎪⎧2x 2+3y 2-16=0,2²x 2+32-3²y 2+42+1=0.∴C (5,2).|AC |=-2+-2= 17.15.∵A ,B 两点纵坐标不相等,∴AB 与x 轴不平行.∵AB ⊥CD , ∴CD 与x 轴不垂直,-m ≠3,m ≠-3.①当AB 与x 轴垂直时,-m -3=-2m -4,解得m =-1,而m =-1时,点C ,D 纵坐标均为-1,∴CD ∥x 轴,此时AB ⊥CD ,满足题意.②当AB 与x 轴不垂直时,由斜率公式得k AB =4-2-2m -4--m -=2-+,k CD =3m +2-m3--=+m +3.∵AB ⊥CD ,∴k AB ²k CD =-1, 即2-+²+m +3=-1,解得m =1.综上,m 的值为1或-1.16.解:由直线l 与直线y =43x +53垂直,可设直线l 的方程为y =-34x +b .直线l 在x 轴,y 轴上的截距分别为x 0=43b ,y 0=b .又因为直线l 与两坐标轴围成的三角形的面积为24, 所以S =12|x 0||y 0|=24,即12|43b ||b |=24,b 2=36,解得b =6,或b =-6. 故所求直线的方程为y =-34x +6,或y =-34x -6.17.解析:由已知,分析得两直线的交点在x -ay =0上.由⎩⎪⎨⎪⎧x -2y +3=0,2x -y +3=0,得⎩⎪⎨⎪⎧x =-1,y =1,代入x -ay =0,得-1-a =0,即a =-1.18.解析:由平面几何知识易知所求直线与已知直线2x +3y -6=0平行,则可设所求直线方程为2x +3y +C =0.在直线2x +3y -6=0上任取一点(3,0),其关于点(1,-1)的对称点为(-1,-2), 则点(-1,-2)必在所求直线上, ∴2³(-1)+3³(-2)+C =0,C =8. ∴所求直线方程为2x +3y +8=0. 答案:D19.法一:设直线的方程为y -1=k (x +2),即kx -y +2k +1=0.由|-k -2+2k +1|k 2+1=|3k +2k +1|k 2+1,解得k =0,或k =-12.故直线的方程为y =1,或x +2y =0.当直线的斜率不存在时,不存在符合题意的直线l .法二:当l ∥AB 或l 过AB 中点时,满足点A ,B 到l 的距离相等. 若l ∥AB ,由于k AB =-12,则直线l 的方程为x +2y =0. 若l 过AB 的中点N (1,1), 则直线l 的方程为y =1.故直线l 的方程为y =1,或x +2y =0.20. 解:若直线l 的斜率不存在,则l 的方程为x =0,点(1,-3)到l 的距离为1,不满足题意,从而可知直线l 的斜率一定存在,设为k ,则其方程为y =kx -1.由点到直线的距离公式,得|k +3-1|1+k 2=322,解得k =1或k =17.所以直线l 的方程为y =x -1或y =17x -1, 21. 法一:设所求直线的方程为 5x -12y +C =0.在直线5x -12y +6=0上取一点P 0(0,12),则点P 0到直线5x -12y +C =0的距离为|-12³12+C |52+-2=|C -6|13. 由题意,得|C -6|13=2,所以C =32,或C =-20.故所求直线的方程为5x -12y +32=0,或5x -12y -20=0. 法二:设所求直线的方程为5x -12y +C =0, 由两平行直线间的距离公式得2=|C -6|52+-2,解得C =32,或C =-20.故所求直线的方程为5x -12y +32=0,或5x -12y -20=0.22.设点C (x 0,y 0),∵点C 在直线3x -y +3=0上,∴y 0=3x 0+3.∵A (3,2),B (-1,5),∴|AB |=-2+-1-2=5.设C 到AB 的距离为d ,则12d ²|AB |=10,∴d =4.又直线AB 的方程为y -25-2=x -3-1-3,即3x +4y -17=0,∴d =|3x 0+x 0+-17|32+42=|15x 0-5|5=|3x 0-1|=4.∴3x 0-1=±4,解得x 0=-1或53.当x 0=-1时,y 0=0;当x 0=53时,y 0=8.∴C 点坐标为(-1,0)或(53,8).23.解析:a -2+b -2即为(a ,b )到(1,1)的距离,距离最小时即为点(1,1)到直线x +y +1=0的距离,此时d =|1+1+1|12+12=322. 24解析:当AB 最短时,AB 与直线x +y =0垂直.又A (0,1),∴AB :x -y +1=0.联立x +y =0,解得⎩⎪⎨⎪⎧x =-12,y =12,故点B 的坐标为(-12,12).25.解析:由已知可知,l 是过A 且与AB 垂直的直线.∵k AB =2-4-3-3=13,∴k l =-3.由点斜式得y -4=-3(x -3),即3x +y -13=0.答案:C 26.解析:点M 一定在直线x +y -7+52=0,即x +y -6=0上,所以M 到原点距离的最小值为|-6|2=3 2.答案:A27.解析:设点(x ,y )与圆C 1的圆心(-1,1)关于直线x -y -1=0对称,则⎩⎪⎨⎪⎧y -1x +1=-1,x -12-y +12-1=0,解得⎩⎪⎨⎪⎧x =2,y =-2,从而可知圆C 2的圆心坐标为(2,-2).又知其半径为1,故所求圆C 2的方程为(x -2)2+(y +2)2=1.答案:B 28.法一:设圆的标准方程为(x -a )2+(y -b )2=r 2,则⎩⎪⎨⎪⎧2a -b -3=0,-a 2+-b 2=r 2,-a 2+-2-b 2=r 2⇒⎩⎨⎧a=2,b =1,r =10.所以圆的标准方程为(x -2)2+(y -1)2=10.法二:因为圆过A ,B 两点,所以圆心一定在AB 的垂直平分线上,线段AB 的垂直平分线方程为y =-12(x -4),则⎩⎪⎨⎪⎧y =-12x -,2x -y -3=0⇒⎩⎪⎨⎪⎧x =2,y =1,即圆心为(2,1),r =-2+-2=10.所以圆的标准方程为(x -2)2+(y -1)2=10.29.解析:方程可化为 (x -1)2+y 2=-2k -2,只有-2k -2>0,即k <-1时才能表示圆. 答案:A30.解析:直线AB 的方程为x -y +2=0,圆心到直线AB 的距离为d =│1-0+2│2=322.所以,C 到直线AB 的最小距离为322-1,S △ABC 的最小值为12³│AB │³(322-1)=12³22³(322-1)=3- 2. 答案:A31.解:设动点P 的坐标为(x ,y ),根据题意可知AP ⊥OP .当AP 垂直于x 轴时,P 的坐标为(1,0).当x =0时,y =0.当x ≠1且x ≠0时,k AP ²k OP =-1.∵k AP =y -2x -1,k OP =yx, ∴y -2x -1³yx=-1, 即x 2+y 2-x -2y =0(x ≠0,且x ≠1).点(1,0),(0,0)适合上式.综上所述,P 点的轨迹是以(12,1)为圆心,以52为半径的圆.32.解析:由题意知,直线mx -y +1-m =0过定点(1,1).又因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆C 是相交的.答案:A33.解析:当该点是过圆心向直线所引的垂线的垂足时,切线长最小.因圆心(3,0)到直线的距离为d =|3+1|2=22,所以切线长的最小值是l =22-1=7.答案:C34.解:设圆的方程为(x -a )2+(y -b )2=r 2.由已知可知,直线x +2y =0过圆心,则a +2b =0,① 又点A 在圆上,故(2-a )2+(3-b )2=r 2,② ∵直线x -y +1=0与圆相交所得弦长为2 2. ∴(2)2+(a -b +112+-2)2=r 2.③解由①②③所组成的方程组得 ⎩⎪⎨⎪⎧a =6,b =-3,r 2=52或⎩⎪⎨⎪⎧a =14,b =-7,r 2=244.故所求方程为(x -6)2+(y +3)2=52或(x -14)2+(y +7)2=244.35.解析:x 2+y 2=50与x 2+y 2-12x -6y +40=0作差,得两圆公共弦所在的直线方程为2x +y -15=0.圆x 2+y 2=50的圆心(0,0)到2x +y -15=0的距离d =35,因此公共弦长为222-52=2 5.答案:C36.解析:圆C 1:x 2+y 2-8x -4y +11=0,即(x -4)2+(y -2)2=9,圆心为C 1(4,2);圆C 2:x 2+y 2+4x +2y +1=0,即(x +2)2+(y +1)2=4,圆心为C 2(-2,-1).两圆相离,|PQ |的最小值为|C 1C 2|-(r 1+r 2)=35-5.答案:C37.解析:由已知,两个圆的方程作差可以得到公共弦所在的直线方程为y =1a.圆心(0,0)到直线的距离d =⎪⎪⎪⎪⎪⎪1a 1= 22-32=1,解得a =1.答案:138.解析:圆与x 轴,y 轴正半轴的交点为A (1,0),B (0,5),则可知kMA =0,k MB=0-5-1=5,则k ∈(0,5).答案:(0,5)39.解:公共弦所在直线的斜率为23,已知圆的圆心坐标为(0,72),故两圆圆心所在直线的方程为y -72=-32x ,即3x +2y -7=0.设所求圆的方程为x 2+y 2+Dx +Ey +F =0,由⎩⎪⎨⎪⎧-2+32-2D +3E +F =0,12+42+D +4E +F =0,-D 2+-E 2-7=0,解得⎩⎪⎨⎪⎧D =2,E =-10,F =21.所以所求圆的方程为x 2+y 2+2x -10y +21=0.40.解析:点P (3,4,5)与Q (3,-4,-5)两点的x 坐标相同,而y ,z 坐标互为相反数,所以两点关于x 轴对称.答案:A41.解:(1)∵平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF =AB ,AB ⊥BE ,∴BE ⊥平面ABCD .∴AB ,BC ,BE 两两垂直.∴以B 为原点,以BA ,BE ,BC 所在的直线分别作为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系.则M (22a,0,1-22a ),N (22a ,22a,0). 由空间两点间的距离公式, 得|MN |=22a -22a 2+-22a 2+-22a -2= a 2-2a +1=a -222+12. (2)∵|MN |= a -222+12, ∴a =22时,|MN |min =22.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年新高考数学总复习第九章《平面解析几何》
复习试卷及答案解析
一、选择题
1.已知椭圆C :16x 2+4y 2=1,则下列结论正确的是( )
A .长轴长为12
B .焦距为34
C .短轴长为14
D .离心率为
32 答案 D
解析 由椭圆方程16x 2+4y 2=1化为标准方程可得
x 2116+y 214
=1,所以a =12,b =14,c =34
, 长轴2a =1,焦距2c =32,短轴2b =12, 离心率e =c a =32
.故选D. 2.双曲线x 23-y 2
9
=1的渐近线方程是( ) A .y =±3x
B .y =±13x
C .y =±3x
D .y =±33
x 答案 C
解析 因为x 23-y 2
9
=1, 所以a =3,b =3,渐近线方程为y =±b a
x , 即为y =±3x ,故选C.
3.已知双曲线my 2-x 2=1(m ∈R )与抛物线x 2=8y 有相同的焦点,则该双曲线的渐近线方程为( )
A .y =±3x
B .y =±3x
C .y =±13
x D .y =±33x 答案 A
解析 ∵抛物线x 2=8y 的焦点为(0,2),
∴双曲线的一个焦点为(0,2),∴1m +1=4,∴m =13
, ∴双曲线的渐近线方程为y =±3x ,故选A.
4.(2019·河北衡水中学模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)和直线l :x 4+y 3
=1,若过C 的左焦点和下顶点的直线与l 平行,则椭圆C 的离心率为( )
A.45
B.35
C.34
D.15
答案 A
解析 直线l 的斜率为-34,过C 的左焦点和下顶点的直线与l 平行,所以b c =34
, 又b 2+c 2=a 2⇒⎝⎛⎭⎫34c 2+c 2=a 2⇒2516c 2=a 2,
所以e =c a =45
,故选A. 5.(2019·洛阳、许昌质检)若双曲线x 2-y 2
b 2=1(b >0)的一条渐近线与圆x 2+(y -2)2=1至多有一个交点,则双曲线离心率的取值范围是( )
A .(1,2]
B .[2,+∞)
C .(1,3]
D .[3,+∞) 答案 A
解析 双曲线x 2-y 2
b 2=1(b >0)的一条渐近线方程是bx -y =0,由题意圆x 2+(y -2)2=1的圆心(0,2)到bx -y =0的距离不小于1,即
2b 2+1≥1,则b 2≤3,那么离心率e ∈(1,2],故选A. 6.(2019·河北武邑中学调研)已知直线l :y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点,若|F A |=2|FB |,则k 等于( )
A.13
B.23
C.23
D.223
答案 D
解析 由⎩⎪⎨⎪⎧
y =k (x +2),y 2=8x ,消去y 得 k 2x 2+(4k 2-8)x +4k 2=0,
Δ=(4k 2-8)2-16k 4>0,又k >0,解得0<k <1,
设A (x 1,y 1),B (x 2,y 2),x 1+x 2=8k
2-4, ① x 1x 2=4, ②。

相关文档
最新文档