解线性方程组的迭代法收敛速度

合集下载

线性方程组迭代法收敛性分析

线性方程组迭代法收敛性分析
k
lim Ak 0 .
k
(2.27)
由定理 2.5 知,
( A k ) Ak ,

( A)
由(2.27) 和(2.28)可得
k
Ak .
(2.28)
lim ( A) 0
k k
再由矩阵谱半径的定义可知一定有 ( A) 1 . (必要性) 若 ( A) 1 ,则有定理 2.5 的推论可知至少存在一个 0 使得一种范数
若有
lim x ( k ) x* , 即 lim xi( k ) xi* ,
k k
则有 lim x ( k ) x*
k 2
0.
常见的向量范数有: ① 1-范数
x 1 xi ;
i 1
n
② ∞-范数
x

max xi ;
1 i n
③ 2-范数
x 2 ( x ) ;
lim x x* lim G k x x* 0 ,
k
0
k


k


再由向量范数的定义可知
lim x k x* 0 ,
k
即迭代过程收敛. (必要性) 若迭代公式(2.20)收敛,即满足
lim x x* 0
k k


由此推论可知当 ( A) 1 时,至少存在一种范数 A 1 .
定 理 2.6 设 A R nn , 则 lim Ak 0 的 充 要 条 件 为 ( A) 1 . ( 其 中
k
Ak AA A)
k
证明: (充分性) 若 lim Ak 0 ,则由矩阵范数的定义可知

第2章解线性代数方程组的迭代法

第2章解线性代数方程组的迭代法

第二章解线性代数方程组的迭代法2. 1 引言在许多实际问题中,常常需要求解这样的线性代数方程组,它的系数矩阵数很高,但非零元素很少,人们称其为大型稀疏线性代数方程组,对于这类方程组,如果它乂不具有带状性,那么,再用直接法求解就不太有效,因为用直接法进行消元或矩阵的三角分解时,没有考虑到系数矩阵的稀疏性,破坏了系数矩阵的形状,导致了计算量的增加和存储单元的浪费,于是,人们常用迭代法求解大型稀疏线性代数方程组。

迭代法只需要存储系数矩阵的非零元素,这样,占用内存在单元较少,能解高阶线性代数方程组。

山于迭代法是通过逐次迭代来逼近方程组的解,因此,收敛性和收敛速度是构造迭代法时要注意的问题。

那么,是否可以构造一种适用于一般情况的迭代法呢?回答是否定的,这是因为不同的系数矩阵具有不同的性态,一般地,每一种迭代法都具有一定的适用范围,在本章的学习中将会看到,有时,某种方法对一类方程组迭代收敛,而对另一类方程组进行迭代时就会发散。

因此,我们应该学会针对具有不同性质的线性代数方程组,构造合适的迭代方法。

本章主要介绍一些基本的迭代法,并在一定的范围内讨论其中儿种方法的收敛法。

2. 2 基本迭代法考虑线性方程组如坷+如勺+…+气兀”二勺a2t x i+a22x2 + - + a2…x n =b2■•••••••••••(2. 1)采用矩阵和向量记号,我们可以把(2.1)式写成Ax = h(2.2)其中,为非奇异矩阵,设下面我们介绍雅可比(Jacobi)迭代,高斯-塞德尔(Gauss-Seidel)迭代与S0R迭代以及SS0R迭代的基本思想和算法。

为了方便地给出矩阵表示式,我们引进下列矩阵分裂:4SD-U,(2.3)其中-a2\-a n\(1)雅可比迭代的基本思想从式(2.1)的第i个方程中解出X t=(/ = 1,2,•••,«)我们把迭代前面的值代入上式右边,山计算得到等式左边的值作为一次迭代的新值,然后再把这个新值代入右边,再从左边得到一个新值,如此反复,就得到了雅可比迭代公式。

gauss-seidel迭代法收敛判断

gauss-seidel迭代法收敛判断

Gauss-Seidel迭代法是一种用于求解线性方程组的迭代算法,该算法在科学计算和工程领域被广泛应用。

在使用该算法时,我们需要考虑其收敛性,以确保结果的准确性和可靠性。

下面我们将介绍Gauss-Seidel迭代法收敛判断的相关内容。

1. 收敛性定义在使用迭代法求解线性方程组时,迭代算法的收敛性是一个非常重要的问题。

一个迭代算法如果能够在有限步内得到一个接近于真实解的近似解,就称为收敛。

否则,如果迭代算法无法收敛或者收敛速度非常慢,就需要考虑改进算法或者选择其他更适合的算法。

2. Gauss-Seidel迭代法Gauss-Seidel迭代法是一种逐次逼近法,它通过不断地逼近线性方程组的解来求得近似解。

这种迭代算法的优点是简单易行,适用于各种情况。

然而,它的收敛性需要进行严格的判断。

3. 收敛条件对于Gauss-Seidel迭代法,我们可以使用以下收敛条件来进行判断:a) 对角占优条件:如果线性方程组的系数矩阵是严格对角占优的,那么Gauss-Seidel迭代法一定收敛。

b) 正定条件:如果线性方程组的系数矩阵是正定的,即所有的特征值都是正的,那么Gauss-Seidel迭代法也一定收敛。

c) 非奇异条件:如果线性方程组的系数矩阵是非奇异的,即行列式不为0,那么Gauss-Seidel迭代法也一定收敛。

4. 不收敛的情况尽管Gauss-Seidel迭代法在很多情况下能够收敛,但也存在一些情况下它不收敛的情况。

当线性方程组的系数矩阵不满足对角占优条件、正定条件或者非奇异条件时,Gauss-Seidel迭代法就可能不收敛。

此时,我们需要考虑改进算法或者选择其他更适合的迭代算法。

5. 收敛速度除了考虑Gauss-Seidel迭代法的收敛性外,还需要关注其收敛速度。

一般来说,Gauss-Seidel迭代法的收敛速度相对较快,特别是在满足对角占优条件、正定条件或非奇异条件的情况下。

然而,如果在实际使用中发现收敛速度较慢,也可以考虑使用加速方法如SOR方法等来提高收敛速度。

37第七节 迭代法及其收敛性

37第七节 迭代法及其收敛性
x(k) x q x(k) x(k1) 1q
x(k) x qk x(1) x(0) 1q
证 因 (B)||B||=q<1, 所以迭代格式收敛, 且有 设 lim x (k) =x*,由 x(k+1) = Bx(k) + f , 得 x* = Bx* + f ,则
数学学院 信息与计算科学系
又 || Bk|| ||B||k ,有 lim||Bk||=0 , 故 lim B k =0,由1)知,迭代格式收敛。
数学学院 信息与计算科学系
三、迭代法的收敛速度
考察误差向量
e(k) =x(k) -x*=Bk ·e(0)
设B有n个线性无关的特征向量及相应的特征值为
1 ,2 , ,n ,
1 , 2 , , n
数学学院 信息与计算科学系
2) 由1)知,迭代格式收敛 lim Bk=O , 即lim||Bk||=0 ,从而存在 k ,使 || B k || <1,由谱半径 的性质有
[( B )]k = (B k ) ||B k ||<1,
故得
( B )<1,
因(B)=inf{||B||}且(B)<1,存在 >0及使 || B || ( B )+ <1,
取对数得 定义3 称
k s ln10
ln (B)
R(B) ln (B)
为迭代法 x(k+1) = Bx(k) + f 的收敛速度。 由此看出,当(B)<1愈小,速度R(B)就愈大,
所需要的迭代次数也就愈少。
数学学院 信息与计算科学系
定理 2 若 ||B||=q<1,则对任意x(0) 迭代格式 x(k+1) = Bx(k) + f 收敛 ,且有误差估计式

线性方程组迭代法收敛性分析

线性方程组迭代法收敛性分析
lim x x* lim G k x x* 0 ,
k
0
k


k


再由向量范数的定义可知
lim x k x* 0 ,
k
即迭代过程收敛. (必要性) 若迭代公式(2.20)收敛,即满足
lim x x* 0
k k


若有
lim x ( k ) x* , 即 lim xi( k ) xi* ,
k k
则有 lim x ( k ) x*
k 2
0.
常见的向量范数有: ① 1-范数
x 1 xi ;
i 1
n
② ∞-范数
x

max xi ;
1 i n
③ 2-范数
x 2 ( x ) ;
考查方程
Ax b ,
建立某种迭代公式
x
k 1
Gx d ,
k
步骤 1:观察系数矩阵 A 是否满足对角占优,满足则迭代法收敛,不满足转步骤
2;
步骤 2:计算迭代矩阵是否存在一种范数满足 G 1 (一般只计算 G 1 , G ) , 满足则迭代法收敛,不满足转步骤 3; 步骤 3:计算迭代矩阵的谱半径是否满足 (G ) 1 ,满足则迭代法收敛,不满足 则迭代法发散. 有了上面的结论,不仅让我们清楚地认识迭代法的收敛条件,也为我们利用 计算机进行迭代法的编程计算提供了理论依据.
因为 G 1 ,所以有
lim G
k k
k
x 0 x* .
(2.22)
0
(2.23)
由(2.22)和 (2.23)可知
lim x k x* 0

解线性方程组的迭代法收敛速度

解线性方程组的迭代法收敛速度

解线性方程组的迭代法收敛速度实验六解线性方程组的迭代法收敛速度.一、实验内容(1)选取不同的初始向量)0(x ,在给定的迭代误差要求下,用雅可比迭代和高斯-赛德尔迭代法法求解,观察得到的序列是否收敛?若收敛,记录迭代次数,分析计算结果并得出你的结论.(2)用SOR 迭代法求上述方程组的解,松弛系数ω取1<ω<2的不同值,在给定的迭代误差要求下.记录迭代次数,分析计算结果并得出你的结论.二、方法步骤雅克比迭代法:(1)输入A =(a ij )n×n ,b =(b 1,b 2,…,b n )T ,维数n ,x (0)=(x 1(0),x 2(0),…,x n (0))T ,容许误差ε,最大容许迭代次数N.(2)对i=1,2,3,…,n,置x i =x i(0). (3)置k=1.(4)对i=1,2,3,…,n,置y i =1a ii (b i∑a ij x j nj=1,j≠i ) (5)若max 1≤i≤≥n ‖y i ?x i ‖<ε输出y i (i =1,2,3,…,n),停机,否则转(6).(6)若kk,y i ==>x i (i =1,2,…,n),转(4),否则,输出失败信息,停机。

高斯-塞德尔迭代法(1)输入A =(a ij )n×n ,b =(b 1,b 2,…,b n )T ,维数n ,,x (0)=(x 1(0),x 2(0),…,x n (0))T ,容许误差ε,最大容许迭代次数N.(2)对i=1,2,3,…,n,置x i =x i (0)(3)置k=1.(4)对i=1,2,3,…,n,置y i =1ii (b i∑a ij x j nj=1,j≠i ) (5)若max 1≤i≤≥n ‖y i ?x i ‖<ε输出y i (i =1,2,3,…,n),停机,否则转(6).(6)若kk,y i ==>x i (i =1,2,…,n),转(4),否则,输出失败信息,停机。

数值分析第三章线性方程组迭代法

数值分析第三章线性方程组迭代法

数值分析第三章线性方程组迭代法线性方程组是数值分析中的重要问题之一,涉及求解线性方程组的迭代法也是该领域的研究重点之一、本文将对线性方程组迭代法进行深入探讨。

线性方程组的一般形式为AX=b,其中A是一个n×n的系数矩阵,x和b是n维向量。

许多实际问题,如电路分析、结构力学、物理模拟等,都可以归结为求解线性方程组的问题。

然而,当n很大时,直接求解线性方程组的方法计算量很大,效率低下。

因此,我们需要寻找一种更高效的方法来求解线性方程组。

线性方程组迭代法是一种基于迭代思想的求解线性方程组的方法。

其基本思想是通过构造一个序列{xn},使得序列中的每一项都逼近解向量x。

通过不断迭代,可以最终得到解向量x的一个近似解。

常用的线性方程组迭代法有雅可比迭代法、高斯-赛德尔迭代法和逐次超松弛迭代法等。

雅可比迭代法是其中的一种较为简单的迭代法。

其基本思想是通过分解系数矩阵A,将线性方程组AX=b转化为x=Tx+c的形式,其中T是一个与A有关的矩阵,c是一个常向量。

然后,通过不断迭代,生成序列xn,并使序列中的每一项都逼近解向量x。

高斯-赛德尔迭代法是雅可比迭代法的改进方法。

其核心思想是利用当前迭代步骤中已经求得的近似解向量的信息。

具体而言,每次迭代时,将前一次迭代得到的近似解向量中已经计算过的分量纳入计算,以加速收敛速度。

相比于雅可比迭代法,高斯-赛德尔迭代法的收敛速度更快。

逐次超松弛迭代法是高斯-赛德尔迭代法的改进方法。

其核心思想在于通过引入一个松弛因子ω,将高斯-赛德尔迭代法中的每次迭代变为x[k+1]=x[k]+ω(d[k+1]-x[k])的形式,其中d[k+1]是每次迭代计算得到的近似解向量的一个更新。

逐次超松弛迭代法可以根据问题的特点调整松弛因子的值,以获得更好的收敛性。

除了以上提到的三种迭代法,还有一些其他的线性方程组迭代法,如SOR迭代法、共轭梯度法等。

这些方法都具有不同的特点和适用范围,可以根据问题的具体情况选择合适的迭代法。

2.2 迭代法的一般形式与收敛性定理

2.2 迭代法的一般形式与收敛性定理

设aii0 (i=1,2,,n),并将A写成三部分
0 a11 a 21 0 a 22 A a n 1 ,1 a n 1 , 2 0 a nn a n 2 a n , n 1 a n1 0 a12 a1,n1 a1n 0 a 2 , n 1 a 2 n 0 a n 1, n 0 D LU. 0

k
B ( H )
k
两边取对数得: k ln ( H ) ln k
ln ln ( H )
定义:
ln ( H )
为迭代法(2.2.3)的渐近收敛速 度。
解线性方程组的迭代法
线性方程组
a11 x1 a12 x2 a x a x 21 1 22 2 an1 x1 an 2 x2 a1n xn b1 a2 n xn b2 ann xn bn
复习:矩阵的谱半径 设λ是矩阵A相应于特征向量x的特征值,即 Ax=λx 向量-矩阵范数的相容性,得到 |λ| || x ||=||λx|| =|| Ax|| ≤ || A || ||x|| 从而,对A的任何特征值λ均成立 |λ|≤|| A || ( 3)
设n阶矩阵A的n个特征值为λ1,λ2,…λn,称 ( A) max i
x ( k 1) x* H ( x ( k ) x* )
由此递推:x ( k 1) x* H k 1 ( x ( 0) x* ), k 0,1,2,
x 是线性方程组Ax=b的解
x* Hx* g
x
k 1
*

线性方程组的迭代式求解方法

线性方程组的迭代式求解方法

线性方程组的迭代式求解方法迭代法解方程的基本原理1.概述把 Ax=b 改写成 x=Bx+f ,如果这一迭代格式收敛,对这个式子不断迭代计算就可以得到方程组的解。

道理很简单:对 x^{(k+1)}=bx^{(k)}+f 两边取极限,显然如果收敛,则最终得到的解满足 \lim_{k\rightarrow\infty } x^{(k)}=x^*=Bx^*+f ,从而必然满足原方程 Ax^*=b 。

迭代方法的本质在于这一次的输出可以当作下一次的输入,从而能够实现循环往复的求解,方法收敛时,计算次数越多越接近真实值。

2.收敛条件充要条件:迭代格式 x=Bx+f 收敛的充要条件是 \rho (B)<1充分条件: \Vert B\Vert <1即 \Vert B\Vert <1 \Rightarrow \rho(B)<1\Leftrightarrow 迭代收敛一、Jacobi迭代法怎样改写Ax=b ,从而进行迭代求解呢?一种最简单的迭代方法就是把第i行的 x_i 分离出来(假定 a_{ii} \ne 0 ):\sum_{j=1}^{n}a_{ij}x_j=b_i\Rightarrow x_i=\frac{b_i-\sum_{j=1,j\ne i}^{n}a_{ij}x_j}{a_{ii}}\quad \\这就是Jacobi(雅可比)迭代法。

迭代格式给定x^{(0)}=\left[x_1^{(0)},x_2^{(0)},\cdots,x_n^{(0)}\rig ht]^T ,则Jacobi法的迭代格式(也称分量形式)为x_i^{(k+1)}=\frac{1}{a_{ii}}\left ( {b_i-\sum_{j=1,j\ne i}^{n}a_{ij}x_j^{(k)}}\right),\quadi=1,2,\cdots,n\\矩阵形式设 A=D-L-U。

Jacobi法的矩阵形式(也称向量形式)为x^{(k+1)}=B_Jx^{(k)}+D^{-1}b\\其中迭代矩阵 B_J=D^{-1}(L+U)收敛条件\begin{eqnarray} \left. \begin{array}{lll} \VertB_J\Vert <1 \\ A 严格对角占优\\ A, 2D-A对称正定\end{array} \right \} \end{eqnarray} \Rightarrow \rho (B_J)<1\Leftrightarrow 迭代收敛特别地,若 A 对称正定且为三对角,则 \rho^2(B_J)=\rho (B_G)<1 。

数值分析实验报告--实验6--解线性方程组的迭代法

数值分析实验报告--实验6--解线性方程组的迭代法

1 / 8数值分析实验六:解线性方程组的迭代法2016113 张威震1 病态线性方程组的求解1.1 问题描述理论的分析表明,求解病态的线性方程组是困难的。

实际情况是否如此,会出现怎样的现象呢?实验内容:考虑方程组Hx=b 的求解,其中系数矩阵H 为Hilbert 矩阵,,,1(),,,1,2,,1i j n n i j H h h i j n i j ⨯===+-这是一个著名的病态问题。

通过首先给定解(例如取为各个分量均为1)再计算出右端b 的办法给出确定的问题。

实验要求:(1)选择问题的维数为6,分别用Gauss 消去法、列主元Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法求解方程组,其各自的结果如何?将计算结果与问题的解比较,结论如何?(2)逐步增大问题的维数(至少到100),仍然用上述的方法来解它们,计算的结果如何?计算的结果说明了什么?(3)讨论病态问题求解的算法1.2 算法设计首先编写各种求解方法的函数,Gauss 消去法和列主元高斯消去法使用实验5中编写的函数myGauss.m 即可,Jacobi 迭代法函数文件为myJacobi.m ,GS 迭代法函数文件为myGS.m ,SOR 方法的函数文件为mySOR.m 。

1.3 实验结果1.3.1 不同迭代法球求解方程组的结果比较选择H 为6*6方阵,方程组的精确解为x* = (1, 1, 1, 1, 1, 1)T ,然后用矩阵乘法计算得到b ,再使用Gauss 顺序消去法、Gauss 列主元消去法、Jacobi 迭代法、G-S 迭代法和SOR 方法分别计算得到数值解x1、x2、x3、x4,并计算出各数值解与精确解之间的无穷范数。

Matlab 脚本文件为Experiment6_1.m 。

迭代法的初始解x 0 = (0, 0, 0, 0, 0, 0)T ,收敛准则为||x(k+1)-x(k)||∞<eps=1e-6,SOR方法的松弛因子选择为w=1.3,计算结果如表1。

线性方程组的迭代解法及收敛分析

线性方程组的迭代解法及收敛分析
2.8098
1.9583
0.8468
0.2974
9
1.0975
2.0954
2.8217
1.9788
0.8847
0.2533
10
1.0850
2.0738
2.8671
1.9735
0.8969
0.2041
11
1.0673
2.0645
2.8802
1.9843
0.9200
0.1723
12
1.0577
2.0509
2.9077
1.9828
0.9303
0.1400
13
1.0463
2.0437
2.9191
1.9887
0.9448
0.1174
14
1.0392
2.0350
2.9363
1.9886
0.9527
0.0959
15
1.0318
2.0297
2.9451
1.9920
0.9620
0.0801
16
1.0267
2.0241
Keywords:MATLAB,Mathematical model,Iterative method,ConvergenceSystem of linear equations
1
在实际生活中,存在着大量求解线性方程组的问题。这些方程组具有数据量大,系数矩阵稀疏,在一定精度保证下,只需要求解近似解等特点。线性方程组的迭代解法特别适合于这类方程组的求解,它具有程序设计简单,需要计算机的贮存单元少等特点,但也有收敛性与收敛速度问题。因此,研究线性方程组的迭代解法及收敛分析对于解决实际问题具有非常重要的作用。

数值计算方法中的迭代收敛速度分析

数值计算方法中的迭代收敛速度分析

数值计算方法中的迭代收敛速度分析数值计算方法是一种通过使用数值逼近来解决数学问题的方法。

在数值计算中,迭代方法是一种常用的技术,它通过反复应用某个迭代公式来逼近问题的解。

然而,迭代方法的收敛速度对于问题的求解效率和准确性有着重要的影响。

本文将针对数值计算方法中的迭代收敛速度进行分析。

1. 迭代收敛速度的概念迭代收敛速度是指迭代过程中逼近解的速度。

在数值计算中,我们通常希望迭代方法能够尽快地收敛到问题的解,以提高计算效率。

迭代收敛速度可以通过迭代误差的变化来评估,即每次迭代后解的改变程度。

2. 收敛速度的度量方法为了衡量迭代方法的收敛速度,我们可以使用多种度量方法,其中一种常用的方法是利用迭代误差的变化率。

具体而言,我们可以计算每次迭代后解的改变程度,然后将其与前一次迭代的误差进行比较。

如果每次迭代后误差的变化趋于减小,那么我们可以认为迭代方法具有较快的收敛速度。

3. 收敛速度的影响因素迭代方法的收敛速度受多个因素的影响,包括初始估计解、迭代公式的选择和问题的性质等。

首先,初始估计解的选择对于迭代收敛速度有着重要的影响。

如果初始估计解与真实解较为接近,那么迭代方法往往能够更快地收敛。

其次,迭代公式的选择也会对收敛速度产生影响。

一些迭代公式具有更快的收敛速度,而另一些则相对较慢。

最后,问题的性质也会对收敛速度产生影响。

一些问题可能具有较快的收敛速度,而另一些则可能需要更多的迭代次数才能达到收敛。

4. 常见的迭代方法及其收敛速度分析在数值计算中,有多种常见的迭代方法,如牛顿法、Jacobi迭代法和Gauss-Seidel迭代法等。

这些方法具有不同的收敛速度,并且适用于不同类型的问题。

4.1 牛顿法牛顿法是一种用于求解非线性方程的迭代方法。

它通过不断逼近函数的根来求解方程。

牛顿法的收敛速度通常是二阶收敛的,这意味着每次迭代后误差的平方会减小到原来的四分之一。

4.2 Jacobi迭代法Jacobi迭代法是一种用于求解线性方程组的迭代方法。

线性方程组迭代法收敛速度

线性方程组迭代法收敛速度

线性方程组迭代法收敛速度摘要:迭代法是按照某种规则构造一个向量序列{x k },使其极限向量x *是方程组Ax=b 的精确解。

本实验主要用Jacobi,G_S 和SOR 迭代法解线性方程,认识迭代法的含义以及迭代法初始值和方程组系数矩阵对收敛速度的影响。

关键词:Jacobi,G_S.SOR 迭代法,以及误差分析0.引言:一个方法是否有效要看得到具有某个精确度的近似解而付出的代价如何,通常以运算量和储存量的要求为标志。

在这个标准下,直接在很多情况下比迭代法号,但是对于大型的稀疏方程组来说,迭代法更适用。

学习迭代法一般有几个问题:(1)如何构造迭代数列?(2)构造迭代数列是否收敛? 在什么情况下收敛?(3)如果收敛。

收敛速度如何,迭代法初始值会对收敛速度有什么影响?1.实验内容:用迭代法求解b Ax =,其中2020⨯∈R A 为五对角矩阵202011324111322411113422411113422411113422411342A ⨯⎫⎛--⎪ ⎪ ---⎪ ⎪ ----⎪ =⎪⎪----⎪⎪ ----⎪ ⎪ ⎪--⎝⎭(1)选取不同的初始向量X)0(及右端向量b ,给定迭代误差要求,用Jacobi 迭代法和Gauss-Seidel 迭代法求解,观察得到的序列是否收敛?若收敛,记录迭代次数,分析计算结果并得出你的结论。

(2)用SOR 迭代法求上述方程组的解,松驰系数ω取21<<ω的不同值,在()(1)510k k X X +-∞-≤时停止迭代,记录迭代次数,分析计算结果与松驰系数ω的关系并得出你的结论。

(3)用MathCAD 指令求出系数矩阵的逆矩阵,再求出上述各个方程组的解,并与上述方法求出的解进行比较。

(1)Jacobi 迭代法内容:对Ax b =求解的一种方法,令A D L U =--,其中[]ij A a =,1122(,,,)nn D diag a a a = ,21313212,10000n n n n a a a L a a a -⎡⎤⎢⎥-⎢⎥⎢⎥--=⎢⎥⎢⎥⎢⎥---⎣⎦, 121312321,0000n n n n a a a a a U a ----⎡⎤⎢⎥--⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎣⎦则方程Ax b =可以写成1k k x Bx g -=+,其中11(),.B D L U g D b --=+=给定一个初始向量0x ,就可得到一个新的向量10x Bx g =+,以此类推,求出2x ,3x 。

计算收敛速度的公式(二)

计算收敛速度的公式(二)

计算收敛速度的公式(二)创作者手册:计算收敛速度的公式1. 收敛速度的定义收敛速度是指数值计算方法在迭代过程中逐渐接近准确解的速度。

通常用收敛速度比较快慢的标准是迭代法所需的迭代步数或误差范围。

2. 经典的计算收敛速度的公式在计算收敛速度时,我们常用以下公式来衡量收敛的迅速程度:第一公式:收敛次数公式收敛次数公式计算的是迭代法所需的迭代次数。

一般来说,收敛次数越小,表示收敛越快。

第二公式:误差范围公式误差范围公式计算的是误差的大小。

如果误差范围越小,表示收敛越快。

3. 举例解释下面我们通过一个简单的例子来解释这两个公式的用法:假设我们想要计算方程x^2 = 5的解。

首先,我们可以使用牛顿迭代法来逼近方程的解。

牛顿迭代法的迭代公式如下:公式1:x_{n+1} = x_n -其中,x_n表示第n次迭代的近似解,f(x)表示方程的左边减去右边的函数值,f’(x)表示f(x)的导数。

我们可以使用上述迭代公式来计算方程x^2 - 5 = 0的解。

假设初始近似解x_0=2。

根据牛顿迭代法,我们可以得到以下迭代过程:迭代1: x_1 = x_0 - = 2 - ≈迭代2: x_2 = x_1 - = - ≈迭代3: x_3 = x_2 - = - ≈我们可以看到,在第三次迭代之后,近似解已经收敛到了约等于。

接下来,我们可以使用收敛次数公式和误差范围公式来计算收敛速度。

假设我们设定的收敛误差为。

根据收敛误差公式,我们可以计算出迭代次数为3。

根据收敛次数公式和迭代次数,我们可以得知,牛顿迭代法计算方程x^2 = 5的解的收敛速度为快速收敛。

总结通过以上例子我们可以看到,计算收敛速度的公式在评估数值计算方法的迭代效果时起到了重要的作用。

通过收敛次数公式和误差范围公式,我们可以客观地衡量迭代方法的收敛速度,从而选择最适合的方法来求解数值问题。

计算收敛速度的公式

计算收敛速度的公式

计算收敛速度的公式收敛速度是指在求解数值问题时,迭代序列逐渐接近或达到解的程度有多快。

收敛速度的快慢直接影响到算法的有效性和计算效率。

对于一般的迭代问题,我们可以使用以下公式来计算收敛速度。

对于迭代法$x_{k+1}=g(x_k)$,其中$g(x)$是一个单调递增函数并且当$x$趋于解时有$g(x)=x$。

那么收敛速度可以通过以下两个常见公式来计算。

1.等比级数估计法(又称作速度估计法):假设序列的收敛速度是指数级的,即存在常数$c \geq 0$和$q \in (0, 1)$,使得$,x_{k+1} - x^*, \leq c, x_k - x^*,^q$。

其中$x^*$是迭代序列的极限值。

通过对上式取对数,我们可以得到$ \log_{10},x_{k+1} - x^*, \leq q \log_{10},x_k - x^*, + \log_{10} c $。

将该等式应用于多个递推式,我们可以得到$\log_{10},x_{k+1} - x^*, \leq q^k \log_{10},x_0 - x^*,+ \frac{\log_{10}c(1-q^k)}{1-q}$。

通过拟合序列的对数误差,可以估计出$q$的值,从而得到收敛速度。

2.牛顿法收敛速度公式:对于牛顿法$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$,其中$f(x)$是关于$x$的函数且$f'(x) \neq 0$,如果存在正数$k_0$和常数$C > 0$,使得对于所有$k \geq k_0$$,x_{k+1}-x^*,≤C,x_k-x^*,^2$其中$x^*$是迭代序列的极限值。

则称牛顿法的收敛速度为二阶收敛。

在实际的数值计算中,我们通常需要根据迭代方法的具体形式和问题的特点,来选择适合的收敛速度公式。

对于一些特殊问题,可能还需要进一步修改公式以适应问题的特点。

迭代法的收敛定理

迭代法的收敛定理

一、基本收敛定理
The Fundamental convergence theorem
Theorem :for any initial value x (0) R n, the fundamental iterative method defined
by x(k+1)=Bx(k)+f (k=0,1,2,…) converges to the unique solution of x=Bx+f if only if
1.25 x1 3.69 x2 12.37 x3 0.58 10.01x1 9.05 x2 0.12 x3 1.43 1.22 x 4.33x 2.67 x 3.22 1 2 3
无法直接判断Jacobi 迭代法和G-S迭代法的收敛性,但如果 将方程组的次序修改为
对角占优矩阵
diagonally dominant matrix
如果线性方程组AX=b的系数矩阵A具有某种特殊性质 (如对称正定、对角占优等),则可从A本身直接得出某些 迭代法收敛性结论。 定义3.1 如果矩阵A满足条件
aii aij
j i
(i 1,2,
, n)
(2)
则称A是严格对角占优阵(strictly diagonally dominant matrix); 如果矩阵A满足条件 aii aij (i 1,2, , n) (3)
在偏微分方程数值解中,有限差分往往导出对角占优的 线性代数方程组,有限元法中的刚性矩阵往往是对称正定阵, 因此这两个判断定理是很实用的。 对于给定的线性方程组,借助于定理3.3和定理3.4可 以直接判断Jacobi 迭代法和G-S迭代法的收敛性。 但同时应当注意,迭代法收敛与否与方程组中方程排列 顺序有关,如线性方程组

第六章 解线性方程组的迭代法-2

第六章 解线性方程组的迭代法-2
()p←∆xi =ω∗(bi −∑ ij xj −∑ ij xj )/aii 1 a a
j= 1 j=i i− 1 n
21
(2) 如 p > p0 则 0 ← p 果 p
(3) xi ←xi + p
6. 输 p0 出 7. 如 p0 <eps 则 出k,ω,x, 停 果 输 机
8. 如 k< N0 则 3 果 转
A 11 A 21 A= M A q1 A 12 A 22 M A2 q L Aq A 1 11 L Aq 2 , D= M L A qq A 22 , O A qq
24
0 −A 21 L= M −A q1
0 M −A 2 q
0 − A 12 0 , U = O L 0
L −Aq 1 L −A q 2 . O M 0
q
n , , 且 A (i =1 2,L q) 为 ni ×ni非奇异矩阵, ∑ i =n. ii
i= 1
对 x及 b同样分块
aii ≥ ∑ aij
1 j= j ≠i n
(i =1 2,L n). , ,
弱对角占优阵. 弱对角占优阵 且上式至少有一个不等式严格成立,称 A为弱对角占优阵
1
定义4 (可约与不可约矩阵) 设 A = (aij )n×n (n ≥ 2) , 定义4 如果存在置换阵 P使
A P AP = 11 0
之根. 记
λa 11 λa21 C ≡λ(D−L)−U = M λa n1
λa22
M λan2
a 12
an 1 L a2n , M L λann L

数值分析思考题

数值分析思考题

数值分析复习思考题(2006-12-28)这几天的答疑时间中,解答了部分同学的问题,更多是作为教师的深入思考。

而共同探讨问题是非常重要的。

由于时间有限,这个文档中提出问题的深度可能不够,有些问题还没给出解答,希望研究生同学一起来思考,提出更多的问题。

我会在以后的时间中形成新的文档。

第一章 思考题1.在科学计算中,一般认为误差的来源有几种?列举在数值分析课中主要讨论误差。

数值计算中一个基本的手段是近似,所以就有了各种误差。

误差来源有四种:模型误差,观测误差,截断误差,舍入误差。

一般分为两类,第一类是固有误差(包括模型误差和观测误差),第二类是计算误差(包括截断误差和舍入误差)。

计算方法课中主要讨论计算误差。

这是因为在用计算机解决数学问题时,常常用“有限代替无穷,用近似代替准确”。

例如,解决连续性问题时通常要将其转化为离散问题求解,这将引起截断(方法)误差;由于机器数的位数有限,计算机表示数据时一般带有舍入误差。

下面不全面列举出本课程内容涉及的误差线性方程组直接求解方法——舍入误差多项式插值方法——插值误差数据拟合方法——残差数值积分方法——求积误差微分方程数值解方法——局部截断误差………………………………………………2.有效数字的概念是如何抽象而来的,请简单给予叙述。

有效数字位数与计算近似值x的误差这两个概念是通过末位数半个单位相联系的。

由于计算机的机器数只能表示有限位浮点数,对于很多数据只能近似表示,近似采用“四舍五入”的原则进行。

有效数字概念正是根据日常生活中的“四舍五入”原则抽象而来的。

若近似值x的绝对误差限是某一位上半个单位,该位到x的第一位非零数字一共有n位,则称这一近似数具有n位有效数字。

而相对误差则与有效数位数基本一致。

3.什么样的算法被称为是不稳定的算法?试举一个例子说明在算法执行过程中,舍入误差对计算结果影响大的一类算法被称为数值不稳定的算法。

例如初始数有一点微小的误差,就会对一个算法的数据结果产生较大的影响,造成误差扩散,用计算公式I n = 1 – n I n-1构造出的递推算法是一个数值不稳定的算法;而另一个公式I n-1= ( 1 – I n )/n则可以构造出一个数值稳定的算法。

研究线性方程组迭代收敛速度

研究线性方程组迭代收敛速度

研究解线性方程组迭代收敛速度一. 实验目的科学研究与生产实践中许多问题都可归结为线性方程组的求解,高效求解线性方程组成为了许多科学与工程计算的核心.迭代法就是用某种极限过程去逼近线性方程组精确解的方法,该方法具有对计算机的存贮单元需求少,程序计算简单,原始系数矩阵在计算过程中不变等优点,是求解大型稀疏矩阵方程组的重要方法。

常用的迭代法有Jacobi 迭代法、Gauss —seidel 迭代法、逐次超松驰法(SOR 法)等。

二. 实验摘要由迭代法平均收敛速度与渐进收敛速度的关系引入近似估计法,即通过对迭代平均收敛速度取对数,然后利用Mathematica 软件对其进行拟合,给出拟合函数,最终得到了Jacobi 迭代法、Gauss —seidel 法的平均收敛速度收敛到渐进收敛速度的近似收敛阶,以及逐次超松驰法(SOR 法)的渐进收敛速度,且该法适用于其他迭代法收敛速度的估计。

三. 迭代法原理1.Jacobi 迭代法(J 法)设方程组b Ax =,其中,n n n n ij R a A ⨯⨯∈=)(,。

n R b x ∈,A 为可逆矩阵,可分裂为,U D L A ++=其中,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-0001,21323121n n n n a a a a a a L⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-0000,122311312n n n n a a a a a a U⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=nn a a a D2211从而由b Ax =得到,bD x A D I b D x A D D b D x U L D x 111111)()()(------+-=+-=++-=令 A D I B J 1--=, b D f J 1-=, 由此可构造出迭代公式:J k J k f x B x +=+)()1(令初始向量)0,...,0,0()0(=x ,即可得到迭代序列,从而逼近方程组的解 这种方法称为Jacobi 迭代法,其中J B 称为Jacobi 迭代矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六 解线性方程组的迭代法收敛速度.
一、实验内容
(1)选取不同的初始向量)0(x ,在给定的迭代误差要求下,用雅可比迭代和高斯-赛德尔迭代法法求解,观察得到的序列是否收敛?若收敛,记录迭代次数,分析计算结果并得出你的结论.
(2)用SOR 迭代法求上述方程组的解,松弛系数ω取1<ω<2的不同值,在给定的迭代误差要求下.记录迭代次数,分析计算结果并得出你的结论.
二、方法步骤
雅克比迭代法:
(1)输入A =(a ij )n×n ,b =(b 1,b 2,…,b n )T ,维数n ,x (0)=(x 1(0),x 2(0)
,…,x n (0))T ,容许误差ε,最大容许迭代次数N.
(2)对i=1,2,3,…,n,置x i =x i
(0). (3)置k=1.
(4)对i=1,2,3,…,n,置
y i =1a ii (b i
−∑a ij x j n
j=1,j≠i ) (5)若max 1≤i≤≥n ‖y i −x i ‖<ε输出y i (i =1,2,3,…,n),停机,否则转(6).
(6)若k<N,置k+1== >k,y i ==>x i (i =1,2,…,n),转(4),否则,输出失败信息,停机。

高斯-塞德尔迭代法
(1)输入A =(a ij )n×n ,b =(b 1,b 2,…,b n )T ,维数n ,,x (0)=(x 1(
0),x 2(0),…,x n (0))T ,容许
误差ε,最大容许迭代次数N.
(2)对i=1,2,3,…,n,置x i =x i (0)
.y i =x i .
(3)置k=1.
(4)对i=1,2,3,…,n,置
y i =1ii (b i
−∑a ij x j n
j=1,j≠i ) (5)若max 1≤i≤≥n ‖y i −x i ‖<ε输出y i (i =1,2,3,…,n),停机,否则转(6).
(6)若k<N,置k+1== >k,y i ==>x i (i =1,2,…,n),转(4),否则,输出失败信息,
停机。

三、实验结果
讨论的数据为:
④ A=ones(20,20)-diag(5*ones(20,1),0);
b=ones(20,1);wuch=1e-6;
(1)雅可比迭代法
谱半径为:p = 15.0000
收敛情况:发散
高斯-赛德尔迭代法
谱半径为:p = 15.0000
收敛情况:发散
(2)SOR迭代法
谱半径为:p = 15.0000
收敛情况:发散
迭代次数:100
ans = 1.0e+275 *
-0.0045
-0.0062
-0.0085
-0.0117
-0.0161
-0.0221
-0.0303
-0.0417
-0.0572
-0.0786
-0.1080
-0.1484
-0.2038
-0.2800
-0.3846
-0.5284
-0.7259
-0.9972
-1.3699
-1.8820
结论:当谱半径大于1时,雅可比迭代、高斯-赛德尔迭代、SOR迭代法均为发散的。

相关文档
最新文档