数值分析历年考题

合集下载

数值分析试题与答案

数值分析试题与答案

一、单项选择题(每小题3分,共15分)1. 和分别作为π(de)近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y (de)拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x =B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =(de)根(de)牛顿法收敛,则它具有( )敛速.A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到(de)第3个方程( ).A .232x x -+=B .232 1.5 3.5x x -+=C .2323x x -+=D .230.5 1.5x x -=-二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根.5. 取步长0.1h =,用欧拉法解初值问题()211y y yx y ⎧'=+⎪⎨⎪=⎩(de)计算公式 .0,1,2分 人三、计算题(每题15分,共60分)1. 已知函数211y x =+(de)一组数据:求分段线性插值函数,并计算()1.5f (de)近似值.1. 解 []0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---[]1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--所以分段线性插值函数为()[][]10.50,10.80.31,2x x L x x x ⎧-∈⎪=⎨-∈⎪⎩ ()1.50.80.3 1.50.35L =-⨯=2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X (保留小数点后五位数字).1.解 原方程组同解变形为1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m =高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间(de)近似根(1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到. 3. 解()331f x x x =--,()130f =-<,()210f =>()233f x x '=-,()12f x x ''=,()2240f =>,故取2x =作初始值4. 写出梯形公式和辛卜生公式,并用来分别计算积分111dxx+⎰.四、证明题(本题10分)确定下列求积公式中(de)待定系数,并证明确定后(de)求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得(de)近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商 ()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X .4.求方程 21.250x x --= (de)近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么 1______x =。

数值分析试题集

数值分析试题集

..数值分析试题集(试卷一)一( 10 分)已知 x 1* 1.3409 ,x 2* 1.0125 都是由四舍五入产生的近似值, 判断 x 1*x 2* 及 x 1* x 2*有几位有效数字。

二( 10 分)由下表求插值多项式x 01 2 y2 34 y1- 1三( 15 分)设 f ( x)C 4 [a,b] , H ( x )是满足下列条件的三次多项式H (a) f (a) , H (b) f (b) , H (c)f (c) , H (c) f (c)( a c b )求 f (x)H ( x) ,并证明之。

12四( 15 分)计算13 dx ,10 2。

x五( 15 分)在 [0,2]上取 x 0 0 , x 1 1 , x 22 ,用二种方法构造求积公式,并给出其公式的代数精度。

六( 10 分)证明改进的尢拉法的精度是 2 阶的。

七( 10 分)对模型 yy , 0 ,讨论改进的尢拉法的稳定性。

八( 15分)求方程 x 34x 2 7x 1 0 在 -1.2 附近的近似值,10 3。

-----------------------------------------------------------------------------------------------------------------------------(试卷二)一填空( 4*2 分)1 {k ( x) } k 0 是区间 [0, 1]上的权函数为( x) x 2 的最高项系数为 1 的正交多项式族,其中10 (x)1,则x0 ( x) dx ------------------- , 1 ( x) ------------------。

2 12 A,则 A1 4----------- ,( A) ----------------- 。

a 1 2 时, A 可作 LU 分解。

3 设 A,当 a 满足条件 ---------------- 14..4 设非线性方程 f ( x) (x33x23x1)( x 3) 0 ,其根 x1* 3 , x2*1,则求 x1* 的近似值时,二阶局部收敛的牛顿迭代公式是--------------------------- 。

数值分析试题及答案

数值分析试题及答案

数值分析试题及答案一、选择题1. 下列哪个方法不适合用于求解非线性方程的根?A. 二分法B. 牛顿法C. 弦截法D. 正割法2. 当使用二分法求解非线性方程的根时,需要满足的条件是:A. 函数f(x)在区间[a, b]上连续B. 函数f(x)在区间[a, b]上单调递增C. 函数f(x)在区间[a, b]上存在根D. 函数f(x)在区间[a, b]上可导3. 数值积分是通过将定积分转化为求和的方法来近似计算积分值的过程。

下列哪个方法是常用的数值积分方法?A. 矩形法则B. 辛普森规则C. 梯形规则D. 高斯-勒让德法则4. 龙格-库塔法是常用于求解常微分方程的数值解法。

以下哪个选项是描述龙格-库塔法的特点?A. 该方法是一种多步法B. 该方法是一种多项式插值法C. 该方法是一种单步法D. 该方法是一种数值积分法5. 用有限差分法求解偏微分方程时,通常需要进行网格剖分。

以下哪个选项是常用的网格剖分方法?A. 多边形剖分法B. 三角剖分法C. 矩形剖分法D. 圆形剖分法二、解答题1. 将函数f(x) = e^x 在区间[0, 1]上用复化梯形规则进行数值积分,分为6个子区间,求得的近似积分值为多少?解:将区间[0, 1]等分为6个子区间,每个子区间的长度为h = (1-0)/6 = 1/6。

根据复化梯形规则的公式,近似积分值为:I ≈ (1/2) * h * [f(0) + 2f(1/6) + 2f(2/6) + 2f(3/6) + 2f(4/6) + 2f(5/6) +f(1)]≈ (1/2) * (1/6) * [e^0 + 2e^(1/6) + 2e^(2/6) + 2e^(3/6) + 2e^(4/6) +2e^(5/6) + e^1]2. 使用二分法求解方程 x^3 - 3x + 1 = 0 在区间[1, 2]上的根。

要求精确到小数点后三位。

解:首先需要判断方程在区间[1, 2]上是否存在根。

数值分析期末试题及答案

数值分析期末试题及答案

数值分析期末试题及答案试题一:1. 简答题(共10分)a) 什么是数值分析?它的主要应用领域是什么?b) 请简要解释迭代法和直接法在数值计算中的区别。

2. 填空题(共10分)a) 欧拉方法是一种______型的数值解法。

b) 二分法是一种______法则。

c) 梯形法则是一种______型的数值积分方法。

3. 计算题(共80分)将以下函数进行数值求解:a) 通过使用二分法求解方程 f(x) = x^3 - 4x - 9 = 0 的近似解。

b) 利用欧拉方法求解微分方程 dy/dx = x^2 + 2x + 1, y(0) = 1 在 x = 1 处的解。

c) 使用梯形法则计算积分∫[0, π/4] sin(x) dx 的近似值。

试题二:1. 简答题(共10分)a) 请解释什么是舍入误差,并描述它在数值计算中的影响。

b) 请解释牛顿插值多项式的概念及其应用。

2. 填空题(共10分)a) 数值稳定性通过______号检查。

b) 龙格-库塔法是一种______计算方法。

c) 零点的迭代法在本质上是将方程______转化为______方程。

3. 计算题(共80分)使用牛顿插值多项式进行以下计算:a) 已知插值节点 (-2, 1), (-1, 1), (0, 2), (1, 4),求在 x = 0.5 处的插值多项式值。

b) 已知插值节点 (0, 1), (1, 2), (3, 7),求插值多项式,并计算在 x = 2 处的值。

c) 使用 4 阶龙格-库塔法求解微分方程 dy/dx = x^2 + 1, y(0) = 1。

答案:试题一:1. a) 数值分析是研究使用数值方法解决数学问题的一门学科。

它的主要应用领域包括数值微积分、数值代数、插值和逼近、求解非线性方程、数值积分和数值解微分方程等。

b) 迭代法和直接法是数值计算中常用的两种方法。

迭代法通过反复迭代逼近解,直到满足所需精度为止;而直接法则通过一系列代数运算直接得到解。

数值分析期末试题及答案

数值分析期末试题及答案

数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。

答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。

答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。

答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。

答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。

解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。

拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。

数值分析试卷及答案

数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。

答:牛顿-科特斯公式2. 数值微分的基本公式是_________。

答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。

答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。

答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。

数值分析练习题加答案(一)

数值分析练习题加答案(一)

数值分析期末考试一、 设80~=x ,若要确保其近似数的相对误差限为0.1%,则它的近似数x 至少取几位有效数字?(4分)解:设x 有n 位有效数字。

因为98180648=<<=,所以可得x 的第一位有效数字为8(1分) 又因为21101011000110821--⨯=<⨯⨯≤n ε,令321=⇒-=-n n ,可知x 至少具有3位有效数字(3分)。

二、求矩阵A 的条件数1)(A Cond (4分)。

其中⎥⎦⎤⎢⎣⎡=4231A 解:⎥⎦⎤⎢⎣⎡--=-5.05.1121A (1分) 1A =7(1分) 2711=-A (1分)249)(1=A Cond (1分)三、用列主元Gauss 消元法法求解以下方程组(6分)942822032321321321=++-=++--=+-x x x x x x x x x解:→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----5.245.2405.35.230914220321821191429142821120321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---8175835005,245.24091425.33.2305.245.2409142(4分) 等价三角方程组为:⎪⎪⎩⎪⎪⎨⎧-=-=+-=++,8175835,5.245.24,942332321x x x x x x (1分)回代得1,3,5123==-=x x x (1分)四、设.0,2,3,1,103)(3210234=-===-+-=x x x x x x x x f 1)求以3210,,,x x x x 为节3次Lagrange 多项式;(6分) 2)求以3210,,,x x x x 为节3次Newton 多项式;(6分)3)给出以上插值多项式的插值余项的表达式(3分)解:由0,2,3,13210=-===x x x x 可得10)(,34)(,1)(,11)(3210-==-=-=x f x f x f x f即得: +------+------=))()(())()(()())()(())()(()()(312101320130201032103x x x x x x x x x x x x x f x x x x x x x x x x x x x f x L=------+------))()(())()(()())()(())()(()(23130321033212023102x x x x x x x x x x x x x f x x x x x x x x x x x x x f+-+--+-⨯-+-+--+-⨯-)03)(23)(13()0)(2)(1()1()01)(21)(31()0)(2)(3(11x x x x x x326610.)20)(30)(10()2)(3)(1()10()02)(32)(12()0)(3)(1(34x x x x x x x x x -+--=+--+--⨯-+---------⨯2)计算差商表如下:i x )(i x f 一阶差商 二阶差商 三阶差商1 -11 3 -1 5 -2 34 -7 4 0-10-225-1则=+-----+-+-=)2)(3)(1()3)(1(4)1(511)(3x x x x x x x N326610x x x -+--3))2)(3)(1())()()((!4)()(3210)4(3+--=----=x x x x x x x x x x x x f x R ξ五、给定方程组b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100131w w w w A 。

(完整)数值分析历年考题

(完整)数值分析历年考题

数值分析A 试题2007.1第一部分:填空题10⨯51.设3112A ⎛⎫= ⎪⎝⎭,则A ∞=___________ 2()cond A =___________2.将4111A ⎛⎫= ⎪⎝⎭分解成TA LL =,则对角元为正的下三角阵L =___________,请用线性最小二乘拟合方法确定拟合函数()bx f x ae =中的参数:a = ___________ b =___________4.方程13cos 2044x x π--=在[0,1]上有 个根,若初值取00.95x =,迭代方法113cos 244k k x x π+=-的收敛阶是5.解方程2210x x -+=的Newton 迭代方法为___________,其收敛阶为___________6。

设()s x = 3232323,[0,1]31,[1,2]ax x x x x x bx x +-+∈--+∈为三次样条函数,则a = ___________ b =___________ 7。

要想求积公式:1121()(()f x dx A f f x -≈+⎰的代数精度尽可能高,参数1A = ___________ 2x =___________此时其代数精度为:___________8.用线性多步法2121(0.50.5)n n n n n y y h f f f ++++-=-+来求解初值问题00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,该方法的局部截断误差为___________,设,0,f y μμ=〈其绝对稳定性空间是___________9。

用线性多步法2121()n n n n n y ay by h f f ++++-+=-来求解初值问题00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,希望该方法的阶尽可能高,那么a = ___________ b =___________,此时该方法是几阶的:___________10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析A 试题2007.1第一部分:填空题10⨯5 1.设3112A ⎛⎫=⎪⎝⎭,则A ∞=___________ 2()cond A =___________ 2.将4111A ⎛⎫= ⎪⎝⎭分解成TA LL =,则对角元为正的下三角阵L =___________,请用线性最小二乘拟合方法确定拟合函数()bxf x ae =中的参数:a = ___________b =___________4.方程13cos 2044x x π--=在[0,1]上有 个根,若初值取00.95x =,迭代方法113cos 244k k x x π+=-的收敛阶是5.解方程2210x x -+=的Newton 迭代方法为___________,其收敛阶为___________ 6.设()s x =3232323,[0,1]31,[1,2]ax x x x x x bx x +-+∈--+∈为三次样条函数,则a = ___________b =___________7.要想求积公式:1121()(()f x dx A f f x -≈+⎰的代数精度尽可能高,参数1A = ___________ 2x =___________此时其代数精度为:___________8.用线性多步法2121(0.50.5)n n n n n y y h f f f ++++-=-+来求解初值问题00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,该方法的局部截断误差为___________,设,0,f y μμ=〈其绝对稳定性空间是___________9.用线性多步法2121()n n n n n y ay by h f f ++++-+=-来求解初值问题00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,希望该方法的阶尽可能高,那么a =___________ b =___________,此时该方法是几阶的:___________10.已知[1,1]-上的四次legendre 多项式为4241()(35303)8L x x x =-+,求积分1241()()ax bx c L x dx -++=⎰___________其中,,a b c 为常数。

第二部分:解答题(共5题,其中1,2,5题必做,3,4选做一题)1.(14分)已知方程组,Ax b =其中31,32a A b a ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭(1)用迭代收敛的充要条件,分别求出是Jacobi 和Gauss-seidel 迭代法收敛的a 的取值范围,并给出这两种迭代法的渐进收敛速度比。

(2)当1, 1.2a ω=-=时,写出SOR 方法迭代矩阵的表达式和SOR 方法计算公式的分量形式,并取初值(0)(0,0)T x=,求(1)(2),x x(3)取1a =-,用迭代公式(1)()()()k k k x x Ax b β+=+-,试求使该迭代方法收敛的β的最大取值范围,最优β=?2(14分)用单步法1[(,)(,(,))]2n n n n n n n n hy y f x y f x h y hf x y +=++++求解初值问题:00'(,),(),y f x y y x y ==(1) 求出局部截断误差1n T +以及局部截断误差主项,该方法是几阶的? (2) 求绝对稳定性区间。

(写出求解过程)(3) 用该方法解初值问题0',(0)y y y y =-=时,步长h 满足什么条件才能保证方法的绝对稳定性。

3(14分)已知非线性方程组 11221124cos 01408x x x x x x +-=-+=,在矩形域212{|11,02}D x R x x =∈-≤≤≤≤内有解*x 。

提示:cos(0.5)0.8776,sin(0.5)0.4794.==(1) 取初值(0)(0.5,0.5)T x=,用Newton 迭代(1)x 。

(2) 记12(,)Tx x x =,并设122111(cos )4()11()48x x x x x ⎡⎤-+⎢⎥Φ=⎢⎥⎢⎥-⎢⎥⎣⎦。

试证明不动点迭代法(1)()k k x x +=Φ在*x 处具有局部收敛性。

4(14分)试构造Gauss 型求积公式:111221()()()(),x f x dx A f x A f x ρ-≈+⎰其中,权函数2().x x ρ=构造步骤如下:(1) 构造区间[1,1]-上权函数为2x 的首项系数为1的二次正交多项式,求出Gauss 点12,x x(2) 写出求积系数12,A A ,并给出求积公式代数精确度的次数 (3) 写出求积公式的余项表达式并化简5(8分)设A 为n 阶非奇异阵,B 是奇异阵,求证()2cond A A B A αα-≥,其中•为矩阵从属范数,α为常数,且0α≠第二份(2004.6)1. 给定二阶RK 基本公式,求相容阶数,判断是否收敛,考虑稳定性后对h 的要求112121()2(,)33(,)55n n n n n n hy y k k k f t y k f t h y hk +=++==++2. 给定一个分段函数,求全函数为1区间[0,2]的最佳二次平方逼近3. 给定对称正定矩阵(3*3),判断SOR 收敛性( 1.2ω=)、给定初值算一步,估计5次迭代误差4. 给定求积表达式,要求有最大的代数精度,确定参数和代数精度 ()f x 从0积到2 1122()()r f x r f x =+5. 给定两个矩阵1,A A (均为3*3),将A 变化为三对角阵,用QR 方法对1A 算一步求2A6. (1)设B 奇异,证明11A B AA A--=,其中•为算子范数。

(2)证明最佳n 次平方逼近函数奇偶性与()f x 相同第三份,韩老师2002.1 1. 单步法122(,)3(,(,))433n n n n n n n n h h h y y f t y f t y f t y +=++++ (1)1,n T +收敛阶 (2)绝对稳定区间(3)对052,1,y y y '=-+=在0.2,0.5,1h =时讨论数值扰动的稳定性 2.(1)2xe-的(1*2)pade 逼近(2)012(()()())I A f x f x f x =++确定012,,,A x x x ,判断代数精度,是否高斯 3. 给定()F x (1) 11(),(1,1,1)4T k k x x F x x *+=-=,证明局部收敛 (2) 给定0x ,用牛顿算两步 4. ,Ax b A =含未知数a (1)求a ,使TLL 存在 (2)给定a ,用cholesky 算L(3)给定a ,判断,jaccobi gauss siedel -是否收敛 (4)给定a ,SOR 算一步 5. 给定A(1)househoulder 算p ,1A pAp = (2)givens 对1A 做QR (3)算一步QR 迭代,得到2A6. 1B <,证明I B -可逆,并证明11I B B-<-第四份,郑老师2006年 填空:1. 3.1425926是π的几位有效数字2.3()1f x x x =+-,求均差[1,1,1],[0,1,2,3],[0,1,2,3,4]f f f3. simpson 公式得代数精度是几阶4. cot New es -积分系数k C 的和是多少5. 1201A ⎡⎤=⎢⎥⎣⎦,求12(),,,()A A A cond A ρ∞ 6. [1,1]-,求2()f x x =的最佳一次平方逼近,最佳一次一致逼近 7. 拉格朗日插值基函数,01,,n x x x 是相异节点,求10()nn k k l x x +∑简答:1. 高斯积分,120121()()()()x f x dx Af x Bf x Af x -=++⎰,使代数精度最高,求012,,,,A B x x x2. 1210223,31302A b ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,用LU 分解求解Ax b =3. 201021,111householder ⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦变换成准上三角阵,用givens 变换,第一种原点位移QR 分解求一步,求2A4. 证明严格对角占优矩阵A 可逆,且11min()ii ij i jAa a -∞≠<-∑除第一份是完整试卷外,其余皆为回忆版,可能有错误之处,大家凑合看,抓住要点即可。

2002年12月30晚7:20-9:20B卷一.(1)函数f(x)=|x|在[-1,1]上积分,求在空间span{1,x2}和span{x,x^3}上权函数p(x)=1的最佳平方逼近函数,并说明(2)对f(x)在[-1,1]上积分,求A0,A1,A2,x0,x2,使得A0*f(x0)+A1*f(0)+A2*f(x2)对求积公式有最高的代数精度,并求代数精度二.A=[201;02-1;1-11](1)求householder变换矩阵P,使得A1=PAP为三对角矩阵(2)用Givens变换,对A1进行QR分解;(3)若用QR方法求A1特征值,迭代一步,求A2,并证明A2和A相似三.线性二步法y(n+2)=y(n)+h*(fn-fn+2)fi=f(ti,yi)(1)求局部截断误差及主部,方法是几阶收敛(2)用根条件判断收敛性(3)绝对收敛域四.A为对称正定矩阵,最大特征值和最小特征值分别是λ1和λn,迭代X(k+1)=(I-w*A)*X(k)+w*b求w的范围,使迭代法收敛,并求w'使收敛速度最快。

五.非线性方程组F(x)=[x1^2-10*x1+x2^2+8;x1*x2^2+x1-10*x2+8]'=0令G(x)=[1/10*(x1^2+x2^2+8)1/10*(x1*x2^2+x1+8)](1)若0<x1,x2<3/2,用x=G(x)迭代,证明G(x)在D中存在唯一的不动点;(2)判断G(x)是否收敛?(3)写出牛顿迭代法的公式,并且取初值x0=(0.5,0.5)T,求出x1六.A,B为n*n阶矩阵,A非奇异,||A-B||<1/||A^(-1)||证明:(1)B非奇异(2)||B^(-1)||<=||A^(-1)||/(1-||A^(-1)||*||A-B||)(3)||A^(-1)-B^(-1)||<=||A^(-1)||^2*||A-B||/(1-||A^(-1)||*||A-B||)1.三点高斯-勒让得积分公式最佳平方逼近,f(x)=|x|,(-1,1)分别在span{1,x^2}和span{x,x^3}中求2.书上P236第31题第2小问原题,只是没告诉α的范围,要你求3.书上P257原题加了两问,证明收敛,再算一步4.householder变换Givens做QR分解5.Y(n+2)=Y(n)+h(fn+f(n+2))求局部TE,相容,根条件,绝对稳定区间6.定理1.12和推论,以及P167式3.4的应用||A-B||<1/||inv(A)||要证B可逆,||inv(B)||<=||inv(A)||/(1-||A-B||*||inv(A)||)||inv(A)-inv(B)||<=(||inv(A)||)^2*||A-B||/(1-||A-B||*||inv(A)||)填空:1A=[1,1/2;1/2,1/3]求||A||2和cond2(A)2J,GS迭代有关3f(x)=x^2+3x+2,在-2,-1,0,1,2五点确定得拉格朗日多项式插值多项式4一个稳定得算法计算一个良态得问题是否一定稳定(大致)计算1F(x)=....(1)证明x(k+1)=x(k)-1/4F'(x)收敛到其解x*=[1,1,1]'(2)用牛顿法在给定初值x0=[...]'下计算两步2显式和隐式欧拉法得局部截断误差和阶数,写出梯形法,及其阶数.....3A=[4,1,1;1,1,1;1,1,2];b=[...]'(1)housholder变换求A得QR变换(2)用QR变换结果计算Ax=b证明已知Ax=b,A(x+deltaX)=b+deltaB证明||deltaX||/||x||<=cond(A)*||deltaB||/||b||1.(1)求f(x)=|x|,区间[-1,1]上权函数为ρ(x)=1,在span{1,x2}上的最佳平方逼近(2)[0,1]上权函数为ρ(x)=1,求积分公式Af(0)+Bf(x1)+Cf(1)的参数使得代数精度尽可能高2。

相关文档
最新文档