上海长兴中学数学代数式单元测试题(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)

1.

(1)一个两位正整数,a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被整除,这两个两位数的差一定能被整除.

(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.

一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;

①直接判断123是不是“友好数”?

②直接写出共有个“和平数”;

③通过列方程的方法求出既是“和平数”又是“友好数”的数.

【答案】(1)解:这个两位数用多项式表示为10a+b,

(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),

∵11(a+b)÷11=a+b(整数),

∴这个两位数的和一定能被数11整除;

(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),

∵9(a﹣b)÷9=a﹣b(整数),

∴这两个两位数的差一定能被数9整除,

故答案为:11,9

(2)解:①123不是“友好数”.理由如下:

∵12+21+13+31+23+32=132≠123,

∴123不是“友好数”;

②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;

十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;

十位数字是6的“和平数”有165,264,462,561,一个4个;

十位数字是5的“和平数”有154,253,352,451,一个4个;

十位数字是4的“和平数”有143,341,一个2个;

十位数字是3的“和平数”有132,231,一个2个;

所以,“和平数”一共有8+(6+4+2)×2=32个.

故答案为32;

③设三位数既是“和平数”又是“友好数”,

∵三位数是“和平数”,

∴y=x+z.

∵是“友好数”,

∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,

∴22x+22y+22z=100x+10y+z,

∴12y=78x﹣21z.

把y=x+z代入,得12x+12z=78x﹣21z,

∴33z=66x,

∴z=2x,

由②可知,既是“和平数”又是“友好数”的数是396,264,132.

【解析】【分析】(1)分别求出两数的和与两数的差即可求解;

(2)①根据“友好数”的定义即可判断求解;

②根据“和平数”的定义列举出所有的“和平数”即可求解;

③设三位数既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x−21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.

2.如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.

(1)若AB=6千米,老王开车从A到D共需多少时间?

(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)

【答案】(1)解:若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:

=2.4(小时)

(2)解:从A到D所需时间不变,(答案正确不回答不扣分)

设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,

t=

=

=2.4(小时)

【解析】【分析】(1)根据题意可以求出AB,BC,CD的长,然后根据路程除以速度等于时

间,即可分别算出老王开车行三段的时间,再求出其和即可;

(2)从A到D所需时间不变,设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,,然后根据路程除以速度等于时间,即可分别表示出老王开车行三段的时间,再根据异分母分式加法法则求出其和,再整体代入即可得出结论;

3.解答题:

(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.

(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,﹣1,﹣1.5,﹣2,+1,﹣1,﹣1,﹣0.5.这10箱苹果的总质量是多少千克?

(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9.

①这10枝钢笔的最高的售价和最低的售价各是几元?

②当小亮卖完钢笔后是盈还是亏?

【答案】(1)解:∵a,b互为相反数,c,d互为倒数,

∴a+b=0,cd=1,∴a+b+x2﹣cdx=x2﹣x

∵|x|=1,∴x=±1

∴当x=1时,x2﹣x=0;

当x=﹣1时,x2﹣x=2

(2)解:2+1+0﹣1﹣1.5﹣2+1﹣1﹣1﹣0.5=﹣3

30×10+(﹣3)=897

答:这10箱苹果的总质量是897千克.

(3)解:①最高售价为6+9=15元

最低售价为6﹣2.1=3.9元

②6×10+0.5+0.7﹣1﹣1.5+0.8+1﹣1.5﹣2.1+9+0.8﹣50

=16.3元

答:小亮卖完钢笔后盈利16.3元.

【解析】【分析】(1)根据相反数及倒数的性质即可得出a+b=0,cd=1,再根据绝对值的意义,由|x|=1,得x=±1,然后分别将a+b=0,cd=1,x=1与x=-1代入代数式,即可算出答案;

(2)首先列出加法算式,算出10箱苹果,超过的千克数或不足的千克数,然后用10乘以标准质量再加上超过或不足的千克数即可算出答案;

(3)用6元的基准价加上超过基准价的最大值即可得出这10枝钢笔的最高的售价,用6

相关文档
最新文档