15随机事件的独立性

合集下载

1-5 随机事件的独立性

1-5 随机事件的独立性

因此 A,B,C 不相互独立.
例4 同时抛掷一对骰子,共抛两次,求两次所得点 数分别为7与11的概率. 解 设事件 Ai 为“第 i 次得7点” i = 1,2.
设事件 Bi 为“第 i 次得11点” i = 1,2.
事件 A 为两次所得点数分别为 7 与 11. 则有 P ( A) = P ( A1 B2 U B1 A2 ) = P ( A1 B2 ) + P ( B1 A2 )
它表示 A 的发生并不影响 B 发生的可能性大小 .

P ( B A) = P ( B )
P ( AB ) = P ( A) P ( B )
2.定义
设 A, B 是两事件 , 如果满足等式 P ( AB ) = P ( A) P ( B ) 则称事件 A, B 相互独立 , 简称 A, B 独立.
定义 设 A, B , C 是三个事件 , 如果满足等式 ⎧ P ( AB ) = P ( A) P ( B ), ⎪ P ( BC ) = P ( B ) P (C ), ⎪ ⎨ ⎪ P ( AC ) = P ( A) P (C ), ⎪ P ( ABC ) = P ( A) P ( B ) P (C ), ⎩ 则称事件 A, B , C 相互独立 .
A
由此可见两事件相互独立,但两事件不互斥.
1 1 若 P ( A) = , P ( B ) = 2 2 则 P ( AB ) = 0, 1 P ( A) P ( B ) = , 4 故 P ( AB ) ≠ P ( A) P ( B ) .
B A
由此可见两事件互斥但不独立.
3. 三事件两两相互独立的概念
“甲乙甲甲”, “乙甲甲甲”, “甲甲乙甲”; 由于这三种情况互不相 容 , 于是由独立性得 :

随机事件的独立性与互斥性知识点

随机事件的独立性与互斥性知识点

随机事件的独立性与互斥性知识点随机事件是指在一定的条件下,可能发生也可能不发生的事件。

在概率论中,研究随机事件之间的关系非常重要,其中独立性与互斥性是两个基本概念。

本文将介绍随机事件的独立性与互斥性的定义、性质以及在实际问题中的应用。

一、独立事件的定义与性质独立事件是指两个或多个事件发生的结果不会相互影响的事件。

具体来说,如果事件 A 和事件 B 是独立事件,那么事件 A 的发生与否不会对事件 B 的发生产生影响,反之亦然。

独立事件的性质如下:1. 乘法公式:对于两个独立事件 A 和 B,它们同时发生的概率等于它们分别发生的概率之积,即P(A∩B) = P(A) × P(B)。

2. 加法公式:对于两个独立事件 A 和 B,它们至少有一个发生的概率等于它们分别发生的概率之和减去它们同时发生的概率,即P(A∪B) = P(A) + P(B) - P(A∩B)。

独立事件的性质保证了事件之间的独立性,使得我们可以通过简单的计算得到复杂事件的概率。

二、互斥事件的定义与性质互斥事件是指两个事件不可能同时发生的事件。

具体来说,如果事件 A 和事件 B 是互斥事件,那么事件 A 的发生就排除了事件 B 的发生,反之亦然。

互斥事件的性质如下:1. 加法公式:对于两个互斥事件 A 和 B,它们至少有一个发生的概率等于它们分别发生的概率之和,即 P(A∪B) = P(A) + P(B)。

互斥事件的性质使得我们可以通过计算事件的发生概率,确定事件之间的关系,从而进行合理的判断和决策。

三、独立事件与互斥事件的区别与联系独立事件和互斥事件都是描述随机事件之间关系的概念,但它们的定义和性质有所不同。

1. 独立事件是指两个或多个事件的发生结果不会相互影响,而互斥事件是指两个事件不可能同时发生。

2. 独立事件的加法公式和乘法公式可以用于计算独立事件的概率,而互斥事件只需要使用加法公式就可以计算。

独立事件和互斥事件在实际问题中有着广泛的应用。

事件的相互独立性、条件概率与全概率公式-高考数学复习

事件的相互独立性、条件概率与全概率公式-高考数学复习
“两次取出的球的数字之和是7”,则(

A. 甲与丙相互独立
B. 甲与丁相互独立
C. 乙与丙相互独立
D. 丙与丁相互独立
目录
解析:
1
事件甲发生的概率 P (甲)= ,事件乙发生的概率 P
6
1
5
5
(乙)= ,事件丙发生的概率 P (丙)=
= ,事件丁发生的概
6
6×6
36
6
1
率 P (丁)=
= .事件甲与事件丙同时发生的概率为0, P (甲
)=(1-0.6)×0.5×0.5×0.4+0.6×(1-0.5)×0.5×0.4+
0.6×0.5×(1-0.5)×0.4+0.6×0.5×0.5×(1-0.4)=0.25,4人需
使用设备的概率 P 2=0.6×0.5×0.5×0.4=0.06,故所求的概率 P =
3
2
3
5
( )·P ( )·P ( )=(1- )(1- )(1- )= .
4
3
8
96
因为事件“甲、乙、丙三人都回答错误”与事件“甲、乙、丙
三人中,至少有一人答对这道题”是对立事件,
5
91
所以所求事件的概率为 P ( M )=1- = .
96
96
目录
解题技法
1. 求相互独立事件同时发生的概率的步骤
2∪…∪ An =Ω,且 P ( Ai )>0, i =1,2,…, n ,则对任意的事

件 B ⊆Ω,有 P ( B )=
∑ P ( Ai ) P ( B | Ai )
i=1
,我们称上面
的公式为全概率公式.
目录
1. 判断正误.(正确的画“√”,错误的画“×”)

判断随机事件独立性的方法

判断随机事件独立性的方法

判断随机事件独立性的方法随机事件独立性是概率论与数理统计中的一个重要概念。

判断随机事件是否独立对于许多实际问题的解决具有重要意义。

本文将介绍判断随机事件独立性的方法及其应用。

1. 什么是随机事件独立性在概率论中,独立性是指两个或多个事件的发生不受彼此影响的性质。

具体来说,如果事件A的发生与事件B的发生没有任何关联,即事件A的发生概率与事件B的发生概率的乘积等于事件A与B同时发生的概率,那么事件A和事件B就是独立的。

数学上,可以用以下条件来判断两个事件A和B是否独立: - P(A ∩ B) = P(A) * P(B),即事件A与事件B同时发生的概率等于事件A的发生概率乘以事件B的发生概率。

2. 判断随机事件独立性的方法2.1. 基于条件概率的方法基于条件概率的方法是判断随机事件独立性的常用方法之一。

根据条件概率的定义,可以使用以下条件来判断两个事件A和B是否独立: - P(A|B) = P(A),即事件A在事件B发生的条件下的概率等于事件A的概率。

如果满足以上条件,那么可以认为事件A和事件B是独立的。

否则,事件A 和事件B不满足独立性条件。

2.2. 基于频率统计的方法基于频率统计的方法是另一种常用的判断随机事件独立性的方法。

该方法基于大数定律,通过实际观察和统计事件发生的频率来判断事件之间是否独立。

具体操作时,可以进行一系列独立的实验,统计事件A和事件B同时发生的次数。

如果事件A和事件B的同时发生次数与事件A的发生次数乘以事件B的发生次数之积接近,那么可以认为事件A和事件B是独立的。

否则,事件A和事件B不满足独立性条件。

2.3. 基于协方差的方法基于协方差的方法是另一种常用的判断随机事件独立性的方法。

协方差是衡量两个随机变量之间关联程度的指标,可以通过计算事件A和事件B的协方差来判断它们是否独立。

具体操作时,可以通过以下条件来判断事件A和事件B是否独立: - 协方差(A, B) = 0,即事件A和事件B的协方差为0。

5.随机事件的独立性-【新】人教B版高中数学必修第二册PPT全文课件

5.随机事件的独立性-【新】人教B版高中数学必修第二册PPT全文课件

符号
记作:AB
生,记作:A∪B(或 A+B)
计算 公式 P(AB)=P(A)P(B)
P(A∪B)=P(A)+P(B)
5.随机事件的独立性-【新】人教B版 高中数 学必修 第二册P PT全文 课件【 完美课 件】
2.n 个事件相互独立 对于 n 个事件 A1,A2,…,An,如果其中_任一个事件 _________发生的概 率不受其他事件是否发生的影响,则称 n 个事件 A1,A2,…,An 相 互独立. 3.独立事件的概率公式 (1)若事件 A,B 相互独立,则 P(AB)=P(A)P(B). (2) 若 事 件 A1 , A2 , … , An 相 互 独 立 , 则 P(A1A2…An) = P(A1)·P(A2)…P(An).
(3)恰有两人合格的概率: P2=P(AB C )+P(A B C)+P( A BC) =25×34×23+25×14×13+35×34×13=2630. 恰有一人合格的概率: P1=1-P0-P2-P3=1-110-2630-110=2650=152. 综合(1)(2)可知 P1 最大. 所以出现恰有一人合格的概率最大.
相互独立事件的判断 【例 1】 判断下列各对事件是否是相互独立事件. (1)甲组 3 名男生,2 名女生;乙组 2 名男生,3 名女生,现从甲、 乙两组中各选 1 名同学参加演讲比赛,“从甲组中选出 1 名男生” 与“从乙组中选出 1 名女生”; (2)容器内盛有 5 个白乒乓球和 3 个黄乒乓球,“从 8 个球中任 意取出 1 个,取出的是白球”与“从剩下的 7 个球中任意取出 1 个, 取出的还是白球”; (3)掷一颗骰子一次,“出现偶数点”与“出现 3 点或 6 点”.
5.随机事件的独立性-【新】人教B版 高中数 学必修 第二册P PT全文 课件【 完美课 件】

6.事件的独立性与随机变量的独立性 作者:阿曼古.卡地尔 指导老师:买买提明

6.事件的独立性与随机变量的独立性   作者:阿曼古.卡地尔  指导老师:买买提明

编号学士学位论文事件的独立性与随机变量的独立性学生姓名:阿曼古·卡地尔学号:***********系部:数学系专业:数学与应用数学年级:2006-3班指导教师:买买提依明·热扎克完成日期:2011 年 5 月10 日中文摘要事件的独立性和随机变量的独立性是概率论中的最重要的概念之一.本论文主要讨论事件的独立性和独立事件的性质,随机变量的独立性,研究两种最常见的随机变量类型---离散型随机变量和连续型随机变量的独立性.关键词:独立事件;概率;随机变量目录中文摘要 (1)引言 (3)1. 事件的独立性 (3)1.1两个事件的独立性 (3)1.2三个事件的独立性 (7)1.3多个事件的独立性 (9)2.随机变量的独立性 (12)2.1离散型随机变量的独立性 (14)2.2连续型随机变量的独立性 (15)总结 (20)参考文献 (21)致谢 (22)23引言对于事件的独立性,即有直观的描述,又有严格的数学定义,它们在不同的场合各有用处, 独立性是概率论中的特有的概念.它的引进大大推动了概率的发展,概率论中许多重要的结论是独立性的假定下获得的.随机变量的独立性事实上是以事件的独立性为基础的概念.1. 事件的独立性在已知事件A 发生的条件下,B 发生的可能性为条件概率 ()(|)()P AB P B A P A =并且由此可以得到一般的概率乘法公式 ()()(|)P AB P A P B A =现在可以提出一个问题,如果事件B 发生与否不受事件A 是否发生的影响,那么会出现什么样的情况呢?为此,需要把“事件B 发生与否不受事件A 是否发生的影响”这句话表达成数学的语言.事实上,事件B 发生与否不受事件A 的影响,也就是意味着有 ()(|)P B P B A =这时乘法公式就有了更自然的形式 ()()()P AB P A P B =⋅ 由此启示我们引入下述定义.1.1两个事件的独立性定义1 对任意的两个事件A ,B ,若()()()P AB P A P B =成立,则称事件A ,B 是相互独立的,简称为独立的. 例1:分别掷两枚均匀的硬币,令{A=硬币甲出现正面}{B=硬币乙出现正面}验证事件A,B是相互独立的证明:这是样本空间{Ω=(正,正),(正,反),(反,正),(反,反)}共含有4个基本事件,它们是等可能的,各有概率1/4,而{A=(正,正),(正,反)}{B=(正,正),(反,正)}{AB=(正,正)}由此知1()()2P A=P B=这是有1()()()4P AB==P A P B成立,所以A,B是相互独立的例2:一个家庭中有若干个小孩,假定生男孩和女孩是等可能的,令A= { 一个家庭中既有男孩又有女孩 }B= { 一个家庭中最多有一个女孩 }对下述两种情形,讨论A与B的独立性:(1)家庭中有两个小孩;(2)家庭中有三个小孩;解:(1)有两个小孩的家庭,这是样本空间为Ω={(男,男),(男,女),(女,男),(女,女)},它有4个基本事件,由等可能性知概率各为14,这时A={(男,女),(女,男)}45B ={(男,男),(男,女),(女,男)}AB ={(男,女),(女,男)}于是1()2P A =,3()4P B =,1()2P AB = 由此可知()()()P AB P A P B ≠所以事件A ,B 不相互独立. (2)有三个小孩的家庭,样本空间为Ω={(男,男,男),(男,男,女),(男,女,男),(女,男,男), (男,女,女),(女,男,女),(女,女,男),(女,女,女)}由等可能性知这8个基本事件的概率均为18,这时A 中含有6基本事件,B 中含有4基本事件, AB 中含有3基本事件,于是63()84P A == , 41()82p B == , 3()8p AB = 显然有3()8p AB =()()P A P B = 成立,从而事件A 与B 是相互独立的.定理1 若果事件A 与B 相互独立,则A 与__B ,__A 与B ,__A 与__B 也相互 立.证明: 事件A 与 B 相互独立 ∴()()()P AB P A P B =6[]____(1)()()()()()()()()()1()()()P A B P A B P A AB A AB P A P AB P A P A P B P A P B P A P B =-=-⊃-=-=-=因此A 与__B 相互独立.(2)()()1()P AB P AB P AB ==-1()()()1()()()()[1()][1()]()()P A P B P AB P A P B P A P B P A P B P A P B =--+=--+=--=(3)()()()P AB P B A P B AB =-=-B AB ⊃()()P B P AB -()()()()[1()]()()()()P B P B P A P B P A P B P A P A P B =-=-==因此A 与B ,A 与B 也是相互独立. 命题 不可能事件与任意A 事件是相互独立. 证明 设φ是不可能事件()()()0()()P A P P A P A P φφφ==⋅=A ∴与φ是相互独立.命题 必然事件与任意A 事件是相互独立. 证明 设Ω是必然事件7()()()1()()P A P P A P A P Ω=A =⋅=⋅ΩA ∴与Ω是相互独立.例3: 甲,乙两个人分别猜一个谜,猜对的概率分别是0.7,0.6,求下列事件的概率.(1)“两个都猜对” (2)“两个人都猜错” (3)“恰有一个人猜对” (4)“至少有一个人猜对” 解:设A =“甲猜对” , B =“乙猜对” 两个人分别猜谜 A ∴与B 是相互独立()0.7P A =, ()0.6P B = ⇒ ()0.3P A =,()0.4P B =(1)()()()0.70.60.42(2)()()()0.30.40.12P P AB P A P B P P AB P A P B ===⨯====⨯=(3)()()()P P ABAB P AB P AB ==+()()()()0.70.40.30.60.46P A P B P A P B =+=⨯+⨯=(4)()()()()()0.70.60.70.60.88P P A B P A P B P A P B ==+-=+-⨯=或()1()1()10.120.88P A B P A B P AB =-=-=-=1.2三个事件的独立性定义2 设三事件 ,,A B C ,如果8()()()()()()()()()()()()()P AB P A P B P AC P A P C P BC P B P C P ABC P A P B P C ====则称,,A B C 相互独立.只满足前3式,称,,A B C 为两两独立.,,A B C 相互独立,则一定两两独立;但是两两独立,则三个事件不一定相互独立.例4: 设样本空间 {}1234,,,ωωωωΩ= 含有等可能的四个基本事件,又{}{}{}121314,;,;,A B C ωωωωωω=== 解:显然有 ()()()12P A P B P C === 由此有()()()()()()()()()()()()()()()()()()()()()P AB P A B ;C B C ;AC P ;11;48A B C A B C P ABC P A B C A,B,C A C ABC A B C P ABC P =P P B =P P P =P P =P P P =∴≠P P ≠P P 这说明,,两两独立,但是故不相互独立。

随机事件的独立性与条件概率

随机事件的独立性与条件概率

随机事件的独立性与条件概率随机事件是在一定条件下具有不确定性的事件,它的发生与否取决于一系列的因素。

而随机事件的独立性是指事件的发生与其他事件的发生无关,即一个事件的发生与其他事件的发生是相互独立的。

条件概率则是指在已知某个事件发生的条件下,另一个事件发生的概率。

1. 随机事件的独立性随机事件的独立性是指一个事件的发生与其他事件的发生无关。

具体来说,对于两个事件A和B,如果事件A的发生与否不会改变事件B的发生概率,那么事件A和事件B就是相互独立的。

例如,假设我们有一个袋子里面有红球和蓝球,事件A表示从袋子中取出一个红球,事件B表示从袋子中取出一个蓝球。

如果每次取球之前都将袋子中的球重新放回,那么事件A的发生与否不会改变事件B的发生概率,因此事件A和事件B是相互独立的。

2. 条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

通常使用P(A|B)来表示在事件B发生的情况下事件A发生的概率。

例如,假设我们有一副扑克牌,事件A表示从中抽取一张黑桃,事件B表示从中抽取一张红心。

如果我们已知事件B发生,也就是已知从中抽取的牌是一张红心,那么事件A发生的概率就会发生变化。

因为已经抽出了一张红心,所以扑克牌中剩余的牌中,黑桃的比例就会减少,从而影响到事件A发生的概率。

3. 独立性与条件概率的关系独立性和条件概率是密切相关的概念。

如果事件A和事件B是相互独立的,那么在已知事件B发生的情况下,事件A的发生概率仍然保持不变,即P(A|B) = P(A)。

这是因为独立事件的发生与其他事件的发生无关,所以在已知事件B发生的情况下,不会对事件A的发生概率造成影响。

然而,如果事件A和事件B不是相互独立的,那么在已知事件B 发生的情况下,事件A的发生概率会发生变化,即P(A|B) ≠ P(A)。

这是因为事件B的发生会对事件A的发生概率产生影响,所以在已知事件B发生的情况下,事件A的发生概率会有所不同。

总结:随机事件的独立性与条件概率是概率论中重要的概念。

概率论与数理统计第6节 随机事件的独立性和伯努利概型

概率论与数理统计第6节 随机事件的独立性和伯努利概型
P(C) P(A B) P(A) P(B) P(AB) P(A) P(B) P(A)P(B) 0.6 0.7 0.6 0.7 0.88;
目录 上页 下页 返回 结束
练习答案
3.解 (2)设每人射击 n次,Ai表示“甲第 i次击中目标”, Bi表示“乙第 i次击中目标”, i 1,2,.n,
目录 上页 下页 返回 结束
客人们不知布丰先生要干什么,只好客随主意, 一个个加入了试验的行列。一把小针扔完了,把 它捡起来又扔。而布丰先生本人则不停地在一旁 数着、记着,如此这般地忙碌了将近一个钟头。 最后,布丰先生高声宣布:“先生们,我这里记 录了诸位刚才的投针结果,共投针2212次,其 中与平行线相交的有704次。总数2212与相交数 704的比值为3.142。”说到这里,布丰先生故 意停了停,并对大家报以神秘的一笑,接着有意 提高声调说:“先生们,这就是圆周率π的近似 值!”
目录 上页 下页 返回 结束
d
d/2
目录 上页 下页 返回 结束
一、两个事件的独立性
定义1 设A, B是两个事件,且 P(B) 0,若 P(A B) P(A),
则称事件A与B相互独立。
根据条件概率公式,有:P(A B)=
P( AB) P(B)
如果A与B相互独立,有 P(A B) P(A),
结论若A1, A2 ,, An相互独立,则将这 n个事件中若干个 Ai换作对立事件,则所得 的n个事件仍然是独立事件 。
目录 上页 下页 返回 结束
二、多个事件的独立性
例2 三人独立地破译一份密码,已知各人能 译出的概率分别为1 ,1 ,1 ,求这密码能被破译的概率。
534
解1 设Ai 第i个人译出密码 ,i 1,2,3, B 密码能被破译 ,显然B A1 A2 A3, 于是有

概率论§1.5 事件独立性

概率论§1.5 事件独立性

例1 三人独立地去破译一份密码, 已知每个人 能译出的概率分别为1/5,1/3,1/4。问三人中 至少有一人能将密码译出的概率是多少?
解:将三人分别编号为1, 2, 3, 记 Ai ={第i个人破译出密码},i=1, 2, 3。
故,所求为 P(A1∪A2∪A3)
已知 P(A1)=1/5, P(A2)=1/3, P(A3)=1/4,
P ( A) P ( B) P (C ) 1 2
说明事件A,B,C两两相互独立,但不是总体相互独立。
定理8
A1, A2, …, An 相互独立,则
Ai1 , Ai2 , , Ai m , Ai m1 , Ai n 也相互独立
(1≤m≤n, i1, i2, …, in为1, 2, …, n 的一个全排 列) 注意: 在实际应用中,对于n个事件的相互独立性, 我们往往不是根据定义来判断,而是根据实际意义 来加以判断的
A 与 B 也相互独立
证明:(1) A AB AB 且 AB AB
P ( A) P ( AB) P ( AB )
又 P(AB)=P(A)P(B) 则有:
P ( AB ) P ( A) P ( A) P ( B ) P ( A) P ( B )
故, A与 B 相互独立
等价定义
定理6 设A,B是两个随机事件,若P(A)>0,则 事件B关于事件A独立的充要条件是 P(AB)=P(A)P(B)
证明:若事件B关于事件A独立,即P(B|A)=P(B)
则由乘法公式可得 P(AB)=P(A)P(B|A)=P(A)P(B) 反之,若P(AB)=P(A)P(B),已知P(A)>0
且 A1,A2,A3相互独立 可得 P(A1∪A2∪A3) 1 P ( A1 A2 An )

最新人教B版高中数学必修第二册第五章5.3.5 随机事件的独立性

最新人教B版高中数学必修第二册第五章5.3.5 随机事件的独立性
互斥但不相互独立
C.相互独立且互斥
D.既不相互独立也不互斥
答案 (1)A
(2)A
解析 (1)A中,把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受
先后影响,故A与B相互独立;B中,是不放回地摸球,显然事件A与B不相互独
立;C中,事件A,B为互斥事件,不相互独立;D中,事件B发生的概率受事件A是
2021
第五章
高中同步学案
5.3.5 随机事件的独立性




01
课前篇 自主预习
02
课堂篇 探究学习
课标阐释
1.在具体情境中,了解两个事件相互独立的概念.(数学抽象)
2.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题.(数
学运算)
3.综合运用互斥事件的概率加法公式及相互独立事件的乘法公式解决一
(2)理清各事件之间的关系,恰当地用事件间的“并”“交”表示所求事件.
(3)根据事件之间的关系准确地运用概率公式进行计算.
变式训练2在一个选拔节目中,每个选手都需要进行四轮考核,每轮设有一
个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回
答第一、二、三、四轮问题的概率分别为
回答互不影响.
提示 不一样.三个事件A,B,C两两独立,是指A与B,B与C,A与C都是相互独立
的,但在此条件之下,并不能说三个事件A,B,C相互独立.A,B,C相互独立的条
件更严格一些,它要求三个事件中任何一个事件发生与否不影响另外任何
一个事件发生的概率,三个事件中任何两个事件同时发生与否也不影响另
外一个事件发生的概率.从充分必要条件的角度来看,“两两独立”是“相互
延伸探究 若本例条件“3

吴赣昌-第五版-经管类概率论与数理统计课后习题-完整版

吴赣昌-第五版-经管类概率论与数理统计课后习题-完整版

吴赣昌-第五版-经管类概率论与数理统计课后习题-完整版随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.3 古典概型现习题3现习题4现习题5现习题6现习题7现习题8现习题9现习题101.4 条件概率习题3 空现习题41.5 事件的独立性现习题6现习题7现习题8总习题1习题3. 证明下列等式:习题4.现习题5习题6.习题7习题8习题9习题10习题11现习题12习题13习题14习题15习题16习题17习题18习题19习题20习题21习题22现习题23现习题24第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求λ.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.习题3一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.习题4 (空)习题5某加油站替出租车公司代营出租汽车业务,每出租一辆汽车,可从出租公司得到3元.因代营业务,每天加油站要多付给职工服务费60元,设每天出租汽车数X是一个随机变量,它的概率分布如下:求因代营业务得到的收入大于当天的额外支出费用的概率.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?习题7设某运动员投篮命中的概率为0.6,求他一次投篮时,投篮命中的概率分布.习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布.习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.习题10 纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005,在τ这段时间内断头次数不大于2的概率.习题11设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.2.3 随机变量的分布函数习题1.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.习题4习题5习题6在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.2.4 连续型随机变量及其概率密度习题1习题2习题3习题4习题5设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.习题6习题7 (空) 习题8习题9习题10习题112.5 随机变量函数的分布习题1习题2习题3习题4习题5习题6总习题二1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、。

第五讲:事件的独立性

第五讲:事件的独立性
3 2
P( A1 A2 A3 A4 A5 ) P( A1 ) P( A2 ) P( A3 ) P( A4 ) P( A5 ) p q 3 2 每种情况发生的概率均为:p q 3 3 2 故P( B) C5 p q
例3:一条自动生产线上的产品的一级品率为0.6, 现检查10件,求至少有两件一级品的概率。 解:设A=“检查一件是一级品”, 则每次检查时P(A)=0.6; 现检查了10件, B=“至少有两件一级品” =“A至少发生2次”。
P( A ) P( B ) P(C ) P( A B ) P( B C ) P( A C ) P( A B C )
(2)某时有机床因无人照管而停工:
0.059 P( ABC ABC ABC ABC ) AB AC BC
二、独立试验概型(贝努利概型)(P16)
则称事件A1,A2, ,An两两独立.
定义:设A1,A2, ,An是n个事件,若其中任意两个事件之间是相互独立的,
记在P15
独立事件积的概率等于概率的积
例2:甲、乙、丙3部机床独立工作,由一个工人照管,某时 它们不需要工人照管的概率分别为0.9、0.8、0.85。求某时有 机床需要工人照管的概率以及机床因无人照管而停工的概率。
乘法公式
P( AB) P( A) P( B / A) P( B) P( A / B)
推广:
两个事件同时发生 的概率等于其中一个事 件发生的概率乘以这个 事件发生的条件下另一 事件发生的概率
P( A1 A2 An ) P( A1 ) P( A2 / A1 ) P( A3 / A1 A2 ) P( An / A1 A2 An 1 ).
P( A1 A2 A3 ) P( A1 ) P( A2 ) P( A3 ) p 2 q

概率与统计中的事件独立性与互斥性的应用

概率与统计中的事件独立性与互斥性的应用

概率与统计中的事件独立性与互斥性的应用概率与统计是数学中的一个重要分支,它研究随机事件的发生规律和统计推断。

在概率与统计的研究中,事件独立性与互斥性是两个基本概念,对于事件的发生概率和统计分析具有重要作用。

一、事件独立性的应用事件独立性是指两个或多个事件之间的发生不相互影响,即一个事件的发生与另一个事件的发生无关。

在实际应用中,事件独立性有着广泛的应用。

1. 投掷硬币的实验假设有一个标准的硬币,投掷一次硬币的结果只有两种可能,即正面或反面。

如果连续投掷两次硬币,事件A表示第一次投掷得到正面,事件B表示第二次投掷得到正面。

由于每次投掷硬币的结果是独立的,所以事件A发生的概率与事件B发生的概率是独立的。

根据概率计算公式,事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率,即P(A∩B) = P(A) × P(B)。

2. 考试成绩的统计在考试中,每个学生的成绩都是相互独立的。

假设有100个学生参加考试,事件A表示第一个学生及格,事件B表示第二个学生及格。

根据事件独立性的特性,第一个学生及格的概率等于整体及格的概率,即P(A) = P(B)。

二、事件互斥性的应用事件互斥性是指两个事件之间的发生存在排斥关系,即两个事件不能同时发生。

在实际应用中,事件互斥性也有着广泛的应用。

1. 球员投篮实验假设有两名篮球运动员进行投篮实验,事件A表示第一名篮球运动员投中篮筐,事件B表示第二名篮球运动员投中篮筐。

由于两名篮球运动员的投篮结果存在排斥关系,即只有一个人能够投中篮筐,所以事件A和事件B是互斥事件。

根据概率计算公式,事件A和事件B同时发生的概率等于0,即P(A∩B) = 0。

2. 商品促销活动在商品促销活动中,通常会进行多种促销方式,例如“买一送一”和“打折”。

假设一个顾客只能选择其中一种促销方式,事件A表示顾客选择“买一送一”,事件B表示顾客选择“打折”。

由于顾客只能选择其中一种促销方式,所以事件A和事件B是互斥事件。

概率论之随机事件的独立性

概率论之随机事件的独立性

随机事件及其概率
A 与 B 之间没有关联或关联很微弱
A 与 B 相互独立
P(AB) P(A)P(B)
§4随机事件的独立性
随机事件及其概率
例一台自动报警器由雷达和计算机两部分组成,两 部分如有任何一个出现故障,报警器就失灵.若使用 一年后,雷达出故障的概率为 0.2,计算机出故障的 概率为 0.1,求这个报警器使用一年后失灵的概率.
§4随机事件的独立性
随机事件及其概率
定理 当 P(A) 0 ,P(B) 0 时,若 A, B 相互独立,则
A, B 相容;若 A, B 互不相容,则 A, B 不相互独立.
证明 (1)若 A,B 相互独立,则 P(AB)=P(A)P(B)≠ 0 ,即 A,B 是相容的.
(2)若 A,B 互不相容,则 AB=,P(AB)=0. 因此 0=P(AB)≠ P(A)P(B)>0,即 A,B 是不相互独立.

1 4
则三事件 A, B, C 两两独立.
由于 P( ABC ) 1 1 P( A)P(B)P(C ), 48
因此 A,B,互独立
随机事件及其概率
定义 设 A1, A2, , An 是 n(n 2) 个事件,若其中任意 两个事件都相互独立,则称 A1, A2 , , An 两两独立 (Independence between them).
Pn (k) Cnk pk qnk , q 1 p, k 0,1, 2, , n
证明 设 Ai {第 i 次试验中事件 A 发生},1 i n ; Bk { n 次试验中事件 A 恰好出现 k 次}, 0 k n , 则
§4随机事件的独立性
随机事件及其概率
Bk A1A2 Ak Ak1 An

1-6 随机事件的独立性

1-6 随机事件的独立性

2. 重要结论 A, B 相互独立 A 与 B, A 与 B , A 与 B相互独立.
3.
设事件 A1 , A2 ,, An相互独立 ,则
1 (1 0.9)(1 0.8)
= 0.98
1 [1 P ( A)][1 P ( B)]
二、多个事件的独立性
1. 三事件两两独立的概念 定义 设 A, B , C 是 三 个 事 件 ,如 果 满 足 等 式
P ( AB ) P ( A) P ( B ), P ( BC ) P ( B ) P (C ), P ( AC ) P ( A) P (C ), 则 称 事 件A, B , C 两 两 独 立.
(2)B ( A1 A3 )( A2 A4 )
P( B) P( A1 A2 A3 A4 )
P( A1 A2) P( A3 A4 ) P( A1 A2 A3 A4 ) P( A1 ) P( A2) P( A3 ) P( A4 ) P( A1 ) P( A2 ) P( A3 ) P( A4 )
定义1 设 A, B 是两事件 , 如果满足等式
P ( AB ) P ( A) P ( B ) 则称事件 A, B 相互独立, 简称 A, B 独立.
定理1 设A、B 是两个事件,若 P(B)>0, 则A与B
独立 的充分必要条件是
P(A|B)=P(A).
类似有:若 P(A)>0, 则A与B独立 P ( B | A) P ( B).
A1 , A2 ,, An相互独立
A1 , A2 ,, An两两独立
两个结论
1. 若事件 A1 , A2 , , An ( n 2) 相互独立 , 则 其中任意 k ( 2 k n)个事件也是相互独立 .

随机事件的独立性与条件概率

随机事件的独立性与条件概率

随机事件的独立性与条件概率随机事件的独立性和条件概率是概率论中的重要概念,它们在统计学和实际应用中有着广泛的应用。

了解和理解这些概念对于正确分析和解释随机事件具有重要意义。

首先,我们来看随机事件的独立性。

两个事件A和B被称为独立事件,当且仅当事件A的发生与事件B的发生是相互独立的,即事件A的发生与事件B的发生没有任何关联。

数学上可以用概率的乘法定理来描述独立事件的概率关系。

假设事件A的概率为P(A),事件B的概率为P(B),则当且仅当P(A∩B) = P(A) × P(B)时,事件A和B是独立的。

例如,假设我们有一副扑克牌,抽出一张牌的事件A是抽出红心,抽出一张牌的事件B是抽出Q牌。

如果P(A) = 1/4,P(B) = 1/13,而P(A∩B) = 1/52,则事件A 和B是独立的,因为P(A∩B) = P(A) × P(B)。

另外一个重要的概念是条件概率。

条件概率是指在已经发生了某个事件的条件下,另一个事件发生的概率。

条件概率用P(A|B)表示,读作“在事件B已经发生的条件下,事件A发生的概率”。

条件概率可以通过概率的除法定理来计算。

假设事件A和事件B是两个不独立的事件,则P(A|B) = P(A∩B) / P(B)。

以前面的例子为例,已经抽出的牌是红心的条件下,抽出Q牌的概率即为P(B|A) = P(A∩B) / P(A)。

根据前面的数据,我们可以计算得到P(B|A) = (1/52) / (1/4) = 1/13,即在已经抽出红心的条件下,抽出Q牌的概率为1/13。

通过条件概率的概念,我们可以进一步引入贝叶斯公式。

贝叶斯公式是一种计算条件概率的方法,它是由英国数学家贝叶斯提出的。

贝叶斯公式可以用于计算在一些已知条件下,另一个事件发生的概率。

贝叶斯公式可以表示为P(A|B) = P(B|A) × P(A) / P(B)。

贝叶斯公式的应用非常广泛,例如在医疗诊断、信号处理和机器学习等领域中都有重要的应用。

随机事件相互独立和两两独立性的探究

随机事件相互独立和两两独立性的探究

1引言随机事件相互独立与两两独立是概率论中非常重要的概念。

对这两个概念的理解,容易出现一些困惑。

例如,事件相互独立是不是事件之间发生没有影响?事件相互独立的本质是什么?多个事件相互独立与两两独立有区别吗?等等。

本文将通过具体实例对这些问题进行探究。

2事件相互独立的本质定义1:设A 和B 是任意两个随机事件,如果有P (AB )=P (A )P (B ),则称事件A 和B 相互独立,简称独立。

否则就称不独立或相依[1]。

关于事件独立性判断,一般都以直觉判断为先导。

例如,在可靠性理论中,人们总会假设系统各个元件的工作是相互独立的;又如,一枚骰子掷两次,则每次出现6点的结果是相互独立的;再如,彩票问题中,每次摇奖的过程也是相互独立的。

这些独立性可以直接凭直观就可以判断。

情况复杂则辅以定义1方法进行缜密计算。

直觉上,人们通常会认为:事件A 与B 相互独立,是指事件A 发生或不发生对B 发生或不发生没有影响。

但这种直觉是否正确?如何刻画独立的这种“没有影响”?通过下面实例进行分析。

例1:掷一枚硬币2次,观察正反面情况,样本空间为:{(正,正),(正,反),(反,正),(反,反)}以A 记“第一次出现正面”,以B 记“第二次出现正面”。

显然,事件A 和B 独立。

但A 、B 发生与否相互没有影响吗?从事件关系看:B 发生,有A │B={(正,正)};B 没发生,有A │B ⎺={(正,反)}。

同样,A 发生,有B │A ={(正,正)},A 没发生,有B │A ⎺={(反,正)}。

可见,B 发生与否对A 都产生了影响,A 发生与否也都对B 产生了影响。

因此,人们认为的“事件之间发生与否没有影响”并不是“事件相互独立”的本质特征。

从概率角度来看:无论B 发生与否,都有P (A │B )=P (A │B ⎺);无论A 发生与否,都有P (B │A )=P (B/A ⎺)。

这才是事件独立的本质,即“事件A 与B 发生相互不影响”等价于“P (A │随机事件相互独立和两两独立性的探究Research on the Mutual Independence and the Pairwise Independence of Random Events刘淑环(中国政法大学科学技术教学部,北京102249)LIU Shu-huan(ScienceandTechnologyTeachingDepartment ofChinaUniversityofPolitical Science andLaw,Beijing102249,China)【摘要】通过实例分析事件相互独立与两两独立的本质,展现事件相互独立与两两独立的关系,对学生正确理解并适用事件相互独立具有重要指导作用。

人教B版必修第二册 5.3.5随机事件的独立性 课件(43张)

人教B版必修第二册 5.3.5随机事件的独立性 课件(43张)

核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
答案
(2)设事件“甲、乙两人在罚球线各投球二次均不命中”的概率为 P1,则 P1=P(-A -A -B -B )=P(-A )P(-A )P(-B )P(-B ) =12×12×35×35=1900. ∴甲、乙两人在罚球线各投球二次,至少一次命中的概率为 1-P1=19010.
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
答案
(2)有三个小孩的家庭,小孩为男孩、女孩的样本空间为 Ω={(男,男, 男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男, 女),(女,女,男),(女,女,女)},共包含 8 个样本点,由等可能性知每个 样本点发生的概率均为18.这时 A 包含 6 个样本点,B 包含 4 个样本点,AB 包 含 3 个样本点.
随堂水平达标
课后课时精练
[解] 记“甲投一次命中”为事件 A,“乙投一次命中”为事件 B,则 P(A)=12,P(B)=25,P(-A )=12,P(-B )=53.
(1)设事件“甲、乙两人在罚球线各投球一次,恰好命中一次”的概率为 P,则
P=P(A-B )+P(-A B)=P(A)P(-B )+P(-A )P(B) =12×35+12×25=150=21. ∴甲、乙两人在罚球线各投球一次,恰好命中一次的概率为12.
课后课时精练
题型一 事件独立性的判断 例 1 一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令 A ={一个家庭中既有男孩又有女孩},B={一个家庭中最多有一个女孩}.对下 述两种情形,讨论 A 与 B 的独立性: (1)家庭中有两个小孩; (2)家庭中有三个小孩.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P(AB)=P(A)P(B) P(AC)=P(A)P(C) P(BC)=P(B) P(C) P(ABC)=P(A)P(B)P(C) 则称A, B, C是三个相互独立的随机事件。若 前三个等式成立,则称A, B, C是两两相互 独立事件。
例2、一均匀正四面体,其一、二、三面分别 染成红、白、黑三色,第四面染上红白黑
例4、(系统可靠性)
设一电路由5个同样的电子元件组成(如下图 所示),每个元件正常工作的概率(元件的可
靠性)为p,元件损坏即断路。每个元件工作状 况互相独立,求此电路的可靠性(线路两端保
持连通的概率)。
1
2
5
3
4
其中Bi Ai或Ai
n
n
I (3)A1, A2 ,L An独立,则P( Ai ) P( Ai )
i 1
i 1
n
n
n
P(UAi ) 1 P( Ai ) 1 (1 P( Ai ))
i 1Βιβλιοθήκη i 1i 1例3、n个人组成一个小组,在同一时间内分别 破译一份密码,假定每个人能译出的概率都是 0.7,若要以99.9999%的把握译出,问n至少为 几?
三色。现以A、B、C分别记投掷一次四面 体出现红、白、黑颜色的事件,证明: A、 B、C两两独立,但不相互独立。
定义:设事件 A1, A2,L An,若有
P( Ai Aj ) P( Ai )P( Aj )
1i j n
P(
Ai
Aj
Ak
)
P(
Ai
)P(
Aj )P( M
Ak
)
1i j k n
A、B互相独立,记为i.d.。
定理:若事件A与B相互独立,且
P(A) 0, P(B) 0 则 P(A B) P(A), P(B | A) P(B)
独立扩张定理:事件A与B独立的充要条件是
{A, B}、 {A, B} 、{A, B} 也相互独立。
二、多个随机事件的独立性 定义:设A, B, C是三个事件,若满足:
§1.5 事件的独立性 一、 两个事件的独立性
例1、在20个产品中有2个次品,从中接连抽两 个产品,第一个产品抽得后放回,再抽第二个 产品,求 (1)已知第一次取得次品的情况下,第二次取 得次品的概率; (2)第二次取得次品的概率。
定义:设事件A、B是某一随机试验的任意两个
事件,若满足 P(AB) P(A)P(B),则称事件
n
n
I
P( Ai ) P( Ai )
i 1
i 1
则称 A1, A2,L An 相互独立。
(1) A1, A2,L An 相互独立,则其中任取
注 意
k个事件 Ai1 , Ai2 ,L Aik (k 2,3,L n 1) 也相互
独立;反之不一定。
(2)A1, A2,L An独立,则B1, B2,L Bn也相互独立,
相关文档
最新文档