复合函数与初等函数37页PPT

合集下载

1.3 复合函数和初等函数

1.3 复合函数和初等函数

练习题答案
[e , e 3 ] ; 一、1 、基本初等函数; 2 、 x2 3、 y e ; 4、 y sin u, u ln v , v 2 x ; 5 、[-1,1],[ 2k , 2k ],[ a ,1 a ] , 1 [a ,1 a ] 0 a 2 . 1 a 2 e , x 1 1, x 0 f [ g ( x )] 0 , x 0 三、 ; g[ f ( x )] 1, x 1 . 1, x 0 1 , x 1 e
三、分段函数
在自变量的不同变化范围中, 对应法则用不 同的式子来表示的函数,称为分段函数.
例如,
2 x 1, f ( x) 2 x 1,
y x2 1
x0 x0
y 2x 1
一般来说,分段函数不是初等函数,但也有例外 .
x, 例如 y x ,
复合而成.
练习:习题1.3 第2题
( 1)y u , u 1 x 2 (2)y eu , u x 1 3x (3)y sin u, u 2 (4)y u 2 , u cos v, v 3 x 1 (5)y ln u, u v , v 1 x (6) y arccos u, u 1 x 2
二、应用图形的“叠加 ”作函数 y x sin x 的图形 .
1,x 1 三、设 f ( x ) 0,x 1 ,g ( x ) e x , 1,x 1 求 f [ g( x )] ,g[ f ( x )] ,并作出它们的图形 .
四、火车站行李收费规定如下: 20 千克以下不计费, 20~50 千克每千克收费 0.20 元,超出 50 千克超 出部分每千克 0.30 元,试建立行李收费 f ( x ) (元 ) 于行李重量 x (千克) 之间的函数关系,并作出图 形.

高数求导法则37页PPT

高数求导法则37页PPT
目录 上页 下页 返回 结束
( 1 ) y=l n c o s ( e x) , 求 d y. ( 2 ) y=e s i n1 x, 求 y . d x
解 所给函数y可 lnu 分 ,u解 cov为 ,svex.
因 d y1,d u siv,n d vex,故 du udx dx
(arccox)t (ex) ex
目录 上页 下页 返回 结束
基本求导法则与导数公式
1、常数和基本初等函数的导数公式
(1) (C )0
(2 ) (x) x 1
(3 ) (sx ) i n co xs (4 ) (cx )o s sixn
(5) (tanx)=sec2x
解 y s1 i 2 n x x 2可看 y su i作 ,u n 1 2 由 x x 2 复合而成.
目录 上页 下页 返回 结束
因为
dy cosu, du d d u x2(1 (1x 2)x 2)(2 2x)2(2 1 2 xx 2 o (2 1 s 2 x x 2 ) 2 2 (2 1 2 x x 2 ) 2 2c1 o 2 x x s 2.
目录 上页 下页 返回 结束
推广:此法则可推广到多个中间变量的情形.
例如,
y
dy dy d u dv
u
dx d u dv d x
f( u )( v ) (x )
v
x
关键: 搞清复合函数结构, 由外向内逐层求导.
目录 上页 下页 返回 结束
例4. 求下列导数:
解: (1) (x)(e lnx)
x (x34cox ssi1n )
1(x34co x ssi1)nx(3x2 4sixn) 2x

复合函数课件

复合函数课件

2 常见求导法则
根据复合函数中各个函数的性质和运算规则, 可以推导出常见的复合函数的求导法则。
复合函数的逆运算与逆函数的求解
逆运算
复合函数的逆运算可以通过将复合函数的内外 函数交换位要解方程f(g(x))=x,找 到使得等式成立的函数g(x)。
复合函数的性质和运算规则
结合律
复合函数满足结合律,即(f∘g)∘h = f∘(g∘h)。
分布律
复合函数满足分布律,即f∘(g+h) = (f∘g)+(f∘h)。
单位元
单位元函数是指f(x)=x,它与任何函数的复合都 不改变原函数。
逆元素
逆元函数是指f(g(x))=x,即复合函数和原函数相 互抵消。
复合函数ppt课件
本课件将详细介绍复合函数的定义、例子、性质和运算规则,以及复合函数 在实际问题中的应用。还将探索复合函数与反函数的关系,介绍复合函数的 求导法则和逆运算求解。
复合函数的定义和例子
定义
复合函数是由两个或多个函数组合而成的新函数, 其中一个函数的输出作为另一个函数的输入。
例子
例如,如果有两个函数f(x)和g(x),则它们的复合函 数为f(g(x))。
复合函数可以用来模拟经济变量之间的 相互关系,帮助经济学家预测市场走势。
工程学
复合函数可以用来优化工程设计,提高 系统的性能和效率。
复合函数与反函数的关系
反函数
反函数是指复合函数的逆运算,将一个函数的输出作为输入,返回原来的输入。
复合函数的求导法则
1 链式法则
复合函数求导的链式法则是将外函数的导数 与内函数的导数相乘。
复合函数的图像和图像变换
图像
复合函数的图像是由两个函数的图像组合而成的。

第一章第4节 复合函数与初等函数

第一章第4节 复合函数与初等函数

作 业
• 习题一的第16、17题(交) • 课外作业,习题一的1-20题中没做过的。
常见的经济函数
1、成本函数 某商品的成本是指生产一定数量的产品所需的全
部经济资源投入(劳力、原料、设备等)的价格或费用
总额,它由固定成本与可变成本组成. 平均成本是生产一定数量的产品,平均每单位产 品的成本. 在生产技术水平和生产要素的价格固定不变的条 件下,产品的成本与平均成本都是产量的函数. 成本函数 平均成本函数
3x 2 例如 函数 y ax bx c, y , 4x 6
2
x 1 x 2 x , x 0 而y x , y 1 x x2 xn e , x ≥ 0
5
y ln
( x 2 1) cos 2 x
等都是初等函数;
是非初等函数。 大部分分段函数不是初等函数。
例如 y arcsinu, u 2 x 2 ; y arcsin( 2 x 2 )
3、复合函数的中间变量可以不止一个,也就是可以由两个以上 的函数经过复合而成。
x 例如 y cot , 2
y u,
u cot v ,
v
x . 2
例 1:下列函数能否构成复合函数?若能,写出 y=f[g(x)],并求 其定义域: ( 1) y u ,
(2)幂函数:y=x (常数
x
x
)
a
(特别地,常用对数 y=lgx,自然对数 y=lnx) (5)三角函数:y=sinx, y=cosx, y=tanx, y=cotx, y=secx, y=cscx (6)反三角函数:y=arcsinx, y=arccosx, y=arctanx, y=arccotx,

复合函数与初等函数共37页文档

复合函数与初等函数共37页文档

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
37

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子
▪力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。

高等数学初等函数ppt课件

高等数学初等函数ppt课件
无限地接近,向右与x轴无限地接近.
•当 为奇数时, 幂函数为奇函数;当 为偶数时,
幂函数为偶函数.
•当 0 时, 函数为常数函数 y 1
5
指数函数
定义:函数 y a x 叫做指数函数, a 其中 是一个大于0,且不等于1的常量,函
数的定义域是R.
y a x (a 0,a 1) x R
2
ymin= 1
f(x)= 0 x k (k Z )
R [1,1]
x 2k (k Z ) 时 ymax=1 x 2k (k Z ) 时 ymin= 1
x k (k Z ) 11
2
f(x)=sinx
f(x)= cosx
图象
x
x
周期性 奇偶性
在 (0,) 上是减函数 在 (0,) 上是增函数 9
三角函数
三角函数常用公式
10
f(x)=sinx
f(x)= cosx
y
y
图1
1

0
-1 -

2

3
2 x 0
2
-1

2

3
2 x
2
定义域 值域
最值
R
[1,1]
x 2k (k Z ) 时
2
ymax=1 x 2k (k Z ) 时
商 f: g
( f )(x) f (x) , x D \{x | g(x) 0, x D}Biblioteka gg(x)29
三. 初等函数
由常数及基本初等函数 经过有限次四则运算和复合步
骤所构成 , 并可用一个式子表示的函数 , 称为初等函数 .

复合函数和初等函数

复合函数和初等函数
w z3, z ln t, t 1 x 复合而成
2.初等函数
定义1.7 由基本初等函数经过有限次的四则运算或 复合运算构成的,并可用一个式子表示的函数,称为 初等函数.
本课程讨论的函数绝大多数都是初等函数.
例如, y 1 x2 , y sin2 x ,y ln x e2x
y ln(1 sin x), 等等。
1.1.4 复合函数、初等函数
基本初等函数
课前复习
1、常数函数 2、幂函数
y C (C是常数)
y xa (a是常数, a 0)
3、指数函数
y a x (a 0, a 1)
4、对数函数
y loga x (a 0,a 1)
5、三角函数
y sin x y tan x
y secx
y cos x
y cot x
y csc x
6、反三角函数
y arcsinx
y arccosx y arctanx
y arccot x
1.复合函数 定义 1.6 设 y 是 u 的函数 y f (u) , u 又是 x 的函
数 u (x) , 如 果 函 数 u (x) 的 值 域 包 含 在 函 数
多项式函数:
f (x) an xn an1xn1 a1x a0
(ai为常数 ,i 0 ,1 ,2 ,...,n)
有理函数:
f
(x)
an xn an1xn1 bm xm bm1xm1
a1x a0 b1x b0
(ai ,b j为常数 , i 0,1,2, ,n;j 0,1,2, ,n)
课堂练习
( D )1.下列函数为复合函数的是
A.
y
(1) 2
x

反函数复合函数初等函数课件

反函数复合函数初等函数课件

三角函数的图像
三角函数的图像可以通过描点法或变换法 得出,例如$y=sin x$和$y=cos x$的图 像。
对数函数的图像
对数函数的图像可以通过描点法或变换法 得出,例如$y=log_a x$($a>0$且 $aneq1$)的图像。
Part
04
反函数与复合函数的应用
在数学中的应用
解决方程问题
通过反函数,可以将一个方程问 题转化为另一个方程问题,从而 简化求解过程。
在某些情况下,反函数和初等函数可以是同一个函数,例如对于线性函数y=ax+b ,其反函数也是初等函数。
反函数与初等函数在数学中的地位
反函数和初等函数在数学中都具有重要的地位,是数学研究和应用的基础。反函 数的概念有助于深入理解函数的性质和图像,而初等函数则是数学分析、微积分 等课程中的基本工具。
在解决实际问题时,常常需要将实际问题转化为数学模型,而反函数和初等函数 是构建这些数学模型的重要工具。
初等函数的性质
有界性
初等函数在其定义域内都 1
是有一定界限的,即其值 域是有限的。
可微性
4
在定义域内,初等函数可 以求导数,即具有可微性 。
单调性
根据不同的定义域和对应
2
法则,初等函数在其定义
域内可以是单调增函数或
单调减函数。
周期性
3 有些初等函数具有周期性
,例如正弦函数和余弦函 数。
初等函数的图像
复合函数的奇偶性
复合函数的值域
复合函数的值域由外层函数的值域和 内层函数的值域共同决定。
如果一个复合函数的内层函数和外层 函数都是奇函数或偶函数,那么这个 复合函数可能是奇函数或偶函数。
复合函数的求法

1.5基本初等函数、初等函数、复合函数PPT

1.5基本初等函数、初等函数、复合函数PPT

求arccos x
在[0, ]内确定一点 使cos x 则arccos x
例 如 求 a 1 r ) ccos(
2
因 为 c 2 o 1 所 s 以 a r 1 ) 2 c cos
3 2
2 3
《微积分》(第三版) 电子教案
首页 上一页 下一页 结束
二、复合函数
设yf(u) ug(x) 如果将ug(x)代入f(u)中 得到的表达式 f[g(x)]是有意义的 则yf[g(x)]是一个以x为自变量 y为因变量 的新函数 称为由yf(u)和ug(x)复合而成的复合函数
( 1 ) y 3 x 1 ; ( 2 ) y ( 1 l g x ) 5 ; ( 3 ) y e e x 2
答案:1.y 2cos2 x
2.(1)y u,u3x1
(2)yu5,u1v,vlgx
(3)yeu,uev,vx2
《微积分束
例1.15
(3)两角和公式
s in (x y ) s in x c o sy c o s x s in y ,
cos(x y) cosxcos ysin xsin y
《微积分》(第三版) 电子教案
首页 上一页 下一页 结束
(4)倍角公式
sin2x2sinxcosx,
c o s 2 x c o s 2 x s i n 2 x 1 2 s i n 2 x 2 c o s 2 x 1
《微积分》(第三版) 电子教案
首页 上一页 下一页 结束
(1)什么样的函数有反函数?
一一对应函数有反函数
(2)互为反函数图象之间有什么关系
关于直线y=x对称
(3)正弦函数y=sinx ,余弦函数y=cosx,
正切函数y=tanx在定义域上有反函数吗?

复合函数和初等函数

复合函数和初等函数
1.1.4 复合函数、初等函数
单击此处添加副标题
常数函数
幂函数
指数函数
对数函数
D
C
A
B
基本初等函数
课前复习
5、三角函数
反三角函数
1.复合函数
注意:
CONTENTS
例如:
01
可看作由
02
复合而成。
03

04
其中,
05
为外层,
06
不能复合。
复合后的函数要有意义
3、不是任何函数都可以复合成一个函数。
4、注意复合次序:
01
复合可以多次进行,也就是说,中间变量可以有多个。
02
例1
03
例2
04
的复合。
例3 指出下列各函数的复合过程:
01
重要问题:把一个复杂的函数分解为几个简单函数(基本初等函数或基本初等函数的四则运算式)的复合。
02
复合而成的
03
复合而成的
复合而成的
复合而成的 ຫໍສະໝຸດ 0102初等函数
分段函数是其定义域内的一个函数. 分段函数一般不是初等函数,但如果分段函数可以用一个解析式表示,那么它就是一个初等函数.
分段函数
7(1)~(5)
预习:数列的极限
作业:习题1.1:
03
例4
例5
*例6
复合而成
复合而成
定义1.7 由基本初等函数经过有限次的四则运算或复合运算构成的,并可用一个式子表示的函数,称为初等函数.
例如,
等等。
本课程讨论的函数绝大多数都是初等函数.
2.初等函数
1.1.5 分段函数

复合函数ppt课件

复合函数ppt课件
函数 ug(x)是定义 M上 在的增函数, y f(u)是定义N在 上的增函数, 且{u| ug(x),xM}N, 求证:复合y函f (数 g(x))是M上的增函数
.
复合函数单调性:
总结:“同增异减”。 .
练习1、讨论下列函数的单调性。
(1)y (1)x24x; 3
(2)y lg(x2 2x 3).
.
复合函数定义:
如果y是u的函数,u又是x的函数, 即y=f(u)、u=g(x),那么y关于x的函 数y=f(g(x))叫做函数y=f(u)和u=g(x) 的复合函数,其中u是中间变量,自 变量为x,函数值y。y f(u)是外层函 数,ug(x) 是内层函数。
注意:若内层函数u=g(x)值域为M ,外层函数 y=f(u)定义域为N,则必须. 满足M N。
.
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
练习2、讨论函数y=loga(ax-1) 的单调性其中a>0,且a≠1。
.
复合函数奇偶性:
ug(x)
偶 偶 奇 奇
y f(u)
偶 奇 偶 奇
yf(g(x))
偶 偶 偶 奇
总结:“一偶则偶,同奇则奇”。 .
1、函数y=(1/2)1-x的单调增区间为( )
A.(-∞,+∞) B.(0,+∞)
C.(1,+∞)
D.(0,1)
2、函数f(x)=1/(2x+1)在(-∞,+∞)上( ) A单调递减无最小值 B单调递减有最小值 C单调递增无最大值 D单调递增有最大值
.
1、已知函数y=f(x)的定义域为(1,2),则函数 y=f(2x)的定义域为________. 2、已 y知 f(x3)的定义 [4,域 5),是 则 f(2x3)的定义 __域 __为 。 ____

反函数复合函数初等函数求导.ppt

反函数复合函数初等函数求导.ppt

( 1
2 x 2)
dx
3
4x 33(1 2 x2)2 .
返回
推广
设 y f (u), u (v), v ( x), 则复合函数 y f {[ (x)]}的导数为
dy dy du dv . dx du dv dx
返回
例10 y lncos(e x )求 dy。
dx 解 所 给 函 数 可 分 解 为 y ln u,u cosv,v e x . 因
1 x2
返回
例2 求函数 y loga x 的导数. 解 x a y在I y (,)内单调、可导,
且 (a y ) a y ln a 0, 在Ix (0,)内有 :
(log a
x)
1 (a y )
1 a y ln a
1. x ln a
特别地
(ln x) 1 . x
返回
例3 求函数 y arctan x 的导数.
y
( y)
返回
例1 求函数 y arcsin x 的导数.

x
sin
y在
I
y
(
2
,
)内单调、可导 2
,
且 (sin y) cos y 0, 在 I x (1,1)内有
(arcsin x) 1 1 (sin y) cos y
1 1 sin 2 y
1 .
1 x2
同理可得 (arccos x) 1 .
dx du dx u
sinxcosx
例6 y e x3 ,求 dy 。
dx
解 y e x3可看做由y eu ,u x3复合而成,因此
dy dy du eu 3x2 3x2e x3 . dx du dx

复合函数课件

复合函数课件

复合函数图像的绘制方法
步骤四:绘制图像
根据得到的点,使用平滑的曲线连接这些点,绘制出复合函数的图像。
复合函数图像的变换
平移变换
当复合函数的内部函数在自变量上加减一个常数时,图像会沿x轴方向平移。
复合函数图像的变换
01
伸缩变换
02
当复合函数的内部函数在自变量 上乘以或除以一个常数时,图像 会沿x轴或y轴方向伸缩。
如果存在一个常数T,对于定义域内 的所有x,都有f(x+T)=f(x),则函数 为周期函数。复合函数的周期性由内 外函数共同决定。
复合函数的对称性
总结词
对称性描述了函数图像的对称性质。
详细描述
复合函数的对称性与内外函数的对称性和对应关系有关。例如,如果内外函数都是轴对称的,那么复合函数可能 是轴对称的;如果内外函数都是中心对称的,那么复合函数可能是中心对称的。
的角色。
深化理解
通过研究复合函数,可以深入理 解函数的性质和变化规律,进一
步加深对函数概念的理解。
拓展思维
复合函数可以拓展人们的思维方 式和解题思路,对于提高数学素
养和思维能力有很大的帮助。
02
复合函数的性质
复合函数的单调性
总结词
单调性描述了函数值随自变量变化的趋势。
详细描述
复合函数的单调性取决于内外函数的单调性以及它们的对应关系。如果内外函 数单调性相同,则复合函数为增函数;如果单调性相反,则复合函数为减函数 。
分部积分法
换元积分法
换元积分法是通过引入新的变量来简 化定积分的计算方法。
分部积分法是一种通过将两个函数的 乘积进行求导来计算定积分的方法。
积分在复合函数中的应用
复合函数求导法则

复合函数,反函数,初等函数

复合函数,反函数,初等函数

四、双曲函数与反双曲函数
1.双曲函数
e x ex 双曲正弦 sinh x 2
D : ( , ),
奇函数.
x x
e e 双曲余弦 cosh x 2
D : ( , ),
偶函数.
sinh x e x e x 双曲正切 tanh x x x cosh x e e

1
y
反函数y f 1 ( x )
Q ( b, a )
o
直接函数y f ( x ) P (a , b)
x
从方程角度看,函数和反函数没什么区别,作 为函数,习惯上我们还是把反函数记 1 y f ( x) . 为
这样直接函数与反函数的图形关于直线 y x 对称.
严格单调函数是1-1对应的,所以严格单 调函数有反函数。 但 1-1 对应的函数(有反函 数)不一定是严格单调的,看下面例子
思 下列函数能否复合为函数 y f [ g( x )], 考 若能,写出其解析式、定义域、值域. 题 (1) y f (u) u, u g( x ) x x 2
( 2) y f ( u) ln u, u g( x ) sin x 1
1 [ f ( x)] 2 , f ( x) 1;
求 f [ f ( x)].
f [ f ( x)]
f ( x) 1 0 x 1 f ( x) 1 x 1或x 0
[ f ( x)] 1, f ( x) 1.
2
当0 x 1时,
1 [ 1 x ] , 0 x 1;

10
e ( x ) , ( x ) 1 f [( x )] ( x ), ( x ) 1

反函数-复合函数-初等函数

反函数-复合函数-初等函数

THANKS
感谢观看
举例
$y = x^2 + 3x + 2$,$y = log_2(x + 1)$,$y = sin(x)$等。
初等函数的性质
01
02
03
04
连续性
初等函数在其定义域内是连续 的。
可微性
大多数初等函数在其定义域内 是可微的。
有界性
初等函数在其定义域内是有界 的。
周期性和奇偶性
某些初等函数具有周期性或奇 偶性。
初等函数的最值
零点与不等式
可以通过描点法或计算 法绘制初等函数的图像。
根据导数的正负判断初 等函数的单调性。
利用导数求出函数的极 值点和最值点。
利用零点定理和导数判 断不等式的真假。
04
反函数与复合函数的应用
在数学中的应用
反函数
在数学中,反函数用于解决方程问题 ,通过找到原函数的反函数,可以将 一个方程转化为另一个方程,从而简 化求解过程。
02
反函数和复合函数在一定程度上 可以相互转化,而初等函数则可 以通过四则运算和复合运算生成 。
区别
反函数
反函数是指对于一个给定的函数y=f(x),存在另一个函数x=f'(y),使得对于每一个x的取值, 都有唯一的y值与之对应,且满足y=f(x)。反函数的存在条件是原函数的定义域和值域必须关 于y=x对称。
在工程中的应用
反函数
在工程中,反函数可以用于控制系统,例如通过找到系统的 传递函数的反函数,可以设计合适的控制器来控制系统。
复合函数
复合函数在工程中常用于描述多个参数之间的关系,例如材 料的力学性能可以通过一个复合函数来描述。
05
反函数-复合函数-初等函 数的联系与区别
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档