2020年春季高考高等职业教育分类考试数学模拟测试卷(一)及参考答案

合集下载

2020年山东春季高考数学模拟题

2020年山东春季高考数学模拟题

2020年山东春季高考数学模拟试题1. 已知全集U={1,2,3},集合M={1,2},则C u M 等于( )A. {1}B.{3}C.{1,2}D.{1,2,3}2.若a,b 均为实数,且a>b ,则下列关系正确的是( )A.-b>-a B. a 2>b 2 C.b a >D.|a|>|b|3.已知函数y=f(x)的定义域是不等式组⎩⎨⎧<≥+02-x 01x 的解集,则函数y=f(x)的图象可以是(4.已知1和4的等比中项是log 3x,则实数x 的值是( )A.2或21 B.3或31 C.4或41 D.9或91 5.已知函数y=f(x)(x ∈R)是偶函数,且在区间[0,+∞)上是增函数,则下列关系正确的是( )A. f(-1)>f(2)>f(-3)B. f(2)>f(-1)>f(-3)C. f(-3)>f(2)> f(-1)D. f(-3)> (-1)>f(2)6.已知角α的终边经过点P(-1,3),则sin α的值是( )A.31- B.103 C.1010- D. 10103 7.如图所示,已知P,Q 是线段AB 的两个三等分点,O 是线段Ab 外的一点,设等于则,OP ,==( ) A.b a 3131+ B. b a 3231+ C. b a 3132+ D. b a 3232+ 8.如果¬p 是真命题,p ∨q 也是真命题,那么下列说法正确的是( )A.p,q 都是真命题B. p 是真命题,q 是假命题C. p,q 都是假命题D. p 是假命题,q 是真命题9.若直线ax-2y-3=0与直线x+4y+1=0互相垂直,则实数a 的值是( )A.8 B.-8 C. 21 D.-2110.已知以坐标原点为顶点的抛物线,其焦点在x 轴正半轴上,且焦点到准线的距离是3,则抛物线的标准方程是( ) A.y 2=6x B. y 2=-6x C.y 2=3xD.y 2=-3x11.已知二次函数f(x)=x2+(m+1)x+m-1的图象经过原点,则f(x)<0de x 的取值集合是( )A.(0,2)B.(-2,0)C.(-∞,0)∪(2,+∞)D.(-∞,-2)∪(0,+∞)12.已知lga+lgb=0(其中a ≠1, b ≠1),则函数f(x)=a x 与g(x)=b x 的图象( )A.关于坐标原点对称B. 关于x 轴对称C. 关于y 轴对称D. 关于直线y=x 对称13.椭圆18922=+y x 的离心率是( ) A.31 B.317 C. 42 D.322 14.编排一张由4个语言类节目和2个舞蹈类节目组成的演出节目单,若要使2个舞蹈类节目不相邻,则不同排法的种数是( ) A.120 B.240 C.360 D.48015.若M , N 表示两个集合,则M ∩N=M 是M ⊆N 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不是充分条件也不是必要条件16.若α,β为任意实数,则下列等式恒成立的是( )A.5α×5β=5αβ B. 5α+5β=5α+β C. (5α)β=5α+β D. βαβα-=555 17.已知二次函数y=x 2-4x+3 图象的顶点是A ,对称轴是直线l ,对数函数y=log 2x 的图象与x 轴相交于点B,与直线l 相交于点C ,则△ABC 的面积是( ) A.1 B.2 C.3 D.418. 已知平行四边形OABC ,OA =(4,2),OC =(2,6),则AC 与OB 夹角的余弦值是( ) A 22. B.-22 C.55 D.-55 19.函数f(x)=sinx+3cos(π-x)的单调递增区间是( ) A.Z k k k ∈++-],26,265[ππππ B. Z k k k ∈++-],265,26[ππππC. Z k k k ∈++-],23,232[ππππ D. Z k k k ∈++-],232,23[ππππ20.若(a+b)n 展开式的第4项与第7项得系数相等,则此展开式共有( )A.8项 B.9项 C.10项 D.11项21.如图所示,若图中阴影部分所表示的区域是线性目标函数z=x+3y 的可行域,则z 的最小值是( ) A.2 B.3 C.4 D.1522.从5名男生和2名女生中任选3人参加某项公益活动,其中至少有1 名女生的概率是( ) A.53 B.75 C.2110 D.4217 23.已知空间四边形ABCD 中,E,F,G,H 分别是边AB,BC,CD,DA 的中点.给出下列四个命题:① AC 与BD 是相交直线;② AB ∥DC ; ③ 四边形EFGH 是平行四边形;④ EH ∥平面BCD . 其中真命题的个数是( ) A.4 B.3 C.2 D. 124.已知椭圆1202522=+y x = 1 的左焦点是F 1,右焦点是F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|PF 1|:|PF 2|等于( ) A.3:2 B.2:3 C.9:1 D.1:925.已知函数f(x)= 3sin(ωx+32π)(x ∈R , ω>0)的图象与x 轴的交点的横坐标构成一个公差为2π的等差数列,若将f(x)的图象向左平移|a|个单位后,所得到的图象关于坐标原点对称,则实数a 的值可以是( )A. 2π B.3π C. 4π D.6π 26 .已知函数f(x)=⎩⎨⎧-∈-∈-)0,3[,]3,0[,1x x x x ,则f(0)等于 27.已知cos α=54-,且α是第二象限角,则tan α等于 28. 已知圆锥的底面半径为1 ,高为3 ,则该圆锥的体积是29. 圆(x-1)2+(y+1)2=4上的点到直线3x+4y-14=0的距离的最大值是30. 为了了解某中学男生的身体发育情况,对随机抽取的100名男生的身高进行了测量(结果精确到1cm ),并绘制了如图所示的频率分布直方图,由图可知男生身高超过172cm 的频率是31.已知函数1)(2+=x x x f (1)求证:函数f(x)是奇函数(2)若a>b>1,试比较f(a)和f(b)的大小32. 为减少沙尘暴对城市环境的影响,某市政府决定在城市外围构筑一道新的防护林,计划从2011年起每年都植树20000棵。

2020年上海市春季高考数学试卷-含答案详解

2020年上海市春季高考数学试卷-含答案详解

绝密★启用前2020上海市春季高考数学试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题(本大题共4小题,共20.0分。

在每小题列出的选项中,选出符合题目的一项)1. 计算:n →∞lim3n +5n 3n−1+5n−1=( )A. 3B. 53C. 35D. 52. “α=β”是“sin 2α+cos 2β=1”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分又不必要条件3. 已知椭圆x 22+y 2=1,作垂直于x 轴的垂线交椭圆于A 、B 两点,作垂直于y 轴的垂线交椭圆于C 、D 两点,且AB =CD ,两垂线相交于点P ,则点P 的轨迹是( )A. 椭圆B. 双曲线C. 圆D. 以上都不正确4. 数列{a n }各项均为实数,对任意n ∈N ∗满足a n+3=a n ,且行列式∣∣∣a n a n+1a n+2a n+3∣∣∣=c 为定值,则下列选项中不可能的是( ) A. a 1=1,c =1 B. a 1=2,c =2 C. a 1=−1,c =4D. a 1=2,c =0第II 卷(非选择题)二、填空题(本大题共12小题,共54.0分)……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………5. 集合A ={1,3},B ={1,2,a},若A ⊆B ,则a =______.6. 不等式1x >3的解集是 . 7. 函数y =tan2x 的最小正周期 .8. 已知复数z 满足z +2z −=6+i ,则z 的实部为______. 9. 已知3sin2x =2sinx ,x ∈(0,π),则x =______. 10. 若函数y =a ⋅3x +13x 为偶函数,则a = .11. 已知直线l 1:x +ay =1,l 2:ax +y =1,若l 1//l 2,则l 1与l 2的距离为 . 12. 已知二项式(2x +√x)5,则展开式中x 3的系数为______.13. 三角形ABC 中,D 是BC 中点,AB =2,BC =3,AC =4,则AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ = .14. 已知A ={−3,−2,−1,0,1,2,3},a 、b ∈A ,则|a|<|b|的情况有 种. 15. 已知A 1、A 2、A 3、A 4、A 5五个点,满足A n A n+1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅A n+1A n+2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0(n =1,2,3),|A n A n+1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |⋅|A n+1A n+2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=n +1(n =1,2,3),则|A 1A 5⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |的最小值为______. 16. 已知f(x)=√x −1,其反函数为f −1(x),若f −1(x)−a =f(x +a)有实数根,则a 的取值范围为______.三、解答题(本大题共5小题,共76.0分。

春季高考高职单招数学模拟试题七套含答案

春季高考高职单招数学模拟试题七套含答案

春季高考高职单招数学模拟试题一1.sin420°=( )A .23 B .21 C .-23D .-212.将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为3”的概率是( )A .13B .14C .15D .163.函数)4(log 3-=x y 的定义域为 ( )A .RB .),4()4,(+∞-∞C .)4,(-∞D . ),4(+∞ 4.sin14ºcos16º+cos14ºsin16º的值是( )A .23 B .21 C .-23D .-215.函数∈=x x y (cos 2R )是( )A .周期为π2的奇函数B .周期为π2的偶函数C .周期为π的奇函数D .周期为π的偶函数 6.已知直线l 过点(0,1)-,且与直线2y x =-+垂直,则直线l 的方程为( )A .1y x =-B .1y x =+C .1y x =--D .1y x =-+7.已知向量(1,2)a = ,(2,3)b x =-,若a ∥b ,则x =( )A .3B .34C .3-D .34-8.已知函数)2(21)(≠-=x x x f ,则()f x ( ) A .在(-2,+∞)上是增函数 B .在(-2,+∞)上是减函数 C .在(2,+∞)上是增函数D .在(2,+∞)上是减函数9.从含有两件正品12,a a 和一件次品1b 的3件产品中每次任取1件,每次取出后放回,连续取两次,则取出的两件产品中恰有一件是次品的概率为( )A .13 B .49 C .59 D .2310.若实数x y 、满足约束条件100x y x y +≤⎧⎪≥⎨⎪≥⎩,则z y x =-的最大值为( )A .1B .0C .1-D .2-11.执行右面的程序框图,如果输入的n 是4,则输出的P 是( )A .8B .5C .3D .212.已知函数|lg |,010()16,102x x f x x x <≤⎧⎪=⎨-+>⎪⎩,若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)13.已知集合{1,2,3,4,5}=A ,{2,5,7,9}=B ,则 A B 等于( )A .{1,2,3,4,5}B .{2,5,7,9}C .{2,5}D .{1,2,3,4,5,7,9}14.若函数()=f x (6)f 等于( )A .3B .6C .9D15.直线1:2100--=l x y 与直线2:3440+-=l x y 的交点坐标为( )A .(4,2)-B .(4,2)-C .(2,4)-D .(2,4)-16.两个球的体积之比为8:27,那么这两个球的表面积之比为( )A .2:3B .4:9CD.17.已知函数()sin cos =f x x x ,则()f x 是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数18.向量(1,2)=- a ,(2,1)=b ,则( )A .// a bB .⊥ a bC . a 与 b 的夹角为60D . a 与 b 的夹角为3019.已知等差数列{}n a 中,7916+=a a ,41=a ,则12a 的值是( )A .15B .30C .31D .6420.阅读下面的流程图,若输入的a ,b ,c 分别是5,2,6,则输出的a ,b ,c 分别是( ) A .6,5,2 B .5,2,6 C .2,5,6 D .6,2,521.已知函数2()2=-+f x x x b 在区间(2,4)内有唯一零点,则b 的取值范围是( )A .RB .(,0)-∞C .(8,)-+∞D .(8,0)-22.在ABC ∆中,已知120=A ,1=b ,2=c ,则a 等于( )ABCD春季高考高职单招数学模拟试题二1.下列各函数中,与x y =表示同一函数的是( )A .x x y 2= B .2x y = C .2)(x y = D .33x y =2.抛物线241x y -=的焦点坐标是( )A .()1,0-B .()1,0C .()0,1D .()0,1-3.设函数216x y -=的定义域为A ,关于x 的不等式a x<+12log 2的解集为B ,且A B A = ,则a 的取值范围是( )A .()3,∞-B .(]3,0C .()+∞,5D .[)+∞,54.已知x x ,1312sin =是第二象限角,则=x tan ( )A .125B .125-C .512 D .512-5.等比数列{}n a 中,30321=++a a a ,120654=++a a a ,则=++987a a a ( ) A .240 B .240± C .480 D .480± 6.tan 330︒= ( )ABC. D. 7.设b >a >0,且a +b =1,则此四个数21,2ab ,a 2+b 2,b 中最大的是( )A .bB .a 2+b 2C .2abD .218.数列1,n +++++++ 3211,,3211,211的前100项和是:( ) A .201200 B .201100 C .101200 D .1011009.过椭圆1253622=+y x 的焦点1F 作直线交椭圆于B A 、两点,2F 是椭圆的另一焦点,则2ABF ∆的周长是( )A .12B .24C .22D .1010.函数sin 26y x π⎛⎫=+ ⎪⎝⎭图像的一个对称中心是( )A .(,0)12π-B .(,0)6π-C .(,0)6πD .(,0)3π11.已知0a >且1a ≠,且23a a >,那么函数()x f x a =的图像可能是 ( )12.已知()1f x x x=+,那么下列各式中,对任意不为零的实数x 都成立的是 ( )A .()()f x f x =-B .()1f x f x⎛⎫= ⎪⎝⎭C .()f x x >D .()2f x >13.如图,D 是△ABC 的边AB 的三等分点,则向量A .23CA AB + B .13CA AB +C .23CB AB +D .13CB AB +14.如果执行右面的程序框图,那么输出的S 等于( A .45 B .55 C .90 D .110A B C D春季高考高职单招数学模拟试题三1.已知集合{1,2,3,4}M =,集合{1,3,5}N =,则M N 等于( )A .{}2B .{}3,2C .{}3,1D .{}5,4,3,2,12.复数1ii+在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知命题2:,210,p x R x ∀∈+>则 ( ) A .2:,210p x R x ⌝∃∈+≤ B .2:,210p x R x ⌝∀∈+≤C .2:,210p x R x ⌝∃∈+<D .2:,210p x R x ⌝∀∈+<4.一个空间几何体的三视图如右图所示,这个几何体的体积是( )A .2B .4C .6D .85.要得到函数2sin()6y x π=+的图象,只要将函数2sin y x =的图象( )A .向左平移6π个单位B .向右平移6π个单位C .向左平移3π个单位D .向右平移3π个单位6.已知一个算法,其流程图如右图所示,则输出的结果是( )A .3B .9C .27D .81 7.在空间中,下列命题正确的是( )A .平行于同一平面的两条直线平行B .垂直于同一平面的两条直线平行C .平行于同一直线的两个平面平行D .垂直于同一平面的两个平面平行8.若AD 为ABC ∆的中线,现有质地均匀的粒子散落在ABC ∆内,则粒子在ABD ∆内的概率等于( )A .54B .43C .21D .329.计算sin 240︒的值为( )A .23-B .21-C .21D .2310."tan 1"α=是""4πα=的 ( ) A .必要而不充分条件 B .充分而不必要条件 C .充要条件 D .既不充分也不必要条件11.下列函数中,在),0(+∞上是减函数的是( )A .xy 1=B .12+=x yC .x y 2=D .x y 3log = 12.已知直线的点斜式方程是21)y x -=-,那么此直线的倾斜角为( )A .6π B .3π C .32π D .65π13.已知实数x 、y 满足04x y x y ⎧⎪⎨⎪+⎩≥≥0≥4,则z x y =+的最小值等于( )A .0B .C .4D .514.设椭圆的两焦点为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率为( ) A .22 B .212- C .22- D .12-春季高考高职单招数学模拟试题四1.下列说法正确的是( )A .*N φ∈B .Z ∈-2C .Φ∈0D .Q ⊆2 2.三个数0.73a =,30.7b =,3log 0.7c =的大小顺序为( ) A .b c a << B .b a c <<C .c a b <<D .c b a <<3.2sin cos 1212ππ⋅的值为( )A .12 BCD .14.函数4sin 2(R)y x x =∈是 ( )A .周期为π2的奇函数B .周期为π2的偶函数C .周期为π的奇函数D .周期为π的偶函数5.已知(1,2)=, (),1x =,当2+与-2共线时,x 值为( )A .1B .2C .13D .126.某公司有员工150人,其中50岁以上的有15人,35~49岁的有45人,不到35岁的有90人.为了调查员工的身体健康状况,采用分层抽样方法从中抽取30名员工,则各年龄段人数分别为( )A .5,10,15B .5,9,16C .3,9,18D .3,10,17正(主)视侧(左)俯视图7.在下列函数中:①12()f x x =, ②23()f x x =,③()cos f x x =,④()f x x =, 其中偶函数的个数是 ( )A .0B .1C .2D .38.某样本数据的频率分布直方图的部分图形如下图所示,则数据在[50,70)的频率约为( )A .0.25B .0.05C .0.5D .0.0259.把函数)34cos(π+=x y 的图象向右平移θ(θ>0)个单位,所得的图象关于y 轴对称,则θ的最小值为( )A .6πB .3π C .32π D .34π10.如图,大正方形的面积是13直角三角形的较短边长为2.向大正方形内投一飞镖,则飞镖落在小正 方形内的概率为( )A .113B .213C .313D .41311. 已知x 、y 满足条件⎪⎩⎪⎨⎧≤≥+≥+-.3,0,05x y x y x 则y x 42+的最小值为( )A .6B .12C .6-D .12- 12.条件语句⑵的算法过程中,当输入43x π=时,输出的结果是( )A .2-B .12-C .12D .213.下列各对向量中互相垂直的是( )A .)5,3(),2,4(-==B .)4,3(-=,)3,4(=C .)5,2(),2,5(--==b aD .)2,3(),3,2(-=-=b a14.对于常数"0",,>mn n m 是方程122=+ny mx 的曲线是椭圆”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件高考高职单招数学模拟试题五1.设全集U ,集合A 和B ,如图所示的阴影部分所表示的集合为( ) A .()u A C B ⋃ B .()u C A B ⋂ C .()u C A B ⋂ D .()u A C B ⋂ 2.已知命题p : 2,10,x R x x p ∃∈+-<⌝则为( )A .2,10x R x x ∃∈+->B .2,10x R x x ∀∈+-≥C .2,10x R x x ∃∉+-≥D .2,10x R x x ∀∈+-> 3. 统计某产品的广告费用x 与销售额y 的一组数据如下表: 广告费用 2 3 5 6 销售额y 7 9 12若根据上表提供的数据用最小二乘法可求得y 对x 的回归直线方程是,则数据中的的值应该是( )A .7.9B .8C .8.1D .94.一个几何体的三视图都是边长为2的正方形,则该几何体的表面积是( ) A .4 B .8 C .16 D .245.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,且2220a b c +-<,则ABC ∆是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形6. 已知函数)(x f 的图象是一条连续不断的,)(,x f x 的对应值如下表:则在下列区间内,函数)(x f 一定有零点的是( )A .)1,2(--B .)1,1(-C .(1,2)D .(2,3)7.在直角坐标系中,直线l 的倾斜角30β= ,且过(0,1),则直线l 的方程是( )A .13y x =- B .13y x =+ C .1y =- D .1y =+ 8.已知定义在R )9. 双曲线22145x y -=的渐近线方程为( )A.4y x =± B .2y x =± C .5y x =± D .5y x =±10. 已知(,)2a ππ∈,4sin 5α=,则cos()πα+=( )A . 32B . 32-C . 23D . 23-11.已知圆221:1O x y +=,圆222:(1)(2)16O x y -+-=,则圆1O 和圆2O 的位置关系是( ) A . 内含 B . 内切 C . 相交 D . 外离12. 等于已知向量(1,2),(3,2),a b =-= 且,n xa yb =+ 则x=1,y=1是m //n的( )A . 充要条件B . 充分不必要条件C . 必要不充分条件D . 既不充分也不必要条件13.函数2,(1)(),(1)x x f x x x ≤⎧=⎨>⎩且1()2f x =,则x =( )A . 12B .2 C .2- D .2或2-14. 某公司生产一种产品,每生产1千件需投入成本81万元,每千件的销售收入R (x )(单位:万元)与年产量x(单位:千件)满足关系:2()324(010)R x x x =-+<≤该公司为了在生产中获得最大利润(年利润=年销售收入—年总成本),则年产量应为( )A . 5千件B .C .9千件D . 10千件高考高职单招数学模拟试题六1.复数2i i +等于( )A .1i +B .1i -C .1i -+D .1i --2.已知函数()22xf x =+,则(1)f 的值为( )A .2B .3C .4D .6 3.函数y =) A .[)1,0- B .()0,+∞ C .[)()1,00,-+∞ D .()(),00,-∞+∞4.执行如图所示的程序框图,若输入的x 的值为3,则输出的y 的值为( ) A .4 B .5 C .8 D .10 5.若x R ∈,则“x =1”是“x =1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D . 既不充分又不必要条件 6.下列函数中,在其定义域内既是奇函数,又是减函数的是( )A .3y x =-B .sin y x =C .tan y x =D .1()2xy = 7. 函数y =⎝⎛⎭⎫12x+1的图象关于直线y =x 对称的图象大致是( )8. 已知cos α=45,(,0)2απ∈-,则sin α+cos α等于( )A .-15B . 15C .-75D .759. 函数()23-+=x x f x的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)10.若变量,x y 满足约束条件2,2,2,x y x y ≤⎧⎪≤⎨⎪+≥⎩则y x z +=2的最大值是( )A .2B .4C .5D .611.若双曲线方程为221916x y -=,则其离心率等于( ) A .53 B .54 C .45 D . 35 12.如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )13.过原点的直线与圆03422=+++x y x 相切,若切点在第三象限,则该直线的方程是( )A .x y 3=B .x y 3-= C.y x = D .y x = 14. 已知()f x 是奇函数,且当0x ≥时,2()f x x x =-+,则不等式()0xf x <的解集为( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(1,0)(0,1)-D .(,1)(1,)-∞-+∞高考高职单招数学模拟试题七1.若集合A ={}0,1,2,4,B ={}1,2,3,则B A =( )A .{}0,1,2,3,4B .{}0,4C .{}1,2D .{}3 2.不等式032<-x x 的解集是( )A .)0,(-∞B .)3,0(C .(,0)(3,)-∞+∞D .),3(+∞3.函数11)(-=x x f 的定义域为( ) A .}1|{<x x B . }1|{>x x C .}0|{≠∈x R x D .}1|{≠∈x R x 4.已知等差数列{}n a 的前n 项和n S ,若1854=+a a ,则8S =( ) A .72 B . 68C . 54D . 905.圆22(1)3x y -+=的圆心坐标和半径分别是( )A .(1,0),3-B .(1,0),3 C.(1- D.(16.已知命题:,sin 1,p x R x ∀∈≤则p ⌝是( ).A .,sin 1x R x ∃∈≥B .,sin 1x R x ∀∈≥C .,sin 1x R x ∃∈>D .,sin 1x R x ∀∈> 7.若a R ∈,则0a =是()10a a -=的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件8.下列函数)(x f 中,在()+∞,0上为增函数的是( )A .xx f 1)(=B .2)1()(-=x x fC .x x f ln )(=D . xx f ⎪⎭⎫⎝⎛=21)(9.设()f x 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-,则(1)f = ( ) A .3- B . 1- C .1 D .3 10.过点A (2,3)且垂直于直线052=-+y x 的直线方程为( )A .042=+-y xB .072=-+y xC .032=+-y xD .052=+-y x 11.0167cos 43sin 77cos 43cos +的值为( ) A .1 B .1-D .21- 12.函数2log ,(0,16]y x x =∈的值域是( )A .(]4,-∞-B .(]4,∞-C [)+∞-,4.D .[)+∞,4 13.已知函数()123+++=x x x x f ,则()x f 在(0,1)处的切线方程为( )A .01=--y xB .01=++y xC .01=+-y xD .01=-+y x14.如图,21F F 、是双曲线1C :1322=-y x 与椭圆2C 的公共焦点,点A 是1C ,2C 在第一象限的公共点.若A F F F 121=,则2C 的离心率是( )A .31 B .32 C . 32或52 D .52春季高考高职单招数学模拟试题(一)ADDBB ADDBA CCCAB BABAA DC 春季高考高职单招数学模拟试题(二)春季高考高职单招数学模拟试题(三)CDACA DBCAA ACBD春季高考高职单招数学模拟试题(四)BDACD CCBBA CBBB春季高考高职单招数学模拟试题(五)春季高考高职单招数学模拟试题(六)CCCCA AABCD DBDD春季高考高职单招数学模拟试题(七)CBBAD CACAA DBCB。

山东省2020年普通高校招生(春季)考试模拟试题有答案

山东省2020年普通高校招生(春季)考试模拟试题有答案

山东省2020年普通高校招生春季考试模拟试题(春季高考数学)一、选择题(共20小题;共60分)1. 若集合,,则A. B. C. D.2. 如果,那么下列不等式成立的是A. B. C. D.3. 函数的图象如图所示,则实数的可能取值是A. B. C. D.4. 已知函数则B. D.5. 已知等比数列的公比为,且,则的值为A. B. C. D.6. 如图,在菱形中,,,为的中点,则的值是A. B. C. D.7. 已知为第二象限角,,则C. D.8. 过点且垂直于直线的直线方程为A. B. C. D.9. 的展开式中,的系数为A. B. C. D.10. 已知点、,动点满足,则点的轨迹是A. 圆B. 椭圆C. 双曲线D. 抛物线11. 某外商计划在个候选城市投资个不同的项目,且在同一个城市投资的项目不超过个,则该外商不同的投资方案有A. 种B. 种C. 种D. 种12. 下列命题中,是假命题的是A. 存在一个,使B. 一条直线不能确定一个平面C. 所有质数只有两个正因数D. 奇函数具有反函数13. 已知,则的值是14. 函数在上为减函数,且,则实数的取值范围是B.C.15. 在平面直角坐标系中,直线与圆相交于,两点,则弦的长等于A. B. C. D.16. 用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是A. B.C. D.17. 已知变量满足,则的最小值是A. B. C. D.18. 设袋中有个红球,个白球,若从袋中任取个球,则其中恰有个红球的概率为A. B. C. D.19. 已知椭圆的焦点在轴上,焦距为,焦点到相应的长轴顶点的距离为,则椭圆的标准方程为A. B. C.20. 在中,、、分别是角、、的对边,,,且,则的大小为B. C. D.二、填空题(共5小题;共20分)21. .(化成弧度)22. 若平面向量,,且,则的值是.23. 某班级共有学生人,现将所有学生按,,,,随机编号,若用系统抽样的方法抽取一个容量为的样本.已知号,号,号同学在样本中,那么样本中还有一个同学的学号是.24. 从一个底面半径和高都是的圆柱中,挖去一个以圆柱的上底为底,下底面的中心为顶点的圆锥,得到一个如图所示的几何体,那么这个几何体的体积是.25. 平面直角坐标系中,双曲线:的渐近线与抛物线:交于点,,.若的垂心为的焦点,则的离心率为.三、解答题(共5小题;共40分)26. 二次函数的顶点是,图象交轴于,两点,且三角形的面积为,求的解析式.27. 函数的部分图象如图所示.(1). 写出的最小正周期及图中的值;(2). 求在区间上的最大值和最小值.28. 我国古代数学中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为阳马.如图,在阳马中,,是的中点,连接,,.(1). 求证:为直角三角形;(2). 若,求多面体的体积.29. 已知函数在区间上有极大值(1)求实数的值;(2)求函数在区间上的极小值.30. 设,分别为椭圆的左右焦点.(1)若椭圆上的点到,两点的距离之和等于,写出椭圆的方程和焦点坐标;(2)设点是(1)中所得椭圆上的动点,求线段的中点的轨迹方程.答案第一部分1. C 【解析】因为,,所以.2. B3. A4. A5. A6. B7. A 【解析】因为,为第二象限角,所以,所以,故选A.8. A 【解析】由题意可设所求直线方程为:,将代入上式得,即,所以所求直线方程为.9. C 【解析】展开式的通项公式为,令,得,所以的系数为.10. D【解析】由题意知,,整理得,∴点的轨迹为抛物线.11. D 【解析】①只有两个城市有投资项目的有种,②只有一个城市无投资项目的有种.共有种.12. A13. B14. C 【解析】函数在上为减函数,且,可得:,解得.15. B【解析】圆的圆心到直线的距离,弦的长.16. B 【解析】由题图知,俯视图的底面圆是看不见的,所以在俯视图中该部分的映射图象是虚线圆,结合选项可知选B.17. C 【解析】画出可行域,如图所示,分析知,当经过点时,取得最小值.18. D19. A 【解析】 .20. C【解析】因为,,,所以,根据正弦定理有,化简得,又因为,所以.第二部分22.23.24.【解析】双曲线的两条渐近线方程为,与抛物线方程联立得交点,,抛物线焦点为,由三角形垂心的性质,得,即,又,,所以有,即,故的离心率.第三部分26. 由三角形的面积为,高为点的纵坐标,得,结合对称轴方程为可知,方程的两根为和.所以可设,点在抛物线上,所以,.所以.27• (1)的最小正周期为,.(2) 因为,所以于是,当,即时,取得最大值;当,即时,取得最小值.28• (1) 因为四边形为矩形,所以.又因为,所以.所以,所以.所以为直角三角形.(2) 过点作于.因为,所以.因为,且,所以.即为三棱锥的高,且.因为为中点,所以.又因为,所以.于是29. (1).令,得或.故的增区间为和,减区间为.当时,取得极大值,故,所以.(2)由(1)得.当时,有极小值,为.30. (1)椭圆的焦点在轴上,由椭圆上的点到,两点的距离之和是,得,即.又点在椭圆上,因此,解得,于是.所以椭圆的方程为,焦点,.(2)设椭圆上的动点为,线段的中点满足,,即,.因此为所求的轨迹方程.。

2020春考数学模拟题及答案

2020春考数学模拟题及答案

2020春考数学模拟题1.设集合A={1,2,3},集合B={3,4},则A∪B= {1,2,3,4} .【考点】并集及其运算.【分析】根据集合的并集的定义求出A、B的并集即可.【解答】解:集合A={1,2,3},集合B={3,4},则A∪B={1,2,3,4},故答案为:{1,2,3,4}.【点评】本题考查了集合的并集的定义以及运算,是一道基础题.2.不等式|x﹣1|<3的解集为(﹣2,4).【考点】绝对值不等式的解法.【分析】根据绝对值的性质去掉绝对值,求出不等式的解集即可.【解答】解:∵|x﹣1|<3,∴﹣3<x﹣1<3,∴﹣2<x<4,故不等式的解集是(﹣2,4),故答案为:(﹣2,4).【点评】本题考查了解绝对值不等式问题,是一道基础题.3.若复数z满足2﹣1=3+6i(i是虚数单位),则z= 2﹣3i .【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:∵2﹣1=3+6i,∴,则,∴z=2﹣3i.故答案为:2﹣3i.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.4.若,则= .【考点】运用诱导公式化简求值.【分析】由已知利用诱导公式即可化简求值.【解答】解:∵,∴=﹣cosα=﹣.故答案为:﹣.【点评】本题主要考查了诱导公式在三角函数化简求值中的应用,属于基础题.5.若关于x、y的方程组无解,则实数a= 6 .【考点】根的存在性及根的个数判断.【分析】把方程组无解转化为两条直线无交点,然后结合两直线平行与系数的关系列式求得a值.【解答】解:若关于x、y的方程组无解,说明两直线x+2y﹣4=0与3x+ay﹣6=0无交点.则,解得:a=6.故答案为:6.【点评】本题考查根的存在性与根的个数判断,考查数学转化思想方法,是中档题.6.若等差数列{an }的前5项的和为25,则a1+a5= 10 .【考点】等差数列的前n项和.【分析】由等差数列前n项和公式得=25,由此能求出a1+a5.【解答】解:∵等差数列{an}的前5项的和为25,∴=25,∴a1+a5=25×=10.故答案为:10.【点评】本题考查等差数列中两项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.7.若P、Q是圆x2+y2﹣2x+4y+4=0上的动点,则|PQ|的最大值为 2 .【考点】直线与圆的位置关系.【分析】圆x2+y2﹣2x+4y+4=0,可化为(x﹣1)2+(y+2)2=1,|PQ|的最大值为直径长.【解答】解:圆x2+y2﹣2x+4y+4=0,可化为(x﹣1)2+(y+2)2=1,∵P、Q是圆x2+y2﹣2x+4y+4=0上的动点,∴|PQ|的最大值为2,故答案为2.【点评】本题考查圆的方程,考查学生的计算能力,比较基础.8.已知数列{an}的通项公式为,则= .【考点】等比数列的前n项和;极限及其运算.【分析】利用等比数列的求和公式,结合极限,即可得出结论.【解答】解: ==,故答案为:.【点评】本题考查等比数列的求和公式,考查极限方法,属于中档题.9.若的二项展开式的各项系数之和为729,则该展开式中常数项的值为160 .【考点】二项式系数的性质.【分析】令x=1,由题意可得:3n=729,解得n.再利用二项式定理的通项公式即可得出.【解答】解:令x=1,由题意可得:3n=729,解得n=6.∴展开式的通项公式为:Tr+1=2r C6r x6﹣2r,令6﹣2r=0,解得r=3,∴其展开式中常数项=8×20=160,故答案为:160.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.10.设椭圆的左、右焦点分别为F1、F2,点P在该椭圆上,则使得△F1F2P是等腰三角形的点P的个数是 6 .【考点】椭圆的简单性质.【分析】如图所示,①当点P与短轴的顶点重合时,△F1F2P构成以F1F2为底边的等腰三角形,此时有2个.②当△F1F2P构成以F1F2为一腰的等腰三角形时,共有4个.【解答】解:如图所示,①当点P与短轴的顶点重合时,△F1F2P构成以F1F2为底边的等腰三角形,此种情况有2个满足条件的等腰△F1F2 P;②当△F1F2P构成以F1F2为一腰的等腰三角形时,共有4个.以F2P作为等腰三角形的底边为例,∵F1F2=F1P,∴点P在以F1为圆心,半径为焦距2c的圆上因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,存在2个满足条件的等腰△F1F2 P.同理可得:当以F2为圆心,半径为2c的圆与椭圆C有2交点时,存在2个满足条件的等腰△F1F2 P.综上可得:满足条件的使得△F1F2P是等腰三角形的点P的个数为6.故答案为:6.【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、等腰三角形,考查了推理能力与计算能力,属于中档题.11.设a1、a2、…、a6为1、2、3、4、5、6的一个排列,则满足|a1﹣a2|+|a3﹣a 4|+|a5﹣a6|=3的不同排列的个数为48 .【考点】排列、组合的实际应用.【分析】根据题意,分析可得需要将1、2、3、4、5、6分成3组,其中1和2,3和4,5和6必须在一组,进而分2步进行分析:首先分析每种2个数之间的顺序,再将分好的三组对应三个绝对值,最后由分步计数原理计算可得答案.【解答】解:根据题意,若|a1﹣a2|+|a3﹣a4|+|a5﹣a6|=3,则|a1﹣a2|=|a3﹣a4|=|a5﹣a6|=1,需要将1、2、3、4、5、6分成3组,其中1和2,3和4,5和6必须在一组,每组2个数,考虑其顺序,有A22种情况,三组共有A22×A22×A22=8种顺序,将三组全排列,对应三个绝对值,有A33=6种情况,则不同排列的个数为8×6=48;故答案为:48.【点评】本题考查排列、组合的应用,注意分析1、2、3、4、5、6如何排列时,能满足|a1﹣a2|+|a3﹣a4|+|a5﹣a6|=3.12.设a、b∈R,若函数在区间(1,2)上有两个不同的零点,则f (1)的取值范围为(0,1).【考点】函数零点的判定定理.【分析】函数在区间(1,2)上有两个不同的零点,即方程x2+bx+a=0在区间(1,2)上两个不相等的实根,⇒⇒画出数对(a,b)所表示的区域,求出目标函数z=f(1)═a+b+1的范围即可.【解答】解:函数在区间(1,2)上有两个不同的零点,即方程x2+bx+a=0在区间(1,2)上两个不相等的实根,⇒⇒,如图画出数对(a,b)所表示的区域,目标函数z=f(1)═a+b+1∴z的最小值为z=a+b+1过点(1,﹣2)时,z的最大值为z=a+b+1过点(4,﹣4)时∴f(1)的取值范围为(0,1)故答案为:(0,1)【点评】本题是函数零点的考查,涉及到规划问题的结合,属于难题.二.选择题(本大题共4题,每题5分,共20分)13.函数f(x)=(x﹣1)2的单调递增区间是()A.[0,+∞)B.[1,+∞)C.(﹣∞,0] D.(﹣∞,1]【考点】函数的单调性及单调区间.【分析】根据二次函数的性质求出函数的递增区间即可.【解答】解:函数f(x)的对称轴是x=1,开口向上,故f(x)在[1,+∞)递增,故选:B.【点评】本题考查了二次函数的性质,是一道基础题.14.设a∈R,“a>0”是“”的()条件.A.充分非必要 B.必要非充分C.充要D.既非充分也非必要【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义判断即可.【解答】解:由,解得:a>0,故a>0”是“”的充要条件,故选:C.【点评】本题考查了充分必要条件,考查不等式问题,是一道基础题.15.过正方体中心的平面截正方体所得的截面中,不可能的图形是()A.三角形B.长方形C.对角线不相等的菱形D.六边形【考点】平行投影及平行投影作图法.【分析】根据截面经过几个面得到的截面就是几边形判断即可.【解答】解:过正方体中心的平面截正方体所得的截面,至少与正方体的四个面相交,所以不可能是三角形,故选:A.【点评】解决本题的关键是理解截面经过几个面得到的截面就是几边形.16.如图所示,正八边形A1A2A3A4A5A6A7A8的边长为2,若P为该正八边形边上的动点,则的取值范围为()A.B.C.D.【考点】平面向量数量积的运算.【分析】由题意求出以A1为起点,以其它顶点为向量的模,再由正弦函数的单调性及值域可得当P与A8重合时,取最小值,求出最小值,结合选项得答案.【解答】解:由题意,正八边形A1A2A3A4A5A6A7A8的每一个内角为135°,且,,,.再由正弦函数的单调性及值域可得,当P与A8重合时,最小为==.结合选项可得的取值范围为.故选:B.【点评】本题考查平面向量的数量积运算,考查数形结合的解题思想方法,属中档题.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(12分)(2017•上海模拟)如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3;(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1C与DD1所成角的大小.【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)四棱锥A1﹣ABCD的体积=,由此能求出结果.(2)由DD1∥CC1,知∠A1CC1是异面直线A1C与DD1所成角(或所成角的补角),由此能求出异面直线A1C与DD1所成角的大小.【解答】解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3,∴四棱锥A1﹣ABCD的体积:====4.(2)∵DD1∥CC1,∴∠A1CC1是异面直线A1C与DD1所成角(或所成角的补角),∵tan∠A1CC1===,∴=.∴异面直线A1C与DD1所成角的大小为;【点评】本题考查三棱锥的体积的求法,考查异面直线所成角的求法,是中档题,解题时要认真审题,注空间思维能力的培养.18.(12分)(2017•上海模拟)设a∈R,函数;(1)求a的值,使得f(x)为奇函数;(2)若对任意x∈R成立,求a的取值范围.【考点】函数恒成立问题;函数奇偶性的性质.【分析】(1)由f(x)在R上为奇函数,可得f(0)=0,解方程可得a的值,检验即可;(2)由题意可得即为<恒成立,等价为<,即有2(a﹣1)<a(2x+1),讨论a=0,a>0,a<0,由参数分离,求得右边的范围,运用恒成立思想即可得到a的范围.【解答】解:(1)由f(x)的定义域为R,且f(x)为奇函数,可得f(0)=0,即有=0,解得a=﹣1.则f(x)=,f(﹣x)===﹣f(x),则a=﹣1满足题意;(2)对任意x∈R成立,即为<恒成立,等价为<,即有2(a﹣1)<a(2x+1),当a=0时,﹣1<0恒成立;当a>0时,<2x+1,由2x+1>1,可得≤1,解得0<a≤2;当a<0时,>2x+1不恒成立.综上可得,a的取值范围是[0,2].【点评】本题考查函数的奇偶性的运用:求参数的值,考查不等式恒成立问题的解法,注意运用分类讨论和参数分离的思想方法,考查运算能力,属于中档题.19.(12分)(2017•上海模拟)某景区欲建造两条圆形观景步道M1、M2(宽度忽略不计),如图所示,已知AB⊥AC,AB=AC=AD=60(单位:米),要求圆M1与AB、AD分别相切于点B、D,圆M2与AC、AD分别相切于点C、D;(1)若∠BAD=60°,求圆M1、M2的半径(结果精确到0.1米)(2)若观景步道M1与M2的造价分别为每米0.8千元与每米0.9千元,如何设计圆M1、M2的大小,使总造价最低?最低总造价是多少?(结果精确到0.1千元)【考点】直线与圆的位置关系.【分析】(1)直接利用三角函数,可得结论;(2)设∠BAD=2α,则总造价y=0.8•2π•60tanα+0.9•2π•60tan(45°﹣α),换元,利用基本不等式,可得结论.【解答】解:(1)M1半径=60tan30°≈34.6,M2半径=60tan15°≈16.1;(2)设∠BAD=2α,则总造价y=0.8•2π•60tanα+0.9•2π•60tan(45°﹣α),设1+tanα=x,则y=12π•(8x+﹣17)≥84π,当且仅当x=,tanα=时,取等号,∴M1半径30,M2半径20,造价42.0千元.【点评】本题考查直线与圆的位置关系,考查基本不等式的运用,属于中档题.20.(12分)(2017•上海模拟)已知双曲线(b>0),直线l:y=kx+m(km≠0),l与Γ交于P、Q两点,P'为P关于y轴的对称点,直线P'Q 与y轴交于点N(0,n);(1)若点(2,0)是Γ的一个焦点,求Γ的渐近线方程;(2)若b=1,点P的坐标为(﹣1,0),且,求k的值;(3)若m=2,求n关于b的表达式.【考点】双曲线的简单性质.【分析】(1)由双曲线(b>0),点(2,0)是Γ的一个焦点,求出c=2,a=1,由此能求出Γ的标准方程,从而能求出Γ的渐近线方程.(2)双曲线Γ为:x2﹣y2=1,由定比分点坐标公式,结合已知条件能求出k的值.(3)设P(x1,y1),Q(x2,y2),kPQ=k,则,由,得(b2﹣k2)x2﹣4kx﹣4﹣b2=0,由,得()x2﹣2knx﹣n2﹣b2=0,由此利用韦达定理,结合已知条件能求出n关于b的表达式.【解答】解:(1)∵双曲线(b>0),点(2,0)是Γ的一个焦点,∴c=2,a=1,∴b2=c2﹣a2=4﹣1=3,∴Γ的标准方程为: =1,Γ的渐近线方程为.(2)∵b=1,∴双曲线Γ为:x2﹣y2=1,P(﹣1,0),P′(1,0),∵=,设Q(x2,y2),则有定比分点坐标公式,得:,解得,∵,∴,∴=.(3)设P(x1,y1),Q(x2,y2),kPQ=k,则,由,得(b2﹣k2)x2﹣4kx﹣4﹣b2=0,,,由,得()x2﹣2knx﹣n2﹣b2=0,﹣x1+x2=,﹣x1x2=,∴x1x2==,即,即=,====,化简,得2n2+n(4+b2)+2b2=0,∴n=﹣2或n=,当n=﹣2,由=,得2b2=k2+k2,由,得,即Q(,),代入x2﹣=1,化简,得:,解得b2=4或b2=kk,当b2=4时,满足n=,当b2=kk0时,由2b2=k2+k2,得k=k(舍去),综上,得n=.【点评】本题考查双曲线的渐近线的求法,考查直线的斜率的求法,考查n关于b的表达式的求法,是中档题,解题时要认真审题,注意双曲线、直线、韦达定理的合理运用.21.(12分)(2017•上海模拟)已知函数f(x)=log2;(1)解方程f(x)=1;(2)设x∈(﹣1,1),a∈(1,+∞),证明:∈(﹣1,1),且f()﹣f(x)=﹣f();(3)设数列{xn }中,x1∈(﹣1,1),xn+1=(﹣1)n+1,n∈N*,求x1的取值范围,使得x3≥xn对任意n∈N*成立.【考点】函数与方程的综合运用.【分析】(1)根据对数运算性质得=2,从而解出x的值;(2)令g(x)=,判断g(x)的单调性得出g(x)的值域,根据对数的运算性质化简即可证明f()﹣f(x)=﹣f();(3)利用(2)中的结论得出f(xn+1)与f(xn)的关系,判断f(xn)的周期,分别用f(x1)表示出f(x2),f(x3),f(x4),根据f(x)的单调性得出,从而求出f(x1)的范围,继而解出x1的范围.【解答】解:(1)∵f(x)=log2=1,∴=2,解得;(2)令g(x)=,则g′(x)==.∵a∈(1,+∞),∴g′(x)>0,∴g(x)在(﹣1,1)上是增函数,又g(﹣1)=,g(1)==1,∴﹣1<g(x)<1,即∈(﹣1,1).∵f(x)﹣f()=log2﹣log2=log2﹣log2=log2()=log2,f()=log2=log2.∴f()=f(x)﹣f(),∴f()﹣f(x)=﹣f().(3)∵f(x)的定义域为(﹣1,1),f(﹣x)=log2=﹣log2=﹣f(x),∴f(x)是奇函数.∵xn+1=(﹣1)n+1,∴xn+1=.①当n为奇数时,f(xn+1)=f()=f(xn)﹣f()=f(xn)﹣1,∴f(xn+1)=f(xn)﹣1;②当n为偶数时,f(xn+1)=f(﹣)=﹣f()=1﹣f(xn),∴f(xn+1)=1﹣f(xn).∴f(x2)=f(x1)﹣1,f(x3)=1﹣f(x2)=2﹣f(x1),f(x4)=f(x3)﹣1=1﹣f(x1),f(x5)=1﹣f(x4)=f(x1),f(x6)=f(x5)﹣1=f(x1)﹣1,…∴f(xn )=f(xn+4),n∈N+.设h(x)=,则h′(x)==>0,∴h(x)在(﹣1,1)上是增函数,∴f(x)=log2=log2h(x)在(﹣1,1)上是增函数.∵x3≥xn对任意n∈N*成立,∴f(x3)≥f(xn)恒成立,∴,即,解得:f(x1)≤1,即log2≤1,∴0<≤2,解得:﹣1<x1≤.。

2020山东省春季高考数学试卷真题及答案详解(精校版)

2020山东省春季高考数学试卷真题及答案详解(精校版)

山东省2020年普通高校招生(春季)考试数学试题一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于()A .∅B .{},a c C .{},b d D .{},,,a b c d 2.函数()1lg f x x=的定义域是()A .()0,∞+B .()()0,11,+∞ C .[)()0,11,+∞U D .()1,+∞3.已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是()A .奇函数B .偶函数C .增函数D .减函数4.已知平行四边形ABCD ,点E ,F 分别是AB ,BC 的中点(如图所示),设AB a =,AD b =,则EF等于()A .()12a b+ B .()12a b- C .()12b a- D .12a b+ 5.在等比数列{}n a 中,11a =,22a =-,则9a 等于()A .256B .-256C .512D .-5126.已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角7.已知圆心为()2,1-的圆与y 轴相切,则该圆的标准方程是()A .()()22211x y ++-=B .()()22214x y ++-=C .()()22211x y -++=D .()()22214x y -++=8.现从4名男生和3名女生中,任选3名男生和2名女生,分别担任5门不同学科的课代表,则不同安排方法的种数是()A .12B .120C .1440D .172809.在821x x ⎛⎫- ⎪⎝⎭的二项展开式中,第4项的二项式系数是()A .56B .56-C .70D .70-10.直线2360x y +-=关于点()1,2-对称的直线方程是()A .32100x y --=B .32230x y --=C .2340x y +-=D .2320x y +-=11.已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.已知二次函数2y ax bx c =++的图像如图所示,则不等式20ax bx c ++>的解集是()A .()2,1-B .()(),21,-∞-⋃+∞C .[]2,1-D .(][),21,-∞-+∞ 13.已知函数()y f x =是偶函数,当(0,)x ∈+∞时,()01xy a a =<<,则该函数在(,0)-∞上的图像大致是()A .B .C .D .14.下列命题为真命题的是()A .10>且34>B .12>或45>C .x R ∃∈,cos 1x >D .x ∀∈R ,20x ≥15.已知点()4,3A ,()4,2B -,点P 在函数243y x x =--图象的对称轴上,若PA PB ⊥,则点P 的坐标是()A .()2,6-或()2,1B .()2,6--或()2,1-C .()2,6或()2,1-D .()2,6-或()2,1--16.现有5位老师,若每人随机进入两间教室中的任意一间听课,则恰好全都进入同一间教室的概率是()A .225B .116C .125D .13217.已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于()A .3B .6C .8D .1218.已知变量x ,y 满足某约束条件,其可行域(阴影部分)如图所示,则目标函数23z x y =+的取值范围是()A .[]0,6B .[]4,6C .[]4,10D .[]6,1019.已知正方体1111ABCD A B C D -(如图所示),则下列结论正确的是()A .11//BD A AB .11//BD A DC .11BD A C ⊥D .111BD AC ⊥20.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C sin cos 2c B A b =,则tan A 等于()A .3B .13-C .3或13-D .-3或13二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上)21.已知ππ,22α⎡⎤∈-⎢⎥⎣⎦,若sin 0.8α=,则α=______rad .22.若212log log 40x -=,则实数x 的值是______.23.已知球的直径为2,则该球的体积是______.24.某创新企业为了解新研发的一种产品的销售情况,从编号为001,002,…480的480个专卖店销售数据中,采用系统抽样的方法抽取一个样本,若样本中的个体编号依次为005,021,…则样本中的最后一个个体编号是______.25.已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______.三、解答题(本大题5个小题,共40分)26.已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩.(1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.27.某男子擅长走路,9天共走了1260里,其中第1天、第4天、第7天所走的路程之和为390里.若从第2天起,每天比前一天多走的路程相同,问该男子第5天走多少里.这是我国古代数学专著《九章算术》中的一个问题,请尝试解决.28.小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图象时,列表如下:x6π-12π3π712π56πx ωϕ+02ππ32π2πsin()A x ωϕ+03-3根据表中数据,求:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎣⎦上的最大值和最小值.29.已知点E ,F 分别是正方形ABCD 的边AD ,BC 的中点.现将四边形EFCD 沿EF 折起,使二面角C EF B --为直二面角,如图所示.(1)若点G ,H 分别是AC ,BF 的中点,求证://GH 平面EFCD ;(2)求直线AC 与平面ABFE 所成角的正弦值.30.已知抛物线的顶点在坐标原点O ,椭圆2214x y +=的顶点分别为1A ,2A ,1B ,2B ,其中点2A 为抛物线的焦点,如图所示.(1)求抛物线的标准方程;(2)若过点1A 的直线l 与抛物线交于M ,N 两点,且()12//OM ON B A + ,求直线l 的方程.1.C 【分析】利用补集概念求解即可.【详解】{},U M b d =ð.故选:C 2.B 【分析】根据题意得到0lg 0x x >⎧⎨≠⎩,再解不等式组即可.【详解】由题知:0lg 0x x >⎧⎨≠⎩,解得0x >且1x ≠.所以函数定义域为()()0,11,+∞ .故选:B 3.C 【分析】利用函数单调性定义即可得到答案.【详解】对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,等价于对于任意两个不相等的实数12x x <,总有()()12f x f x <.所以函数()f x 一定是增函数.故选:C 4.A 【分析】利用向量的线性运算,即可得到答案;【详解】连结AC ,则AC 为ABC 的中位线,∴111222EF AC a b ==+ ,故选:A 5.A 【分析】求出等比数列的公比,再由等比数列的通项公式即可求解.【详解】设等比数列{}n a 的公比为q ,因为11a =,22a =-,所以212a q a ==-,所以()198812256a q a ==⨯-=,故选:A.6.D 【分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果.【详解】结合图像易知,sin 0θ<,cos 0θ>,则角θ是第四象限角,故选:D.7.B 【分析】圆的圆心为(2,1)-,半径为2,得到圆方程.【详解】根据题意知圆心为(2,1)-,半径为2,故圆方程为:22(2)(1)4x y ++-=.故选:B.8.C 【分析】首先选3名男生和2名女生,再全排列,共有3254351440C C A =种不同安排方法.【详解】首先从4名男生和3名女生中,任选3名男生和2名女生,共有3243C C 种情况,再分别担任5门不同学科的课代表,共有55A 种情况.所以共有3254351440C C A =种不同安排方法.故选:C 9.A 【分析】本题可通过二项式系数的定义得出结果.【详解】第4项的二项式系数为388765632C ⨯⨯==⨯,故选:A.10.D 【分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,代入已知直线即可求得结果.【详解】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,因为点(2,4)x y ---在直线2360x y +-=上,所以()()223460x y --+--=即2320x y +-=.故选:D.11.A 【分析】根据充分条件和必要条件的定义即可求解.【详解】当0a =时,集合{}1,0M =,{}1,0,1N =-,可得M N ⊆,满足充分性,若M N ⊆,则0a =或1a =-,不满足必要性,所以“0a =”是“M N ⊆”的充分不必要条件,故选:A.12.A 【分析】本题可根据图像得出结果.【详解】结合图像易知,不等式20ax bx c ++>的解集()2,1-,故选:A.13.B 【分析】根据偶函数,指数函数的知识确定正确选项.【详解】当(0,)x ∈+∞时,()01xy a a =<<,所以()f x 在()0,∞+上递减,()f x 是偶函数,所以()f x 在(),0∞-上递增.注意到01a =,所以B 选项符合.故选:B 14.D 【分析】本题可通过43>、12<、45<、cos 1≤x 、20x ≥得出结果.【详解】A 项:因为43>,所以10>且34>是假命题,A 错误;B 项:根据12<、45<易知B 错误;C 项:由余弦函数性质易知cos 1≤x ,C 错误;D 项:2x 恒大于等于0,D 正确,故选:D.15.C【分析】由二次函数对称轴设出P 点坐标,再由向量垂直的坐标表示计算可得.【详解】由题意函数243y x x =--图象的对称轴是2x =,设(2,)P y ,因为PA PB ⊥ ,所以(2,3)(6,2)12(3)(2)0PA PB y y y y ⋅=-⋅--=-+--= ,解得6y =或1y =-,所以(2,6)P 或(2,1)P -,故选:C .16.B【分析】利用古典概型概率公式,结合分步计数原理,计算结果.【详解】5位老师,每人随机进入两间教室中的任意一间听课,共有5232=种方法,其中恰好全都进入同一间教室,共有2种方法,所以213216P ==.故选:B17.B【分析】根据椭圆中,,a b c 的关系即可求解.【详解】椭圆的长轴长为10,焦距为8,所以210a =,28c =,可得5a =,4c =,所以22225169b a c =-=-=,可得3b =,所以该椭圆的短轴长26b =,故选:B.18.C【分析】作出目标函数对应的直线,平移该直线可得最大值和最小值,从而得范围.【详解】如图,作出直线:230l x y +=,向上平移直线l ,l 最先过可行域中的点A ,此时2204z =⨯+=,最后过可行域中的点(2,2)B ,此时223210=⨯+⨯=,所以z 的取值范围是[4,10].故选:C .19.D【分析】根据异面直线的定义,垂直关系的转化,判断选项.【详解】A.11//AA BB ,1BB 与1BD 相交,所以1BD 与1AA 异面,故A 错误;B.1BD 与平面11ADD A 相交,且11D A D ∉,所以1BD 与1A D 异面,故B 错误;C.四边形11A BCD 是矩形,不是菱形,所以对角线1BD 与1AC 不垂直,故C 错误;D.连结11B D ,1111B D A C ⊥,111BB A C ⊥,1111B D BB B ⋂=,所以11A C ⊥平面11BB D ,所以111A C BD ⊥,故D 正确.故选:D20.A【分析】利用余弦定理求出tan 2C =,并进一步判断4C π>,由正弦定理可得sin()sin 22A CB +=⇒,最后利用两角和的正切公式,即可得到答案;【详解】 222sin cos tan 222a b c C C C ab +-==⇒=,4C π∴>,2sin sin sin a b c R A B C=== ,sin sin cos sin sin cos sin 2A B C C B A B ∴⋅⋅+⋅⋅=,sin()sin 22A CB ∴+=⇒=,4B π∴=,tan 1B ∴=,∴tan tan tan tan()31tan tan B C A B C B C+=-+=-=-⋅,故选:A.21.53π180【分析】根据反三角函数的定义即可求解.【详解】因为sin 0.8α=,ππ,22α⎡⎤∈-⎢⎥⎣⎦,所以453πarcsin 53rad 5180α=== ,故答案为:53π180.22.14【分析】根据对数运算化简为2log 2x =-,求解x 的值.【详解】21222log log 40log log 40x x -=⇔+=,即2log 2x =-,解得:14x =.故答案为:1423.43π【分析】根据公式即可求解.【详解】解:球的体积为:344133V ππ=⨯⨯=,故答案为:43π24.469【分析】先求得编号间隔为16以及样本容量,再由样本中所有数据编号为()005+161k -求解.【详解】间隔为021-005=16,则样本容量为480=3016,样本中所有数据编号为()005+161k -,所以样本中的最后一个个体的编号为()005+16301469-=,故答案为:469251+【分析】利用抛物线的性质,得到M 的坐标,再带入到双曲线方程中,即可求解.【详解】由题意知:,2,2p c p c -=-∴=∴抛物线方程为:224,y px cx =-=-M 在抛物线上,所以(,2),M c c -M 在双曲线上,222241,c c a b∴-=2224224,60c a c a c a b =-∴-+= 23e ∴=±,又()1,e ∈+∞, 1.e ∴+126.(1)3;(2)35a -<<.【分析】(1)根据分段函数的解析式,代入计算即可;(2)先判断1a -的取值范围,再代入分段函数解析式,得到()13f a -<的具体不等式写法,解不等式即可.【详解】解:(1)因为10>,所以()12153f =⨯-=-,因为30-<,所以()()()()2133233f f f =-=-+⨯⎤⎦-⎣=⎡.(2)因为10a -≥,则()1215f a a -=--,因为()13f a -<,所以2153a --<,即14a -<,解得35a -<<.27.140里.【分析】由条件确定,该男子这9天中每天走的路程数构成等差数列,根据等差数列的通项公式,和前n 项和公式,列式求解.【详解】解:因为从第2天起,每天比前一天多走的路程相同,所以该男子这9天中每天走的路程数构成等差数列,设该数列为{}n a ,第1天走的路程数为首项1a ,公差为d ,则91260S =,147390a a a ++=.因为1(1)2n n n S na d -=+,1(1)n a a n d =+-,所以11119(91)91260236390a d a a d a d ⨯-⎧+=⎪⎨⎪++++=⎩,解得110010a d =⎧⎨=⎩,则514100410140a a d =+=+⨯=,所以该男子第5天走140里.28.(1)3A =,2ω=,3πϕ=;(2)最大值是3,最小值是32-.【分析】(1)利用三角函数五点作图法求解A ,ω,ϕ的值即可.(2)首先根据(1)知:3sin 23y x π⎛⎫=+ ⎪⎝⎭,根据题意得到11172636x πππ≤+≤,从而得到函数的最值.【详解】(1)由表可知max 3y =,则3A =,因为566T πππ⎛⎫=--= ⎪⎝⎭,2T πω=,所以2ππω=,解得2ω=,即3sin(2)y x ϕ=+,因为函数图象过点,312π⎛⎫ ⎪⎝⎭,则33sin 212πϕ⎛⎫=⨯+ ⎪⎝⎭,即πsin φ16骣琪+=琪桫,所以262k ππϕπ+=+,k ∈Z ,解得23k πϕπ=+,k ∈Z ,又因为2πϕ<,所以3πϕ=.(2)由(1)可知3sin 23y x π⎛⎫=+ ⎪⎝⎭.因为3544x ππ≤≤,所以11172636x πππ≤+≤,因此,当11236x ππ+=时,即34x π=时,32y =-,当5232x ππ+=时,即1312x π=时,3y =.所以该函数在区间35,44ππ⎡⎤⎢⎣⎦上的最大值是3,最小值是32-.29.(1)证明见解析;(2【分析】(1)要证明线面平行,可转化为证明面面平行;(2)根据面面垂直的性质定理,可知CF ⊥平面ABFE ,再结合线面角的定义,可得得到直线AC 与平面ABFE 所成角的正弦值.【详解】证明:(1)连接AF ,设点O 为AF 的中点,连接GO ,OH ,在ACF △中,又因为点G 为AC 中点,所以//OG CF .同理可证得//OH AB ,又因为E ,F 分别为正方形ABCD 的边AD ,BC 的中点,故//EF AB ,所以//OH EF .又因为OH OG O ⋂=,所以平面//GOH 平面EFCD .又因为GH Ì平面GOH ,所以//GH 平面EFCD .(2)因为ABCD 为正方形,E ,F 分别是AD ,BC 的中点,所以四边形EFCD 为矩形,则CF EF ⊥.又因为二面角C EF B --为直二面角,平面EFCD 平面ABFE EF =,CF ⊂平面EFCD ,所以CF ⊥平面ABFE ,则AF 为直线AC 在平面ABFE 内的射影,因为CAF ∠为直线AC 与平面ABFE 所成的角.不妨设正方形边长为a ,则2a CF BF ==,在Rt ABF 中,AF ===因为CF ⊥平面ABFE ,AF ⊂平面ABFE ,所以CF AF ⊥,在Rt AFC △中,AC =2sin a CF CAF AC ∠==即为直线AC 与平面ABFE 所成角的正弦值.30.(1)28y x =;(2))240x y --+.【分析】(1)根据抛物线的焦点,求抛物线方程;(2)首先设出直线l 的方程为()2y k x =+,与抛物线方程联立,并利用韦达定理表示OM ON + ,并利用()12//OM ON B A + ,求直线的斜率,验证后,即可得到直线方程.【详解】解:(1)由椭圆2214x y +=可知24a =,21b =,所以2a =,1b =,则()22,0A ,因为抛物线的焦点为2A ,可设抛物线方程为22(0)y px p =>,所以22p =,即4p =.所以抛物线的标准方程为28y x =.(2)由椭圆2214x y +=可知()12,0A -,()20,1B -,若直线l 无斜率,则其方程为2x =-,经检验,不符合要求.所以直线l 的斜率存在,设为k ,直线l 过点()12,0A -,则直线l 的方程为()2y k x =+,设点()11,M x y ,()22,N x y ,联立方程组2(2)8y k x y x=+⎧⎨=⎩,消去y ,得()22224840k x k x k +-+=.①因为直线l 与抛物线有两个交点,所以200k ⎧≠⎨∆>⎩,即()2222048440k k k k ≠⎧⎪⎨--⨯>⎪⎩,解得11k -<<,且0k ≠.由①可知212284k x x k -+=,所以()()()21212128482244k y y k x k x k x x k k k k-+=+++=++=+=,则()212122848,,k OM ON x x y y k k ⎛⎫-+=++= ⎪⎝⎭ ,因为()12//OM ON B A + ,且12(2,0)(0,1)(2,1)B A =--= ,所以2284820k k k--⨯=,解得2k =-2k =--因为11k -<<,且0k ≠,所以2k =-所以直线l的方程为(2(2)y x =-++,即)240x y --+.。

2020年春季高考高等职业教育分类考试数学模拟测试卷(一)及参考答案

2020年春季高考高等职业教育分类考试数学模拟测试卷(一)及参考答案

2020年春季高考高等职业教育分类考试数学模拟测试卷(一)及参考答案2020年春季高考高等职业教育分类考试数学模拟测试卷(一)(总分:150分时间:120分钟)一、选择题(本大题有10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}{}0,1,2,0,1M N ==,则M N =IA .{}2B .{}0,1C .{}0,2D .{}0,1,2 2.某几何体的三视图如下图所示,则该几何体是A .圆柱B .圆锥C .三棱柱D .三棱锥3.当输入a 的值为1,b 的值为3-时,右边程序运行的结果是 A .1 B .2- C .3- D .2 4.函数2sin(2)6 y x π=-的最小正周期是A .4πB .2πC .πD .2π 5.下列函数中,在()0,+∞上是减函数的是A .1y x =B .21y x =+C .2xy = D .()()00x x y x x >??=?-≤??6.不等式组101x y x -+≥??≤?表示的平面区域是7.函数x y sin 1+=的部分图像如图所示,则该函数在[]π2,0的单调递减区间是A .[]0,πB .3,22ππINPUT a ,b a=a+b PRINT a END-11OyDC yxO1-1-11OxyB A yxO1-1俯视图侧视图正视图C.3 0,2π??D.,22ππ2ππ32π2π8.方程320x-=的根所在的区间是A.()2,00,1 C.()1,2 D.()2,39.已知向量a(2,1)=,b(3,)λ=,且a⊥b,则λ=A.6- B.6 C.32D.32-10.函数()2log1y x=-的图像大致是二、填空题(本大题有5小题,每小题5分,共25分。

把答案填在题中的横线上)11.如图,化简AB BC CD++=uuu r uuu r uuu r.12.若函数()f x是奇函数,且()21f=,则()213.某田径队有男运动员30人,女运动员10人.用分层抽样的方法从中抽出一个容量为20的样本,则抽出的女运动员有人.14.对于右边的程序框图,若输入x的值是5,则输出y的值是.15.已知ABC的三个内角,,A B C所对的边分别是,,a b c,且30,45,2A B a===o o,则b=.三、解答题(本大题有5小题,共75分。

2020年上海市春季高考数学试卷及答案

2020年上海市春季高考数学试卷及答案

2020年上海市春季高考数学试卷2020.01.04时间:120分钟;满分:150分钟一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1、集合{1,3}A =,{1,2,}B a =,若A B ⊆,则a =_______ 【答案】3【解析】Q 3A ∈,且A B ⊆∴3B ∈,∴3a = 2、不等式13x>的解集为________ 【答案】10,3⎛⎫ ⎪⎝⎭【解析】Q13x>∴130x ->∴130x x ->∴()130x x ->∴()310x x -<∴103x << 【考点】分式方程3、函数tan2y x =的最小正周期为_________ 【答案】2π【解析】2T ππω== 4、已知复数z 满足26i z z +=+,则z 的实部为_________ 【答案】2【解析】设z a bi =+,∴z a bi =-,∴()223z z a bi a bi a bi +=++-=-,且26i z z +=+ ∴36a =,1b -=∴2a =,1b =-5、已知3sin22sin x x =,(0,)x π∈,则x =_________ 【答案】【解析】Q 3sin22sin x x =32sin cos 2sin x x x ∴⨯⋅=3cos 1x ∴=或sin 0x =1cos 3x ∴=或sin 0x =,又Q (0,)x π∈1arccos 3x ∴=【考点】注意在计算过程中分类讨论 6、若函数133x x y a =⋅+为偶函数,则a =________ 【答案】1【解析】()133xx f x a =⋅+Q ,()1+33xxf x a ∴-=⋅,且()f x 为偶函数, ()()f x f x ∴=-,∴1a =7、已知直线1:1l x ay +=,2:1l ax y +=,若1l ∥2l ,则1l 与2l 的距离为_________ 【答案】2 【解析】Q 1l ∥2l ,11aa ∴=21a ∴=1a ∴=±,当1a =时, 1l 与2l 重合;当1a =-时,1:10l x y --=,2:10l x y -+=,∴1(1)22d --==8、已知二项式5(2)x x +,则展开式中3x 的系数为________【答案】10【解析】414355(2)()10T C x x x == 【考点】二项式定理:()()0111222111*nn n n r n r r n n n n n n n n n n a b C a C a b C a b C a b C a b C b n N -----+=+++⋅⋅⋅+⋅⋅⋅++∈ 式中的rn rr n C ab -叫做二项展开式的通项,它是二项展开式的第1r +项,用1r T +表示,即1r n r rr n T C a b-+=9、三角形ABC 中,D 是BC 中点,2AB =,3BC =,4AC =,则AD AB ⋅=uuu r uu u r________【答案】 【解析】如图Q 22223431cos 223124B +--===-⨯⨯,()()2AD AB AB BD AB AB BD AB ⋅=+⋅=+⋅uuur uu u r uu u r uu u r uu u r uu u r uu u r uu u r ()311942cos 43244B π=+⨯⨯-=+⨯=10、已知{3,2,1,0,1,2,3}A =---,a 、b A ∈,则||||a b <的情况有_______种【答案】18【解析】分类枚举,当3a =-时,0种;当2a =-时,2种;当1a =-时,4种;当0a =时,6种;当1a =时,4种;当2a =时,2种;当3a =时,0种;共有18种11、已知1A 、2A 、3A 、4A 、5A 五个点,满足1120n n n n A A A A +++⋅=u u u u u u r u u u u u u u r(1,2,3n =),112||||1n n n n A A A A n +++⋅=+u u u u u u r u u u u u u u r(1,2,3n =),则15||A A u u u u r 的最小值为__________【答案】6 【解析】求15||A A u u u u r的最小值,设()1121212232230,0,;2,,0A A A t A A A A A A A A A t =⊥⨯=(),uuu r uuu r uuuu r uuuu r ,320A t ⎛⎫ ⎪⎝⎭,;同理得4538,00,23t A A t ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭;()1512233445238=,00,,00,23t A A A A A A A A A A t t t ⎛⎫⎛⎫⎛⎫+++=++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭uuuu r uuuu r uuuu r uuuu r uuuu r 21522416,223493tt A A t t ⎛⎫=--=+≥⨯=⎪⎝⎭,uuuu r12、已知()1f x x =-,其反函数为1()f x -,若1()()f x a f x a --=+有实数根,则a 的取值范围为________ 【答案】3[,)4+∞【解析】Q ()y f x a =+,1()f x a x --=;()1f x a x a +=+-221,1,10x a x x a x x x a +-=+-=-+-=;()3=1410,4a a ∆--≥≥.二. 选择题(本大题共4题,每题5分,共20分)13、 计算:1135lim 35n nn n n --→∞+=+( ) A .3B .53C .35D .5【答案】D【解析】1111335355lim lim 535315n n nn n n n n ----→∞→∞⎛⎫+ ⎪+⎝⎭==+⎛⎫+ ⎪⎝⎭,分子分母同时除以15n -,可以得到结果 14、“αβ=”是“22sin cos 1αβ+=”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】A【解析】Q αβ=⇒2222sin cos 1sin cos 1αααβ+=⇒+=∴充分性成立;Q 22sin cos 1αβ+=⇒22sin sin αβ=推不出αβ=,∴必要性不成立15 、已知椭圆2212x y +=,作垂直于x 轴的垂线交椭圆于A 、B 两点,作垂直于y 轴的垂线交椭圆于C 、D 两点,且AB CD =,两垂线相交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .圆D .抛物线【答案】B【解析】设[]2222(,),2,2,1,1,122c c m m P m n m n y y -⎡⎤∈-∈-+=⇒=⎣⎦ 所以22222421222Bc B x CD y m n x n ==-+=⇒=-,所以22222288,4288212B m AB x n AB CD m n n ==-=⇒-=-⇒-=;所以点P 的轨迹是双曲线;16、数列{}n a 各项均为实数,对任意n ∈*N 满足3n n a a +=,且行列式123n n n n a a c a a +++=为定值,则下列选项中不可能的是( )A .11a =,1c =B .12a =,2c =C .11a =-,4c =D .12a =,0c =【答案】B【解析】3n n a a +=;3T =;14a a =;312n n n n a a a a c +++-=;当21231,n a a a c =-=① ;当22132,n a a a c =-=②由①—②得12123- )0a a a a a ++=()(;12a a =(舍去)或1230a a a ++=即231-a a a +=;2231-a a c a =;所以23,a a 是方程22110x a x a c ++-=的解;222111=- 4+4c = 4c -30a a a ≥V ;经检验B 是不可能的,所以选B三、 解答题(本大题共5题,共14+14+14+16+18=76分)17、 已知四棱锥P ABCD -,底面ABCD 为正方形,边长为3,PD ⊥平面ABCD . (1)若5PC =,求四棱锥P ABCD -的体积; (2)若直线AD 与BP 的夹角为60°,求PD 的长.【答案】(1)12;(2)32【解析】(1)PD ⊥Q 平面ABCD PD DC ∴⊥,3CD =Q ,5PC =,4PD ∴=2134123P ABCD V -∴=⨯⨯=,所以四棱锥P ABCD -的体积为12(2)因为ABCD 为正方形,//AD BC ∴,∴直线AD 与BP 的夹角即60PBC ∠=︒,Q BC CD ⊥,BC PD ⊥BC ∴⊥平面PCD ,BC PC ∴⊥,∴Rt ABC V 中,3BC ∴=,PC =Rt PCD V中,PD ==,PD ∴的长为18、已知各项均为正数的数列{}n a ,其前n 项和为n S ,11a =. (1)若数列{}n a 为等差数列,1070S =,求数列{}n a 的通项公式;(2)若数列{}n a 为等比数列,418a =,求满足100n n S a >时n 的最小值. 【答案】(1)4133n a n =-,n ∈*N ;(2)112n n a -=,即2101n >,n 的最小值为7【解析】(1)Q 数列{}n a 为等差数列,∴设公差为d ,10110910702S a d ⨯=+=,11a =Q ,43d ∴=,()141133n a a n d n ∴=+-=-,即数列{}n a 的通项公式为4133n a n =-,n ∈*N(2)Q 数列{}n a 为等比数列,11a =Q ,418a =,318q ∴=,12q ∴=,112n n a -=,即()1111212n n n a q S q--==--111100222n n --∴->,即2101n>,7n ∴≥,即n 的最小值为7 19、 有一条长为120米的步行道OA ,A 是垃圾投放点1ω,若以O 为原点,OA 为x 轴正半轴建立直角坐标系,设点(,0)B x ,现要建设另一座垃圾投放点2(,0)t ω,函数()t f x 表示与B 点距离最近的垃圾投放点的距离.(1)若60t =,求60(10)f 、60(80)f 、60(95)f 的值,并写出60()f x 的函数解析式; (2)若可以通过()t f x 与坐标轴围成的面积来测算扔垃圾的便利程度,面积越小越便利. 问:垃圾投放点2ω建在何处才能比建在中点时更加便利?【答案】(1)60(10)|6010|50f =-=,60(80)|6080|20f =-=,60(95)|12095|25f =-=.60|60|90()|120|90x x f x x x -≤⎧=⎨->⎩; (2)2060t << 【解析】(1)投放点()1120,0ω,()260,0ω,()6010f 表示与(10,0)B 距离最近的投放点的距离,()6010601050f ∴=-=,同理有,60(80)|6080|20f =-=,60(95)|12095|25f =-=,由题意得,(){}60min60,9060,120120,90x x f x x xx x ⎧-≤⎪=--=⎨->⎪⎩(2)由题意,(){}min,120t f x t xx =--,()60120,2120120,2t t x x f x t x x +⎧-≤⎪⎪∴=⎨+⎪->⎪⎩,()1f x 与坐标轴围成的面积如阴影部分所示,()2221312060360024S t t t t ∴=+-=-+,由题意,()60S S <,即2360360027004t t -+<,解得:2060t <<,即垃圾投放点2ω建在()20,0与()60,0之间时,比建在中点时更便利20、已知抛物线2y x =上的动点00(,)M x y ,过M 分别作两条直线交抛物线于P 、Q 两点, 交直线x t =于A 、B 两点.(1)若点M 2M 与焦点的距离;(2)若1t =-,(1,1)P ,(1,1)Q -,求证:A B y y ⋅为常数;(3)是否存在t ,使得1A B y y ⋅=且P Q y y ⋅为常数?若存在,求出t 的所有可能值, 若不存在,请说明理由. 【答案】(1)924M p MF x =+=;(2)1A B y y ⋅=-;(3)存在1t = 【解析】192),244M MF ∴=+=; 设221(,),:1(1)1a M a a l y x a --=-- ;令11(1,)1a x A a -=--+,;同理1(1,)1a B a ----,所以11111A B a a y y a a ---=⋅=-+-为定值; 设21(,),(,),(.)A t m B t M a a m ;联立222()m a y a x a t ay x-⎧-=-⎪-⎨⎪=⎩; 所以2222()0m a m a a y y a t a t a ---+-=--;所以22+,P M pt a t a t may y y a m a m a m a---==-=---,同理1Q tm ay m-=-,因为=P Q P Q y y y y λ为常数,令,即)(),()(1)t ma tm a m a ma λ--=--(, 22222()(1)ma tm t a t m m a m a m λλλ-++=-++;所以222(1)m m tm t m t m m λλλ=⎧⎪+=+⎨⎪=⎩;=11t t t λλλ⎧⎪=⇒=⎨⎪=⎩21、已知非空集合A ⊆R ,函数()y f x =的定义域为D ,若对任意t A ∈且x D ∈, 不等式()()f x f x t ≤+恒成立,则称函数()f x 具有A 性质. (1)当{1}A =-,判断()f x x =-、()2g x x =是否具有A 性质; (2)当(0,1)A =,1()f x x x=+,[,)x a ∈+∞,若()f x 具有A 性质,求a 的取值范围; (3)当{2,}A m =-,m ∈Z ,若D 为整数集且具有A 性质的函数均为常值函数,求所有符合条件的m 的值. 【答案】(1)()f x x =-具有A 性质;()2g x x =不具有A 性质; (2)[1,)a ∈+∞;(3)m 为奇数 【解析】()(1)(1)10f x f x x x -+=----=>所以()f x 不具有性质A ; ()(1=22(1)20g x g x x x -+-+=-<)所以()g x 不具有性质A ;[)11(0,1),,,()(1)0t x a f x f x x t x x t x∈∈∞-+=++--≥+恒成立, 化简2max min0111-10,x tx t x x t x x x x<-≥⇒≥--≤-,()单调递减, 所以101a a a -≤⇒≥;因为D 为整数集,具有性质A 的函数均为常值函数;所以当2t =-时;()(2)f x f x =-恒成立,即(2)(),(21)()f k P P Z f n q q Z =∈-=∈, 由题意得p q =,所以(2)(21)f k f n =-;①当2,()(221),221(,)x k f x f x n k m n k n k Z ==+--=--∈令;②当21,()(221),221(,)x n f x f x k n m k n n k Z =-=--+=-+∈令; 所以m 为奇数。

2020高考数学2020版高职高考数学模拟试卷(一)(共29张PPT)

2020高考数学2020版高职高考数学模拟试卷(一)(共29张PPT)

D.h(x)=sinx
C (A选项中, y 3x 1在(0, )上为增函数; B选项中, f (x) log2 x在(0, )上为增函数; D选项中, h(x) sin x在(0, )上有增有减;
C选项中, g(x) (1)x 在(0, )上为减函数.) 2
6.已知角α终边上一点P ( 3, 1) ,则sinα= ( )
1 (由等差数列求和公式可以得到.)
18.某高中学校三个年级共有学生2000名,若在全校学生中随机抽 取一名学生,抽到高二年级女生的概率为0.19,则高二年级的女生 人数为 .
380 (2000 0.19 380.)
19.在△ABC中,若AB=2,则AB(CA CB)=
.
4 ( AB(CA CB) AB BA AB2 4.)
20.焦距为4,离心率为 2 的椭圆,两条准线的距离为
.
2
8
(2c 4, c 2, e c 2 , a 2 2, 2a2 8.)
a2
c
三、解答题(本大题共4小题,第21~23题各12分,第24题14分,满分
50分.解答应写出文字说明、证明过程和演算步骤.)
21.(本小题满分12分)
14.从某班的21名男生和20名女生中,任意选一名男生和一名女生
代表班级参加评教座谈会,则不同的选派方案共有
()
A.41种
B.420种
C.520种
D.820种
B (由乘法原理得, 21 20 420.)
15.已知函数y=ex的图象与单调递减函数y=f(x)(x∈R)的图象相交
于(a,b),给出的下列四个结论:
A. 3
B. 1
C. 3

2020年山东省春季高考数学真题

2020年山东省春季高考数学真题

2020年山东省春季高考数学真题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于()A .∅B .{},a cC .{},b d D .{},,,a b c d 2.函数()1lg f x x=的定义域是()A .()0,∞+B .()()0,11,+∞ C .[)()0,11,+∞U D .()1,+∞3.已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是()A .奇函数B .偶函数C .增函数D .减函数4.已知平行四边形ABCD ,点E ,F 分别是AB ,BC 的中点(如图所示),设AB a =,AD b =,则EF 等于()A .()12a b+ B .()12a b- C .()12b a- D .12a b+ 5.在等比数列{}n a 中,11a =,22a =-,则9a 等于()A .256B .-256C .512D .-5126.已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角7.已知圆心为()2,1-的圆与y 轴相切,则该圆的标准方程是()A .()()22211x y ++-=B .()()22214x y ++-=C .()()22211x y -++=D .()()22214x y -++=8.现从4名男生和3名女生中,任选3名男生和2名女生,分别担任5门不同学科的课代表,则不同安排方法的种数是()A .12B .120C .1440D .172809.在821x x ⎛⎫- ⎪⎝⎭的二项展开式中,第4项的二项式系数是()A .56B .56-C .70D .70-10.直线2360x y +-=关于点()1,2-对称的直线方程是()A .32100x y --=B .32230x y --=C .2340x y +-=D .2320x y +-=11.已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.已知二次函数2y ax bx c =++的图像如图所示,则不等式20ax bx c ++>的解集是()A .()2,1-B .()(),21,-∞-⋃+∞C .[]2,1-D .(][),21,-∞-+∞ 13.已知函数()y f x =是偶函数,当(0,)x ∈+∞时,()01xy a a =<<,则该函数在(,0)-∞上的图像大致是()A .B .C .D .14.下列命题为真命题的是()A .10>且34>B .12>或45>C .x R ∃∈,cos 1x >D .x ∀∈R ,20x ≥15.已知点()4,3A ,()4,2B -,点P 在函数243y x x =--图象的对称轴上,若PA PB ⊥,则点P 的坐标是()A .()2,6-或()2,1B .()2,6--或()2,1-C .()2,6或()2,1-D .()2,6-或()2,1--16.现有5位老师,若每人随机进入两间教室中的任意一间听课,则恰好全都进入同一间教室的概率是()A .225B .116C .125D .13217.已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于()A .3B .6C .8D .1218.已知变量x ,y 满足某约束条件,其可行域(阴影部分)如图所示,则目标函数23z x y =+的取值范围是()A .[]0,6B .[]4,6C .[]4,10D .[]6,1019.已知正方体1111ABCD A B C D -(如图所示),则下列结论正确的是()A .11//BD A AB .11//BD A DC .11BD A C ⊥D .111BD A C ⊥20.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C 2sin cos 2c B A b =,则tan A 等于()A .3B .13-C .3或13-D .-3或13二、填空题21.已知ππ,22α⎡⎤∈-⎢⎥⎣⎦,若sin 0.8α=,则α=______rad .22.若212log log 40x -=,则实数x 的值是______.23.已知球的直径为2,则该球的体积是______.24.某创新企业为了解新研发的一种产品的销售情况,从编号为001,002,…480的480个专卖店销售数据中,采用系统抽样的方法抽取一个样本,若样本中的个体编号依次为005,021,…则样本中的最后一个个体编号是______.25.已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______.三、解答题26.已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩.(1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.27.某男子擅长走路,9天共走了1260里,其中第1天、第4天、第7天所走的路程之和为390里.若从第2天起,每天比前一天多走的路程相同,问该男子第5天走多少里.这是我国古代数学专著《九章算术》中的一个问题,请尝试解决.28.小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图象时,列表如下:x6π-12π3π712π56πx ωϕ+02ππ32π2πsin()A x ωϕ+03-3根据表中数据,求:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.29.已知点E ,F 分别是正方形ABCD 的边AD ,BC 的中点.现将四边形EFCD 沿EF 折起,使二面角C EF B --为直二面角,如图所示.(1)若点G ,H 分别是AC ,BF 的中点,求证://GH 平面EFCD ;(2)求直线AC 与平面ABFE 所成角的正弦值.30.已知抛物线的顶点在坐标原点O ,椭圆2214x y +=的顶点分别为1A ,2A ,1B ,2B ,其中点2A 为抛物线的焦点,如图所示.(1)求抛物线的标准方程;(2)若过点1A 的直线l 与抛物线交于M ,N 两点,且()12//OM ON B A +,求直线l 的方程.。

春季高考高职单招数学模拟试题-(1)(2020年整理).doc

春季高考高职单招数学模拟试题-(1)(2020年整理).doc

春季高考高职单招数学模拟试题LIAO一、选择题:本大题共14个小题,每小题5分,共70分。

在每小题给出的四个选项中,只有一项符合 1.如果集合{1,2}A =-,{|0}B x x =>,那么集合AB 等于A. {2}B. {1}-C. {1,2}-D. ∅ 2.不等式220x x -<的解集为A. {|2}x x >B. {|0}x x <C. {|02}x x <<D. {|0x x <或2}x > 3.已知向量(2,3)=-a ,(1,5)=b ,那么⋅a b 等于A.-13B.-7C.7D.13 4.如果直线3y x =与直线1+=mx y 垂直,那么m 的值为A. 3-B. 13-C. 13D. 3 5.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样的方法抽出一个容量为n 的样本,其中A 种型号产品有16件,那么此样本的容量为A.100B.80C.70D.60 6.函数1+=x y 的零点是A. 1-B. 0C. )0,0( D .)0,1(- 7.已知一个算法,其流程图如右图,则输出的结果是A.11B.10C.9D.8 8.下列函数中,以π为最小正周期的是A. 2sin xy = B. x y sin = C. x y 2sin = D .y 4sin =9.11cos6π的值为 A. -10. 已知数列{}n a 是公比为实数的等比数列,且11a =,59a =,则3a 等于A.2B. 3C. 4D. 5(第7题图)11.当,x y 满足条件,0,230x y y x y ≥⎧⎪≥⎨⎪+-≤⎩时,目标函数3z x y =+的最大值是A.1B.2C.4D.912.已知直线l过点P ,圆C :224x y +=,则直线l 与圆C 的位置关系是 A.相交B. 相切C.相交或相切D.相离13. 已知函数3()f x x =-,则下列说法中正确的是A. ()f x 为奇函数,且在()0,+∞上是增函数B. ()f x 为奇函数,且在()0,+∞上是减函数C. ()f x 为偶函数,且在()0,+∞上是增函数D. ()f x 为偶函数,且在()0,+∞上是减函数 14.已知平面α、β,直线a 、b ,下面的四个命题①a b a α⎫⎬⊥⎭∥b α⇒⊥;②}a b αα⊥⇒⊥a b ∥;③a b a b αβαβ⊂⎫⎪⊂⇒⊥⎬⎪⊥⎭;④a b a b αβαβ⊂⎫⎪⊂⇒⎬⎪⎭∥∥中, 所有正确命题的序号是A. ①②B. ②③C. ①④D. ②④1、 若集合S={小于9的正整数},M={2,4},N={3,4,5,7},则(M C S ) (N C S )=( )A {2,3,4,5,7}B {1,6,8}C {1,2,3,5,6,7,8}D {4} 2、不等式()23+x >0的解集是( ).A {x ︱∞-<x <∞+}B {x ︱x >-3}C {x ︱x >0}D {x ︱x ≠-3}3、已知322.1-=a ,437.0-=b ,1=c ,那么c b a ,,的大小顺序是( )。

2020春考数学模拟题及答案

2020春考数学模拟题及答案

2020春考数学模拟题1.设集合A={1,2,3},集合B={3,4},则A∪B= {1,2,3,4} .【考点】并集及其运算.【分析】根据集合的并集的定义求出A、B的并集即可.【解答】解:集合A={1,2,3},集合B={3,4},则A∪B={1,2,3,4},故答案为:{1,2,3,4}.【点评】本题考查了集合的并集的定义以及运算,是一道基础题.2.不等式|x﹣1|<3的解集为(﹣2,4).【考点】绝对值不等式的解法.【分析】根据绝对值的性质去掉绝对值,求出不等式的解集即可.【解答】解:∵|x﹣1|<3,∴﹣3<x﹣1<3,∴﹣2<x<4,故不等式的解集是(﹣2,4),故答案为:(﹣2,4).【点评】本题考查了解绝对值不等式问题,是一道基础题.3.若复数z满足2﹣1=3+6i(i是虚数单位),则z= 2﹣3i .【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:∵2﹣1=3+6i,∴,则,∴z=2﹣3i.故答案为:2﹣3i.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.4.若,则= .【考点】运用诱导公式化简求值.【分析】由已知利用诱导公式即可化简求值.【解答】解:∵,∴=﹣cosα=﹣.故答案为:﹣.【点评】本题主要考查了诱导公式在三角函数化简求值中的应用,属于基础题.5.若关于x、y的方程组无解,则实数a= 6 .【考点】根的存在性及根的个数判断.【分析】把方程组无解转化为两条直线无交点,然后结合两直线平行与系数的关系列式求得a值.【解答】解:若关于x、y的方程组无解,说明两直线x+2y﹣4=0与3x+ay﹣6=0无交点.则,解得:a=6.故答案为:6.【点评】本题考查根的存在性与根的个数判断,考查数学转化思想方法,是中档题.6.若等差数列{an }的前5项的和为25,则a1+a5= 10 .【考点】等差数列的前n项和.【分析】由等差数列前n项和公式得=25,由此能求出a1+a5.【解答】解:∵等差数列{an}的前5项的和为25,∴=25,∴a1+a5=25×=10.故答案为:10.【点评】本题考查等差数列中两项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.7.若P、Q是圆x2+y2﹣2x+4y+4=0上的动点,则|PQ|的最大值为 2 .【考点】直线与圆的位置关系.【分析】圆x2+y2﹣2x+4y+4=0,可化为(x﹣1)2+(y+2)2=1,|PQ|的最大值为直径长.【解答】解:圆x2+y2﹣2x+4y+4=0,可化为(x﹣1)2+(y+2)2=1,∵P、Q是圆x2+y2﹣2x+4y+4=0上的动点,∴|PQ|的最大值为2,故答案为2.【点评】本题考查圆的方程,考查学生的计算能力,比较基础.8.已知数列{an}的通项公式为,则= .【考点】等比数列的前n项和;极限及其运算.【分析】利用等比数列的求和公式,结合极限,即可得出结论.【解答】解: ==,故答案为:.【点评】本题考查等比数列的求和公式,考查极限方法,属于中档题.9.若的二项展开式的各项系数之和为729,则该展开式中常数项的值为160 .【考点】二项式系数的性质.【分析】令x=1,由题意可得:3n=729,解得n.再利用二项式定理的通项公式即可得出.【解答】解:令x=1,由题意可得:3n=729,解得n=6.∴展开式的通项公式为:Tr+1=2r C6r x6﹣2r,令6﹣2r=0,解得r=3,∴其展开式中常数项=8×20=160,故答案为:160.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.10.设椭圆的左、右焦点分别为F1、F2,点P在该椭圆上,则使得△F1F2P是等腰三角形的点P的个数是 6 .【考点】椭圆的简单性质.【分析】如图所示,①当点P与短轴的顶点重合时,△F1F2P构成以F1F2为底边的等腰三角形,此时有2个.②当△F1F2P构成以F1F2为一腰的等腰三角形时,共有4个.【解答】解:如图所示,①当点P与短轴的顶点重合时,△F1F2P构成以F1F2为底边的等腰三角形,此种情况有2个满足条件的等腰△F1F2 P;②当△F1F2P构成以F1F2为一腰的等腰三角形时,共有4个.以F2P作为等腰三角形的底边为例,∵F1F2=F1P,∴点P在以F1为圆心,半径为焦距2c的圆上因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,存在2个满足条件的等腰△F1F2 P.同理可得:当以F2为圆心,半径为2c的圆与椭圆C有2交点时,存在2个满足条件的等腰△F1F2 P.综上可得:满足条件的使得△F1F2P是等腰三角形的点P的个数为6.故答案为:6.【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、等腰三角形,考查了推理能力与计算能力,属于中档题.11.设a1、a2、…、a6为1、2、3、4、5、6的一个排列,则满足|a1﹣a2|+|a3﹣a 4|+|a5﹣a6|=3的不同排列的个数为48 .【考点】排列、组合的实际应用.【分析】根据题意,分析可得需要将1、2、3、4、5、6分成3组,其中1和2,3和4,5和6必须在一组,进而分2步进行分析:首先分析每种2个数之间的顺序,再将分好的三组对应三个绝对值,最后由分步计数原理计算可得答案.【解答】解:根据题意,若|a1﹣a2|+|a3﹣a4|+|a5﹣a6|=3,则|a1﹣a2|=|a3﹣a4|=|a5﹣a6|=1,需要将1、2、3、4、5、6分成3组,其中1和2,3和4,5和6必须在一组,每组2个数,考虑其顺序,有A22种情况,三组共有A22×A22×A22=8种顺序,将三组全排列,对应三个绝对值,有A33=6种情况,则不同排列的个数为8×6=48;故答案为:48.【点评】本题考查排列、组合的应用,注意分析1、2、3、4、5、6如何排列时,能满足|a1﹣a2|+|a3﹣a4|+|a5﹣a6|=3.12.设a、b∈R,若函数在区间(1,2)上有两个不同的零点,则f (1)的取值范围为(0,1).【考点】函数零点的判定定理.【分析】函数在区间(1,2)上有两个不同的零点,即方程x2+bx+a=0在区间(1,2)上两个不相等的实根,⇒⇒画出数对(a,b)所表示的区域,求出目标函数z=f(1)═a+b+1的范围即可.【解答】解:函数在区间(1,2)上有两个不同的零点,即方程x2+bx+a=0在区间(1,2)上两个不相等的实根,⇒⇒,如图画出数对(a,b)所表示的区域,目标函数z=f(1)═a+b+1∴z的最小值为z=a+b+1过点(1,﹣2)时,z的最大值为z=a+b+1过点(4,﹣4)时∴f(1)的取值范围为(0,1)故答案为:(0,1)【点评】本题是函数零点的考查,涉及到规划问题的结合,属于难题.二.选择题(本大题共4题,每题5分,共20分)13.函数f(x)=(x﹣1)2的单调递增区间是()A.[0,+∞)B.[1,+∞)C.(﹣∞,0] D.(﹣∞,1]【考点】函数的单调性及单调区间.【分析】根据二次函数的性质求出函数的递增区间即可.【解答】解:函数f(x)的对称轴是x=1,开口向上,故f(x)在[1,+∞)递增,故选:B.【点评】本题考查了二次函数的性质,是一道基础题.14.设a∈R,“a>0”是“”的()条件.A.充分非必要 B.必要非充分C.充要D.既非充分也非必要【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义判断即可.【解答】解:由,解得:a>0,故a>0”是“”的充要条件,故选:C.【点评】本题考查了充分必要条件,考查不等式问题,是一道基础题.15.过正方体中心的平面截正方体所得的截面中,不可能的图形是()A.三角形B.长方形C.对角线不相等的菱形D.六边形【考点】平行投影及平行投影作图法.【分析】根据截面经过几个面得到的截面就是几边形判断即可.【解答】解:过正方体中心的平面截正方体所得的截面,至少与正方体的四个面相交,所以不可能是三角形,故选:A.【点评】解决本题的关键是理解截面经过几个面得到的截面就是几边形.16.如图所示,正八边形A1A2A3A4A5A6A7A8的边长为2,若P为该正八边形边上的动点,则的取值范围为()A.B.C.D.【考点】平面向量数量积的运算.【分析】由题意求出以A1为起点,以其它顶点为向量的模,再由正弦函数的单调性及值域可得当P与A8重合时,取最小值,求出最小值,结合选项得答案.【解答】解:由题意,正八边形A1A2A3A4A5A6A7A8的每一个内角为135°,且,,,.再由正弦函数的单调性及值域可得,当P与A8重合时,最小为==.结合选项可得的取值范围为.故选:B.【点评】本题考查平面向量的数量积运算,考查数形结合的解题思想方法,属中档题.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(12分)(2017•上海模拟)如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3;(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1C与DD1所成角的大小.【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)四棱锥A1﹣ABCD的体积=,由此能求出结果.(2)由DD1∥CC1,知∠A1CC1是异面直线A1C与DD1所成角(或所成角的补角),由此能求出异面直线A1C与DD1所成角的大小.【解答】解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3,∴四棱锥A1﹣ABCD的体积:====4.(2)∵DD1∥CC1,∴∠A1CC1是异面直线A1C与DD1所成角(或所成角的补角),∵tan∠A1CC1===,∴=.∴异面直线A1C与DD1所成角的大小为;【点评】本题考查三棱锥的体积的求法,考查异面直线所成角的求法,是中档题,解题时要认真审题,注空间思维能力的培养.18.(12分)(2017•上海模拟)设a∈R,函数;(1)求a的值,使得f(x)为奇函数;(2)若对任意x∈R成立,求a的取值范围.【考点】函数恒成立问题;函数奇偶性的性质.【分析】(1)由f(x)在R上为奇函数,可得f(0)=0,解方程可得a的值,检验即可;(2)由题意可得即为<恒成立,等价为<,即有2(a﹣1)<a(2x+1),讨论a=0,a>0,a<0,由参数分离,求得右边的范围,运用恒成立思想即可得到a的范围.【解答】解:(1)由f(x)的定义域为R,且f(x)为奇函数,可得f(0)=0,即有=0,解得a=﹣1.则f(x)=,f(﹣x)===﹣f(x),则a=﹣1满足题意;(2)对任意x∈R成立,即为<恒成立,等价为<,即有2(a﹣1)<a(2x+1),当a=0时,﹣1<0恒成立;当a>0时,<2x+1,由2x+1>1,可得≤1,解得0<a≤2;当a<0时,>2x+1不恒成立.综上可得,a的取值范围是[0,2].【点评】本题考查函数的奇偶性的运用:求参数的值,考查不等式恒成立问题的解法,注意运用分类讨论和参数分离的思想方法,考查运算能力,属于中档题.19.(12分)(2017•上海模拟)某景区欲建造两条圆形观景步道M1、M2(宽度忽略不计),如图所示,已知AB⊥AC,AB=AC=AD=60(单位:米),要求圆M1与AB、AD分别相切于点B、D,圆M2与AC、AD分别相切于点C、D;(1)若∠BAD=60°,求圆M1、M2的半径(结果精确到0.1米)(2)若观景步道M1与M2的造价分别为每米0.8千元与每米0.9千元,如何设计圆M1、M2的大小,使总造价最低?最低总造价是多少?(结果精确到0.1千元)【考点】直线与圆的位置关系.【分析】(1)直接利用三角函数,可得结论;(2)设∠BAD=2α,则总造价y=0.8•2π•60tanα+0.9•2π•60tan(45°﹣α),换元,利用基本不等式,可得结论.【解答】解:(1)M1半径=60tan30°≈34.6,M2半径=60tan15°≈16.1;(2)设∠BAD=2α,则总造价y=0.8•2π•60tanα+0.9•2π•60tan(45°﹣α),设1+tanα=x,则y=12π•(8x+﹣17)≥84π,当且仅当x=,tanα=时,取等号,∴M1半径30,M2半径20,造价42.0千元.【点评】本题考查直线与圆的位置关系,考查基本不等式的运用,属于中档题.20.(12分)(2017•上海模拟)已知双曲线(b>0),直线l:y=kx+m(km≠0),l与Γ交于P、Q两点,P'为P关于y轴的对称点,直线P'Q 与y轴交于点N(0,n);(1)若点(2,0)是Γ的一个焦点,求Γ的渐近线方程;(2)若b=1,点P的坐标为(﹣1,0),且,求k的值;(3)若m=2,求n关于b的表达式.【考点】双曲线的简单性质.【分析】(1)由双曲线(b>0),点(2,0)是Γ的一个焦点,求出c=2,a=1,由此能求出Γ的标准方程,从而能求出Γ的渐近线方程.(2)双曲线Γ为:x2﹣y2=1,由定比分点坐标公式,结合已知条件能求出k的值.(3)设P(x1,y1),Q(x2,y2),kPQ=k,则,由,得(b2﹣k2)x2﹣4kx﹣4﹣b2=0,由,得()x2﹣2knx﹣n2﹣b2=0,由此利用韦达定理,结合已知条件能求出n关于b的表达式.【解答】解:(1)∵双曲线(b>0),点(2,0)是Γ的一个焦点,∴c=2,a=1,∴b2=c2﹣a2=4﹣1=3,∴Γ的标准方程为: =1,Γ的渐近线方程为.(2)∵b=1,∴双曲线Γ为:x2﹣y2=1,P(﹣1,0),P′(1,0),∵=,设Q(x2,y2),则有定比分点坐标公式,得:,解得,∵,∴,∴=.(3)设P(x1,y1),Q(x2,y2),kPQ=k,则,由,得(b2﹣k2)x2﹣4kx﹣4﹣b2=0,,,由,得()x2﹣2knx﹣n2﹣b2=0,﹣x1+x2=,﹣x1x2=,∴x1x2==,即,即=,====,化简,得2n2+n(4+b2)+2b2=0,∴n=﹣2或n=,当n=﹣2,由=,得2b2=k2+k2,由,得,即Q(,),代入x2﹣=1,化简,得:,解得b2=4或b2=kk,当b2=4时,满足n=,当b2=kk0时,由2b2=k2+k2,得k=k(舍去),综上,得n=.【点评】本题考查双曲线的渐近线的求法,考查直线的斜率的求法,考查n关于b的表达式的求法,是中档题,解题时要认真审题,注意双曲线、直线、韦达定理的合理运用.21.(12分)(2017•上海模拟)已知函数f(x)=log2;(1)解方程f(x)=1;(2)设x∈(﹣1,1),a∈(1,+∞),证明:∈(﹣1,1),且f()﹣f(x)=﹣f();(3)设数列{xn }中,x1∈(﹣1,1),xn+1=(﹣1)n+1,n∈N*,求x1的取值范围,使得x3≥xn对任意n∈N*成立.【考点】函数与方程的综合运用.【分析】(1)根据对数运算性质得=2,从而解出x的值;(2)令g(x)=,判断g(x)的单调性得出g(x)的值域,根据对数的运算性质化简即可证明f()﹣f(x)=﹣f();(3)利用(2)中的结论得出f(xn+1)与f(xn)的关系,判断f(xn)的周期,分别用f(x1)表示出f(x2),f(x3),f(x4),根据f(x)的单调性得出,从而求出f(x1)的范围,继而解出x1的范围.【解答】解:(1)∵f(x)=log2=1,∴=2,解得;(2)令g(x)=,则g′(x)==.∵a∈(1,+∞),∴g′(x)>0,∴g(x)在(﹣1,1)上是增函数,又g(﹣1)=,g(1)==1,∴﹣1<g(x)<1,即∈(﹣1,1).∵f(x)﹣f()=log2﹣log2=log2﹣log2=log2()=log2,f()=log2=log2.∴f()=f(x)﹣f(),∴f()﹣f(x)=﹣f().(3)∵f(x)的定义域为(﹣1,1),f(﹣x)=log2=﹣log2=﹣f(x),∴f(x)是奇函数.∵xn+1=(﹣1)n+1,∴xn+1=.①当n为奇数时,f(xn+1)=f()=f(xn)﹣f()=f(xn)﹣1,∴f(xn+1)=f(xn)﹣1;②当n为偶数时,f(xn+1)=f(﹣)=﹣f()=1﹣f(xn),∴f(xn+1)=1﹣f(xn).∴f(x2)=f(x1)﹣1,f(x3)=1﹣f(x2)=2﹣f(x1),f(x4)=f(x3)﹣1=1﹣f(x1),f(x5)=1﹣f(x4)=f(x1),f(x6)=f(x5)﹣1=f(x1)﹣1,…∴f(xn )=f(xn+4),n∈N+.设h(x)=,则h′(x)==>0,∴h(x)在(﹣1,1)上是增函数,∴f(x)=log2=log2h(x)在(﹣1,1)上是增函数.∵x3≥xn对任意n∈N*成立,∴f(x3)≥f(xn)恒成立,∴,即,解得:f(x1)≤1,即log2≤1,∴0<≤2,解得:﹣1<x1≤.。

2020年浙江省高职考数学全真综合模拟试卷(一)

2020年浙江省高职考数学全真综合模拟试卷(一)

浙江省高职考数学全真综合模拟试卷(一)一、选择题1. 设{}1≤=x x P ,32=a ,则下列各式中正确的是 ( ) A.P a ⊆ B.P a ∉ C. {}P a ∈ D. {}P a ⊆2. 已知1>ab ,0<b ,则有 ( ) A.b a 1>B.b a 1<C.b a 1->D.ab 1> 3. 已知函数)(x f 在)5,2(-上是增函数,则下列各式正确的是 ( ) A. )3()2(f f <- B. )3()4(f f < C.)1()1(f f =- D.)1()0(->f f 4. 下列四个直线方程中有三个方程表示的是同一条直线,则表示不同直线的方程是 ( ) A.012=+-y x B.12+=x y C.112=+-yx D.)0(21-=-x y 5. 一次函数b kx y -=(0<k ,0>b )的图象一定不经过的象限为 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 6. 函数xx y -+=11的定义域是 ( )A.[)()+∞,11,0YB. ()()+∞,11,0YC.),0(+∞D.[)1,1-7. 若x 的不等式a x -≥-32的解集为R ,则实数a 的取值范围是( )A.),3(+∞B. ),3[+∞C.)3,(-∞D. ]3,(-∞ 8. 在数列{}n a 中,若95=a ,且1223+=++n n a a ,则=3a ( ) A.53 B.52 C.23 D.549. 若直线1l :062=++y x 与2l :013=-+ky x 互相不垂直,则k 的取值范围是 ( ) A.⎪⎭⎫⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,2323,Y B. ⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛∞-,2323,YC. ⎪⎭⎫ ⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,2323,I D. ⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛∞-,2323,I10. 已知平面//α平面β,且α⊂a ,β⊂b ,则直线a 与直线b ( ) A.平行 B.相交 C.异面 D.没有公共点11. 抛掷两颗骰子,出现点数和为6的概率是 ( ) A.61 B.365 C.121 D.18112. 已知)3,1(-=a ,若0a 是a 的单位向量,则下列各式正确的是 ( ) A.0a > B.10=a C. ⎪⎪⎭⎫⎝⎛-=23,210a D. 02a = 13. 若22sin -=α,α为第三象限角,则ααπcos )sin(--的值为 ( ) A.1- B.0 C.1 D.214. 抛物线22x y -=的焦点坐标是 ( ) A.⎪⎭⎫ ⎝⎛-0,21 B.)0,8(- C.⎪⎭⎫ ⎝⎛-81,0 D.)2,0(-15. 若方程1sin cos 22=-y x θθ表示焦点在y 轴上的双曲线,则θ是 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角二、填空题16. 已知0>x ,则xx 43--有最大值 ; 17. 直线l 过点)0,1(-且与直线01=-y 的夹角是︒60,则直线l 的一般式方程为 ;18. 若x ,y 是实数,则913113+-+-=x x y ,则=--32)(y x ; 19. 将半径为4米的半圆围成圆锥的侧面,则圆锥的体积为 ; 20. 已知81cos sin -=θθ,⎪⎭⎫⎝⎛∈ππθ2,23,则=-θθcos sin ; 21. 若点),(y x M 满足0>xy ,0<+y x ,则以射线OM 为终边的对应角α为第 象限角;三、解答题22. 求不等式02342>---x x x 的解集;23. 求以直线012=+-y x 与02=++y x 的交点为圆心,且与直线042=+-y x 相切的圆;24. 在ABC ∆中,已知︒=∠45B ,22=AC ,32=AB ,求C ∠;25. 求多项式5432)1()1()1()1()1(x x x x x -+-+-+-+-的展开式中含3x 的项;26. 已知双曲线C 与椭圆364922=+y x 有共同的焦点,且离心率为25,求: (1) 双曲线C 的标准方程; (2) 双曲线的渐近线方程;27. 已知正方形ABCD 的边长为1,分别取BC ,CD 的中点E ,F ,连结AE ,EF ,AF 以AE ,EF ,AF 为折痕折叠,使点B 、C 、D 重合于上点P ,求: (1) 二面角A EF P --的平面角的正弦值; (2) 三棱锥AEF P -的体积;28. 已知x x x x f cos sin 34sin 4)(2+=:求:(1) )(x f 的最小正周期; (2) )(x f 的最小值及相应x 的值;29. 已知数列{}n a 满足1a ,11-=-+n n a a ,数列{}n b 满足11a b =,241a a b b n n =+,求: (1) 数列{}n a 的通项公式; (2) 数列{}n b 的前10项和;30. 如图所示,在一张矩形纸的边上找一点E ,过E 点减去两个边长分别是AE 、DE 的正方形得到图形M (图中阴影部分)已知,, (1) 设x DE =,图形M 的面积为y ,写出y 与x 之间的函数关系式; (2) 当x 为何值时,图形M 的面积最大? (3) 求出图形M 面积的最大值;。

2020年职业教育对口数学模拟试题1(带答案)

2020年职业教育对口数学模拟试题1(带答案)

机密★启用前山东省高等职业教育对口招生考试数学模拟试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1.设M ={ x x≥2}, a = 2 ,则下列关系中正确的是()(A) {a} ⊆M(B) a ∉M (C) a ⊆ M(D) a∈M2. 设命题“p∨q”为真,“p∧q”为假,则()(A) p和q都假(B) p和q都真(C) p和⌝q真假相同(D) p和⌝q真假不同3.如果a– b>a , a + b>b , 那么下列式子中正确的是()(A) a + b>0(B) a– b < 0 (C)a⨯b< 0 (D)ab >04.设f (x) = ax2 + b x+ c,且方程f (x) =0 的两根分别在区间(1,2)和(2,3)内,则必有()(A) f (1)⋅f (2) > 0 (B) f (1)⋅f (2) < 0(C) f (1)⋅f (3) < 0 (D) f (2)⋅f (3) > 05.将- 256π化成k·2π +α( k ∈ Z, 0≤α < 2π ) 的形式为()(A) - 256π = - 5π +56π(B) -256π = - 6π +116π(C) - 256π = - 4π -16π(D) -256π = - 3π -76π6.设函数f (x) = x2+2x , 则f (2)⋅ f (12) = ()(A) 1 (B) 3 (C) 5 (D) 10 7.在等差数列{a n}中,a1= -1 , a n+1=a n + 2,则a13等于()(A) 34 (B) 35 (C) 23 (D) 78 8.已知函数f (x)是一次函数且f [f (x) ]= 9x+1 , 则f (x) =( )(A) 3x +14 (B) - 3x - 12(C) 3x +14 或 - 3x - 12 (D) 3x - 12 或 3x +149.设cos α= - 45 ( π < α < 32π ), 则sin α·tan α的值是( )(A )920 (B )- 920 (C )710 (D )- 71010.函数 y = 4 - x +1x -1的定义域是( ) (A) (1, 4] (B) (-∞, 4] (C) (-∞, 1) ∪ (1, +∞) (D) (-∞, 1) ∪ (1, 4] 11.下列几个命题中,正确命题的个数为( )① 对于函数f (x ) , 若f (-2) = - f (2) ,则f (x )一定是奇函数 ②若函数f (x ), 在[a , b ] 上是增函数, 则它在(a , b ) 上也一定是增函数. ③若f (x )在R 上是奇函数, 则它在[a , b ]一定是奇函数 . ④若f (x )在R 上是奇函数 , 则f (x )的图象一定过原点 .⑤已知f (x )是偶函数且在(0, +∞)上是增函数, 则f (x )在(-∞, 0)上是减函数 . (A)1 (B) 2 (C) 3 (D) 4 12.设x >0, 且a x < b x < 1, (a , b ∈R +), 则( )(A) b < a < 1 (B) a < b < 1 (C) 1 < b < a (D) 1 < a < b 13.函数 y = lg(x 2+1 – x ) 在定义域内是( )(A) 奇函数 (B)既是奇函数又是偶函数 (C) 偶函数 (D) 既不是奇函数又不是偶函数 14.下列命题中,不正确的是( ).(A ) 过平面外一点,有且仅有一个平面与已知平面平行(B ) 两条直线都和一个平面平行,则过这两条直线的平面也和该平面平行 (C ) 垂直于同一直线的两个平面平行 (D ) 一条直线和两个平行平面所成的角相等 15.式子32 - l o g 3 2 的值为( )(A) 9(B) 2 (C) 29 (D) 9216.数列{}n a 的通项公式是(2)11n na n -=-+,则它的前三项是( ).(A ) 151232---,, (B ) 70 13-,, (C ) 12 33--,, (D ) 132 32--,,17.等比数列{a n }的各项都是正数,若a 1 =81,a 5=16,则它的前5项的和是( ) (A) 179 (B) 211 (C) 243 (D) 27518. 有6张卡片上分别写有0, 1, 2, 3, 4, 5, 将它们放入袋子中,摸出一张是数字小于2的概率是( ). (A )12 (B ) 14 (C ) 13(D ) 16 19.如果向量→a 和向量→b 不平行,那么与→a 、→b 都不平行的向量是( ) (A) 2→a (B) - 3→b (C) →a +→b (D) -→a20.已知函数 y =lg [(a 2-1) x 2 + (a +1) x +1 ], 若函数的定义域为(-∞, +∞),则实数a 的取值范围是( )(A) a ≤-1 (B) a > 53(C) a ≤-1或 a > 53 (D) -1 ≤a < 5321. 已知圆C :22(3)8x y ++=,下列各点中,在圆内的点是( ).(A ) (1,1)- (B ) (1,2)- (C ) (0,0) (D ) (2,2)- 22.已知∣→a ∣= 5,∣→b ∣= 4,<→a , →b > = 60°则 →a ·→b 等于( )(A) - 10 (B) 10 (C) - 10 3 (D) 10 3 23.函数y =4 sin2 x 取最小值时,x 的取值集合是( )(A) {x | x = π4 + 2k π, k ∈Z }(B) {x | x = - π2+ 2k π, k ∈Z }(C) {x | x = -π4 + k π , k ∈Z }(D) {x | x = π2 + k π , k ∈Z }24.设1F 、2F 为定点,并且128F F =,若动点M 满足124MF MF -=, 则点M 的轨迹是( ).(A ) 双曲线 (B ) 椭圆 (C ) 圆 (D ) 线段25.若双曲线的两个焦点坐标为()13,0F -、()23,0F ,并且2a =,则其标准方程为( ). (A ) 22154x y -= (B ) 22145x y -=(C ) 22145y x -= (D ) 22154y x -=26. 甲,乙两个样本,甲的样本方差是0.065,乙的样本方差是0.056,那么样本甲与样本乙的波动大小应是( ).(A ) 甲的波动比乙的大 (B ) 甲的波动比乙的小 (C ) 甲与乙的波动相同 (D ) 无法判定27. 点(1,1)P 在圆22()()4x a y a -++=外部,则a 的取值范围是( ). (A ) 11a -<< (B ) 1a 0<< (C ) 1a <-或1a > (D ) 1a =± 28. 在椭圆中,若62a b ==,,则该椭圆的标准方程为( ). (A ) 221364x y +=(B ) 221436x y +=(C ) 221364x y +=或221436x y +=(D ) 22126x y +=或22162x y +=29. 要从某校五年级85名学生中抽取20名学生作为一个样本,用抽签的方法选取是( ). (A ) 分层抽样 (B ) 系统抽样 (C ) 简单随机抽样 (D ) 无法确定 30. 有15个样本,按从小到大的顺序排列分成5个组,如下表:第四组的频率为( (A )13 (B ) 14 (C ) 12 (D ) 15第Ⅱ卷(非选择题,共40分)二、填空题(本大题共4小题,每小题3分,共12分)31. 若函数f (x ) 在[0, 1 ] 上是增函数, 则适合条件f (1- a ) > f ( 12) 的实数a 的取值范围是 .32.函数y =11+2 sin x的定义域是 .33. 在球内相距为9cm的两个平行截面,面积分别为249πcm和2400πcm,且截面位于球心同一侧,则球的表面积为_________.34. 若椭圆的标准方程为221259x y+=,则其长轴长为,椭圆上一点P到焦点F1的距离等于6,则点P到另一个焦点的距离是.三、解答题(本大题共4小题,共28分)35. (7分)在28届雅典奥运会上,中国获得射箭女子团体银牌,从电视实况转播中,我们可以清楚看到箭在空中飞行的轨迹是抛物线,设箭出口与靶中心10环平行,都距地面1.5m,相距70m,在中间35m处,箭飞行达到最大高度3m,建立直角坐标系如图所示,试求箭飞行的轨迹所对应二次函数的解析式.36.(7分)已知函数y =3cos 2x +12sin2x 32.(1)求函数的最大值及取得最大值时x 的值;(2)画出函数在一个周期内的图像.37. (7分) 已知P A⊥⊙O所在平面,AB为⊙O的直径,C是圆周上的任意一点,过A作AE ⊥PC于E,判断AE与平面PBC的关系,并说明理由.38.(本小题7分)椭圆C: x2a2+y2b2= 1(a>b> 0)的两个焦点分别为F1,F2,点P在椭圆C上,且PF1⊥PF2, |PF1| =6, |PF2| =8,(1)求椭圆的方程。

2019-2020年高三春季高考第一次模拟考试数学试题word版含答案

2019-2020年高三春季高考第一次模拟考试数学试题word版含答案

1 (A) ,1
2
1 (B) ,1
2
1 (C) ,
2
(D) 1,
4.已知角
4 (A)
3
( , ),sin 3 , 则 tan 等于 (

2
5
3 (B)
4
4 (C )
3
3 (D)
4
5.直线 l1 :( a 1)x y 3 0 和 l2 :3 x ay 2 0 垂直,则实数 a 的值为 (

1 (A)
2
0) , 则 f (0) 等于(
(A) 3
(B) 3
3 (C )
2
(D) (5 , - 7) ) 3
(D) 2
8. 甲乙两人在一次赛跑中,从同一地点出发,路程
s 与时间 t 的函数 s
甲乙
t
关系如图所示,则下列说法正确的是(

(A) 甲比乙先出发
(B)乙比甲跑的路程多
(C) 甲、乙两人的速度相同
(D) 甲比乙先到达终点
(A) 2
(B) 3
2 (C )
2
3 (D )
2
15.已知二项式 ( x 1)n 的展开式的第 6 项是常数项,则 n 的值是(

x(A) 5(B来自 8(C) 10(D) 15
x0
16.已知变量 x,y 满足 y 0 ,则目标函数 z=4x+y 的最大值为(

xy2
(A)0
(B)2
(C) 8
(D) 10
12
7 (B)
12
1 (C )
3
2 (D)
3
13.某工厂去年的产值为 160 万元,计划在今后五年内,每一年比上一年产值增加
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年春季高考高等职业教育分类考试数学模拟测试卷(一)(总分:150分 时间:120分钟)一、选择题(本大题有10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}{}0,1,2,0,1M N ==,则MN =A .{}2B .{}0,1C .{}0,2D .{}0,1,2 2.某几何体的三视图如下图所示,则该几何体是A .圆柱B .圆锥C .三棱柱D .三棱锥 3.当输入a 的值为1,b 的值为3-时,右边程序运行的结果是 A .1 B .2- C .3- D .2 4.函数2sin(2)6y x π=-的最小正周期是A .4πB .2πC .πD .2π 5.下列函数中,在()0,+∞上是减函数的是A .1y x =B .21y x =+C .2xy = D .()()00x x y x x >⎧⎪=⎨-≤⎪⎩6.不等式组101x y x -+≥⎧⎨≤⎩表示的平面区域是7.函数x y sin 1+=的部分图像如图所示,则该函数在[]π2,0的单调递减区间是A .[]0,πB .3,22ππ⎡⎤⎢⎥⎣⎦ INPUT a ,b a=a+b PRINT a END-11OyDC yxO1-1-11OxyB A yxO1-1俯视图侧视图正视图C .30,2π⎡⎤⎢⎥⎣⎦D .,22ππ⎡⎤⎢⎥⎣⎦2π π 32π2π8.方程320x -=的根所在的区间是A .()2,0-B .()0,1C .()1,2D .()2,3 9.已知向量a (2,1)=,b (3,)λ=,且a ⊥b ,则λ=A .6-B .6C .32D .32- 10.函数()2log 1y x =-的图像大致是二、填空题(本大题有5小题,每小题5分,共25分。

把答案填在题中的横线上) 11.如图,化简AB BC CD ++= . 12.若函数()f x 是奇函数,且()21f =,则()2f -= . 13.某田径队有男运动员30人,女运动员10人.用分层抽样的方法从中抽出一个容量为20的样本,则抽出的女运动员有 人.14.对于右边的程序框图,若输入x 的值是5,则输出y 的值是 .15.已知ABC ∆的三个内角,,A B C 所对的边分别是,,a b c ,且30,45,2A B a ===,则b = .三、解答题(本大题有5小题,共75分。

解答应写出文字说明,证明过程或演算步骤) 16(本小题满分12分)已知角α的终边经过点34,55P ⎛⎫⎪⎝⎭. (1)求sin α;开始 输入x3x ≤ y=0.2y=0.1x输出y 结束否是【第15题图】Py(2)根据上述条件,你能否确定sin 4πα⎛⎫+ ⎪⎝⎭的值?若能,求出sin 4πα⎛⎫+ ⎪⎝⎭的值;若不能,请说明理由.17.(本小题满分12分)已知n S 是等差数列{}n a 的前n 项和,且151,15a S =-=. (1)求n a ; (2)令()21,2,3,na nb n ==,计算12,b b 和3b ,由此推测数列{}n b 是等差数列还是等比数列,证明你的结论.18.(本小题满分18分)已知两点()()0,0,6,0O A ,圆C 以线段OA 为直径. (1)求圆C 的方程;(2)若直线1l 的方程为240x y -+=,直线2l 平行于1l ,且被圆C 截得的弦MN 的长是4,求直线2l 的方程.19.(本小题满分18分)如图,在四面体P ABC -中,PA ABC ⊥平面,3,4,5AB AC BC ===,且,,D E F 分别为,,BC PC AB 的中点.(1)求证: AC PB ⊥;(2)在棱PA 上是否存在一点G ,使得FG ∥平面ADE ?证明你的结论.20.(本小题满分8分)某商场为经营一批每件进价是10元的小商品,对该商品进行为期5天的市场试销.下表是市场试销中获得的数据.销售单价/元 65 50 45 35 15 日销售量/件156075105165PFAEDB根据表中的数据回答下列问题:(1)试销期间,这个商场试销该商品的平均日销售利润是多少?(2)试建立一个恰当的函数模型,使它能较好地反映日销售量y(件)与销售单价x(元)之间的函数关系,并写出这个函数模型的解析式;(3)如果在今后的销售中,该商品的日销售量与销售单价仍然满足(2)中的函数关系,试确定该商品的销售单价,使得商场销售该商品能获得最大日销售利润,并求出这个最大的日销售利润.提示:必要时可利用右边给出的坐标纸进行数据分析.重庆市春季高考高职单招数学模拟试题(一)参考答案一、选择题(本题主要考查基础知识和基本运算.每小题3分,满分45分)1.B 2.C 3.B 4.C 5.A 6.B 7.B 8.C 9.A 10.D二、填空题(本题主要考查基础知识和基本运算.每小题3分,满分15分)11.AD 12.-1 13.5 14.0.5 15.22三、解答题(本大题有5小题,满分75分。

解答应写出文字说明,证明过程或演算步骤) 16.本小题主要考查三角函数的定义,两角和与差的三角函数,特殊角的三角函数值等基础知识;考查简单的推理、探究和基本运算能力.满分12分. 解法一:(1)由已知得,点P 是角α的终边与单位圆的交点,∵,54=y ∴.54sin ==y α…………………………………………………………(5分) (2)能.………………………………………………………………………………(8分) ∵54=x ,∴.53cos ==x α ∴απαπαπsin 4cos .cos 4sin)4sin(+=+………………………………………(10分)54225322⨯+⨯=1027=.…………………………………………(12分)解法二:(1)如图过P 作PM 垂直x 轴于M ,∴在Rt ⊿POM 中,OM=53,PM=54, ∴OP=122=+PM OM .…………………………(3分)∴sin ∠POM=54=OP PM .………………………………(6分) 又∵α的终边与∠POM 的终边相同,∴54sin =α.………………(8分)(2)能.………………………………………………………………(10分) 由已知α是第一象限的角,且由(1)知54sin =α,∴53sin 1cos 2=-=αα. 下同解法一解法三:(1)∵α的终边过点P (53,54),|OP|=1)54()53(22=+,………(3分)∴54154sin ==α.………………………………………………………………(6分)(2)同解法一或解法二17. 本小题主要考查等差数列和等比数列的有关概念,等差数列的通项公式和前n 项和公式;考查简单的推理论证能力和基本运算能力.满分15分. 解:(1)设数列{a n }的公差为d ,那么5a 1+21·5·4d=15. ……………………(3分) 把a 1=-1代入上式,得d=2.……………………………………………………(5分)因此,a n =-1+2(n-1)=2n-3.……………………………………………………(8分)(2)根据na nb 2=,得b 1=21,b 2=2,b 3=8.………………………………………(10分) 由此推测{b n }是等比数列.………………………………………………………(12分) 证明如下:由(1)得,a n+1-a n =2,所以422211===-++n n a a nn b b (常数), 因此数列{b n }是等比数列.………………………………………………………(15分) 18 本小题主要考查直线与圆的方程,圆的几何性质,直线与圆的位置关系等基础知识;考查逻辑推理能力和运算能力;考查数形结合思想在解决问题中的应用.满分15分.解法一:(1)∵O (0,0),A (6,0),圆C 以线段OA 为直径, ∴圆心C (3,0),半径r=3,……………………(4分)∴圆C 的方程为(x-3)2+y 2=9.…………………(7分)(2)111240,2l x y l -+=∴直线的方程是直线的斜率为, 2121//,2l l l ∴又直线的斜率为 …………………(9分)设直线2l 的方程为1,2202y x b x y b =+-+=即.24,3,5MN r C l ==∴半径圆心到直线的距离为12分)又232(3,0):2205b C l x y b d +-+==圆心到直线的距离.………………(13分)325,325,145b b b b +=+===-即解得或.2220280x y x y -+=--=即直线l 的方程为或. ………………………(15分)解法二:(1)同解法一(2)11221240,//,2l x y l l -+=∴直线的方程是且l 直线的斜率为.……………(9分)设直线2l 的方程为1,2y x b =+由2222154(6)402(3)9y x b x b x b x y ⎧=+⎪+-+=⎨⎪-+=⎩得. 设1122(,),(,),M x y N x y 则122124(6),54,50.b x x b x x -⎧+=⎪⎪⎪⋅=⎨⎪∆>⎪⎪⎩………………………………………………(11分)MN ∴===13分)又4,4,14MN b b ====-解得或. 2220280x y x y -+=--=即直线l 的方程为或.………………………(15分)19.本小题主要考查空间直线与直线、直线与平面垂直的判定与性质,直线与直线、直线与平面平行的判定与性质;考查空间想象能力,逻辑推理、论证能力和利用知识分析问题、解决问题能力.满分18分.(1) 证明:在ABC ∆中,AB=3,AC=4,BC=5,222,AB AC BC AC AB ∴+=∴⊥.…………………………………………(3分)又,,PA ABC AC ABC PA AC ⊥⊂∴⊥平面平面 .………………………(3分) 又,PAAB A AC PAB =∴⊥平面.………………………(3分),PB PAB AC PB ⊂∴⊥而平面.………………………………………………(7分)(2)解:存在,且G 是棱PA 的中点.……………………………………………(9分) 证明如下:在PAB 中,F 、G 分别是AB 、PA 的中点,//FG PB ∴. …………………(12分) 同理可证://,//.DE PB FG DE ∴……………………………………………(14分)又,,//.FG ADE DE ADE FG ADE ⊄⊂∴平面平面平面………………………(.18分)20.本小题考查平均数的概念,一次函数与二次函数等有关知识;考查统计观念,数据分析和数学建模能力,利用知识解决实际问题的能力.满分18分. 解:(1)设平均日销售利润为M ,则(1510)165(3510)105(4510)75(5010)60(6510)155M -⨯+-⨯+-⨯+-⨯+-⨯=………………………………………………………………………………………(3分) =165+5⨯105+7⨯75+8⨯60+11⨯15=1860.……………………………………………………………………………(5分)(2)依题意画出散点图,根据点的分布特征,可考虑以y=kx+b 作为刻画日销售量与销售单价之间关系的函数模型,取其中的两组数据(45,75),(65,15)代入y=kx+b 得:7545,1565.k b k b =+⎧⎨=+⎩ 解得,3,210.k b =-⎧⎨=⎩………………………………………………(7分) 这样,得到一个函数模型为y=-3x+210(10≤x ≤70).………………………(10分)将其他已知数据代入上述解析式知,它们也满足这个解析式,即这个函数模型与已知数据的拟合程度较好,这说明所求的函数解析式能较好地反映销售量与销售单价之间的关系.…………………………………………………………………………………(12分) (3)设经营此商品的日销售利润为P 元,由(2)知P xy 10y =-………………………………………………………………………(15分)()()()2x 3x 210103x 2103x 402700,(1070)x =-+--+=--+≤≤…402700.x P ∴=时,有最大值,为即当该商品的单价为每件40元时,商场销售该商品的日销售利润最大,为2700元.…………………………………………………………………………………(18分)。

相关文档
最新文档