大物习题集
大物习题集答案解析第4章机械振动
第4章 机械振动4.1基本要求1.掌握描述简谐振动的振幅、周期、频率、相位和初相位的物理意义及之间的相互关系2.掌握描述简谐振动的解析法、旋转矢量法和图线表示法,并会用于简谐振动规律的讨论和分析3.掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义4.理解同方向、同频率简谐振动的合成规律,了解拍和相互垂直简谐振动合成的特点4.2基本概念1.简谐振动 离开平衡位置的位移按余弦函数(或正弦函数)规律随时间变化的运动称为简谐振动。
简谐振动的运动方程 cos()x A t ωϕ=+2.振幅A 作简谐振动的物体的最大位置坐标的绝对值。
3.周期T 作简谐振动的物体完成一次全振动所需的时间。
4.频率ν 单位时间内完成的振动次数,周期与频率互为倒数,即1T ν=5.圆频率ω 作简谐振动的物体在2π秒内完成振动的次数,它与频率的关系为22Tπωπν==6.相位和初相位 简谐振动的运动方程中t ωϕ+项称为相位,它决定着作简谐振动的物体状态;t=0时的相位称为初相位ϕ7.简谐振动的能量 作简谐振动的系统具有动能和势能。
弹性势能222p 11cos ()22E kx kA t ωϕ==+ 动能[]22222k 111sin()sin ()222E m m A t m A t ωωϕωωϕ==-+=+v弹簧振子系统的机械能为222k p 1122E E E m A kA ω=+==8.阻尼振动 振动系统因受阻尼力作用,振幅不断减小。
9.受迫振动 系统在周期性外力作用下的振动。
周期性外力称为驱动力。
10.共振 驱动力的角频率为某一值时,受迫振动的振幅达到极大值的现象。
4.3基本规律1.一个孤立的简谐振动系统的能量是守恒的物体做简谐振动时,其动能和势能都随时间做周期性变化,位移最大时,势能达到最大值,动能为零;物体通过平衡位置时,势能为零,动能达到最大值,但其总机械能却保持不变,且机械能与振幅的平方成正比。
大学物理 和 习题答案
向走动时,则此平台相对地面旋转的角速度和旋转方向分别为
[A ]
(A) mR2 ( V ),顺时针。 JR
(B) mR2 ( V ),逆时针。 JR
——————3——————
大学物理习题集(上)
(C) mR 2 ( V ),顺时针。 (D) mR 2 ( V ),逆时针。
J mR 2 R
J mR 2 R
F
l 2
1 12
ml 2
A
Fl
1 3
ml 2
B
由上两式可解得 A
6F ml
,B
3F ml
,可见 A
B
所以应选(B)。
9.质量为 m 的小孩站在半径为 R 的水平平台边缘上,平台可以绕通过其中心的竖直光滑固定轴自由转动,
转动惯量为 J,平台和小孩开始时均静止,当小孩突然以相对于地面为 v 的速率在平台边缘沿逆时针转
。
2
解答 以圆盘和橡皮沁组成一系统,则系统所受重力对铅直轴 O 的力矩为零,所以系统的角动量守
——————6——————
大学物理习题集(上)
恒,圆盘的角动量为
J0
,橡皮泥(视为质点)对
O
轴的转动惯量为
m
R 2
2
,则有
1 2
MR20
1 2
MR2
m
R 2
2
解得
1 2
MR
20
2M 0
1 2
(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
2. 均匀细棒 OA 可绕通过某一端 O 而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自
由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的?
大学物理习题集
⼤学物理习题集⼤学物理(1)习题集(适⽤对象:14级⼟⽊⼯程专业)【说明】题号前标有(〇)的,表⽰该题考查点为1-2个,较易;题号后标有(*)的,表⽰该题考查点3个或3个以上,较难,其余考查点为2-3个,难度⼀般。
练习⼀质点运动的描述 (2)练习⼆圆周运动 (3)练习三⽜顿运动定律 (4)练习四冲量和动量 (6)练习五功和能 (7)练习六刚体定轴转动 (9)练习七绕定轴转动的刚体的转动定律 (11)练习⼋⾓动量和⾓动量守恒定律 (13)练习九分⼦运动论 (15)练习⼗热⼒学基础 (16)练习⼀质点运动的描述⼀.选择题1、(〇)质点是⼀个:【】(A )质量很⼩的物体.(B )根据其运动情况,被看作具有质量⽽没有⼤⼩和形状的理想物体.(C )只能作平动的物体.(D )体积很⼩的物体.2、(〇)某质点的运动⽅程为x=3t-5t 3+6(SI),则该质点作【】(A )匀加速直线运动,加速度沿X 轴正⽅向; (B) 匀加速直线运动,加速度沿X 轴负⽅向; (C) 变加速直线运动,加速度沿X 轴正⽅向; (D)变加速直线运动,加速度沿X 轴负⽅向3、⼀质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则⼀秒钟后质点的速度:【】(A) 等于零(B) 等于-2m/s (C) 等于2m/s(D) 不能确定。
4、如图所⽰,湖中有⼀⼩船,有⼈⽤绳绕过岸上⼀定⾼度处的定滑轮拉湖中的船向边运动。
设该⼈以匀速度V 0收绳,绳不伸长、湖⽔静⽌,则⼩船的运动是【】(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。
5、(*)某物体的运动规律为t kv dtdv2-=,式中的k 为⼤于零的常数。
当t=0时,初速为v 0,则速度v 与时间t 的函数关系是【】(A) 02v kt 21v += (B) 02v kt 21v +-= (C) 02v 1kt 21v 1+= (D)2v 1kt 21v 1+-=⼆.填空题6、⼀质点沿x 轴作直线运动,其运动⽅程为x=3+5t+6t 2-t 3(SI),则质点在t=0时刻的速度;加速度为零时,该质点的速度。
大学物理习题集
大学物理习题集上册物理教研室2004年元月目录部分物理常量练习一描述运动的物理量练习二刚体定轴转动的描述相对运动练习三牛顿运动定律非惯性系中的力学练习四动量角动量练习五功和能碰撞练习六刚体定轴转动的转动定律转动惯量练习七刚体定轴转动中的动能及角动量练习八力学习题课练习九状态方程压强公式练习十理想气体的内能分布律练习十一分布律(续) 自由程碰撞频率练习十二热力学第一定律等值过程练习十三循环过程练习十四热力学第二定律熵练习十五热学习题课练习十六谐振动练习十七谐振动能量谐振动合成练习十八阻尼受迫共振波动方程练习十九波的能量波的干涉练习二十驻波多普勒效应练习二十一振动和波习题课练习二十二光的相干性双缝干涉光程练习二十三薄膜干涉劈尖练习二十四牛顿环迈克耳逊干涉仪衍射现象练习二十五单缝圆孔光学仪器的分辨率练习二十六光栅X射线的衍射练习二十七光的偏振练习二十八光学习题课23h3456789101112131415图9.1 161718192021232425(A)图15.12627图17.24. 一平面简谐波沿x 轴负方向传播,已知x=x 0处质点的振动方程为y=A cos(ω t+ϕ0). 若(B)v (m/s)O1 x (m)ωA(A)·图18.3图18.54041距离 (从地上一点看两星的视线间夹角)是(A) 5.3×10-7 rad.(B) 1.8×10-4 rad .(C) 5.3×10-5 rad .(D) 3.2×10-3 rad二.填空题1. 惠更斯引入的概念提出了惠更斯原理,菲涅耳再用的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.2. 如果单缝夫琅和费衍射的第一级暗纹发生在衍射角为30 的方位上,所用单色光波长λ =5×103 Å, 则单缝宽度为m .3. 平行单色光垂直入射于单缝上,观察夫琅和费衍射. 若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为个半波带,若将单缝宽度减小一半, P点将是级纹.三.计算题1. 用波长λ =6328Å 的平行光垂直照射单缝, 缝宽a= 0.15mm , 缝后用凸透镜把衍射光会聚在焦平面上, 测得第二级与第三级暗条纹之间的距离为1.7mm , 求此透镜的焦距.四.问答题1. 在单缝衍射实验中, 当缝的宽度a远大于单色光的波长时, 通常观察不到衍射条纹, 试由单缝衍射暗条纹条件的公式说明这是为什么.练习二十六光栅X射线的衍射一.选择题1. 一束平行单色光垂直入射到光栅上,当光栅常数(a+b) 为下列哪种情况时(a代表每条缝为宽度) ,k =3、6、9等级次的主极大均不出现?(A) a+b=3a.(B) a+b=2a .(C) a+b=4a .(D) a+b=6a .2. 若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 1.0×10-1 mm .(B) 5.0×10-1 mm .(C) 1.0×10-2 mm .(D) 1.0×10-3 mm .3. 在双缝衍射实验中,若保持双缝s1和s2的中心之间的距离d不变,而把两条缝的宽度a 42略微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少.(B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多.(C) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少.(D) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变.(E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多.4. 某元素的特征光谱中含有波长分别为 1 = 450 n m 和 2 = 750 n m (1 n m = 10-9 m)的光谱线. 在光栅光谱中,这两种波长的谱线有重叠现象,重叠处 2的谱线的级次数将是(A) 2、3、4、5 …….(B) 2、5、8、11 …….(C) 2、4、6、8 …….(D) 3、6、9、12 …….5. 设光栅平面、透镜均与屏幕平行,则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级数k(A) 变小.(B) 变大.(C) 不变.(D) 的改变无法确定.二.填空题1. 用波长为5461 Å的平行单色光垂直照射到一透射光栅上,在分光计上测得第一级光谱线的衍射角 = 30 ,则该光栅每一毫米上有条刻痕.2. 可见光的波长范围是400 n m—760 n m,用平行的白光垂直入射到平面透射光栅上时,它产生的不与另一级光谱重叠的完整的可见光光谱是第级光谱.3. 一束平行单色光垂直入射到一光栅上,若光栅的透明缝宽度a与不透明部分宽度b相等,则可能看到的衍射光谱的级次为.三.计算题1. 一块每毫米500条缝的光栅,用钠黄光正入射,观察衍射光谱, 钠黄光包含两条谱线,其波长分别为5896 Å和5890 Å, 求在第二级光谱中这两条谱线互相分离的角度.2. 一衍射光栅,每厘米有200条透光缝,每条透光缝宽为a =2×10-3 c m ,在光栅后放一焦距f =1m 的凸透镜,现以 = 6000 Å的平行单色光垂直照射光栅,求: (1) 透光镜a的单缝衍射中央明条纹宽度为多少?(2) 在该宽度内, 有几个光栅衍射主极大?练习二十七光的偏振一.选择题1. 一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45 角,若不考虑偏振片的反射和吸收,则穿过两个偏振片后的光强I为4344454647。
昆明理工大学物理习题集(下)第十六章元答案
昆明理工大学物理习题集(下)第十六章元答案第十六章量子物理基础一、选择题:1. 关于光的波粒二象性,下述说法正确的是 [ D ](A )频率高的光子易显示波动性(B )个别光子产生的效果以显示粒子性(C )光的衍射说明光具有粒子性(D )光电效应说明光具有粒子性2. 金属的光电效应的红限依赖于:[ C ](A )入射光的频率(B )入射光的强度(C )金属的逸出功(D )入射光的频率和金属的逸出功3. 用频率为1ν单色光照射某种金属时,测得饱和电流为1I ,以频率为2ν的单色光照射该金属时,测得饱和电流为2I ,若21I I >,则:[ D ](A )21νν> (B )21νν<(C )21νν= (D )1ν与2ν的关系还不能确定4. 光电效应中光电子的最大初动能与入射光的关系是: [ C ](A )与入射光的频率成正比(B )与入射光的强度成正比(C )与入射光的频率成线性关系(D )与入射光的强度成线性关系5. 两束频率、光强都相同的光照射两种不同的金属表面,产生光电效应,则: [ C ](A )两种情况下的红限频率相同(B )逸出电子的初动能相同(C )在单位时间内逸出的电子数相同(D )遏止电压相同6. 钾金属表面被蓝光照射时,有光电子逸出,若增强蓝光强度,则:[ A ](A )单位时间内逸出的光电子数增加(B )逸出的光电子初动能增大(C )光电效应的红限频率增大(D )发射光电子所需的时间增长7. 用频率为1ν的单色光照射一金属表面产生光电效应,用频率为2ν的单色光照射该金属表面也产生光电效应,而且测得它们的光电子有E k 1>E k 2的关系,则:[ A ](A )1ν>2ν (B )1ν<2ν (C )1ν=2ν (D )不能确定8. 当照射光的波长从4000?变到3000?时,对同一金属,在光电效应实验中测得的遏止电压将:[ D ](A )减小V 56.0 (B )增大V 165.0 (C )减小V 34.0 (D )增大V 035.19. 钠光的波长是λ,设h 为普朗克恒量,c 为真空中的光速,则此光子的:[ C ](A )能量为c h /λ (B )质量为λc h / (C )动量为λ/h(D )频率为c /λ (E )以上结论都不对10. 以下一些材料的功函数(逸出功)为:铍—eV 9.3、钯—5.0eV 、铯—1.9eV 、钨—4.5eV 。
大学物理试题集和答案
大学物理习题集上册大学物理教学部二00九年九月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 练习一质点运动的描述┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 练习二圆周运动相对运动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习三牛顿运动定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 练习四功和能┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 练习五冲量和动量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 练习六力矩转动惯量转动定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10 练习七转动定律(续)角动量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12 练习八力学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 练习九理想气体状态方程热力学第一定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 练习十等值过程绝热过程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16 练习十一循环过程热力学第二定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄18 练习十二卡诺循环卡诺定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20 练习十三物质的微观模型压强公式┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21 练习十四理想气体的内能分布律自由程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23 练习十五热学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 练习十六谐振动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26 练习十七谐振动能量谐振动合成┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习十八波动方程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29 练习十九波的能量波的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄31 练习二十驻波多普勒效应┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33 练习二十一振动和波习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄34 练习二十二光的相干性双缝干涉光程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄36 练习二十三薄膜干涉劈尖牛顿环┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄38 练习二十四单缝衍射光栅衍射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄39 练习二十五光的偏振┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄41 练习二十六光学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄43部分物理常量万有引力常量G=6。
大学物理习题集(上,含解答)
大学物理习题集(上册,含解答)第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t-=+,并由上述数据求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t-=+. 计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m).根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =.图1.3因此人飞越的时间为:t = t 1 + t 2 = 6.98(s). 人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变量得2d d vk t v =-, 故 020d d v t v v k t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则 d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )kt vx k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-. 当t = 0时,v = v 0,所以101n v C n-=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为am·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+.即 201cos cos 2x v t a t θα=⋅+⋅, 201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自v 图1.7由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于212t h a t =∆, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+;螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t .算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为1222l l vl t v u v u v u =+=+-- 022222/1/1/t l v u v u v==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V =,所以飞行时间为22l t V ==== 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?AB AB vv + uv - uABvuuvv[解答]雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为 l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一质量m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F 拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N),图1.101h lα图2.1这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮质量均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m g a m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 1212F F F kk k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度1b 把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度2b (b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力12图2.32 图2.4的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的矢量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+,因此角度为cos arctansin b g b ϕθϕ=+;而张力为T=.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,(2)图2.6得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v gh C =+,当h = 0时,v = 0,所以C = 0,因此速率为v =2.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程图2.7222d d k x f ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212k mv C x =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k k mv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2nx mv k x =-⎰. (1)当n = 1时,可得21ln 2mv k x C =-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =(2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101n k C x n -=--,因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d vf mg kv mt =--=,分离变量得d d()d v m mg kv t m mg kv k mg kv +=-=-++,积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mgx tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+, 当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m =mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m m R t μ=-=, 即 : 2d d k vt R v μ=-.积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得 001/k v v v t R μ=+.由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosg R θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t , 积分得冲量为 /20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的质量为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,mg图2.11小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=- 得:21p p p =+∆,由此可作矢量三角形,可得:p ∆==. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆== 24.4(m·s -1). 棒给球冲量为I = m Δv = 7.3(N·s), 对球的作用力为(不计重力):F = I/t = 366.2(N).v xΔvv y2.15 如图所示,三个物体A 、B 、C ,每个质量都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C之前的运动时间;t =. 此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作矢量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45°= 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的质量为m ,它与路面的滑动摩擦因数为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s 的大小为d s = R d θ. 重力G 的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+π sin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f 的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πcos d k u mg R θθ=-,积分得摩擦力所做的功为图2.174520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G 、摩擦力f 和马的拉力F 就是平衡力,即0F G f ++=,或者 ()F G f =-+.拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)k mgR μ=.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一质量为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因数;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因数为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
新世纪大学物理活页习题集(1-9)
01 质点运动学一、选择题(在下列各题中,均给出了4个~6个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号)1.在下列关于质点运动的表述中,不可能出现的情况是:( ) A.一质点具有恒定的速率,但却有变化的速度; B.一质点向前的加速度减少了,其前进速度也随之减少; C.一质点加速度值恒定,而其速度方向不断改变; D.一质点具有零速度,同时具有不为零的加速度。
2.在下列关于加速度的表述中,正确的是:( ) A.质点沿x 轴运动,若加速度a <0,则质点必作减速运动; B.质点作圆周运动时,加速度方向总是指向圆心; C.在曲线运动中,质点的加速度必定不为零; D.质点作曲线运动时,加速度方向总是指向曲线凹的一侧; E.若质点的加速度为恒矢量,则其运动轨迹必为直线; F.质点作抛物运动时,其法向加速度a n 和切向加速度τa 是不断变化的,因此,加速度a=22τa a n +也是变化的。
3.如图1-1所示,质点作匀速圆周运动,其半径为R ,从A 点出发,经半个圆周而达到B 点,则在下列表达式中,不正确的是: ( )01班号 学号 姓名 成绩A.速度增量Δv =0,速率增量Δv =0; B.速度增量Δv =-2vj ,速率增量Δv =0; C.位移大小|Δr |=2R ,路程s=πR D.位移Δr=-2Ri ,路程s=πR 。
4.一运动质点在某瞬时位于矢径r (x ,y)的端点处,其速度大小为: ( )A.dt dr ;B.dtr d ; C.dt r d ; D.22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx 。
5.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+= (其中a ,b 为常量)则该质点作:( ) A.匀速直线运动; B.变速直线运动;C.抛物线运动;D.一般曲线运动。
6.已知质点的运动方程为:x =Atcos θ+Bt 2cos θ,y=Atsin θ+Bt 2sin θ,式中A 、B 、θ均为恒量,且A >0,B >0,则质点的运动为: ( )A.圆周运动;B.抛体运动;C.椭圆运动;D.匀加速直线运动;E.匀减速直线运动。
大学物理习题集答案
一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]x o A ϖ x ω(A) A/2 ω (B) (C)(D)o ooxxxA ϖ x ω ωA ϖA ϖxA/2 -A/2 -A/2 (3)题4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的 (为固有圆频率)值之比为:[ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。
6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ]2153(A),or ;A;(B),;332663223(C),or ;(D),;4433ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ]xtOx 1x 2(8)题(A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm ,/6rad /s =ωπ, /3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。
大物下册复习题集
球心处电势为(设无限 。
R
O
dS
2、一平行板电容器,两极间充满各向同性均匀电介质, 已知相对介电常数为εr,若极板上的自由电荷面密度为σ , 则介质中电位移的大小D= . 电场强度的大 小 E
D
0 r
3、无限长直导线在P处弯成半径为R的圆,当通以电流I时,则在 I 1 圆心O点的磁感应强度大小等于 R B 0 1 2R 方向为 I o 垂直纸面向里
(D)p型半导体的导电机构完全决定于满带中空穴的运动.
C
二、填空题
1、真空中有一均匀电点球面,球半径为R,总带电量为 Q(>0),今在球面上挖去一很小面积dS(连同其上电荷), 设其余部分的电荷仍均匀分布,则挖去以后球心处
QdS
的电场强度为 远处电势为零)
16 2 0 R 4 Q 4 0 R
解:设坐标原点位于杆 中心O点,x轴沿杆的方向。如图所 示。杆的 q 电荷线密度 λ 。 p 2l 2 2 a x a 在x处任取电荷元dq
dx
q dq λdx dx 2l dq dU 2 2 4πε 0 x a
ox 2l
x
整个杆上电荷产生的电 势: UP 8 l
0
q
O
A
C O
B B
6.如图,平行板电容器(忽略边缘效应)充电时,沿环路L1,L2磁场强 度的环流中,必有: C L1 ( A) H dl H dl
2 ( B ) H dl H dl (C ) H dl H dl
P
4、一半径为R圆柱形导体,筒壁很薄,可视为无限长,通以 电流I,筒外有一层厚为d,磁导率为μ的均匀顺磁性介质,介 质外为真空,画出此磁场的H-r图及B-r图 H
大学物理基础习题集
同济大学大学物理-基础习题集1(质点运动学)涵盖内容:本练习卷所含内容为质点运动学和质点动力学两章,考察了比较基础简单的应用,也适用于高中学生一、单选题1.沿直线运动的物体,其速度大小与时间成反比,则其加速度大小与速度大小的关系是A.与速度大小的平方成正比B.与速度大小成正比C.与速度大小成反比D.与速度大小的平方成反比2.运动方程表示质点的运动规律, 运动方程的特点是A.坐标系选定后, 方程的形式是唯一的B.绝对的, 与参考系的选择无关C.只适用于惯性系D.参考系改变, 方程的形式不一定改变3.下列哪一种说法是正确的A.在圆周运动中,加速度的方向一定指向圆心。
B.匀速率圆周运动的速度和加速度都恒定不变。
C.物体作曲线运动时,速度的方向一定在运动轨道的切线方向上,法向分速度恒等于零;因此其法向加速度也一定等于零。
D.物体作曲线运动时,必定有加速度,加速度的法向分量一定不等于零。
4.有一个人以4m/s 的速度从A 地跑向B 地去拿快递,在B 地附近的小店休息片刻后,以6m/s 的速度从B 地跑回A 地,请问其整个运动过程中的平均速度为A.4.8m/sB.0C.5m/sD.5.5m/s 5.一个支点在做曲线运动,r 表示其位置矢量,s 表示路程,τ表示曲线的切线方向。
下列几个表达式中,正确的表达式为6.一抛射物体的初速度为0v ,抛射角为θ,则该抛物线最高点处的曲率半径为A.∞B.C.D.0 7.如图所示,路灯距离地面的高度为H ,跑步者的身高为h,如果人以匀速背向灯光跑步,则人头的影子移动的速度为A.B. C. D. 8.在电梯内用弹簧秤称量物体的重量, 当电梯静止时称得一物体重量50kg, 当电梯作匀变速运动时称得其重量为40kg, 则该电梯的加速度A.大小为0.8g, 方向向下B.大小为0.8g, 方向向上C.大小为0.2g, 方向向下D.大小为0.2g, 方向向上 9.用细绳系一小球使之在竖直平面内作圆周运动, 小球在任意位置A.绳子的拉力和重力是惯性离心力的反作用力B.绳子的拉力和重力的合力是惯性离心力的反作用力C.都有法向加速度D.都有切向加速度v dt ds A =.a dt dv B.=τa dtdv C =||.v dt dr D.=g v 20θg v 220cos 题6图题7图v H h H -v h Hv H h v hH H -10.大白和一艘重量为600Kg的船一起在平静的水面上匀速向前行驶,并且其速度为2m/s,已知大白的重量为60Kg,现在水面突然出现了一个受伤的海豚,于是大白相对于船以一水平速度v向前跳出船中,大白跳起后,船速减为原来的一半,这说明v大小为(假设所有阻力不计)A.0B.11m/sC.12m/sD.20m/s11.一炮弹由于特殊原因在飞行中突然炸成两块, 其中一块作自由下落, 则另一块着地点A.比原来更远B.比原来更近C.仍和原来一样D.条件不足不能判定12.一轮船作匀变速航行时所受阻力与速率平方成正比.当轮船的速率加倍时, 轮船发动机的功率是原来的A.2倍B.3倍C.4倍D.8倍13. 在下列叙述中,错误的是A.保守力做正功时相应的势能将减少B.势能是属于物体体系的C.势能是个相对量,与参考零点的选择有关D.势能的大小与初、末态有关, 与路径无关14.停在空中的气球的质量和人的质量相等.如果人沿着竖直悬挂在气球上的绳梯向上爬高1m,不计绳梯的质量, 则气球将A.向下移动1米B.向上移动1米C.向上移动0.5米D.向下移动0.5米15.质点系的内力可以改变A.系统的总动量B.系统的总质量C.系统的总角动量D.系统的总动能题14图16.质点组内部保守力作功量度了A.质点组势能的变化B.质点组动能与势能的转化C.质点组动能的变化D.质点组机械能的变化17.作用在质点组的外力的功与质点组内力作功之和量度了A.质点组内部机械能与其它形式能量的转化B.质点组动能的变化C.质点组动能与势能的转化D.质点组内能的变化18.已知A、B两质点,A的质量大于B的质量,受到相等的冲量作用, 则A.A比B的动量增量大B.A与B的动能增量相等C.A比B的动量增量少D.A与B的动量增量相等二、简答题1.如图所示,湖中有一艘被拉住的小船,岸上有人用绳子跨定滑轮拉扯该小船靠岸,当人以匀速v1拉船时,船移动的速度v是多少?已知滑轮距离水面距离为h,到原来船的位置处的绳长为L0。
大学物理习题集
说明:字母为黑体者表示矢量练习一 库仑定律 电场强度一.选择题1. 关于试验电荷以下说法正确的是:(A) 试验电荷是电量极小的正电荷; (B) 试验电荷是体积极小的正电荷; (C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2. 关于点电荷电场强度的计算公式E = q r / (4 π ε 0 r 3),以下说法正确的是(A) r →0时, E →∞;(B) r →0时,q 不能作为点电荷,公式不适用; (C) r →0时,q 仍是点电荷,但公式无意义;(D) r →0时,q 已成为球形电荷,应用球对称电荷分布来计算电场.3. 在点电荷激发的电场中,如以点电荷为中心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E 处处不等;(B) 球面上的电场强度矢量E 处处相等,故球面上的电场是匀强电场; (C) 球面上的电场强度矢量E 的方向一定指向球心;(D) 球面上的电场强度矢量E 的方向一定沿半径垂直球面向外.4. 图1.1所示为一沿X 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和−λ ( x > 0),则XOY 坐标平面上(0, a )点处的场强为: 图1.1(A ) 0. (B)i a02πελ. (C)i a 04πελ. (D) )(40j i +aπελ.5. 在没有其它电荷存在的情况下,一个点电荷q 1受另一点电荷 q 2 的作用力为f 12 ,当放入第三个电荷Q 后,以下说法正确的是(A) f 12的大小和方向都不会改变, 但q 1受的总电场力发生了变化;(B) f 12的大小、方向均发生改变, q 1受的总电场力也发生了变化. (C) f 12的大小不变,但方向改变, q 1所受的总电场力不变; (D) f 12的大小改变了,但方向没变, q 1受的总电场力不变; 二.填空题11. 如图1.2所示,真空中一半径为R 的均匀带电球面,Q ( Q > 0). 今在球面上挖去一非常小的面积ΔS(连同电荷设不影响原来的电荷分布,则挖去ΔS E = , 其方向为 .2. 两个电量都是+q 的点电荷, 相距为2a , 连线中点为O . 线的中垂线上放另一点电荷-q 0, 距O 点为x 。
大学文科物理习题集及解答
当 t = 1 s 时:
r1 = 2i + 17 j , v1 = 2i − 4 j , a1 = −4 j
当 t = 2 s 时:
r2 = 4i + 11 j , v 2 = 2i − 8 j , a 2 = −4 j
1.2 已知质点的运动方程为 r=(acosωt)i+(bsinωt)j, , 为正常数。 为正常数 其中 a,b,ω为正常数。 (1) 计算质点的速度和加速度; ) 计算质点的速度和加速度; (2) 证明运动的轨迹是椭圆,其长短轴分别为 ) 证明运动的轨迹是椭圆,其长短轴分别为2a 与2b,质点的加速度恒指向椭圆中心。 ,质点的加速度恒指向椭圆中心。 解(1):
1.1 一质点在 平面上运动,运动函数为: 一质点在xy平面上运动,运动函数为: 平面上运动 x =2t, y =19-2t2。 (1)求质点运动的轨道方程并画出轨道曲线。 求质点运动的轨道方程并画出轨道曲线。 求质点运动的轨道方程并画出轨道曲线 (2)求 t1 = 1s 和 t2 = 2s 时,质点的位置、速 质点的位置、 求 度和加速度。 度和加速度。 解(1):
20 ± 400 − 8 g 1 2 20t1 − gt1 = 4 ⇒ t 1 = 2 g
对于后抛物体
10 ± 100 − 8 g 1 2 10t 2 − gt 2 = 4 ⇒ t 2 = 2 g
20 + 400 − 8 g 取: t 1 = g 10 + 100 − 8 g 10 − 100 − 8 g t2 = ,或 t2 = g g 1 ∆t1 = (20 + 400− 8g − 10 − 100− 8g ) = 2.4s g
A B
180 ω 1 = 2πn1 = 2π × = 6π = 18.84( rad / s ) 60
大学物理习题集农科类
大学物理习题集(农科类)大学物理课部2005年1月目录部分物理常量练习一质点力学中的基本概念和基本定律练习二流体静力学与流体的流动练习三液体的表面性质练习四伯努力方程及应用练习五黏滞流体的流动练习六流体力学习题课练习七简谐振动的特征及描述练习八简谐振动的合成练习九平面简谐波练习十波的干涉练习十一振动和波动习题练习十二光的干涉练习十三光的衍射练习十四光的偏振练习十五光学习题课练习十六理想气体动理论的基本公式练习十七能量均分定理练习十八气体分子按速率分布律和按能量分布律练习十九热力学第一定律对理想气体的应用练习二十循环过程练习二十一热力学第二定律熵及熵增加原理练习二十二热学习题课练习二十三电场强度练习二十四高斯定理练习二十五电势练习二十六电场中的导体和电介质练习二十七电场习题课练习二十八电流及运动电荷的磁场练习二十九磁场中的高斯定理和安培环路定理练习三十电流与磁场的相互作用练习三十一磁场习题课练习三十二光的二象性粒子的波动性练习三十三量子力学部分物理常量引力常量G=6.67×10-11N2·m2·kg-2重力加速度g=9.8m/s-2阿伏伽德罗常量N A=6.02×1023mol-1摩尔气体常量R=8.31J·mol-1·K-1标准大气压1atm=1.013×105Pa玻耳兹曼常量k=1.38×10-23J·K-1真空中光速c=3.00×108m/s电子质量m e=9.11×10-31kg 中子质量m n=1.67×10-27kg质子质量m n=1.67×10-27kg元电荷e=1.60×10-19C真空中电容率ε0= 8.85×10-12 C2⋅N-1m-2真空中磁导率μ0=4π×10-7H/m=1.26×10-6H/m 普朗克常量h = 6.63×10-34 J ⋅s维恩常量b=2.897×10-3mK斯特藩-玻尔兹常量σ = 5.67×10-8 W/m2⋅K4说明:字母为黑体者表示矢量练习一 质点力学的基本概念和基本定律一.选择题1.一质点沿x 轴作直线运动,其v —t 曲线如图1.1所示,如t=0时,质点位于坐标原点,则t=4.5s 时,质点在x 轴上的位置为(A) 0.(B) 5m .(C) 2m . (D) -2m .(E) -5m .2.一质点在平面上运动,已知质点位置矢量的表达式为 r = a t 2 i + b t 2 j (其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D) 一般曲线运动.3.一质点作直线运动,某时刻的瞬时速度为v =2m/s, 瞬时加速度为a =-2m/s 2, 则一秒钟后质点的速度(A) 于零.(B) 等于 2m/s . (C) 等于2m/s . (D) 不能确定.4.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平 均速度为v ,平均速率为v ,它们之间的关系必定有 (A) v = v ,v ≠v . (B) v ≠v , v =v . (C) v ≠v , v ≠v . (D) v = v , v =v .5.质点作半径为R 的变速圆周运动时,加速度大小为(v 表示任一时刻质点的速率)(A) d v/d t . (B) v 2/R .(C) d v/d t + v 2/R .(D) [(d v/d t )2+(v 4/R 2)]1/2.二.填空题-图1.11.悬挂在弹簧上的物体在竖直方向上振动,振动方程为y=A sinω t,其中A、ω均为常量,则(1)物体的速度与时间的函数关系为;(2)物体的速度与坐标的函数关系为.2.在x 轴上作变加速直线运动的质点,已知其初速度 为v 0,初始位置为x 0加速度为a=Ct 2 (其中C 为常 量),则其速度与时间的关系v= ,运动方程为 x= .3.灯距地面高度为h 1,一个人身高为h 2, 在灯下以匀 速率v 沿水平直线行走, 如图1.2所示.则他的头 顶在地上的影子M 点沿地面移动的速度 v M = .三、计算题1.有一质点沿x 轴做直线运动,t 时刻的坐标为x=4.5 t 2-2 t 3. (m)试求:(1)第二秒内的平均速度;(2)第二秒末的瞬时速度;(3)第二秒内的路程。
大学物理习题集加答案解析
大学物理习题集(一)大学物理教研室2010年3月目录#部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 \练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27、练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量G=×1011N·m2·kg2重力加速度g=s2阿伏伽德罗常量N A=×1023mol1~摩尔气体常量R=·mol1·K1玻耳兹曼常量k=×1023J·K1斯特藩玻尔兹曼常量 = ×10-8 W·m2·K4标准大气压 1atm=×105Pa真空中光速c=×108m/s基本电荷e=×1019C电子静质量m e=×1031kg质子静质量m n=×1027kg中子静质量m p=×1027kg真空介电常量0= ×1012 F/m、真空磁导率0=4×107H/m=×106H/m普朗克常量h = ×1034 J·s维恩常量b=×103m·K说明:字母为黑体者表示矢量练习一库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是(A) 试验电荷是电量极小的正电荷;(B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;((D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E = q r / (4 0 r3),以下说法正确的是(A) r→0时, E→∞;(B) r→0时,q不能作为点电荷,公式不适用;(C) r→0时,q仍是点电荷,但公式无意义;(D) r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场.3.关于电偶极子的概念,其说法正确的是(A) 其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统;(B) 一个正点电荷和一个负点电荷组成的系统;(C) 两个等量异号电荷组成的系统;。
大学物理习题集
基本知识点:1.静电场高斯定理:无电解质:有电介质:说明电场是:2.静电场环路定理:说明电场是:3.D,E,P三者的关系和联系稳恒磁场高斯定理:说明电场是:4.稳恒磁场环路定理:无磁解质:有磁介质:说明电场是:5.H,B,M三者的关系和联系6.电场的能量和磁场的能量7.电磁感应定律内容,表达,方向的判定(掌握楞次定律)8.自感和互感的联系与区别9.传导电流,磁化电流,位移电流的区别10.麦克斯韦方程组及其内涵电磁学部分Array 1.求距离均匀带电细棒为a 的p点处电场强度和电势。
2.求一均匀带电圆环轴线上任一点x处的电势,并用两种方法求P点的电势。
长度带电量为λ。
4.均匀带电无限大平面的电场(作图).5.计算均匀带电球面的电场中的电势分布。
球面半径为R,总带电量为q。
.6.两平行放置的带电大金属板A和B,面积均为S,A板带电Q A,B板带电Q B,忽略边缘效应,求两块板四个面的电荷面密度。
7.在内外半径分别为R1和R2的导体球壳内,有一个半径为r 的导体小球,小球与球壳同心,让小球与球壳分别带上电荷量q和Q。
试求:(1)小球的电势Vr,球壳内、外表面的电势;(2)小球与球壳的电势差;(3)若小球接地,再求小球与球壳的电势差。
8.平行板电容器两板极的面积为S,如图所示,两板极之间充有两层电介质,电容率分别为ε 1 和ε 2 ,厚度分别为d1 和d2 ,电容器两板极上自由电荷面密度为±σ。
求(1)在各层电介质的电位移和场强,(2)两层介质表面的极化电荷面密度(3)电容器的电容.(4)电容器中的能量。
9.载流长直导线的磁场设有长为L的载流直导线,其中电流为I。
计算距离直导线为a处的P点的磁感应强度10.载流长直导线的磁场设有长为L的载流直导线,其中电流为I。
计算距离直导线为a 处的P点的磁感应强度11.求载流无限长直螺线管内的磁场12.有一根很长的同轴电缆,由一圆柱形导体和一同轴圆筒状导体组成,圆柱的半径为R1,圆筒的内外半径分别为R1和R2,如图所示。
物理实验习题集
大学物理实验试题(一)一、选择题(选择正确答案,填入下表,每题2分、共20分)1. 对一物理量进行等精度多次测量,其算术平均值是 ( )A :真值B :最接近真值的值C :误差最大的值D :误差为零的值2. 对b ax y += 的线性函数,利用图解法求a 时,正确的求解方法是 ( )A 、αtg a = (α为所作直线与坐标横轴的夹角实测值)B 、xy a ∆∆= (y x ∆∆、为任选两个测点的坐标值之差) C 、xy a ∆∆= (y x ∆∆、为在所作直线上任选两个分得较远的点的坐标值之差) D 、xy a = (y x 、为所作直线上任选一点的坐标值) 3. 用伏安法测量某一阻值略为10Ω的电阻,电压表0.5级,量程300mV 应选择下列哪种电流表(不计内阻影响和功率限制) ( )A 、电流表0.5级、量程20mA ,B 、电流表1.5级、量程30mA ,C 、电流表0.5级、量程50mA ,D 、电流表1.5级、量程75mA 。
4. 下列结果表述正确的是 ( )A 、mm R 21002041.862108.8⨯±= B 、mm R 210)80621.8(⨯±=C 、m )008.0621.8(±=RD 、mm R 210)0081.0621.8(⨯±=5. 在正常情况下,下列读数错误的是 ( )A 、有量程1500mv ,分格数为150格的电压表测得电压值为250.5mvB 、分度值为1´的角游标测得值为9311'C 、分度值为0.02mm 的游标卡尺测得某物体的长度为59.32mmD 、分度值为0.01mm 的读数显微镜读数为30.098mm6.用惠斯通电桥测量中等阻值的电阻,当电桥平衡时,R x =(R 1/R 2)R s ,下列因素中不引起x R 测量误差的因素是: ( )A、电源电压有微小的变化 B、R 1.R 2和R s 的阻值不准确C、触电阻及接线电阻过大 D、温度变化的影响。
大学物理习题参考解答物理习题参考解答刚体基本运动_转动定律_动能定理
选择题_03图示单元四 刚体基本运动 转动动能 1一 选择题01. 一刚体以每分钟60转绕z 轴做匀速转动(ω沿转轴正方向)。
设某时刻刚体上点P 的位置矢量为345r i j k =++,单位210m -,以210/m s -为速度单位,则该时刻P 点的速度为: 【 B 】(A) 94.2125.6157.0v i j k =++;(B) 25.118.8v i j =-+;(C) 25.118.8v i j =--;(D) 31.4v k =。
02. 轮圈半径为R ,其质量M 均匀布在轮缘上,长为R ,质量为m 的均质辐条固定在轮心和轮缘间,辐条共有2N 根。
今若将辐条数减少N 根但保持轮对通过轮心,垂直于轮平面轴的转动惯量保持不变,则轮圈的质量为 【 D 】(A)12N m M +; (B) 6N m M +; (C) 23N m M +; (D) 3Nm M +。
03. 如图所示,一质量为m 的均质杆长为l ,绕铅直轴OO '成θ角转动,其转动惯量为 【 C 】(A)2112ml ;(B) 221sin 4ml θ;(C) 221sin 3ml θ; (D) 213ml 。
04. 关于刚体对轴的转动惯量,下列说法中正确的是 【 C 】 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关; (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关; (C) 取决于刚体的质量、质量的空间分布和轴的位置;(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
05. 两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若A B ρρ>,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则 【 B 】(A) A B J J >; (B) B A J J >;(C) A B J J =; (D) A J 和B J 哪个大,不能确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果它包含q所在顶点则 e 0
9-12 半径为 R1 和 R2 ( R2 R1 )的两无限长同轴圆柱面,单位长度
上分别带有电量 和 ,试求: (1) r R1 ; (2) R1 r R2 ; (3) r R2 处各点的场强。
q 解: 高斯定理 E dS ,取同轴圆柱形高斯面,侧面积 S 2 πrl
11-6 如题11-5所示,在两平行载流的无限长直导线的平面内有一 矩形线圈。两导线中的电流方向相反、大小相等,且电流以
dI 的变化率增大,求: dt
(1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势。 解: 以向外磁通为正,则
(1)
m
ba
0 I
2 πr 2 πr Il ba d a 0 [l n ln ] 2π b d
s
0
E 则 dS E 2πrl
S
(1) 当 r R1 时
q 0 E 0
方向沿径向向外。 2π 0 r
(2)当 R1 r R2 时 q l E
(3) 当 r R2 时
q 0 E 0
9-17 如题9-17图所示,在A、B两点处放有电量分别为+q 和-q 的
图9-7
EQy
d λ dEQy 2 l 4πε0
l 2 l 2
dx (x d )
2 3 2 2 2
l
2 2π 0 l 2 4d 2
将 5.0 109 C m 1 , l 15cm, d 2 5cm 代入得
EQ EQy 14.96102 N C 1,方向沿y轴正向。
点电荷,AB间距离为2R,现将另一正试验点电荷我我 q0 从 O点经过半圆弧移到C点,求移动过程中电场力作的功。
解:如图所示
UO 1 4 0 ( q q )0 R R
UC
1 q q q ( ) 4π 0 3R R 6π 0 R
A q0 (U O U C )
qo q 6π 0 R
E dE y 2
图9-18
Rd cos 2 4 π R 0 2
[sin( ) sin ] 4π 0 R 2 2 2π 0 R
(2) AB电荷在O点产生电势,以 U 0
U1
A B R dx dx ln 2 2 R 4π 0 x 4π 0 x 4π 0
9.8 一个半径为R的均匀带电半圆环,电荷线密度为 , 求环心处点的场强。 解:如9.8图在圆上取 dl Rd
dq dl Rd
它在O点产生场强大小为
Rd dE ,方向沿半径向外。 2 4π 0 R dE x dE sin sind 4π 0 R dE y dE cos( ) cosd 4π 0 R
q E dS
s
0
立方体六个面,当在立方体中心时,每个面上电通量 相等,则各面通量为 e
q 6 0
6 0
(2)电荷在顶点时,将立方体延伸为边长2a的立方体,使处于 q 边长2a的立方体中心,则边长的正方形上电通量 e 对于边长a的正方形,如果它不包含q所在的顶点, q 则 e 24 0
同理,CD电荷在O点产生电势
U2
2 R dx dx ln 2 C 4π x R 4π x 4π 0 0 0 D
半圆环产生的电势
U3
R
0
dl πR 4π 0 R 4π 0 R 4 0
图9-18
U O U1 U 2 U 3
r1 r2
1
I1 0 I1 ]ldr 图10-14 r 2r 2 (d r ) Il I l 1 I l 0 1 ln3 0 2 ln 1 ln3 2.2 106 (Wb) 2 2 3
[
1
10-22 如图所示,在长直导线AB内通以电流I1=20A,在矩形线
通有方向相反的电流,I1=20A,I2=10A,如题9-8图所示。A、B
两点与导线在同一平面内,这两点与导线L2的距离均为0.5cm。 试求A、B两点处的磁感应强度,以及磁感应强度为零的点的位置。 解:(1)如图所示, BA方向垂直纸面向里
BA
0 I 2 2 (0.1 0.05) 2 0.05
0 I1
1.2 10 4 T
BB
0 I 2 2 (0.1 0.05) 2 0.05
0 I1
图10-10
1.33105 T
(2)
B 0 在L2外侧距离为处
则
2 ( r 0.1)
0 I
I 2 0 ,解得 r 0.1m 2r
10-14 两平行长直导线相距 d 40cm ,每根导线载有电流 I1 I 2 20A,
第九章 习 题 课
9-7 长 l 15 .0cm 的直导线AB上均匀地分布着线密度 5.0 109 C m 1 的正电荷。试求: (1)在导线的延长线上与导线B端相距 a1 5.0cm 处的P点的场强; (2)在导线的垂直平分线上与导线中点相距 d 2 5.0cm 处的Q点 的场强。 解:如图 , (1)在带电直线上取线元 dx 其上dq电量,在P点产生场强为
(1)ab两端的电势差;
(2)a、b两端哪一点电势高? 解: (1)在Ob上取 r r dr 一小段,则
Ob
同理
2l 3 0
2 B 2 rBdr l 9
l 3 0
图10-10
Oa
1 rBdr B l 2 18
1 2 1 ) B l 2 B l 2 18 9 6
0 I
12 R
,方向垂直向内。
0 I
4 R 2
(sin90 sin60 )
0 I 3 (1 ) 方向垂直向内。 2R 2
图10-9
BO B1 B2 B3
0 I 3 (1 ) 方向垂直向内。 2R 2 6
10-10 在真空中,有两根互相平行的无限长直导线L1和L2,相距0.1m,
ab aO Ob (
ab 0
Ua Ub 0 ,所以b点电来自高。11.12 如题11.12图所示,长度为2b的金属杆位于两无限长直导线 所在平面的正中间,并以速度 v 平行于两直导线运动。两
直导线通以大小相等、方向相反的电流I,两导线相距2a。
试求:金属杆两端的电势差及其方向
FCF
d a d
0 I1 8.0 10 4 N 2d
图10-22
0 I1 I 2 II d a dr 0 1 2 ln 9.2 10 5 N 2r 2 d
FED 方向垂直ED向下,大小为
FED FCF 9.2 105 N
(2) 合力 F FCD FFE FCF FED 方向向左,大小为
dE P 1 dx 4π 0 (a x )2
E P dE P 4π 0
l 2 l 2
l
π 0 ( 4a 2 l 2 )
dx 1 1 [ ] (a x ) 2 4π 0 a l a l 2 2
图9-7
将 l 15cm , 5.0 109 C m 1 , a 12.5cm 代入得
ln 2 2 π 0 4 0
第十章 习 题 课
10-9 如题10-9图所示,AB、CD为长直导线,BC为圆心在O点的一 段圆弧形导线,其半径为R。若通以电流I,求O点的磁感应强度。
解:如图,点磁场由AB、CD、BC三部 分电流产生。
AB: B1 0
BC: B2
CD: B3
E P 6.74102 N C 1 ,方向水平向右。 dx (2)同理 dE Q 1 , 2 2 4π 0 x d 2
方向如图。 由于对称性 l dE Qx 0 , 即 EQ 只有y分量,
dEQy 1 λdx 2 4πε0 x 2 d 2 d2 x d
2 2 2
向上,大小 为
dF I 2 dr
d M r F 对O点力矩 dM 方向垂直纸面向外,大小为
0 I1 2r
dM rdF
b
0 I1 I 2 dr 2
II M dM 0 1 2 a 2
b
a
dr 3.6 10 6 N m
第十一章 习 题 课
如图10-14所示。求:
(1)两导线所在平面内与该两导线等距的一点A (2)通过图中斜线所示面积的磁通量( r1 r3 10cm, l 25cm )。
解:(1) BA 0 I1 0 I 2 4 105 T
d 2 ( ) 2 d 2 ( ) 2
方向垂直纸面向外。 (2) 取面元 dS ldr
sind 0 4 π R 2π 0 R 0 Ey cosd 0 0 4 π R 0
Ex
图9-8
E Ex 2 π 0 R
方向沿x轴正向。
9.10 (1)点电荷q 位于一边长为a的立方体中心,试求在该点 电荷电场中穿过立方体的一个面的电通量; (2)如果该场源点电荷移动到该立方体的一个顶点上, 这时穿过立方体各面的电通量是多少? 解:(1)由高斯定理
图9-17
9-18 如题9-18图所示的绝缘细线上均匀分布着线密度为 的正电荷, 两直导线的长度和半圆环的半径都等于R。试求环中心O点处 的场强和电势。 解: (1)由于电荷均匀分布与对称性,
AB和CD段电荷在O点产生的