小升初典型应用题修订稿
专题31典型应用题和差倍问题和年龄问题-2024年小升初数学典型例题(原卷版)2
2024年小升初数学典型例题系列专题31:典型应用题·和差倍问题和年龄问题【专项训练】1.篮球小组和足球小组共有135人,篮球小组人数是足球小组的4倍,篮球小组有多少人?2.一个书架,上层放的书是下层的2.5倍。
如果从上层取30本方到下层,那两层书架上书的本数正好同样多。
原来两层各放了多少本书?(用方程解)3.仓库里有两桶油,甲桶油的质量是乙桶油的2.8倍。
如果从甲桶中取出14.4千克油放入乙桶中,那么两桶油的质量就相等了。
两桶油原来各有多少千克?4.为给灾区奉献一片爱心,赵丽和李敏从自己的压岁钱中拿出一部分捐给了灾区。
她俩共捐了151.5元,已知赵丽捐的钱数是李敏的2倍,赵丽和李敏各捐款多少元?5.新学期开学了,欢欢去文具店买了一个书包和一支中性笔,一共用了39.6元钱,把书包价钱的小数点向左移动一位,正好是中性笔的价钱。
一个书包和一支中性笔各多少元钱?6.学校买来篮球比足球多10个,其中篮球的个数是足球的1.2倍,学校买来篮球和足球各是多少?7.一个数,把它的小数点向左移动两位,所得新数比原数小3.465,原数是多少?8.一个小数的小数点,向右移动一位,这个数就比原来的数大5.04,原数是多少?9.学校校本课程机器人小组共有25人,其中男生人数是女生人数的1.5倍,男生女生各有多少人?(用方程解答)10.超市现有360千克大米出售,第一天售出16,第2天要售出多少千克大米才能使剩下的大米正好是大米总量的13?11.月月和星星一共有53本书,月月比星星多3本,月月有多少本书,星星有多少本书?12.学校买来2张桌子和4把椅子,共付650元。
每张桌子的价钱是每把椅子价钱的3倍,每张桌子多少钱?13.王华看一本英文书,第一次看了全书的1,第二次比第一次多看40页,已6知两次共看了310页。
这本英文书一共有多少页?14.甲、乙、丙三个盒子各有若干个小球,从甲盒拿出4个放入乙盒,再从乙盒拿出8个放入丙盒后,三个盒子内的小球个数相等。
小升初数学典型应用题(和倍问题+差倍问题+和差问题)
小升初数学典型应用题(和倍问题+差倍问题+和差问题)一、和倍问题1.白兔有540只,灰兔的只数是白兔的5倍,灰兔比白兔多多少只?(1)先求灰兔有多少只?(2)再求灰兔比白兔多多少只?2.果园里有21棵桃树。
梨树是桃树的4倍,苹果树是桃树的3倍。
梨树和苹果树各有多少棵?3.仓库共运进货物1260吨,如果从甲仓库调出120吨货物到乙仓库,则两个仓库的货物一样多,求甲乙两仓库原来运进货物各多少吨?4.桌子上有两堆小棒,从第一堆里拿10根放进第二堆,两堆小棒就一样多.哪一堆小棒根数多?多几根?5.植树节那天三四年级同学去植树,四年级5个班植了720棵树,正好是三年级3个班同学植树棵数的的2倍,三四年级同学共植了多少棵树?6.植物园里玫瑰花和菊花一共有392棵,玫瑰花的棵数是菊花的3倍。
两种花各有多少棵?7.养殖场养了320只鸡,鸭的只数比鸡的4倍多78只。
鸭有多少只?8.图书室新买来200本科技书,新买来的故事书是科技书的5倍,两种书共有多少本?9.学校科技小组的人数是体育小组的人数的1.6倍,如果科技小组调12人到体育小组,两个小组的人数正好相等.两个小组各有多少人?10.果店运回苹果和梨子共200千克,苹果的千克数是梨子的1.5倍,运回的梨子和苹果各是多少千克?11.甲、乙两人共有203.5元钱,乙的钱数的小数点向右移动一位,就和甲的钱数一样多,甲、乙各有多少元钱?12.甲书架上有32本书,乙书架上有57本书,甲每天增加4本书,乙每天增加9本书,多少天后乙是甲的两倍?13.一篮苹果比一篮橘子重2.4千克,苹果的质量数是橘子的1.2倍。
一篮苹果和橘子各有多少千克?14.请你用1,2,3,4,5,6,7,8,9这九个数字,每个只能用一次,拼凑出五个自然数.让第二个是第一个的2倍,第3个是第一个的3倍,第四个是第一个的4倍,第五个是第一个的5倍.求这五个自然数分别为多少?15.平行四边形的周长是56厘米,其中一条边长是10厘米。
小升初数学应用题大全100例附答案(完整版)
小升初数学应用题大全100例附答案(完整版)1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:1 桶水可灌3/4 壶水,1 壶水冲2 杯水,所以1 桶水可以冲3/4 ×2 = 3/2 = 1.5 杯水。
2. 小明看一本120 页的故事书,已经看了全书的5/6,还剩多少页没看?答案:全书120 页,已经看了全书的5/6,即看了120×5/6 = 100 页,还剩120 - 100 = 20 页。
3. 一个长方形的长是8 厘米,宽是长的1/4,这个长方形的面积是多少?答案:宽是长的1/4,所以宽为8×1/4 = 2 厘米,面积= 长×宽= 8×2 = 16 平方厘米。
4. 一辆汽车从甲地开往乙地,每小时行60 千米,5 小时到达。
若要4 小时到达,则每小时需要多行多少千米?答案:甲乙两地的距离为60×5 = 300 千米。
若4 小时到达,速度应为300÷4 = 75 千米/小时,每小时需要多行75 - 60 = 15 千米。
5. 某工厂有男职工120 人,女职工人数是男职工人数的4/5,这个工厂共有职工多少人?答案:女职工人数为120×4/5 = 96 人,全厂职工人数为120 + 96 = 216 人。
6. 学校买来180 本图书,按4:5 分给五年级和六年级,五年级分得多少本?答案:一共分成4 + 5 = 9 份,每份180÷9 = 20 本,五年级分得4 份,即20×4 = 80 本。
7. 果园里有苹果树240 棵,梨树的棵数比苹果树少1/4,梨树有多少棵?答案:梨树比苹果树少1/4,所以梨树的棵数为240×(1 - 1/4) = 180 棵。
8. 修一条路,已经修了全长的3/7 ,还剩360 米没修,这条路全长多少米?答案:没修的占全长的1 - 3/7 = 4/7 ,全长为360÷4/7 = 630 米。
2024年小升初数学典型应用题真题汇编专题15 最优化问题
2023小升初数学典型应用题精讲精练真题汇编第15讲最优化问题知识梳理最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间前提下,争取获得在可能范围内的最佳效果,因此,最优化问题成为现代数学的一个重要课题,涉及统筹、线性规划一排序不等式等内容.下面我们就最优化问题做出汇总分析.最优化问题不仅具有趣味性,而且由于解题方法灵活,技巧性强,因此对于开拓解题思路,增强数学能力很有益处.但解决这类问题需要的基础知识相当广泛,很难做到一一列举.真题汇编一.选择题(共8小题)1.甲、乙、丙、丁四个商店同时促销一种原价为100元的花生油。
甲商店按原价的85%出售;乙商店满200元一律降价25%出售;丙商店买四送一;丁商店第二桶打六折。
妈妈要买2桶这样的花生油,想花钱最少,应该到()商店去买。
A.甲B.乙C.丙D.丁2.百货商场搞店庆活动,妈妈看中了一件标价400元的裙子。
导购员提供了两种购买方案:(1)打七折销售;(2)按每满300元减100元销售。
哪种购买方案更省钱?()A.方案(1)B.方案(2)C.两种方案一样3.某运动品牌搞活动,在A商场打五折销售,在B商场按“满100元减50元”销售。
小华要买一双370元的鞋,选择哪个商场更省钱?()A.A商场B.B商场C.一样D.无法判断4.春游时,四年级一班共有38人坐快艇,怎样租快艇最省钱。
()A.8艘小快艇,1艘大快艇B.10艘小快艇C.6艘大快艇,1艘小快艇D.7艘大快艇5.有30人要租船,有两种船可以选择,最省钱的租船方案是()A.租8条大船B.租7条大船,1条小船C.租15条小船D.租5条大船,5条小船6.用平底锅煎荷包蛋,一次能同时煎2个蛋。
如果煎1个蛋需要2分钟(正反面各1分钟),现在要给15位同学每人一个荷包蛋,至少需要煎()分钟。
A.15 B.30 C.207.爸爸想在网上商店买电扇,某种电扇原价280元,A商店打八折销售,B商店满100元减30元,C商店每满100元减30元。
典型应用题
小升初----典型应用题1、学校举行歌咏比赛,六位评委对小红的评分分别为:9.2分、9.8分、9.3分、9.0分、9.7分、9.4分。
评分的规则是去掉一个最高分和一个最低分再算平均分。
请你算一算小红实际的了多少分?2、下图是跳水比赛每轮得分的计算方法:我国著名跳水运动员吴敏霞一次跳水后,7名裁判的评分分别是:9.8, 9.5,9.6, 9.6, 9.7, 9.4。
她这次跳水的难度系数是“3.0”。
请你参照上面的方法计算她这次得分。
3、两个工程队整修一条灌溉渠,完工时甲队21人共修354米,乙队18人,每人整修了15米,两个工程队平均每人整修灌溉多少米?4、一位同学语文、数学、英语的平均成绩是85分,其中英语得了96分,该同学语文、数学两科平均多少分?5、小明所在的班统计数学考试成绩,算出的平均分为85.13分,复查时发现将小明的成绩87分误写成了78分。
重新计算后,该班的平均成绩85.31分,小明所在的班有多少人?6、某班一次数学考试的平均分是88分,只有小明因病没有参加考试。
第二天他补考的成绩是79分,加上小明的成绩后,该班的平均成绩是87.8分。
这个班共有学生多少人?7、红星小学四年级共3个班,一班和二班的平均人数是44人,二班和三班的平均人数是43人,三班和一班的平均人数是42人,这三个班各有多少人?8、将一批本子分发给六年级一班学生,平均每人分到12本。
若只发给女生,平均每人可分到20本,若只发给男生,平均每人可分得多少本?9、星兴车队运送一批救灾物资,原计划每小时行40千米,7.5小时到达灾区。
实际每小时多行了10千米,这样到达灾区用了多少小时?10、王村收割玉米,24人12天可收割完。
现在24人收割了4天后又增加8人,还需几天收割完?11、一项工程7人11天可以完成。
如果要提前4天完成,应增加多少人?12、某公司计划15人每天工作8小时,6天完成一批订货。
后来因买方工作需要,公司改为18人4天完成,每人每天必须多工作几小时?13、新乡去年冬天进行水利改造,原计划30天修水渠3750米,实际5天就修了750米,照这样计算,可以提前几天完工?14、A 、B 两地相距383千米,甲、乙两人相向而行。
小升初典型应用题精练行程问题学生版
领航小升初专题四行程问题一、知识点1、路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:路程=时间×速度,时间=路程÷速度,速度=路程÷时间;2、在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,静水速度=顺流速度+逆流速度÷2,水流速度=顺流速度-逆流速度÷2;此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度;3、相遇问题和追及问题;在这两个问题中,路程、时间、速度的关系表现为:相遇问题:追击问题:在实际问题中,总是已知路程、时间、速度中的两个,求另一个;二、习题精练1 、一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒;已知每辆车长5米,两车间隔10米;问:这个车队共有多少辆车2、骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到;如果希望中午12点到,那么应以怎样的速度行进3 、划船比赛前讨论了两个比赛方案;第一个方案是在比赛中分别以米/秒和米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以米/秒和米/秒的速度各划行比赛时间的一半;这两个方案哪个好4 、小明去爬山,上山时每小时行千米,下山时每小时行4千米,往返共用时;问:小明往返一趟共行了多少千米5、一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米6 、两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时;求这条河的水流速度;7、甲车每小时行40千米,乙车每小时行60千米;两车分别从A,B两地同时出发,相向而行,相遇后3时,甲车到达B地;求A,B两地的距离;8、小明每天早晨按时从家出发上学,李大爷每天早晨也定时出门散步,两人相向而行,小明每分钟行60米,李大爷每分钟行40米,他们每天都在同一时刻相遇;有一天小明提前出门,因此比平时早9分钟与李大爷相遇,这天小明比平时提前多少分钟出门9、小刚在铁路旁边沿铁路方向的公路上散步,他散步的速度是2米/秒,这时迎面开来一列火车,从车头到车尾经过他身旁共用18秒;已知火车全长342米,求火车的速度;10、铁路线旁边有一条沿铁路方向的公路,公路上一辆拖拉机正以20千米/时的速度行驶;这时,一列火车以56千米/时的速度从后面开过来,火车从车头到车尾经过拖拉机身旁用了37秒;求火车的全长;11、如右图所示,沿着某单位围墙外面的小路形成一个边长300米的正方形,甲、乙两人分别从两个对角处沿逆时针方向同时出发;已知甲每分走90米,乙每分走70米;问:至少经过多长时间甲才能看到乙12、猎狗追赶前方30米处的野兔;猎狗步子大,它跑4步的路程兔子要跑7步,但是兔子动作快,猎狗跑3步的时间兔子能跑4步;猎狗至少跑出多远才能追上野兔13、有甲乙丙三车各以一定的速度从A到B,乙比丙晚出发10分钟,出发后40分钟追上丙,甲比乙又晚出发10分钟,出发后60分钟追上丙,问,甲出发后多少分钟可以追上乙14、正方形ABCD是一条环形公路,已知汽车在AB上的时速为90千米,在BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米;已知从CD上的一点P同时反向各发一辆汽车,他们将在A、B的中点上相遇;那么如果从PC中点M点同时反向各发一辆汽车,他们将在A、B上的一点N 相遇;求AN占AB的几分之几15、甲乙二人在400米的跑道上进行两次竞赛,第一次乙先跑到25米后,甲开始追乙,到终点比乙提前秒,第二次乙先跑18秒后,甲追乙,当乙到终点时,甲距终点40米,求在400米内,甲乙速度各多少16、甲乙两人分别从AB两地同时出发,在AB之间往返跑步,甲每秒跑3米,乙每秒跑7米;如果他们第四次相遇点与第五次相遇点的距离是150米,那么AB之间的距离是多少米17、甲乙两辆车在一条长为10千米的环形公路上从同一地点同时反向开出,甲车开出4千米时两车相遇;如果每次相遇后两车都提速10%,求第三次相遇时甲车离出发点多远;18、甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们下山的速度是各自上山速度的2倍;甲到达山顶时乙距山顶还有400米;甲回到山脚时,乙刚好下到半山腰;求山脚到山顶的距离;; 19、甲乙两车同时从A、B两地出发相向而行,两车中途相遇后,甲又用4小时到B地,乙又用9小时到A地,相遇时,甲车比乙车多行了90千米,求甲乙两车每小时各行多少千米20、一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以每秒a米和每秒b米匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少21、甲乙两车分别从AB两地同时出发相向而行,出发时,甲和乙的速度比是4:3,相遇后,甲的速度减少10%,乙的速度增加20%;这样,当甲到达B地时,乙离A地还有17千米,那摩AB两地相距多少千米22、从甲地到乙地全是山路,其中上山路程是下山路程的2/3,一辆汽车从甲地到乙地共行7小时,汽车上山速度是下山速度的一半,这辆这辆汽车从乙地返回甲地需要多少小时23、甲乙两地,如果去时的速度提高25%,可比原定的时间提前6分钟到达,如果每小时少行10千米,则将多用1/3的时间才能到达,问两地的距离;24、小丁骑自行车去小周家,先以12千米/小时的速度下山,然后又以9千米/小时的速度走过一段平路,到小周家共用了55分钟;后来时他用8千米/小时的速度通过平路,又以4千米/小时的速度上山回到了家,共用了90分钟,求小周家和小丁家的距离25、甲乙丙三人同时从同一地点出发,沿一条线路追前面的小明,他们三人分别用9分,15分,20分别追上小明,已知甲每小时行24千米,已知甲每小时行24千米,乙每小时行20千米,丙每小时行多少千米26、网友求助:有一个圆形的池子,ABC三人同时由池子边的某一地点出发,绕池子跑步;AB向同一方向跑,C在途中遇上A,然后经过4分钟又遇上B;A每分钟跑400米;B每分钟跑200米;C每分钟跑150米;池子的周长是多少米27、A的速度为每小时行30千米,B的速度为每小时行20千米,A和B同时从甲地出发到乙地,他们先后到乙地后又返回甲地……,如此往返来回运动;已知A与B第二次迎面相遇与A第二次追上B的两点相距45千米,甲乙两地相距多少千米28、小明和小丁一起去上学,他们以5千米/时的速度行走,走了18分钟,小明突然想起忘带数学书,于是赶紧以10千米/时的速度往家跑,小丁仍以原速前进,若取书的时间忽略不计,小明仍以10千米/时的速度追赶小丁,多长时间才能追上29、AB两地相距2400米,甲从A地.乙从B地同时出发,在间往返长跑,甲每分钟跑300米,乙每分钟跑240米,在35分钟后停止运动;甲乙两人在第几次相遇时距A地最近最近距离是多少米;30、A,B,C三两车同时从甲地到乙地,按原来速度A应比B早到10分钟,在他们同时出发20分钟后,因为天降大雨,A的速度下降1/4,C速度下降1/5,B速度不变,结果三车同时到达乙地,问,C车行完全程原定要用多少分钟31、甲乙二人同时从A地到B地;甲每小时走的路程比乙走的3倍还多1千米;甲到达B地后,停留45分钟,然后从B地返回,在途中遇乙;这时距他们出发的时间恰好过了3小时;如果A、B两地相距千米;求甲乙二人的速度;32、甲乙两人同时从A地出发,背向而行,分别前往两地,已知甲乙两人每小时共行96千米,甲乙的速度比是9:7,两人恰好同时同时分别到达BC,乙立即用原速度返回,当乙行了40分钟后,甲在B地得到通知,要求立即返回并且要与乙同时到达A地,甲返回时把原速度提高了20%,这样两人同时到达A地,问B、C间的路程;33、小明家和小画家在一条之路上,两人从家中同时出发相向而行,在离小明家500米处第一次相遇,相遇后两人保持原速继续前进,到达对方家后立即返回,在离小华家600米处第二次相遇,求两家的距离是多少米34、甲乙两车同时从A、B两地相向而行,途中相遇,相遇时距A地90千米;相遇后两车继续以原速前进,到达目的地后立即返回,在途中第二次相遇;这时相遇点距A地50千米;已知从第一次相遇到第二次相遇的时间是4小时,求甲乙两地的速度35、客货两车从甲乙两地同时相向而行分别到达两地立即反回,第二次相遇时,客车距乙地48米;已知客货两车速度比为5:4,甲乙相距多少千米36、甲、乙二人同时从A、B两地相向而行,两人相遇的地点距离A地180千米;第二天,甲、乙二人又同时从A、B两地相向而行,甲把自己的速度提高到原来4倍,乙的速度不变,两人相遇的地点恰好又距离B地180千米,第三天,甲、乙二人还是同时从A,B两地相向而行,甲的速度与第一天速度相同,乙把自己的速度提高到原来的4倍,那么这次他们相遇的地点与A、B两地中点之间的距离是多少千米37、甲乙丙三个车站在同一条公路上,且他们之间路程相等,A,B两人分别从甲丙两站相向而行,A在超过乙路150米处和B相遇,然后两人继续前行,A在到丙站后,立即返回,在经过乙站450米处,追上了B;求甲丙两站的距离;38、B处的兔子和A处的狗相距56米;兔子从B处逃跑,狗同时从A处跳出追兔子,狗一跳2米,狗跳3次的时间和兔子跳4次的时间相同;兔子跳出112米后被狗追上,问兔子一跳多少米39、甲乙两车分别从A、B两地同时开出,相对而行,4小时后甲车行了全程的1/4,乙车行的路程比全程的%少60千米,甲乙两车继续行驶735千米相遇;求AB两地相距多少千米40、火车每分钟行1050米,从车头与一个路标并列到车尾离开这个路标3分钟后一辆摩托车以每分钟1200米的速度从这个路标出发,摩托车出发25分钟后,与火车的车头正好并列,求这列火车的长; 41、船顺流航行速度是每小时8千米,逆流而上的速度是每时7千米,两船同时从同一地点出发,甲船顺流而下,然后返回,乙船逆流而上,然后返回,经过2时同时回到出发点,这2小时中,有多少时间,甲乙两船航行方向是相同的42、在同一路线上有ABCD四个人,每人的速度固定不变;已知A在12时追上C,14时时与D迎面相遇,16时时与B迎面相遇;而B在17时时与C迎面相遇,18时追上D,那么D在几时迎面遇到C;43、一条河上有甲、乙两个码头,甲在乙的上游50千米处;客船和货船分别从甲乙两个码头同时出发向上游行使;两船的静水速度相同且始终保持不变;客船出发时有一物品从船上掉入水中,10分钟后此物品距离客船5千米;客船在行使20千米后折回向下游追赶此物,追上时恰好与货船相遇;求水流的速度;44、某校在400米环行跑道上进行1万米比赛,甲、乙两名运动员同时起跑后乙的速度始终保持不变,开始时甲比乙慢,在第15分钟时甲加快速度并保持这个速度不变,在第18分钟时甲追上乙并且开始超过乙;在第23分钟时甲再次追上乙,而在23分50秒时甲到达终点;那么乙跑完全程所用的时间是多少分钟45、客车和货车同时从A地出发反向行驶,5小时后,客车到达甲地,货车离乙地还有90千米,已知A 地到甲地的距离与甲乙两地间的距离比是1:3,而且货车与客车的速度比是5:3,甲乙两地间的距离是多少千米46、甲乙二人分别从A,B两地同时出发相向而行,5小时后相遇在C点;如果甲速度不变,乙每小时多行4千米,且甲乙还从A,B两地同时出发相向而行,则相遇点D距C点10千米;如果乙速度不变,甲每小时多行3千米,且甲乙还从A,B两地同时出发相向而行,则相遇点E距C点5千米,问甲原来的速度是多少47、一只船从甲港到乙港往返一次共用6小时,去时顺水比回来时每小时多行10千米,因此前3小时比后3小时多行25千米,这只船在静水中的速度是多少千米每小时,水流速度呢48、一支解放军队伍全长900米,排尾的通讯员骑摩托车从排尾赶到排头将电报交给排头的首长,然后以原速的1/8回到排尾将命令传达给指挥官,这时队伍共前进了900米,已知队伍匀速前进,当通讯员赶到排头时,解放军队伍已经行走了多少米这段时间通讯员共走了多少米49、甲乙两车同时从AB两地出发往返于两地之间,经48分钟相遇,相遇后又经12分钟甲被从A地返回的乙追上,甲到达B地时被乙追上几次50、红光农场原定9时来车接601班同学去劳动,为了争取时间,8时同学们就从学校步行向农场出发,在途中遇到准时来接他们的汽车,于是乘车去农场,这样比原定时间早到12分钟.汽车每小时行48千米,同学们步行的速度是每小时几千米51、甲、乙两地公路长74千米,8:15一辆汽车从甲地到乙地,半个小时后,又有一辆同样速度的汽车从甲地开往乙地.王叔叔8:25从乙地骑摩托车出发去甲地,在差5分不到9点时,他遇到了第一辆汽车,9:16遇到第二辆汽车,王叔叔骑摩托车的速度是多少52、一船逆水而上,船上某人于大桥下面将水壶遗失被水冲走,当船回头时,时间已过20分钟.后来在大桥下游距离大桥2千米处追到了水壶.那么该河流速是每小时多少千米53、甲乙两列火车从A地向相反方向行驶,分别驶往B地和C地,已知AB之间的路程是AC之间路程的9/10,当甲车行驶60千米时,乙车行驶的路程与剩下路程的比是1:3,这时两列火车离目的地的路程相等,求AC之间的路程;54、甲、乙两车同时从A、B两地相对开出,甲车每小时比乙车多行20千米;途中乙因修车用了2小时,6小时后甲车到达两地中点,而乙车才行了甲车所行路程的一半;A、B两地相距多少千米55、在周长为200米的圆形跑道一条直径的两端,甲、乙两人分别以6米/秒,5米/秒的骑车速度同时同向出发,沿跑道行驶.问16分钟内甲追上乙几次56、甲、乙两车分别从A,B两地出发,相向而行.出发时,甲、乙的速度比是5:4,相遇后甲的速度减少20%,乙的速度增加20%,这样当甲到达B地时,乙离A地还有10千米,那么A,B两地相距几千米57、一自行车选手在相距950千米的甲、乙两地间训练.他从甲地出发,去时每90千米休息一次,到达乙地后休息一天,再沿原路返回.返回时,每100千米休息一次.他发现恰好有一个休息地点与去时的一个休息地点相同.问这个地方距离甲地有多远58、甲乙两车分别从A,B两地同时出发相向而行,6小时后相遇在C地,如果甲车的速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇的地点距离C地12千米;如果乙车的速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距离C地16千米.甲车原来每小时行多少千米59、姐妹两人同时出发从甲地到乙地,妹妹走前半段路程每小时行3千米,走后半段路程每小时行6千米;姐姐在行这段路程所用的时间中,前半段时间是每小时行3千米,后半段时间是每小时行6千米.她们两人能同时到达乙地吗为什么60、甲地到乙地都是坡路,有上坡也有下坡.某人骑自行车往返甲、乙两地共用小时,若已知此人上坡时速度为12千米/小时,下坡速度为18千米/小时,那么甲、乙两地全长多少61、甲、乙两车从A,B两站同时相向而行,已知甲车的速度是乙车的倍,当甲车到达途中C站时,乙车还要再行4小时48分才能到达C站,那么甲车到达C站后还要再行多少小时与乙车相遇62、一只救生船从港口开到出事地点要行840千米,船速每小时20千米,船上一架直升飞机,每小时可飞行220千米,中途飞机起飞,提前赶到出事地点,这样从船离港口到飞机到达出事地点一共用了10小时,飞机在船离港口后多长时间起飞63、通讯员以每小时6千米的速度到某地去,返回时因绕另一条路而多走3千米,回程时他每小时行7千米,仍比去时多用10分钟,问往返各是多少千米64、两个集镇之间的公路除了上坡就是下坡,没有水平路段,客车上坡的速度保持为15千米,下坡的速度保持为每小时30千米,现知道客车在两地之间往返一次,需在路上行驶4个小时,求两地之间的距离.65、一列火车的车身长800米,行驶速度为每小时60千米,铁路上有两座隧道;火车从车头进入第一个隧道到车尾离开第一个隧道用了2分钟,从车头进入第二个隧道到车尾离开第二个隧道用了3分钟,火车从车头进入第一个隧道到车尾离开第二个隧道共用6分钟;两座隧道之间相距多少米66、甲、乙两人同时从A地出发到B地,经过3小时,甲先到B地,乙还要1小时到达B地,此时甲、乙共行了35千米.求AB两地的路程.67、快、慢两辆汽车同时从甲地开往乙地,快车每小时比慢车多行18千米,快车行驶4小时到达乙地后,立即返回甲地,在离乙地42千米的地方与慢车相遇,求甲、乙两地距离.68、某人从甲地前往乙地办事,去时有2/3的路程乘大客车,1/3的路程乘小汽车;返回时乘小汽车与大客车行的时间相同,返回比去时少用了5小时,已知大客车每小时行24千米,小汽车每小时行72千米,甲地到乙地的路程是多少千米69、有两列火车,一列长200米,每秒行32米;一列长340米,每秒行20米.两车同向而行,从第一列车的车头追及第二列车的车尾,到第一列车的车尾超过第二列车的车头,共要几秒70、一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米71、甲乙两车分别从AB两地同时相向开出,甲的速度是50米/分,乙的速度是40米/分,当甲车驶过AB距离的1/3多50米时与乙相遇,求AB的距离72、甲乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米;辆车在距中点32千米处相遇;东西两地相距多少千米73、快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米;慢车每小时行多少千米74、快车从甲站到达乙站需要8小时,慢车从乙站到达甲站需要12小时,如果快、慢两车同时从甲、乙两站相对开出,相遇是快车比慢车多行180千米,甲、乙两站相遇多少千米75、通讯员一每小时6千米的速度出发到某地,返回时因绕另一条路而多走3千米,回程他每小时7千米,仍比去时多用了10分钟,问:往返各是多少千米76、兄妹二人在同一所中学上学,吃过早饭同时去上学,哥哥每分钟走90米,妹妹每分钟走60米,当哥哥走到学校门口时发现课本忘带了,立即沿原路返回去取,行至离校180米处与妹妹相遇,求兄妹家到学校的距离77、甲、乙两列火车同时从A、B两城相对开出,行了小时后,两列还相距全程的5/8,两车还需要几小时才能相遇。
小升初数学典型应用题附答案(完整版)
小升初数学典型应用题一.解答题(共50题,共285分)1.求圆柱体的表面积和体积。
2.在打谷场上,有一个近似于圆锥的小麦堆,高1.2米,测得底面直径是4米,每立方米小麦约重350千克,这堆小麦大约有多少千克?3.解答题。
(1)小红买了一个书包150元,比原价少花了50元。
这个书包是按几折出售的?(2)一件衣服200,打八折后比原价便宜了多少元?4.你能说说原因吗?5.一个圆锥体钢制零件,底面半径是3cm,高是2m,这个零件的体积是多少立方厘米?6.一个长方体木块的长、宽、高分别是5cm、4cm、3cm。
如果用它锯成一个最大的正方体,体积要比原来减少百分之几?7.某校有学生2160人,只有5%的学生没有参加意外事故保险,参加保险的学生有多少人?8.某地12月18日的最低气温是-7℃,最高气温是5℃,这一天的最高气温与最低气温相差多少?9.某学校共有15个班,体育室至少要买多少个排球分给各班,才能保证有一个班至少能得到3个排球?10.一个正方体有六个面,给每个面都涂上红色或白色,至少有三个面是同一颜色。
为什么?11.一个圆柱和一个圆锥等底等高.已知圆柱和圆锥的体积相差6立方厘米,圆柱和圆锥的体积各是多少立方厘米?12.-1与0之间还有负数吗?-与0之间呢?-和0之间呢?如果有,请你举出例子来。
13.某服装店凭优惠卡可打七折,妈妈用优惠卡买了一件衣服,省了60元。
这件衣服原价多少钱?14.植树造林活动中,共植柳树78棵,杨树56棵,有6棵没能成活,这次植树的成活率是多少?15.玩具厂生产一种电动玩具,原来每件成本96元,技术革新后,每件成本降低到了84元,每件成本降低了百分之几?16.下表是我国几个城市某年春节时的平均气温。
(1)把这些气温从高到低排列为:________(2)从这个表中你知道了些什么?17.五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。
已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。
小升初数学专题分类-典型应用题(真题版)
典型应用题难点一、年龄问题1.(2015•长沙)上学的路上,小明听到两个人在谈论各自的年龄,只听一人说“当我的年龄是你现在的年龄时,你才4岁.”另一人说“当我的年龄是你现在的年龄时,你将61岁,”他们两人中,年龄较小的现在()岁.A.21 B.22 C.23 D.242.(2014•长沙)今年父亲与两个儿子的年龄和相加得88岁,10年后,父亲的年龄正好等于两个儿子的年龄和,父亲今年有()岁.A.49 B.48 C.47 D.463.(2013•长沙)今年父亲与两个儿子的年龄和相加得84岁,12年后,父亲的年龄正好等于两个儿子的年龄和,父亲今年有()岁.A.44 B.46 C.48 D.504.(2013•长沙)鸡兔同笼,有20个头,48条腿,其中兔子有()只.A. 2 B. 3 C. 4 D.55.(2014•东莞)今年是2014年,小红13岁,爸爸45岁,到年小红的年龄是爸爸的.6.(2014•长沙县)如果5个人平均年龄是25岁,其中最小的是18岁,且5人年龄都不相同.那么年龄最大的最多是几岁?7.(2014•长沙)如果6个人平均年龄是25岁,其中最小的20岁,且六人的年龄都不相同,那么年龄最大的人最大是几岁?难点二、鸡兔同笼8.(2014•永宁县)鸡兔共有20个头,70只腿.鸡有只,兔有只.9.(2014•济南)一次数学竞赛有10道题,做对一题得10分,做错一题倒扣2分,小明得了76分,小明做对了题.10.(2014•长沙)一个年轻人今年(2013年)的岁数正好等于出生年份数字之和,那么这位年轻人今年的岁数是岁.11.(2013•长沙)小兔子采蘑菇,晴天每天能采36只,雨天每天只能采24只,它一连几天共采了288只蘑菇,平均每天采32只,这些天中有()天是晴天.A. 2 B. 6 C. 4 D.512.(2013•东莞)鸡兔同笼,15个头,40条腿,鸡的只数与兔的只数的最简整数比是()A.3:1 B.3:8 C.2:1 D.8:313.(2012•成都)一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一连几天运了112次,平均每天运了14次,这几天中天有雨.14.(2012•宝安区)鸡兔同笼,有12个头,40只脚,算一算,笼子里有几只鸡,几只兔?难点三、平均数问题15.(2014•济南)朝阳小学五年级有两个班,一班有51人,二班有49人,期中考试两个班全体同学的平均成绩是81分,已知二班的平均成绩比一班的平均成绩高7分,那么二班的平均成绩是多少分?16.(2014•广州)某次比赛中,原定一等奖10人,二等奖20人,现将一等奖中最后的四人调入二等奖,这样二等奖的学生的平均分提高了1分,得一等奖的学生的平均分提高了4分.求原来一等奖比二等奖平均分多几分?17.(2013•长沙)某次数学竞赛的女生与男生人数的比是1:3,这次竞赛的平均成绩是82分,其中男生的平均成绩是80分,女生的平均成绩是()分.A.82 B.86 C.87 D.8818.有若干个从1开始的自然数:1,2,3,4,…现去掉其中一个后剩下的自然数的平均数为,则去掉的自然数是()A.21 B.22 C.23 D.2419.(2014•长沙)甲、乙、丙三种糖果每千克的价格分别是9元,7.5元,7元.现把甲种糖果5千克,乙种糖果4千克,丙种糖果3千克混合在一起,那么用10元可买千克这种混合糖果.20.(2014•济南)老师在黑板上写了从11开始的若干个连续自然数,后来擦掉了其中一个数,剩下的数的平均数是,那么擦掉的那个自然数是.21.(2013•陕西)某班在一次数学测验中,全班同学的平均成绩是82分,男生平均成绩是80分,女生平均成绩是88分,这个班男、女生人数之比为()A.3:2 B.2:3 C.1:3 D.3:1难点四、植树问题22.(2014•广州)时钟3点敲3下,6秒钟敲完;那么7点敲7下,()秒钟敲完.A.10 B.12 C.14 D.1823.(2013•郑州)将一个底面为正方形的长方体若锯成4个小长方体需要9分钟,那么若锯成7段,需要()分钟.A.21 B.18 C.15.75 D.2024.(2013•陕西)一只大钟敲三下要用3秒,这只大钟敲七下要用()秒.A.7 B.9 C.10 D.1425.(2013•广州模拟)小明要到一栋楼的第15层上去,他从第一层走到第五层用了100秒,如果用同样的速度走到15层,还要()秒.A.200 B.250 C.300 D.35026.(2013•广州)小兰发现公路边等距地立着一排电线杆.她用均匀的速度从第1根电线杆走到第15根电线杆用了7分钟时间,接着她继续往前走,又走了若干根电线杆后就往回走.当她走回到第5根电线杆时一共用了30分钟.那么小兰是走到第()根电线杆是开始往回走的.A.30 B.31 C.32 D.33E.3427.(2014•萝岗区)小红家住在9楼,她每上一层楼要30秒,她从一楼到家要走秒,也就是分.28.(2013•吉州区校级模拟)某人到十层大楼的第七层办事,不巧停电,电梯停开.如果从一层走到四层要48秒,那么以同样的速度往上走到七层,还需要秒才能到达.29.(2014•萝岗区)同学们在全长100米的小路两边植树,每隔5米栽一棵(两端都要栽).一共需要多少棵树苗?30.(2014•萝岗区)车站楼顶上的大钟6时敲6下,10秒敲完.10时敲响了10下,需要多长时间?难点五、和倍问题31.(2013•广州)甲、乙、丙三数之和是2013,甲数比乙数的2倍还少3,乙数是丙数的2倍,甲数是()A.288 B.576 C.1149 D.1152E.115532.(2014•长沙)甲、乙、丙三数的和是188,甲数除以乙数,或丙数除以甲数,结果都是商6余2,乙数是.33.(2014•济南)甲、乙、丙、丁四个数的和是175,甲加上4,乙减去4,丙乘上4,丁除以4后,四个数就相等了,则甲=,乙=,丙=,丁=.34.(2014秋•云县期末)学校数学小组和语文小组共有学生60人,数学小组的人数是语文小组的1.5倍,两个小组各有多少人?35.(2014•萝岗区)在地震灾害捐款中,参加捐款的成人人数是儿童的3倍,如果在华诚超市一共有652人参加捐款,儿童有多少人?难点六、盈亏问题36.(2013•广州)幼儿园老师给小班的小朋友分糖果,如果每人分7颗,则还差6颗;如果每人分6颗,则又多出7颗,那么共有糖果()颗.A.85 B.84 C.83 D.82E.8137.(2012•广州)四年级一些同学去划船,他们算了一下,如果增加一条船,正好每条船坐7人,如果每条船坐9人,则有3条空船.共有()名同学去划船.A.118 B.122 C.126 D.130E.13438.(2011•福州)有一批正方形砖,如拼成一个长与宽之比为5:4的大长方形,则余38块,如改拼成长与宽各增加1块的大长方形,则少53块,那么,这批砖共有()块.A.1838 B.2038 C.1853 D.205339.(2014•长沙)有若干个苹果和梨子,如果5个苹果和3个梨子做成一袋的话,还余4个苹果;梨恰好装完,如果7个苹果和3个梨子装成一袋的话,则还余12个梨子,苹果恰好装完,请问苹果和梨子各多少个?40.(2014•济南)把一袋糖分给小朋友,如果每人分10颗,正好分完,如果每人分16颗,就有3个分不到糖,这袋糖有多少颗?难点七、逆推问题41.(2012•黄冈)池塘里某种水草生长极快,当天的水草数量是它前一天的2倍,又知10天长满池塘,()天长了池塘的?A. 6 B.7 C.8 D.942.(2012•广州)抽屉里有若干个玻璃杯,小军每次拿出其中的一半再放回一个,这样一共拿了2012次,抽屉里还有2个玻璃球.原来抽屉里有()个玻璃球.A. 2 B.12 C.22 D.32E.42难点八、牛吃草问题43.(2014•长沙)有一牧场,牧草每天匀速生长,可供9头牛吃12天;可供8头牛吃16天.现在开始只有4头牛吃,从第7天开始又增加了若干头牛,再用6天吃光所用的草,问增加了头牛.44.(2011•长沙)一片草地以均匀速度增长,10头牛可以吃40天,15头牛可以吃20天,那么25头牛可以吃天.45.(2014•长沙)两只蜗牛由于耐不住阳光的照射,从井顶逃向井底.白天往下爬,两只蜗牛白天爬行的速度是不同的,一只每个白天爬20分米,另一只爬15分米.黑夜里往下滑,两只蜗牛滑行的速度却是相同的.结果一只蜗牛恰好用5个昼夜到达井底,另一只蜗牛恰好用6个昼夜到达井底.那么,井深多少米?46.(2014•济南)有一个蓄水池装有9根水管,其中一根为进水管,其余8根为相同的出水管.进水管以均匀的速度不停地向这个蓄水池注水.后来有人想打开出水管,使池内的水全部排光(这时池内已注入了一些水).如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根出水管,需6小时把池内的水全部排光.问要想在4.5小时内把池内的水全部排光,需同时打开几个出水管?难点九、差倍问题47.(2014•楚州区)甲乙两数之差是79.2,甲数的小数点向左移动一位后,正好和乙数相等,甲数是.48.(2012•长沙)一个数的小数点向右移动一位,则新数比原数大56.34,则原数是.49.(2014•岳麓区)两辆汽车分别从AB两地同时出发,在距中点40千米处相遇,甲行全程需10小时,乙行全程需15小时.求AB两地距离.(用多种方法解答)50.(2013•鹤山市)学校合唱队学生人数是乒乓球队的3倍,如果从合唱队调24人到乒乓球队,两个队的学生人数就正好相等.原来两个队各有学生多少人?(列方程解)难点十、方阵问题51.(2013•二七区)有一堆棋子,排列成n×n的正方形方阵,多余出3只棋子;如果在这个正方形方阵横纵两个方向各增加一行,则缺少8只棋子.则这堆棋子有只.52.(2012•仪征市)小华坐在班上的位置,无论从哪个方向用数对表示都是(4,4)这个班共人.难点十一、和差问题53.(2012•北京自主招生)今天食堂买回四种菜,包菜和花菜共53千克,花菜和白菜共40千克,白菜和菠菜共28千克,包菜和菠菜共千克,四种菜共千克.54.(2011•越秀区)一个人用140元买了一件外衣、一顶帽子和一双鞋.外衣比帽子贵90元,外衣和帽子共比鞋贵120元.一双鞋元.55.(2011•汉阳区)街道一则的大厦从1开始按顺序编号,直到街尾,然后从对面街上的大厦开始往回继续编号,到编号为1的大厦对面结束,每栋大厦都与对面的大厦恰好相对,若编号为134的大厦在编号为295的大厦对面,那么比对面大厦编号恰好小1的大厦的编号是.56.(2013•黎平县)有两瓶饮料,第一瓶有460克,第二瓶有350克,要使两瓶饮料同样多,应该从第一瓶倒入第二瓶多少克饮料?57.(2012•上海)小亚和小巧一共打了486个字,小亚比小巧多打了56个字,小亚打了多少个字?小巧打了多少个字?58.(2012•广州校级自主招生)某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?难点十二、归一归总问题59.(2011•越秀区)一只船发现漏水时,已经进了一些水,水匀速进入船内,如果10人淘水,3小时淘完;如果5人淘水8小时淘完.如果要求2小时淘完,要安排人淘水.60.(2012•文昌)照这样计算,1000吨铁矿石可以炼铁多少吨?。
小升初工程问题应用题典型例题
小升初工程问题应用题典型例题工程问题典型题库1.甲独做10天完工,乙独做15天完工,二人合做几天完工?2.XXX单独做要15小时完成,XXX单独做要20小时完成,两人合做几小时能加工完这批零件的?3.甲单独做要10天完成,乙单独做要15天完成。
甲、乙合做几天可以完成这项工作的80%?4.甲独做要12天完成,乙独做要18天完成,二人合做多少天可以完成这件工程的2/3?5.甲独做要18天,乙独做要15天,二人合做6天后,其余的由乙独做,还要几天做完?6.甲单独修需16天,乙单独修需24天,如果XXX先修了9天,然后甲、乙二人合修,还要几天?7.甲单独做16天可以完成,乙单独做12天可以完成。
现在由乙先做3天,剩下的由甲来做,还需要多少天能完成这项工程?8.甲独做要12天,乙独做要16天,丙独做要20天,如果甲先做了3天,丙又做了5天,其余的由乙去做,还要几天?9.由大、小卡车同时运送,6小时可运完,如果用大卡车单独运,10小时可运完。
用小卡车单独运,要几小时运完?10.XXX和XXX同时打一份稿件,5小时打了这份稿件。
如果由XXX单独打,10小时可以打完。
求如果由XXX单独打,几小时可以打完?11.甲队独做15天完成,乙队独做12天完成。
现在甲、乙合作4天后,剩下的工程由丙队8天完成。
如果这项工程由丙队独做,需几天完成?12.甲队修了这条公路的24天,甲队单独做几天完成?13.甲独做要10天,乙独做要15天,丙独做要20天。
三人合做期间,甲因病请假,工程6天完工,问甲请了几天病假?14.甲、乙、丙三人一起吃,8天吃完,甲一人24天吃完,乙一人36天吃完,问丙一人几天吃完?15.一条公路长1500米,单独修好甲要15天,乙要10天,两队合修需几天才能完成?16.徒弟独做20天完成,比师傅多用4天完成,如果师徒合作需几天完成?17.一项工程需要甲工程队20天完成,需要乙工程队1.5倍的时间才能完成。
那么两队合作需要多少天才能完成呢?18.甲单独完成一项工作需要8天,而乙的工作效率是甲的2倍。
小升初数学典型20道应用题解析
小升初数学典型20道应用题解析1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4、李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6、学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行 3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10、一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11、某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。
运后结算时,共付运费4400元。
托运中损坏了多少箱玻璃?12、五年级一中队和二中队要到距学校20千米的地方去春游。
小升初数学常出应用题100例附答案(完整版)
小升初数学常出应用题100例附答案(完整版)1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:1 桶水可灌3/4 壶水,1 壶水冲2 杯水,所以 1 桶水可以冲3/4×2 = 3/2 = 1.5 杯水。
2. 修一条公路,第一天修了全长的1/4 ,第二天修了全长的1/5 ,还剩110 米没修,这条公路全长多少米?答案:设公路全长为x 米,第一天修了1/4 x 米,第二天修了1/5 x 米,可列出方程:x - 1/4 x - 1/5 x = 110 ,解得x = 200 米。
3. 某工厂有三个车间,第一车间人数占总人数的1/4 ,第二车间人数是第三车间人数的3/4 ,已知第一车间比第二车间少40 人,三个车间共多少人?答案:设总人数为x 人,第一车间人数为1/4 x 人,第二车间人数为3/8 x 人,可列出方程:3/8 x - 1/4 x = 40 ,解得x = 320 人。
4. 果园里有苹果树和梨树共420 棵,苹果树棵数的1/3 等于梨树棵数的4/9 ,问两种树各有多少棵?答案:设苹果树有x 棵,梨树有420 - x 棵。
1/3 x = 4/9 (420 - x) ,解得x = 240 ,则梨树有180 棵。
5. 甲、乙两堆煤共300 吨,甲堆的2/5 比乙堆的1/4 多55 吨,两堆煤各多少吨?答案:设甲堆煤有x 吨,乙堆煤有300 - x 吨。
2/5 x - 1/4 (300 - x) = 55 ,解得x = 200 ,则乙堆煤有100 吨。
6. 一本书,第一天看了全书的1/4 ,第二天看了50 页,这时已看的页数与未看的页数比是11:19 ,这本书共有多少页?答案:设这本书共有x 页,第一天看了1/4 x 页,已看的页数为1/4 x + 50 ,未看的页数为x - (1/4 x + 50) = 3/4 x - 50 。
(1/4 x + 50) : (3/4 x - 50) = 11 : 19 ,解得x = 400 页。
小升初典型应用题精练行程问题附详细解答
小升初典型应用题精练行程问题附详细解答文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]典型应用题精练(行程问题)1、路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:路程=时间×速度,时间=路程÷速度,速度=路程÷时间。
2、在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,静水速度=(顺流速度+逆流速度)÷2,水流速度=(顺流速度-逆流速度)÷2。
此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度。
3、相遇问题和追及问题。
在这两个问题中,路程、时间、速度的关系表现为:相遇问题:追击问题:在实际问题中,总是已知路程、时间、速度中的两个,求另一个。
1 、一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。
已知每辆车长5米,两车间隔10米。
问:这个车队共有多少辆车?2、骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。
如果希望中午12点到,那么应以怎样的速度行进?3 、划船比赛前讨论了两个比赛方案。
第一个方案是在比赛中分别以 2.5米/秒和 3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2.5米/秒和 3.5米/秒的速度各划行比赛时间的一半。
这两个方案哪个好?4 、小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用 3.9时。
问:小明往返一趟共行了多少千米?5、一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米?6、两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。
小升初小学数学应用题100例附答案(完整版)
小升初小学数学应用题100例附答案(完整版)1. 一桶水,用去它的3/4,还剩8 千克,这桶水原来重多少千克?解:8÷(1 - 3/4) = 32(千克)答:这桶水原来重32 千克。
2. 一个长方形的周长是24 厘米,长与宽的比是2:1,这个长方形的面积是多少平方厘米?解:长和宽的和为24÷2 = 12(厘米)长:12×2/3 = 8(厘米)宽:12×1/3 = 4(厘米)面积:8×4 = 32(平方厘米)答:这个长方形的面积是32 平方厘米。
3. 学校把植树任务按5:3 分给六年级和五年级。
六年级实际栽了108 棵,超过原分配任务的20%。
原计划五年级植树多少棵?解:六年级原计划栽树:108÷(1 + 20%) = 90(棵)五年级原计划栽树:90÷5×3 = 54(棵)答:原计划五年级植树54 棵。
4. 商店运来一些水果,梨的筐数是苹果筐数的3/4,苹果的筐数是橘子筐数的4/5,运来梨15 筐,运来橘子多少筐?解:苹果筐数:15÷3/4 = 20(筐)橘子筐数:20÷4/5 = 25(筐)答:运来橘子25 筐。
5. 某班男生人数是女生人数的5/6,女生的平均身高比男生高10%,全班的平均身高是116 厘米,求男、女生的平均身高各是多少?解:设女生有6 人,男生有 5 人。
全班总身高:116×(6 + 5) = 1276(厘米)设男生平均身高为x 厘米,则女生平均身高为1.1x 厘米。
5x + 6×1.1x = 12765x + 6.6x = 127611.6x = 1276x = 110女生平均身高:1.1×110 = 121(厘米)答:男生平均身高110 厘米,女生平均身高121 厘米。
6. 一项工程,甲单独做20 天完成,乙单独做30 天完成。
甲乙合做了几天后,乙因事请假,甲继续做,从开工到完成任务共用了16 天。
六年级下册数学-小升初 典型的应用题及答案1-人教版
-小升初典型的应用题及答案-人教版一、解答题(题型注释)156本,第二层的书比第一层的2倍还多6本.问第一层有多少本书?2.我们学校在庆六一活动中,开展了大型的文艺汇演,为了把会场装扮得更加美观,准备在正方形会场的四周插上56面彩旗,每边彩旗相等.四个顶点都有彩旗,请你计算一下每边各需要有多少彩旗?3.只列式不计算:(1)某工厂计划用15天生产240台机床,实际每天比计划每天多生产4台,实际需几天完成?(2)一种树苗经过实验成活率是95%,为保证种活570棵,至少应种多少棵树苗?(3)商店运来20筐梨和16筐苹果,共重820千克,已知每筐苹果重22.5千克,每筐梨重多少千克?(用方程解)(4)中国工商银行推出了整存整取教育储蓄,实行减免利息税.小强的父母到银行给小强存了8000元三年期的整存整取教育储蓄,已知整存整取三年期的年利率3.24%,到期可以得本息共多少元?4.农场要收割600公顷小麦,前4天收割了200公顷,照这样计算,剩下的还要几天完成?5.商店从工厂批发了80部快译通,工厂批发的快译通每台180元,卖出50台后,开始降价销售,原价每台200元,现价每台160元,如果商店全部售出,商店是赚钱还是亏钱?6.订一份《天天爱学习》每月8元,订一份《少年军事》每个季度27元。
(1)订阅一份《天天爱学习》全年的要多少钱?(2)订一份《少年军事》全年的要多少钱?订哪份杂志便宜一点?7.小明要把20元钱花完,下面的物品可以怎样买?果汁5元一瓶钢笔10元一支球5元一个球拍20元一副写出两种方案:________________________________________________________________________________________________________8.一本《多元智能游戏》4.8元,一本《蓝猫环球探险》9.98元,买这两本书一共花多少钱?9.李老师到商场买运动服装,原价每套60元,他带的钱可以买24套。
[全]小升初数学专题复习训练-典型应用题分析
小升初数学专题复习训练-典型应用题分析知识点复习一.归一归总问题【知识点归纳】1.归一应用题分为两类.(1)直进归一:求出一个单位量后,再用乘法求出结果.(2)逆转归一:求出一个单位量后,再用包含除法求出结果.从应用题的结构上看,给了单一量和数量,根据前两个条件就可以求出总数(工作总量),总数量是固定不变的,然后根据总数量求出每份数,份数.总数量÷份数=每份数,总数量÷每份数=份数.归一问题应用题中必有一种不变的量.如汽车的速度不变,拖拉机每小时耕地的公顷数不变.在归一问题应用题中,常常用“照这样计算”、“用同样的…”等词句来表达不变的量,我们要抓准题中数量的对应关系.归一应用题分为正归一应用题、反归一应用题两类.正、反归一问题的相同点是:一般情况下,第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量.2.归总问题:(1)定义:在解答某一类应用题时,先求出总数是多少(归总),然后再用这个总数和题中的有关条件求出问题.这类应用题叫做归总应用题.(2)解决方法:归总应用题的特点是先总数,再根据应用题的要求,求出每份是多少,或有这样的几份.【命题方向】例1:如果把一根木料锯成3段要用9分,那么用同样的速度把这根木料锯成4段,要用 13.5分.分析:这是一个和生活相关的问题,存在这样一个关系:锯的次数=锯成的段数-1;锯成3段,要锯2次,锯成4段要锯3次,那么本题就可以改成,锯2次要9分钟,那么锯3次要几分钟?先求锯1次要几分钟,用除法即9÷2=4.5(分),再求锯3次要几分钟,用乘法,即4.5×3=13.5(分)解:3-1=2(次)9÷2=4.5(分)4-1=3(次)4.5×3=13.5(分)故答案为:13.5点评:这是生活实际问题,锯1次就可以锯成2段,存在这个关系:锯的次数=锯成的段数-1.二.和差问题【知识点归纳】公式:(和+差)÷2=大数(和-差)÷2=小数.【命题方向】例1:甲、乙两数的平均数是18.4,甲比乙多4,则甲是()A、20.4B、22.4C、16.4分析:根据题意,甲、乙两数的平均数是18.4,那么它们的和是18.4×2=36.8,又甲比乙多4,也就是它们的差是4,然后再根据和差公式进一步解答.解:18.4×2=36.8;(36.8+4)÷2=20.4.答:甲是20.4.故选:A.点评:根据题意,求出两个数的和与差,由和差公式进一步解答.三.和倍问题【知识点归纳】公式:两数和÷份数和=小数小数×倍数=大数或两数和-小数=大数和倍问题的特点是利用大小两个数的和与它们的倍数关系,求大小两个数各是多少的应用题,解答和倍应用题的最好助手是,采用画线段图的方法来表示两种量间的数量关系,以便找到解题的途径.【命题方向】例1:学校数学小组和语文小组共有学生60人,数学小组的人数是语文小组的1.5倍,两个小组各有多少人?分析:设语文小组有x人,则数学小组就有1.5x人,根据等量关系:数学小组和语文小组共有60人,列出方程即可解决问题.解:设语文小组有x人,则数学小组就有1.5x人,根据题意可得方程:x+1.5x=60,2.5x=60,x=24,1.5×24=36(人),答:数学小组有36人,语文小组有24人.点评:此题是典型的和倍问题,一般都是用倍数的等量关系设出未知数,用和的等量关系列出方程即可解决此类问题.四.差倍问题【知识点归纳】含义:差倍问题即已知两数之差和两数之间的倍数关系,求出两数.公式:差÷(倍数-1)=小数;小数+差或小数×倍数=大数.差倍问题的解题思路与和倍问题一样,先要在题目中找到1倍量,再画图确定解题方法.被除数的数量和除数的倍数关系要相对应,相除后得到的结果是一倍量,然后求出另一个数,最后再写出验算和答题.【命题方向】例1:甲、乙两桶油重量相等,如果甲桶取出8千克,乙桶加入16千克,这时乙桶油的重量是甲桶油重量的3倍.两桶油原来各有油多少千克?分析:甲、乙两桶油重量相等.从甲桶取走8千克油,乙桶加入16千克油,这时,甲桶比乙桶多24千克,乙桶油的重量是甲桶油重量的3倍,所以24千克是甲桶取出后的2倍,用除法可得甲桶取出后的油的重量,再加8即可得两桶油原来的千克数.解:(8+16)÷(3-1)=24÷2=12(千克)12+8=20(千克)答:两桶油原来各有20千克.点评:本题考查了差倍问题,关键是得出48千克时是甲桶取出后的2倍.同步测试一.选择题(共8小题)1.王大伯今年栽了桃树和梨树(如图),算一算他今年栽的果树中有梨树()棵.A.340 B.360 C.3802.淘气零花钱有128元,笑笑零花钱有110元,淘气给笑笑()元,他们的零花钱就同样多了.A.18 B.9 C.83.买2件上衣和8条裤子一共用了800元.已知上衣的单价是裤子单价的4倍.一件上衣()A.160元B.320元C.200元D.240元4.小玲写数时少写一个零,结果比原数少45000,原数是()A.450000 B.50000 C.4500 D.50005.张宁和王晓星一共有画片86张.王晓星给张宁8张后,两人画片数同样多,王晓星原来有()张画片.A.35 B.51 C.746.明明有25张画片,东东有17张画片,东东送给明明()张画片后,明明的画片就是东东的2倍.A.3 B.4 C.97.弟弟原来有5本故事书,哥哥给弟弟3本后,哥哥的本数是弟弟的2倍,哥哥原来有()本书.A.7 B.16 C.19 D.148.哥哥的钱数是妹妹的两倍,如果哥哥拿4元钱给妹妹,那么兄妹俩的钱数就一样多.妹妹原来有()元钱.A.2 B.4 C.8 D.16二.填空题(共8小题)9.李叔叔要录一份稿件,计划每分录入60个字,需要12分录完.实际录完只用了9分,平均每分录入个字.10.食堂运来豆角和茄子共116千克,其中豆角的重量是茄子的3倍,运来茄子千克.11.两个相邻自然数的和是197,这两个自然数数分别是和.12.小飞有5颗糖,小红给小飞3颗糖后,小红糖的颗数就是小飞的2倍,小红原来有颗糖.13.一架玩具飞机比一辆玩具汽车贵50元,一架玩具飞机的价格是一辆玩具汽车的3倍,一架玩具飞机的价格是元.14.学校图书室有图书60000本,其中科技书的本数是故事书的1.5倍,科技书有本15.有红、黄两种颜色的气球,共40个.其中红气球比黄气球少4个,黄气球有个,红气球有个.16.四(1)班和四(2)班共有128本图书,四(1)班如果给四(2)班12本,两个班的图书就一样多了,那么四(1)班原来有本图书,四(2)班原来有本图书.三.判断题(共5小题)17.书柜的上层有20本书,下层有16本,从上层拿4本到下层两层就同样多..(判断对错)18.甲数是乙数和丙数的和的2倍,甲数是60,乙数比丙数多4,丙数是多少?列式为:(60÷2﹣4)÷2.(判断对错)19.一束花里有百合和玫瑰共24枝,百合的枝数是玫瑰的3倍,百合有18枝.(判断对错)20.小军把320毫升水倒入4个小杯和1个大杯,正好都倒满,小杯的容量是大杯的则大杯的容量是160毫升..(判断对错)21.一个小数扩大3倍后得到的数比原数大7.2,原来的小数是3.6..(判断对错)四.应用题(共8小题)22.有甲、乙两袋球,甲袋里有39个,乙袋里有27个,如果小刚每次从甲袋里取出4个,从乙袋里取出2个,那么取几次后,甲、乙袋里剩下的球的个数相等?23.果园里有龙眼树和荔枝树共240棵,其中龙眼树的棵数是荔枝树的3倍.龙眼树和荔枝树各有多少棵?24.一分钟口算题比赛,张华和李硕一共做出了120道题,张华比李硕多做了16道题,两人各做了多少道题?25.甲筐和乙筐内原来分别放有63个和81个乒乓球,若要使甲筐内的乒乓球个数是乙筐内乒乓球个数的3倍,那么应从乙筐内取出多少个乒乓球放入甲筐?26.张大伯今年栽了桃树和梨树共640棵,梨树比桃树多80棵.张大伯今年栽的桃树和梨树各有多少棵?(先把已知条件在线段图上表示出来,再解答)27.某纺织车间要织7200匹布,前4天织了3600匹.按照这样计算,加工7天后,还剩多少匹布没有织完?28.某水果店上周卖出香蕉和苹果共70箱,其中苹果箱数正好是香蕉箱数的1.5倍,苹果和香蕉各卖出多少箱?29.旅游公司原有12辆面包车,一天可收出租费3600元.按照这样计算,如果希望每天多收出租费2400元,应有多少辆面包车?参考答案与试题解析一.选择题(共8小题)1.【分析】观察图可知:梨树比桃树少40棵,梨树和桃树一共720棵,可知两数之和是720,两数之差是40,根据和差公式“(和﹣差)÷2=较小数”可求得梨树的棵数.【解答】解:(720﹣40)÷2=680÷2=340(棵)答:梨树有340棵.故选:A.【点评】此题主要考查了和差公式的应用,即:(和+差)÷2=较大数,(和﹣差)÷2=较小数,或和﹣较大数=较小数.2.【分析】根据题意,淘气有128元,笑笑有110元,淘气比笑笑多:128﹣110=18(元),淘气应该给笑笑:18÷2=9(元),二人就一样多了.【解答】解:(128﹣110)÷2=18÷2=9(元)答:淘气给笑笑9元,他们的零花钱就同样多了.故选:B.【点评】解决本题的关键是淘气应该给笑笑的钱,是淘气比笑笑多的钱数的一半,而不是全部.3.【分析】根据题意,设一条裤子的价格是x元,则一件上衣的价钱是4x元,有关系式:2件上衣价钱+8条裤子的价钱=800元,列方程求解可得裤子价格,再求上衣价钱即可.【解答】解:设一条裤子x元,则一件上衣4x元,2×4x+8x=80016x=800x=5050×4=200(元)答:一件上衣200元.故选:C.【点评】本题是典型的和倍问题,一般都是用倍数的等量关系设出未知数,用和的等量关系列出方程即可解决此类问题.4.【分析】少写一个零,结果比原数少45000,则45000就是新数的9倍,用45000除以9就是新数,再乘10就是原数;据此解答.【解答】解:45000÷9×10=5000×10=50000答:原数是50000.故选:B.【点评】解答此题关键是明确少的45000就是新数的9倍.5.【分析】根据王晓星给张宁8张后,两人画片数同样多,可知王晓星比张宁多8×2=16张,用总张数加上多的张数再除以2,即可求出王晓星原有的张数.【解答】解:(86+8×2)÷2=(86+16)÷2=102÷2=51(张)答:王晓星原有51张画片.故选:B.【点评】此题主要考查了和差公式的应用,即:(和+差)÷2=大数,(和﹣差)÷2=小数,或和﹣大数=小数.6.【分析】先求出明明和东东一共多少张,然后再根据除法的意义求得后来东东的张数:(25+17)÷(2+1),然后用东东原来的数量减去后来东东的数量即可求出东东送给明明的数量.【解答】解:17﹣(25+17)÷(2+1)=17﹣14=3(张)答:东东送给明明3张画片后,明明的画片就是东东的2倍;故选:A.【点评】完成本题时,也可先求出明明和东东一共多少张,然后再根据除法的意义求得后来东东的张数:(25+17)÷(2+1).7.【分析】根据题意可知:弟弟现在有:5+3=8(本),哥哥现在有:8×2=16(本),所以哥哥给弟弟前有:16+3=19(本).据此解答.【解答】解:(5+3)×2+3=8×2+3=16+3=19(本)答:哥哥原来有19本书.故选:C.【点评】本题主要考查和倍问题,关键根据现在弟弟的故事书本数,求哥哥原来的本数.8.【分析】根据题意,利用差倍问题公式:差÷(倍数﹣1)=较小数;较小数+差=较大数.把数代入计算即可.【解答】解:4×2÷(2﹣1)=8÷1=8(元)答:妹妹原来有8元钱.故选:C.【点评】本题主要考查差倍问题,关键知道兄妹俩的钱数相差多少.二.填空题(共8小题)9.【分析】用60乘12求出总字数,再除以实际的时间9分钟,就是实际平均每分录入的个数.【解答】解:60×12÷9=720÷9=80(个)答:平均每分录入80个字.故答案为:80.【点评】在解答这一类应用题时,先求出总数是多少(归总),再求出单一量.10.【分析】根据题意可得到等量关系式:豆角的重量+茄子的重量=116千克,可设运来茄子x千克,那么豆角的重量有3x千克,把未知数代入等量关系式进行解答即可得到答案.【解答】解:设运来茄子的重量是x千克,那么豆角大米的重量有3x千克,3x+x=1164x=116x=29答:运来茄子29千克.故答案为:29.【点评】解答此题的关键是找准等量关系式,然后再方程解答即可.11.【分析】因为相邻的两个自然数相差1,根据和差问题,运用关系式:(和﹣差)÷2=小数,先求出小数,再求大数.【解答】解:(197﹣1)÷2=196÷2=9898+1=99答:这两个自然数是98和99.故答案为:98,99.【点评】此题属于和差问题,运用了关系式:(和﹣差)÷2=小数,和﹣小数=大数.12.【分析】根据题意,“小飞有5颗糖,小红给小飞3颗糖后”,小飞有糖:5+3=8(颗),这时小红有:8×2=16(颗),所以小红原理有:16+3=19(颗).【解答】解:(5+3)×2+3=8×2+3=16+3=19(颗)答:小红原来有19颗糖.故答案为:19.【点评】本题主要考查差倍问题,关键根据题意求出小红现在糖的颗数.13.【分析】本题属于差倍问题,根据题意,玩具汽车的数量较少,为较小数,玩具飞机的数量较多,为较大数.利用差倍问题个数:差÷(倍数﹣1)=较小数;较小数+差=较大数.把数代入计算即可.【解答】解:50÷(3﹣1)=50÷2=25(元)25+50=75(元)答:一架玩具飞机的价格是75元.故答案为:75.【点评】本题考查了差倍问题,关键是得出50元是一辆玩具汽车价格的3﹣1=2倍.14.【分析】设故事书有x本,则科技书有1.5x本,根据等量关系:科技书的本数+故事书的本数=60000本,列方程解答即可得出故事书的本数,再求科技书得本数.【解答】解:设故事书的本数有x本,科技书的本数为1.5x本,1.5x+x=600002.5x=60000x=240001.5×24000=36000(本)答:科技书有36000本.故答案为:36000.【点评】本题考查了列方程解应用题,关键是根据等量关系:科技书的本数+故事书的本数=60000本列方程.15.【分析】根据题意,本题属于和差问题,利用和差问题公式:(和+差)÷2=较大数;(和﹣差)÷2=较小数.把数代入计算即可.【解答】解:(40+4)÷2=44÷2=22(个)(40﹣4)÷2=36÷2=18(个)答:黄气球有22个,红气球有18个.故答案为:22;18.【点评】根据题意,找出两个数的和与差,由和差公式进一步解答.16.【分析】根据题意,四(1)班如果给四(2)班12本,两个班的图书就一样多了,说明四(1)班原来比四(2)班多12×2=24(本),利用和差问题公式:(和+差)÷2=较大数,(和﹣差)÷2=较小数.把数代入计算即可.【解答】解:(128+12×2)÷2=152÷2=76(本)128﹣76=52(本)答:四(1)班原来有76本图书,四(2)班原来有52本图书.故答案为:76;52.【点评】根据题意,利用两个数的和与差,由和差公式进一步解答.三.判断题(共5小题)17.【分析】书柜的上层原有20本书,拿出4本后,还剩20﹣4=16本,下层原有16本,再加4本后,为16+4=20本,据此判断即可.【解答】解:20﹣4=16(本),16+4=20(本),16≠20,所以从上层拿4本到下层两层就同样多,是错误的.故答案为:×.【点评】本题考查了差倍问题,关键是得出从上层拿4本到下层后,上下层的本数.18.【分析】甲数是60,根据倍数关系可得乙数与丙数的和是60÷2=30;又知乙数比丙数多4,即乙、丙两数的差是4,然后乙数减少4,那么乙、丙两数就相等了,根据和差公式即可求出丙数,再与算式:(60÷2﹣4)÷2比较即可.【解答】解:乙数与丙数的和是:60÷2=30乙、丙两数的差是:4根据和差公式可得丙数是:(60÷2﹣4)÷2=26÷2=13所以原题说法正确.故答案为:√.【点评】此题属于和差问题,关键是要分清楚数量之间的关系,运用关系式:(和﹣差)÷2=较小数,(和+差)÷2=较大数.19.【分析】百合的枝数是玫瑰的3倍,百合和玫瑰共24枝是玫瑰的3+1=4倍,用除法即可得玫瑰的枝数,再求百合的枝数,再判断即可.【解答】解:24÷(3+1)=24÷4=6(枝),24﹣6=18(枝),答:百合有18枝,本题说法正确.故答案为:√.【点评】本题考查了和倍问题,关键是得出百合和玫瑰共24枝是玫瑰的3+1=4倍.20.【分析】根据“小杯的容量是大杯的”,知道1大杯的容量相当于4个小杯的容量,由此知道320毫升的水正好都倒满2个大杯,进而求出大杯的容量.【解答】解:320÷2=160(毫升),答:大杯的容量是160毫升.故答案为:√.【点评】解答此题的关键是根据题意找出小杯的容量与大杯容量的关系,用大杯的容量代换小杯的容量,将两个未知数变成一个未知数由此解决问题.21.【分析】由题意得出现在的数是原来的数的3倍;现在的数与原来的数相差7.2,由此利用差倍公式解决问题.【解答】解:7.2÷(3﹣1)=7.2÷2=3.6答:原来的小数是3.6;故答案为:√.【点评】本题主要考查了差倍公式{差÷(倍数﹣1)=小数,小数×倍数=大数,(或小数+差=大数)}的应用.四.应用题(共8小题)22.【分析】甲袋里有39个,乙袋里有27个,那么甲比乙多39﹣27=12个;小刚每次从甲袋里取出4个,从乙袋里取出2个,那么每次甲比乙多取出4﹣2=2个;12个里面有几个2,那么就取几次,甲乙剩下的个数就相等,据此解答.【解答】解:(39﹣27)÷(4﹣2)=12÷2=6(次)答:取6次后,甲、乙袋里剩下的球的个数相等.【点评】本题关键是求出甲乙两袋之间的个数差以及每次取出的个数差,然后再根据除法的意义进行解答.23.【分析】果园里有龙眼树和荔枝树共240棵,其中龙眼树的棵数是荔枝树的3倍,那么总棵数就是荔枝树的3+1=4倍,用240除以4求出荔枝树的棵数,然后再进一步解答.【解答】解:240÷(3+1)=240÷4=60(棵)60×3=180(棵)答:龙眼树有180棵,荔枝树有60棵.【点评】已知两个数的和与倍数关系,根据和倍公式:和÷(倍数+1)=较小数,较小数×倍数=较大数进行解答.24.【分析】张华和李硕一共做出了120道题,张华比李硕多做了16道题,如果李硕多做16道就和张华一样多,这时他们就一共做了120+16=136道,然后再除以2就是张华做的,然后再用张华做的减去16,就是李硕做的.【解答】解:(120+16)÷2=136÷2=68(道)68﹣16=52(道)答:张华做了68道,李硕做了52道.【点评】已知两个数的和与差关系,根据和差公式:(和+差)÷2=较大数,进行解答.25.【分析】根据题意,乒乓球的总数不变,所以当“甲筐内的乒乓球个数是乙筐内乒乓球个数的3倍”时,甲筐内乒乓球的个数为:(63+81)÷(3+1)×3=108(个),计算甲筐多的个数就是从乙筐放入的个数.【解答】解:(63+81)÷(3+1)×3﹣63=144÷4×3﹣63=108﹣63=45(个)答:应从乙筐内取出45个乒乓球放入甲筐.【点评】本题主要考查差倍问题,主要根据和不变做题.26.【分析】观察图可知:梨树比桃树多80棵,梨树和桃树一共640棵,可知两数之和是640,两数之差是80,根据和差公式“(和﹣差)÷2=较小数”可求得梨树的棵数.【解答】解:(640﹣80)÷2=560÷2=280(棵)280+80=360(棵)答:张大伯今年栽的桃树有280棵;梨树有360棵.【点评】此题主要考查了和差公式的应用,即:(和+差)÷2=较大数,(和﹣差)÷2=较小数,或和﹣较大数=较小数.27.【分析】“按照这样计算”说明每天加工的数量相同,先用3600匹除以4天,求出平均每天加工多少匹布,再乘7,就是已经织布多少匹,再用总量减去已经织布的匹数,就是还剩多少匹布没有织完.【解答】解:3600÷4×7=900×7=6300(匹)7200﹣6300=900(匹)答:还剩900匹布没有织完.【点评】解决本题先根据工作量÷工作时间=工作效率求出不变的工作效率,再根据工作量=工作效率×工作时间,求出7天加工的量,进而求解.28.【分析】把香蕉的箱数看作一倍的量,那么香蕉和苹果的总箱数(70箱),就相当于香蕉箱数的1+1.5=2.5倍,用除法即可求出香蕉的箱数,再与70作差即可求出苹果的箱数.【解答】解:70÷(1+1.5)=70÷2.5=28(箱)70﹣28=42(箱)答:苹果卖出了42箱;香蕉卖出了28箱.【点评】此题属于和倍问题,运用关系式:和÷(倍数+1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).关键是找到数量和与它对应的倍数和.29.【分析】“按照这样计算”说明每辆面包车收费是相同的,先用3600除以12,求出每辆汽车出租的费用,再用2400元除以每辆汽车出租的费用,求出需要增加的辆数,再加上12辆即可求解.【解答】解:2400÷(3600÷12)=2400÷300=8(辆)12+8=20(辆)答:应有20辆面包车.【点评】解决本题先根据除法平均分的意义求出每辆车每天的收入,再根据除法的包含意义求出需要多出的费用,进而求解.知识点复习一.植树问题【知识点归纳】为使其更直观,用图示法来说明.树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题.一、在线段上的植树问题可以分为以下三种情形.1、如果植树线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=间隔数+1.2、如果植树线路只有一端要植树,那么植树的棵数和要分的段数相等,即:棵数=间隔数.3、如果植树线路的两端都不植树,那么植树的棵数比要分的段数少1,即:棵数=间隔数-1.4、如果植树路线的两边与两端都植树,那么植树的棵数应比要分的段数多1,再乘二,即:棵树=段数+1再乘二.二、在封闭线路上植树,棵数与段数相等,即:棵数=间隔数.三、在正方形线路上植树,如果每个顶点都要植树.则棵数=(每边的棵数-1)×边数.1 非封闭线路上的植树问题主要可分为以下三种情形:(1)如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距+1全长=株距×(株数-1)株距=全长÷(株数-1)(2)如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数.【命题方向】例1:杨老师从一楼办公室到教室上课,每走一层楼有24级台阶,一共走了72级台阶,杨老师到 4楼教室上课?分析:把楼层与楼层之间的24个台阶看做1个间隔;先求得一共走过了几个间隔:72÷24=3,一楼没有台阶,所以杨老师走到了1+3=4楼.解:72÷24+1=3+1=4(楼)答:杨老师去4楼上课.故答案为:4.点评:因为1楼没有台阶,所以楼层数=1+间隔数.例2:有48辆彩车排成一列.每辆彩车长4米,彩车之间相隔6米.这列彩车共长多少米?分析:根据题意,可以求出车与车的间隔数是48-1=47(个),那么所有的彩车之间的距离和是:47×6=282(米),因为每辆彩车长4米,所有的车长度和是:4×48=192(米),把这两个数加起来就是这列彩车的长度.解:车与车的间隔数是:48-1=47(个),彩车之间的距离和是:47×6=282(米),所有的车长度和是:4×48=192(米),这列彩车共长:282+192=474(米).答:这列彩车共长474米.点评:根据题意,按照植树问题求出彩车的长,因为每辆彩车还有车长,还要加上所有彩车的车身长,才是这列彩车的总长.二.方阵问题【知识点归纳】将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题.数量关系:(1)方阵每边人数与四周人数的关系:四周人数=(每边人数-1)×4每边人数=四周人数÷4+1(2)方阵总人数的求法:实心方阵:总人数=每边人数×每边人数空心方阵:总人数=(外边人数)2-(内边人数)2内边人数=外边人数-层数×2(3)若将空心方阵分成四个相等的矩形计算,则:总人数=(每边人数-层数)×层数×4.【命题方向】例1:四年级共选49位同学参加校运会开幕式,他们排成一个方阵.这个方阵的最外层一共有多少人?分析:先根据方阵总人数=每边人数×每边人数,求出这个方阵的每边人数,再利用方阵最外层四周人数=每边人数×4-4计算出最外层四周人数即可.解:因为7×7=49,所以49人组成的方阵的每边人数是7人,7×4-4,=28-4,=24(人);答:这个方阵的最外层有24人.点评:此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4-4的灵活应用.三.年龄问题【知识点归纳】年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;解题规律:抓住年龄差是个不变的数(常数),而倍数却是每年都在变化的这个关键.解答年龄问题的一般方法是:几年后年龄=大小年龄差÷倍数差-小年龄几年前年龄=小年龄-大小年龄差÷倍数差.【命题方向】例1:儿子今年6岁,父亲10年前的年龄等于儿子20年后的年龄.当父亲的年龄恰好是儿子年龄的2倍时是在公元哪一年?分析:根据题意,可知儿子20年后是6+20=26岁,父亲今年26+10=36岁.根据年龄增长是一样的,找出等量关系列出方程解答即可.解:儿子20年后是6+20=26岁,父亲今年26+10=36岁.设x年后,父亲的年龄恰好是儿子年龄的2倍.由题意得36+x=2(x+6)36+x=2x+12x=24由今年是公元2011年,则2011+24=2035,故当父亲的年龄恰好是儿子年龄的2倍时是公元2035年.点评:本题主要是考查年龄问题,首先要把题意弄清,再根据等量关系列出方程解答即可.四.鸡兔同笼【知识点归纳】方法:假设法,方程法,抬腿法,列表法。
小升初数学应用题40道附参考答案(黄金题型)
小升初数学应用题40道一.解答题(共40题,共246分)1.一个圆锥形沙堆,高是1.8米,底面半径是5米,每立方米沙重1.7吨,这堆沙约重多少吨?2.根据已知条件,完成下面各题。
(1)已知圆柱底面周长是25.12厘米,高是20厘米,求圆柱的表面积.(2)已知圆锥底面直径是8厘米,高是12厘米,求体积是多少?(3)如图是圆柱中挖去一个圆锥后的剩余部分,请计算它的体积.(单位:厘米)3.某地12月18日的最低气温是-7℃,最高气温是5℃,这一天的最高气温与最低气温相差多少?4.一个圆柱体水桶,从里面量,底面直径是32厘米,高是50厘米,这个水桶大约能盛水多少千克?(1dm3的水重1千克)5.一种圆柱形状的铁皮油桶,量得底面直径8dm,高5dm.做一个这样的铁皮油桶至少需多少平方米铁皮?(铁皮厚度不计,结果保留整数)6.服装店销售某款服装,每件标价是540元,若按标价的8折出售,仍可获利20%,则这款服装每件的进价是多少元?7.张老师到我市行政大楼办事,假设乘电梯向上一楼记作+1,向下一楼记作-1.张老师从1楼(即地面楼层)出发,电梯上下楼层依次记录如下:(单位:层)+5,-3,+10,-8,+12,-6,-10.(1)请通过计算说明李老师最后是否回到了出发地1楼?(2)该中心大楼每层楼高约3米,请算一算,李老师最高时离地面约多少米?(提示:2楼只有1个楼层的高,以此类推)8.有一个圆锥形沙堆,底面半径是10米,高是4.8米,把这些沙子均匀地铺在一条宽20米,厚40厘米的通道上,可以铺多长?9.一个圆柱和一个圆锥底面积比为2:3,体积比为5:6,求高的比。
10.一件上衣打八折后的售价是160元,老板说:“如果这件上衣对折就不赚也不亏”。
这件上衣成本是多少元?11.一个装满玉米的圆柱形粮囤,底面周长6.28米,高2米。
如果将这些玉米堆成一个高1米的圆锥形的玉米堆,圆锥底面积是多少平方米?12.如图是红梅服装厂2021年七月份到十二月份生产服装统计图:(1)西装和童装产量最高的分别是哪个月?最低的呢?(2)童装哪个月到哪个月增长得最快?西装呢?(3)十二月份西装产量比童装多百分之几?13.一个圆柱铁皮油桶内装有半桶汽油,现在倒出汽油的后,还剩12升汽油。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初典型应用题内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)
典型应用题
1 归一问题
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?
例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?
2 归总问题
例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套?
例2 小华每天读24页书,12天读完了《红岩》一书。
小明每天读36页书,几天可以读完《红岩》
例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。
后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?
3 和倍问题
例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?
例 2 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的 1.4倍,求两库各存粮多少吨?
例3 甲乙两数之和是170,乙比甲的2倍少4,求两数各是多少?
4 差倍问题
例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。
求杏树、桃树各多少棵?
例2 爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?
5 相遇问题
例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?
例2 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?
例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
6 追及问题
例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。
小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
例3 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
7 植树问题
例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?
例2 一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?
例3 一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?
例4 一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?
8 工程问题
例 1 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?
例 2 一批零件,甲独做6小时完成,乙独做8小时完成。
现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?
例3 一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。
现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?
9 正反比例问题
例1 张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?
例2 孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?
10 按比例分配问题
例1 学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?
例2 用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。
三条边的长各是多少厘米?
例 3 某工厂第一、二、三车间人数之比为8∶12∶21,第一车间比第二车间少80人,三个车间共多少人?
11 百分数问题
常见的百分率有:
合格率=合格产品数÷产品总数×100%
出勤率=实际出勤人数÷应出勤人数×100%
缺席率=缺席人数÷实有总人数×100%
发芽率=发芽种子数÷试验种子总数×100%
成活率=成活棵数÷种植总棵数×100%
出粉率=面粉重量÷小麦重量×100%
出油率=油的重量÷油料重量×100%
命中率=命中次数÷总次数×100%
及格率=及格人数÷参加考试人数×100%
12 鸡兔同笼问题
例 1 长毛兔子芦花鸡,鸡兔圈在一笼里。
数数头有三十五,脚数共有九十四。
请你仔细算一算,多少兔子多少鸡?
例 2 李老师用69元给学校买作业本和日记本共45本,作业本每本3 .20元,日记本每本0.70元。
问作业本和日记本各买了多少本?
13 商品利润问题
例1 某商品的平均价格在一月份上调了10%,到二月份又下调了10%,这种商品从原价到二月份的价格变动情况如何?
例 2 某服装店因搬迁,店内商品八折销售。
苗苗买了一件衣服用去52元,已知衣服原来按期望盈利30%定价,那么该店是亏本还是盈利亏(盈)率是多少。