职高数学平面解析几何练习
平面解析几何职高专题
选择题在平面直角坐标系中,点P(3, -2)关于x轴对称的点Q的坐标是()。
A. (-3, 2)B. (3, 2)C. (-3, -2)D. (2, -3)直线y = 2x + 3与x轴的交点坐标为()。
A. (-3/2, 0)B. (0, 3)C. (-3, 0)D. (3/2, 0)若直线l的斜率为-1,且过点(1, 2),则直线l的方程是()。
A. y = -x + 3B. y = -x - 1C. y = x + 1D. y = x - 3圆x² + y² = 9与直线y = 2x的交点个数为()。
A. 0B. 1C. 2D. 无法确定两点A(1, 2)和B(4, 5)之间的距离是()。
A. √10B. 3√2C. 5D. √26填空题若点A(-2, y)在直线y = 3x + 1上,则y = _______。
直线y = mx + b与直线y = 2x平行,且过点(1, 3),则m = _______,b = _______。
圆(x - 2)² + (y + 3)² = 4的圆心坐标是_______。
在平面直角坐标系中,点P到x轴的距离为4,到y轴的距离为3,且点P在第三象限,则点P的坐标是_______。
已知两直线l₁: y = 2x + 1 和l₁: y = kx - 3 互相垂直,则k = _______。
简答题求直线y = 2x - 4与坐标轴围成的三角形的面积。
已知两点A(1, 2)和B(3, 4),求线段AB的中点坐标。
已知圆的方程为x² + y² - 6x - 8y + 21 = 0,求该圆的圆心和半径。
证明:两条平行线分别被第三条直线所截,所得的对应线段成比例。
已知直线l过点P(1, 2)且与直线y = -x + 3垂直,求直线l的方程。
2020版高职高考数学总复习课件:第八章 平面解析几何(A)章练习
A.-3
B.0
C.3
D.-2
9.如果双曲线的实半轴长是2,焦距是6,那么该双曲线的离心率
为 (C)
A. 3 B. 6 C. 3 D.2
2
2
2
10.椭圆 x2 y2 1的焦距为2,则m的值等于
(B )
m4
A.6
B.3或5
C.6或5
D.8
11.若双曲线
x a
2 2
y2 5
1与椭圆 x2 y2 25 16
C.相离
(C ) D.不能判断
7.中心在原点以坐标轴为对称轴,离心率为
1 3
,长轴为6的椭圆方程
是 (B)
x2 A.
y2
1
98
x2 B.
y2
1或
x2
y2
1
98
89
C. x2 y2 1 36 32
D. x2 y2 1或 x2 y2 1 36 32 32 36
8.直线y=x+b经过圆x2+y2+4x-2y-4=0的圆心,则b= ( C )
解
:由23xx
2y 3y
1 5
0 0
得交点为(1,1)
又直线6x 2 y 5 0,
斜率为3,
所求直线的斜率为 1 3
由点斜式得所求直线方程为y 1 1 (x 1)即x 3y 2 0 3
22.已知椭圆的离心率e= 4 ,一条准线的方程是y= 25 ,求此椭圆的
标准方程.
5
(2)设直线l交抛物线于A(x1, y1), B(x2 , y2 )
2x
y2 y2 4x
0
得x2
3x
1
0
x1 x2 3, x1x2 1 Q (x1 x2 )2 (x1 x2 )2 4x1x2 5, ( y1 y2 )2 [2(x1 x2 )]2 20
中职教育数学《平面解析几何-复习课》练习题
第八章 平面解析几何(知识点)1. 直线:(1) 倾斜角α:一条直线l 向上的方向与x 轴的正方向所成的最小正角叫这条直线的倾斜角。
其范围是),0[π(2) 斜率:①倾斜角为090的直线没有斜率;②αtan =k(倾斜角的正切)③经过两点),(),,(222111y x P y x P 的直线的斜率1212x x y y K --= )(21x x ≠(3) 直线的方程①两点式:121121x x x x y y y y --=-- ② 截距式 1=+b y a x③ 斜截式:b kx y += ④点斜式:)(00x x k y y -=- ⑤一般式:0=++C By Ax注:1.若直线l 方程为3x+4y+5=0,则与l 平行的直线可设为3x+4y+C=0;与l 垂直的直线可设为4X-3Y+C=0 2.求直线的方程最后要化成一般式。
(4) 两条直线的位置关系①点),(00y x P 到直线0=++C By Ax 的距离:2200||B A C By Ax d +++=②0:1=++C By Ax l 与0:2=++C By Ax l 平行2221||BA C C d ++=2. 圆的方程(1) 标准方程:222)()(r b y a x =-+-(0>r)其中圆心),(b a ,半径r 。
(2) 一般方程:022=++++F Ey Dx y x (0422>-+F E D )圆心(2,2E D --) 半径:2422F EDr -+=(4)直线和圆的位置关系:主要用几何法,利用圆心到直线的距离d 和半径r 比较。
相交⇔<r d ; 相切⇔=r d ; 相离⇔>r d3. 二次曲线:定义一:平面内到一个定点和一条定直线的距离的比等于定长e 的点的集合,①当0<e<1时,是椭圆.②当e>1时,是双曲线.③当e=1时,是抛物线. 4. 椭圆注:等轴双曲线:(1)b a =(2)离心率2=e (3)渐近线x y ±=6. 抛物线(如右图示) 注:(1)p 的几何意义表示焦点到准线的距离。
中职数学解析几何部分重要题型练习
数学试题解析几何解答题2x 1.已知椭圆4v2r1,过椭圆的左焦点且平行于向量v 1 ,1的直线交椭圆于A ,B两点, 3求弦AB的长.2.设直线y x2x 22与双曲线y21交于A , B两点,求弦AB的长.23.已知抛物线y 2px p 0的焦点为F,过焦点F的弦AB的长为4p,求直线AB的斜率.24.已知抛物线y 2px p 0与直线y x 1相交于A ,B两点,若AB的中点在圆x2 y25上,求抛物线的方程.2uuu uuu 5.已知过抛物线y 2x的焦点且倾斜角为45的直线交抛物线于A ,B两点,求OAgOB .2 27.已知双曲线—工1上一点P到它的一个焦点F i的距离为15,求点P到另16 9圆,求实数k的取值范围.距离.2 26.求椭圆和1上的点到直线l:x y 7 0的最长距离和最短距离.2X若方程一k 91表示双曲线,求实数k的取值范围;若该方程表示焦点在y轴上的椭个焦点F2的59.在抛物线 y 12x 上求一点P ,使该点P 到焦点的距离等于 9.2 2x V10.若点P 是椭圆 1上的一点,F 1和F 2是焦点,且 F 1PF 2 60,求 FfF 2的面25 16积.11.已知双曲线的中心在原点,焦点F,和F 2在坐标轴上,离心率为,2,且双曲线过点2, 2 ,( 1)求双曲线的方程;(2)若点 M 在第一象限而且是渐近线上的点,又MF 1 MF 2,求点M 的坐标;(3)求 MhF 2的面积.2 212.已知双曲线与椭圆—也 9 251有公共焦点F 1和F 2,它们的离心率之和为14上,(1)求双曲线的标准方程;(2)设点P 是椭圆与双曲线的一个交点,求cos F 1PF 2的值.数学试题解析几何解答题(答案) 23.已知抛物线y 2px p 0的焦点为F ,过焦点F的弦AB的长为4 p,求直线AB的斜2x 1.已知椭圆4 2 y3 1,过椭圆的左焦点且平行于向量 1 ,1的直线交椭圆于A ,B两点,率.解:设A, B两点的坐标为x1 , y1, x2, y2因为AB 4p,由抛物线的定义可得,所以x1x23p4,b23,c21,所以c 1由y22px p 0可得,抛物线的焦点F的坐标为所以左焦点坐标为1,01 X1所以直线AB的方程为设A,B两点的坐标为X1,y1由题意列方程组,得3x24y y X 1所以X18X2 7,1gX287 22X1X2X1X24x1x222288 *y2X1X249所以AB讨X1X22y1得,yX2126449因此所求弦22 y2求弦AB的长.2解:由方程—42 y32a0 0,即y设直线AB的斜率为k,则其方程为y2.设直线y,y20,整理得32 2887 492887x2 8x 8 0 由题意列方程组,得所以x-i x2因此所求直线4.已知抛物线242pxpk,整理得kx -2pk2kAB的斜率为1或1.2p223p,整理得k2y 2px p 0与直线yx2 y25上,求抛物线的方程.k2x2pk22p2| 2p k423k,解得k1相交于A , B两点,若AB的中点在圆24AB的长为一.7解:设A, B两点的坐标为x1 , y1, x2, y2则其中点的坐标为x22x 2与双曲线xr y 1交于A,B两点,求弦AB的长.X1 X22由题意,列方程组,解:由题意列方程组, 即x2 8x 10 8x 10X2所以2pX,整理得x 1 x2 2 2p x 1 0所以X1X28, X1gX210X X22X2X24x1x26440 24*y22X12X224所以AB V X12X2y2y2』24 2 朋2 2得x 2y 2 0,整理得x2y x 20,设A,B两点的坐标为x1 , y1,因此所求弦AB的长为4 3 .y1所以X2 2px1 1 x21 x-1y2AB的中点坐标为p 1因为该中点在圆x2解得p 1或p 2x2 2 2p2y 5上,所以 2小p 2pp2 5(不合题意,舍去),所以所求抛物线的方程为y2 2 px2 uuu uuu5.已知过抛物线 y 2x 的焦点且倾斜角为 45的直线交抛物线于 A ,B 两点,求OAgOB . 解:由 y 2x 得 2p 2 , -12 2 1所以抛物线的焦点坐标为 1,02又直线的倾斜角为45,所以斜率为1,因此直线AB1的方程为y x —2设A,B 两点的坐标为x 1,1 - X 2 ,22y 2xA由题意列方程组,得〔,整理得x 2 3x1 0 y x -42所以 x 1 x 2 3, x ,gx 21 41 111 1yey ? x ! - x 22“22 X 1 X 242uur urn所以 OAgOB 为,y g x 2,y 2 NX 2 y 1y 2 3 1 22 26. 求椭圆一1上的点到直线l : x y 7 0的最长距离和最短距离.916解:1作直线l :x y 7 0的平行线并与椭圆相切, 则所作平行线方程可设为 x y D 0由题意列方程组,得16x 2 9y 2 144 0 整理得 25x 2 18Dx 9D 2144 0x y D 0因为所作直线x y D 0与椭圆相切,所以 =324D 24 25 9D 2 144解得D 2 25 ,D527.已知双曲线—-16 < 291上一点P 到它的一个焦点 F 1的距离为15,求点P 到另一个焦点F 2的距离.2 2解:由双曲线方程—y 21,得 a 16 ,a 4,2a816 9根据双曲线的定义可知,PF 1 | PF 2 8所以PF 28PF18 15PF 2 23或 PF 27因此所求点P 到另一个焦点F 2的距离为23或7.2 28.若方程 xy1表示双曲线,求实数k 的取值范围;k 94 k若该方程表示焦点在 y 轴上的椭圆,求实数k 的取值范围.解: (1) 若方程表示双曲线,则须满足条件k-9 4 k解得4 k 9.k 9 0(2) 若方程表示焦点在 y 轴上的椭圆, 则须满足条件4 k 0k 94 kk 9解得k 4,即k 9.k R9.在抛物线 y 12x 上求一点P ,使该点P 到焦点的距离等于 9.解:设点 P 坐标为 x , y ,由 y 2 12x ,得 2 p 12 , p 6,-P 32因为P 到焦点的距离为9,则由抛物线的定义可知 P 到准线的距离也为 9 所以9 — x 3 x, x 6,把x 6代入方程y 12x ,解得y 6、22所以所求点P 的坐标为 6,6'- 2或6 - 2 .所以所作直线方程x y 5 0或x y 5因此所求最长距离为 6 2,最短距离为 2 .72 210.若点P 是椭圆 — — 1上的一点,F i 和F 2是焦点,且F 1PF 2 60,求 FfF 2的面25 16积. 2 2 解:由椭圆方程-y 1 得:a 2 25 ,b 2 16 c 2 25 16 9,2c 625 16 由椭圆的定义可知|PF 1 PF 2 2a 10 JF 1F 2I 2c 6 UU LU MF 1uuuu MF 2,可得MR uuuu2 x , x ,MF 2所以 2 x 2 xF 1F2所以S2c 4UULLT UUJU ULUUrMF 2 即 MF 1gMF 2 0x 2 0,解得x 2 2 ,x 2,所以点M 的坐标为,2,22 F 1F 2 2PF 1 2PF2 PF 1 P 2平2在 PF 1F 2中,由余弦定理,得 2 PF 」]PF 2 cos602 PF 1 | PF 2|PF ^ PF 2MF 1F 2F 1F 2 近2门.12.已知双曲线与椭圆2 2£ y 9251有公共焦点F 1和F 2,它们的离心率之和为 145 (1)求双曲所以 36 100 3PF 1 PF 2,解得 PF j|PF 264 3 线的标准方程;(2)设点P 是椭圆与双曲线的一个交点,求cos F 1PF 2的值.所以S PRF 2 1 P F JI PF 2 sin602 1 64 16、.3 2 3 2 3 11.已知双曲线的中心在原点,焦点 F 1和F 2在坐标轴上,离心率为 、2,且双曲线过点 2, 2 ,(1)求双曲线的方程; (2)若点 M 在第一象限而且是渐近线上的点,又 解:(1)由椭圆方程xy1得,c 225 9 16 ,c 4925由椭圆方程容易求得椭圆的离心率为 4-,所以双 良曲线的离心率为14 上2,5554由此可求得双曲线中2, a22,所以b2 2c a 16 412,焦点为在y 轴,2 2MF 1 MF 2,求点M 的坐标;(3)求 MF^?的面积. 解:(1)由双曲线离心率为 ,2可知所求双曲线为等轴双曲线, 设其方程为x 2 y 2 a 2或y 2 x 2 a 2,因为双曲线经过点 2, 2 , 所以4 2 a 2或2 4 a 2,可得a 2 2或a 2 2 (不合题意舍去) 因此所求双曲线方程为 x 2 y 2 2 . (2)由题意双曲线的渐近线方程为 y x 因为点M 在第一象限而且是渐近线上的点,所以可设其坐标为 x , x x 022所以双曲线的方程为y —1.412(2)设| PF 」|PF 』PF 1 PF 210 根据双曲线和椭圆的定义可得:PF 1 PF 24解得 PF 1 7 , PF 2 3,又 F 1F 2 2c 8所以 cos F 1PF 2PF 『|PF 2『|吋222 2 272 32 82 1 2|PF 1|PF 22 7 37由双曲线方程x 2y 22,得c 22 2 4 ,c 21因此所求值为 一.所以两焦点坐标为2 ,0, 2,07。
高职单招数学复习第八章-平面解析几何
更为广泛,它可以使定性的问题直观化.在解题时要注意这一点.
【同步训练】
一、选择题
1.下列各点中,不在直线2x-y+3=0上的点是(
A.(-1,1)
B.(-2,-1)
C.(-5,-7)
【答案】D
)
D.(-3,3)
2.直线3x-2y+6=0不经过
(-2,0),则 k=
(
)
A.-3
B.3
C.-
D.
【答案】A
6.若直线 l 过点( ,-3),且倾斜角为 30° ,则直线 l 的方程为 (
A.y= x-4
B.y= x+2
C.y= x-6
D.y= x+4
【答案】A
)
3
7.过点(2,3)且斜率为 的直线方程是
(
4
.
x2 x1
2.直线的方程
(1)直线方程一览表
名称
已知条件
直线l上一点P(x0,y0)
点斜式
斜率k
斜截式
直线的斜率k
直线在y轴上的截距b
直线在x轴上的截距a
截距式
直线在y轴上的截距b
一般式
直线方程
说明
y-y0=k(x-x0)
不能表示平行于
y轴的直线(即斜
率不存在)
y=kx+b
不能表示平行于
y轴的直线(即斜
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【答案】D
(
)
3.若直线经过点A(3,2)和点B(0,-1),则直线的斜率为(
职高数学平面解析几何练习
职高数学平面解析几何练习
1.判断下列命题的真假:
(1)点A(-8,8)在曲线х²-у²=0上
(2)一动点到两坐标轴的距离相等的点的轨迹方程方程是х=у
(3)已知点A(1,0)B(-5,0),线段AB的垂直平分线的方程是х=-2
(4)直线垂直平分线的方程是у=3х+5与直线у=-х+5的交点不是点(0,5)(5)直线ι在х轴y轴上的截距分别为a,b(a≠b),则ι的斜率是b/a (6)对任意的m值,直线у=6х+m都与直线у=-1/6х垂直
(7)对任一不等于2的实数k,直线2x+3y+k=0与直线2x+3y+2=0平行
(8)通过坐标原点的任一条直线都是椭圆b²х²+a²y²=a²b²的对称轴
2.解答题
(1)过点(3,5)(5,-5)的直线方程是
(2)过点P(1,1)且与直线2х+3y+1=0平行的直线方程是
(3)椭圆11х²+20y²=220的焦距等于
(4)抛物线х²=4y的准线方程是
3.已知ΔABC顶点的坐标A(3,5)B(0,0)C(6,2),BC边的中点为M,求直线AB,AC 和AM的方程
4.已知点A(2,0)与点B(8,0)动点M与点A的距离等于它与点B距离的⅓,求动点M的轨迹方程
5.已知直线x-2y+2=0与椭圆x²+4y²=4相交于A,B两点,求A,B两点的距离12.求到点A(-1,0)和直线x=3距离相等的点的轨迹方程。
高职高考数学课程平面解析几何测试
第五编平面解析几何第十章直线与方程第一节直线的倾斜角1.直线的倾斜角:(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即0t an (90)k αα=≠。
斜率反映直线与x 轴的倾斜程度。
当[) 90,0∈α时,0≥k ;当() 180,90∈α时,0<k ;当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=;注意下面四点:(1)当21x x =时,公式上边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)当直线l 与x 轴平行或重合时,00t an ;0=︒=︒=k α(4)当直线l 与x 轴垂直时,︒=90α;k 不存在。
由此可知,一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在2.两条直线平行或垂直当111:b x k y l +=,222:b x k y l +=时,(1)212121,//b b k k l l ≠=⇔;(2)12121-=⇔⊥k k l l 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(3)1212,k k b b ==⇔1l 与2l 重合;(4)12k k ≠⇔1l 与2l 相交。
另外一种形式:一般的,当1111110:0(,)l A x B y C A B ++=不全为,与2222220:0(,)l A x B y C A B ++=不全为时,(1)122112210//120A B A B l l B C B C -=-≠⎧⇔⎨⎩,或者1221122100A B A B A C A C -=⎧⎨-≠⎩。
职高数学平面几何、立体几何练习题
高二职高数学期末考试试题Ⅰ卷(选择题)一、选择题(共15题,每题3分,共45分)1.在平面中,直线012:1=++y x l 和01-2:2=+y x l 的位置关系是( ) A .垂直 B .相交但不垂直 C .平行 D .重合2.圆0y 10-22=+y x 的圆心到直线0543:=-+y x l 的距离等于( ) A .52 B .3 C .75D .15 3.已知A )0,(x B (-2,3)且|AB|=5,则x =( ) A .-2 B .3 C .-1或6 D . -6或24.直线062y 3x =++的斜率为k ,在y 轴上的截距为b ,则有( )A .3,23-k ==bB .2,23-k -==bC .3,23-k -==b D .3,23k ==b 5以C (-3,4)为圆心,且与直线05y -2x =+相切的圆的方程是( ) A .25)4(3)-(x 22=++y B .5)4(3)(x 22=+++y C .25)4(3)-(x 22=-+y D .5)4(3)(x 22=-++y6.已知直线1-2x y :l =,圆C :4x 22=+y ,直线与圆的位置关系是( ) A .相离 B .相切 C .相交且不过圆心 D .相交且过圆心 7.下列图形中不一定是平面图形的是( )A .三角形B .平行四边形C .四条线段首尾连接成的四边形D .梯形 8.两条直线都与一个平面平行,则这两条直线的位置关系是( ) A .异面 B .相交 C .平行 D .可能共面,也可能异面9.已知二面角βα-a -为o60,P 是平面α内一点,P 到β的距离为m ,则P 在β内的射影到a 的距离为( )A .m 21B .m 3C .m 33D .m 23 10.下面四个命题(1) .一条直线和一个平面平行,就和这个平面内所有直线平行。
(2) .过一个平面外一点,只能引一条直线和这个平面平行。
专题09平面解析几何(第一部分)
专题09平面解析几何(第一部分)一、填空题1.圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.2.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为.3.已知圆C 的圆心在x 轴的正半轴上,点M 在圆C 上,且圆心到直线20x y -=的距C 的方程为. 4y 轴交于点A ,与圆()2211x y +-=相切于点B ,则AB =.5.若直线()00x y m m -+=>与圆()()22113x y -+-=相交所得的弦长为m ,则m =.6.已知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为.二、解答题7.已知椭圆22221(0)x y a b a b+=>>的左右顶点分别为12,A A ,右焦点为F ,已知123,1A F A F ==.(1)求椭圆的方程和离心率;(2)点P 在椭圆上(异于椭圆的顶点),直线2A P 交y 轴于点Q ,若三角形1A PQ 的面积是三角形2A PF 面积的二倍,求直线2A P 的方程.8.椭圆()222210x y a b a b +=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足BF AB =. (1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN V三、单选题9.双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=10.已知双曲线22221(0,0)x y a b a b -=>>的左、右焦点分别为12F F 、.过2F 向一条渐近线作垂线,垂足为P .若22PF =,直线1PF ,则双曲线的方程为( )A .22184x y -=B .22148x y -=C .22142x y -=D .22124x y -=11.已知抛物线212,,y F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为( )A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=12.设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A .22144x y -=B .2214y x -=C .2214x y -=D .221x y -=13.已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d +=则双曲线的方程为A .22139x y -=B .22193x y -=C .221412x y -=D .221124x y -=14.【陕西省西安市长安区第一中学上学期期末考】已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A .221412x y -=B .221124x y -=C .2213x y -=D .2213y x -=15.已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -=16.已知双曲线222=14x y b-(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为A .223=144x y -B .224=143x y -C .22=144x y -D .22=1412x y -17.已知双曲线的焦距为,且双曲线的一条渐近线与直线垂直,则双曲线的方程为A .B .C .D .18.已知双曲线22221(0,0)x y a b a b-=>>的一个焦点为(2,0)F ,且双曲线的渐近线与圆()2223x y -+=相切,则双曲线的方程为A .221913x y -=B .221139x y -=C .2213x y -=D .2213y x -=19.已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点( ,且双曲线的一个焦点在抛物线2y = 的准线上,则双曲线的方程为A .2212128x y -=B .2212821x y -=C .22134x y -=D .22143x y -=20.已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( )AB C .2 D .321.已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为AB C .2D。
中职数学对口升学复习第8部分《平面解析几何》历年真题
中职数学对口升学复习第8部分《平面解析几何》历年真题第八部分《解析几何》历年真題分类汇总一、选择题1.(2019)抛物线12+=y x 的准线方程为()A. 45-=x B. 43=x C. x=-1D. 41-=x 答案:B2.(2018)已知F 1,F 2是椭圆221169x y +=的两焦点,过点F 2的直线交椭圆于A,B 两点,若IABI=5,则IAF 1I+IBF 1I=( )A. 16B. 11C. 10D. 9答案:B3.(2017)下列哪对直线互相平行()A 、5:,22:1=-=x l y l B 、52:,122:1-=+=x y l x y l C 、5:,12:1--=+=x y l x y l D 、53:,132:1--=+=x y l x y l答案:B4.(2017)顶点在原点,对称轴是x 轴,焦点在直线3x-4y-12=0上的抛物线方程是()A 、x y 162=B 、x y 122=C 、x y 162-=D 、x y 122-= 答案:A5.(2016)实轴长为10,虚轴长为8,焦点在x 轴上的双曲线的标准方程是( )A. 1162522=-y xB. 181022=-y xC. 1251622=-y xD. 16410022=-y x答案:A6.(2016)下列哪对直线互相垂直 ( )A. 52:;12:21-=+=x y l x y lB. 5:;2:21=-=y l y lC. 5:;1:21--=+=x y l x y lD. 53:;13:21--=+=x y l x y l答案:C7.(2015)下列哪对直线相交 ( )A. 43:,43:21-=+=x y l x y lB. 1:,3:21=-=y l y lC. 8:,43:21-=+-=x y l x y lD. 以上都不对8.(2015)长轴长为10,短轴长为8,焦点在x 轴上的椭圆的标准方程是 ( )A.1162522=+y x B.181022=+y x C.1251622=+y x D.16410022=+y x 答案:A9.(2014)长轴长为6,短轴长为4,交点在x 轴上的椭圆的标准方程为( )A 、 B. C 、22194x y += D. 224149x y += 答案:C10.(2013)长轴长为4,短轴长为3,焦点在x 轴上的椭圆的标准方程为( )A. 14322=+y x B. 13422=+y x C. 14922=+y x D. 224149x y +=答案:D11.(2011)过点()2,3-且与直线014=+-y x 平行的直线方程为 ( )A. 0144=-+y xB. 0104=--y xC. 0144=--y xD. 054=++y x答案:C二、填空题1.(2019)设x-2y+1=0直线与ax+y-1=0垂直,则a=_____________.答案:22.(2018)如果直线x+ay+3=0与直线2x+y-3=0垂直,则a=______________答案:-23.(2017)抛物线22(0)y px p =>的顶点到准线的距离为4,则p=_____答案:83.(2016)抛物线x y 42=的准线方程是______________答案:X=-14.(2015)顶点在原点,焦点坐标为(2,0)的抛物线的标准方程是_________________答案:28y x =5.(2014)顶点在原点,焦点坐标为(5,0)的抛物线标准方程是______________。
专题11平面解析几何(第一部分)
专题11平面解析几何(第一部分)一、单选题1.在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A .1B .2C .3D .42.圆22260x y x y +-+=的圆心到直线20x y -+=的距离为( )A B .2 C .3 D .3.圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为 ( )A .1B .2C D .4.数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C③曲线C 所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是A .①B .②C .①②D .①②③ 5.圆心为()1,1且过原点的圆的方程是A .()()22111x y -+-=B .()()22111x y +++=C .()()22112x y +++=D .()()22112x y -+-=6.若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则=a ( )A .12 B .12- C .1 D .1-7.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ).A .4B .5C .6D .78.已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m =A .1±B .C .D .2±9.已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则 A .a 2=2b 2 B .3a 2=4b 2 C .a =2b D .3a =4b二、填空题10.已知椭圆22221(0)x y M a b a b+=>>:,双曲线22221x y N m n -=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为;双曲线N 的离心率为.三、解答题11.已知椭圆E :()222210x y a b a b+=>>,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.四、单选题12.若双曲线2222:1x y C a b -=离心率为2,过点,则该双曲线的方程为( )A .2221x y -=B .2213y x -= C .22531x y -= D .22126x y -=五、填空题13.已知双曲线C 的焦点为(2,0)-和(2,0)C 的方程为.14.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线为20x y +=,一个焦点为,则=a ;b =.15.已知双曲线221x y m +=的渐近线方程为y =,则m =. 16.已知双曲线22:163x y C -=,则C 的右焦点的坐标为;C 的焦点到其渐近线的距离是. 17.已知双曲线2221x y a-= (a >0)+y =0,则a =.六、单选题18.已知双曲线2221x y a-=(a >0则a =A B .4 C .2 D .12七、填空题19.若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为 .20.若双曲线2221(0)4x y a a -=>a =. 21.若双曲线221y xm -=m =. 22.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a=.23.已知()2,0是双曲线2221y x b -=(0b >)的一个焦点,则b =.。
专题36平面解析几何解答题(第一部分)
专题36平面解析几何解答题(第一部分)一、解答题1.已知椭圆222:1(05)25x y C m m +=<<A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.2.已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G . (i )证明:PQG V 是直角三角形; (ii )求PQG V 面积的最大值.3.已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.4.设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.5.平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>抛物线E :22x y=的焦点F 是C 的一个顶点. (Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.6.已知椭圆2212x y +=上两个不同的点A ,B 关于直线12y mx =+对称.(1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点).7.已知椭圆2222:1(0)C b b x a a y +>>=,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.8.已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =u u u r u u u r.证明:直线HN 过定点.9.已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=u u u r u u u r ,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.10.已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1,C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.11.已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.12.平面直角坐标系xoy 中,已知椭圆()2222:10x y C a b a b +=>>,左、右焦点分别是12,F F ,以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144+=x y E a b ,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .(i )求OQ OP的值;(ⅱ)求ABQ ∆面积的最大值.13.一种作图工具如图1所示.O 是滑槽AB 的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子在滑槽AB 内做往复运动时,带动绕O 转动一周(不动时,也不动),处的笔尖画出的曲线记为.以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.14.在平面直角坐标系xOy 中,椭圆E :22221x y a b +=()0a b >>,焦距为2. (Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :1y k x =E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且12k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M e 的半径为MC ,,OS OT 是M e的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.15.如图,设椭圆2221x y a+=(a >1).(Ⅰ)求直线y=kx +1被椭圆截得的线段长(用a 、k 表示);(Ⅱ)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.16.已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B . (1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.17.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴. 18.设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0). (1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 19.已知抛物线21:4C x y =的焦点也是椭圆22222:1(0)y x C a b a b+=>>的一个焦点,1C 与2C 的公共弦的长为26. (1)求2C 的方程; (2)过点的直线l 与1C 相交于,两点,与2C 相交于,两点,且AC u u u r 与BD u u u r同向(ⅰ)若AC BD =,求直线l 的斜率 (ⅱ)设1C 在点处的切线与x 轴的交点为M ,证明:直线l 绕点旋转时,MFD ∆总是钝角三角形。
平面解析几何 经典习题(含答案
欢迎阅读平面解析几何一、直线的倾斜角与斜率 1、直线的倾斜角与斜率(1)倾斜角α的范围000180α≤<(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ⇔=。
特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行。
(2)两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥⇔=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。
二、直线的方程 1、直线方程的几种形式 名称 方程的形式 已知条件局限性点斜式为直线上一定点,k 为斜率不包括垂直于x 轴的直线斜截式k 为斜率,b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式是直线上两定点不包括垂直于x 轴和y 轴的直线截距式a 是直线在x 轴上的非零截距,b 是直线在y 轴上的非零截距不包括垂直于x 轴和y 轴或过原点的直线 一般式A ,B ,C 为系数无限制,可表示任何位置的直线三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。
2.几种距离(1)两点间的距离平面上的两点间的距离公式(2)点到直线的距离点到直线的距离;(3)两条平行线间的距离两条平行线间的距离注:(1)求点到直线的距离时,直线方程要化为一般式;(2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算(二)直线的斜率及应用利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。
职中数学第八章---平面解析几何
第八章平面解析几何1 .到两坐标轴的距离相等的点的轨迹方程是y=x.()2、双曲线离心率e<1 ()5、椭圆上的任一点到它的两焦点的距离的和都等于短轴长。
()6、方程x2+y2+入x=0表示圆,则入的取值范围是任意实数。
()8、任意直线都有斜率。
()9、直线2x —3y+1=0与圆x2+y2=1 相交。
()6、已知0,则过点(1,- 1)的直线ax+ 3my+ 2a=0的斜率是()_ 1 1A、3B、一3C、D、一—3 37、直线L1: ax+ 2y+ 6=0 与直线L2:x+ (a—1)y + a?—1=0 平行,则a= ()A、一1B、2C、一1, 2D、0, 18、圆x2—8x+ y2+ 12=0与直线3x + y=0的位置关系是()A、相切B、相离C、相交D、无法确定9、如果椭圆的短轴长、焦距、长轴长依次成等差数列,贝U其离心率e=()4332A、-B、一C、一D、-554310、抛物线y=4x2的焦点坐标是( )A、( 1, 0)B、 (0, 1) 1C、(0,—)D、(丄,0)16165、直线L过点A(—2,—3), 且在两坐标轴上的截距相等,则L的方程为6、__________________________________________________________________________ 若直线L1与L2的斜率是方程4x2—15x —4=0的两根,则L1与L2的夹角为______________ ■7、过圆x2+ y2=13上一点(2,—3)的切线方程是_____________ 。
2 2&椭圆—+ —=1的焦距为2,则m的值为___________________ 。
m 49、双曲线x2—3y2=1的两条渐近线的夹角是____________ 。
10、顶点在原点,且经过点P (—1, 2)的抛物线标准方程为 ___________ 。
、解答题(共70分)1、已知:求(1)的值(2)(10分)2、已知:ABC的三顶点为A (6, -2), B (-1, 5), C (5, 5),求ABC的外接圆方程。
湖南对口招生数学平面解析几何单元过关测试题
湖南对口招生数学平面解析几何单元过关测试题一、选择题(每小题5分,共50分)1、直线xcot600+y-2=0的倾斜角=( )。
A) 300 B) 600 C) 1200 D) 15002、已知直线ax+2y-2=0与2x-y+c=0垂直且相交于点(1,m),则a+c=( )。
A) 1 B) -1 C) -21 D) 21 3、与直线2x+y-1=0平行,且与圆(x-2)2+(y+1)2=5相切的直线方程是( )。
A )2x+y+2=0或2x+y-8=0B )x-2y+1=0或x-2y-9=0C )2x+y+1=0或2x+y-9=0D )x-2y+2=0或x-2y-8=04、已知直线2x-y+1=0与以点(1,-2)为圆心的圆相交于A 、B 两点,且|AB|=4,则此圆的标准方程是( )。
A )(x-1)2+(y+2)2=16B )(x-1)2+(y+2)2=9C )(x+1)2+(y-2)2=9D )(x+1)2+(y-2)2=16 5、双曲线14k 8x 22=-+-ky 的焦点坐标是( )。
A )(0,±k 212-) B )(±k 212-,0)C ) (0,±2)D ) (±2,0)6、以椭圆192522=+y x 的左焦点为焦点的抛物线的标准方程是( )。
A )y 2=16x B )y 2=-8x C )y 2=-16x D )x 2=-16y7、经过点A (0,2)与抛物线y 2=4x 只有一个交点的直线方程是( )。
A )x-2y+4=0B )x-2y+4=0或y=2C )x-2y+4=0或x=0D )x-2y+4=0,y=2或x=08、经过抛物线x 2=4y 的顶点,并以此抛物线焦点为圆心的圆的方程是( )。
A) x 2+(y-1)2=1 B) x 2+(y-1)2=4C) (x-1)2+y 2=1 D) (x-1)2+y 2=49、折线y=|x-1|与圆(x-1)2+y 2=8所围成的最小区域的面积等于( )。
平面解析几何-多选题练习
9.(2024·石家庄调研)已知双曲线 C:x42-y52=1,F1,F2 为 C 的左、右焦点,则( BC )
A.双曲线4+x2m-5+y2m=1(m>0)和 C 的离心率相等
B.若 P 为 C 上一点,且∠F1PF2=90°,则△F1PF2 的周长为 6+2 14
C.若
C
上存在四个点
P
使得
PF1⊥PF2,则
C
的离心率的取值范围是0,
2 2
D.若|PF1|≤2b 恒成立,则 C 的离心率的取值范围为0,53
1 2 3 4 5 6 7 8 9 10
解析 对于 A,设 P(x0,y0),则xa202+by202=1, ∵e=ac=12,∴a=2c,∴a2=34b2, ∴∴43kxbP20A21+·kbyPA202=2=1y,0x-∴0 b3·yx020x++0 b4=y20=y20-x420bb22,=b2-34xx2020-b2=-34,故 A 错误; 对于 B,若 PF1⊥PF2,则|PF1|+|PF2|=2a,|PF1|2+|PF2|2=4c2, ∴|PF1|·|PF2|=2b2,则△PF1F2 的面积为12·|PF1|·|PF2|=b2,故 B 正确; 对于 C,若 C 上存在四个点 P 使得 PF1⊥PF2,
则a2≥2b2,所以选项AC满足.
1 2 3 4 5 6 7 8 9 10
4.已知 F1,F2 分别是双曲线 C:y2-x2=1 的上、下焦点,点 P 是其一条渐近线
上一点,且以线段 F1F2 为直径的圆经过点 P,则( ACD )
A.双曲线 C 的渐近线方程为 y=±x B.以 F1F2 为直径的圆的方程为 x2+y2=1 C.点 P 的横坐标为±1 D.△PF1F2 的面积为 2 解析 等轴双曲线C:y2-x2=1的渐近线方程为y=±x,故A正确; 由双曲线的方程可知|F1F2|=2 2, 所以以F1F2为直径的圆的方程为x2+y2=2,故B错误; 设点P(x0,y0),因为点P是双曲线C的一条渐近线上一点,
职高数学练习题推荐
职高数学练习题推荐一、代数部分1. 计算下列各式:(1) 3x 5 + 2x^2 4x + 7(2) (4x 3)(2x + 5)(3) (a + b)^2 (a b)^22. 解下列方程:(1) 2x 5 = 3(x + 1)(2) 5x^2 3x 2 = 0(3) |x 2| = 33. 化简下列分式:(1) $\frac{2x^2 4x}{x^2 2x}$(2) $\frac{x^2 9}{x^2 + 6x + 9}$二、几何部分1. 已知三角形ABC中,AB=5,BC=8,AC=10,求三角形ABC的面积。
2. 在直角坐标系中,点A(2,3)到直线y=2x+1的距离是多少?3. 证明:等腰三角形的底角相等。
三、概率与统计部分1. 从1到100的整数中随机抽取一个数,求这个数是3的倍数的概率。
2. 已知一组数据的平均数为50,方差为25,求这组数据中大于60的数的概率。
3. 某班有50名学生,其中男生30名,女生20名。
随机抽取5名学生,求至少有3名女生的概率。
四、函数与极限部分1. 求下列函数的定义域:(1) $f(x) = \sqrt{x^2 4}$(2) $g(x) = \frac{1}{x 3}$2. 已知函数$f(x) = 2x^3 3x^2 + x 1$,求$f'(x)$。
3. 计算极限$\lim_{x \to 0} \frac{\sin x}{x}$。
五、综合应用题1. 一辆汽车以60km/h的速度行驶,行驶过程中突然遇到紧急情况,需要立即刹车。
已知刹车过程中,汽车的平均加速度为5m/s^2,求汽车在停止前行驶的距离。
2. 某企业生产一种产品,固定成本为10000元,每生产一件产品的变动成本为200元。
已知该产品的市场价格为500元,求该企业至少生产多少件产品才能盈利。
3. 在一个长方体水池中,长、宽、高分别为10m、8m、6m。
现将水池装满水,然后将一个体积为24m^3的实心球放入水池中,求球没入水中的体积。
平面解析几何练习题
平面解析几何练习题一、直线与圆的相交1. 已知圆的方程为:x^2 + y^2 - 4x - 6y + 9 = 0,求与直线y = 2x + 1相交的点坐标。
解析:首先将直线方程代入圆的方程,得到:x^2 + (2x + 1)^2 - 4x - 6(2x + 1) + 9 = 0。
将方程化简得到二次方程 5x^2 - 22x - 14 = 0。
解此二次方程,得两个不同实根:x1 ≈ 0.953 和x2 ≈ 2.337。
将x的值带入直线方程求得对应的y值,即可得到两个交点的坐标。
2. 已知直线过点A(2, 4)且与圆x^2 + y^2 - 6x + 8y + 9 = 0相切,求此直线的方程。
解析:首先求圆的切线方程,在圆的方程中,将x和y的系数前的项移至另一侧得到新方程 x^2 + y^2 = 6x - 8y - 9。
然后利用点到直线的距离公式,得到圆心O(a, b)到直线的距离公式:d = |a + 2b - 8| / √(1 + 4) = |a + 2b - 8| / 2。
因为直线与圆相切,所以圆心到直线的距离等于圆的半径。
将距离公式代入原方程,得到二次方程 (2a + 4b - 16)^2 = 4(a^2 + b^2 - 6a + 8b + 9)。
通过求解此二次方程,得到a和b的值,即可得到直线的方程。
二、圆的切线与切点1. 已知圆C的方程为:(x-2)^2 + (y+1)^2 = 16,求过点P(3,2)的圆C 的切线方程及切点。
解析:首先求得点P到圆心C(2,-1)的距离,即两点之间的线段CP 的长度r = √((3-2)^2 + (2+1)^2) = √(2^2 + 3^2) = √13。
因为点P在圆C 上,所以点P到圆C的距离等于圆C的半径 r = 4。
接下来求得点P到圆C的切线斜率k,即斜率为 -1/k 的直线与圆C的切线。
切线斜率 k = (2 - (-1)) / (3 - 2) = 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
职高数学平面解析几何练习
1.判断下列命题的真假:
(1)点A(-8,8)在曲线х²-у²=0上
(2)一动点到两坐标轴的距离相等的点的轨迹方程方程是х=у
(3)已知点A(1,0)B(-5,0),线段AB的垂直平分线的方程是х=-2
(4)直线垂直平分线的方程是у=3х+5与直线у=-х+5的交点不是点(0,5)(5)直线ι在х轴y轴上的截距分别为a,b(a≠b),则ι的斜率是b/a (6)对任意的m值,直线у=6х+m都与直线у=-1/6х垂直
(7)对任一不等于2的实数k,直线2x+3y+k=0与直线2x+3y+2=0平行
(8)通过坐标原点的任一条直线都是椭圆b²х²+a²y²=a²b²的对称轴
2.解答题
(1)过点(3,5)(5,-5)的直线方程是
(2)过点P(1,1)且与直线2х+3y+1=0平行的直线方程是
(3)椭圆11х²+20y²=220的焦距等于
(4)抛物线х²=4y的准线方程是
3.已知ΔABC顶点的坐标A(3,5)B(0,0)C(6,2),BC边的中点为M,求直线AB,AC 和AM的方程
4.已知点A(2,0)与点B(8,0)动点M与点A的距离等于它与点B距离的⅓,求动点M的轨迹方程
5.已知直线x-2y+2=0与椭圆x²+4y²=4相交于A,B两点,求A,B两点的距离12.求到点A(-1,0)和直线x=3距离相等的点的轨迹方程。