高中数学概率测试题.doc
高中数学概率练习题及答案
高中数学概率练习题及答案一、选择题1. 给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使x?0”是不可能事件③“明天广州要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件,其中正确命题的个数是A.0 B. 1C. D.2. 某人在比赛中赢的概率为0.6,那么他输的概率是 A.0.4B. 0. C. 0.3 D. 0.163. 下列说法一定正确的是A.一名篮球运动员,号称“百发百中”,若罚球三次,不会出现三投都不中的情况B.一枚硬币掷一次得到正面的概率是21,那么掷两次一定会出现一次正面的情况C.如买彩票中奖的概率是万分之一,则买一万元的彩票一定会中奖一元D.随机事件发生的概率与试验次数无关4.某个班级内有40名学生,抽10名同学去参加某项活动,每个同学被抽到的概率是其中解释正确的是A.4个人中必有一个被抽到B. 每个人被抽到的可能性是C.由于抽到与不被抽到有两种情况,不被抽到的概率为1,411D.以上说话都不正确5.投掷两粒均匀的骰子,则出现两个5点的概率为A.1115B. C.D. 18612363211 B.C.D. 5486.从{a,b,c,d,e}的所有子集中任取一个,这个集合恰是集合{a,b,c}的子集的概率是 A.7.若A与B是互斥事件,其发生的概率分别为p1,p2,则A、B同时发生的概率为A.p1?p B. p1?pC. 1?p1?pD. 08.在等腰直角三角形ABC中,在斜边AB上任取一点D,则AD的长小于AC的长的概率为A.12 B. 1? C.D.222二、填空题9.如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心的概率是方片的概率是1,取到41,则取到黑色牌的概率是_____________10.同时抛掷3枚硬币,恰好有两枚正面向上的概率为_______________11.10件产品中有两件次品,从中任取两件检验,则至少有1件次品的概率为_________12.已知集合A?{|x2?y2?1},集合B?{|x?y?a?0},若A?B??的概率为1,则a的取值范围是______________三、解答题13.由数据1,2,3组成可重复数字的三位数,试求三位数中至多出现两个不同数字的概率.14.从一箱产品中随机地抽取一件产品,设事件A=“抽到的一等品”,事件B=“抽到的二等品”,事件C=“抽到的三等品”,且已知P=0.7,P=0.1,P=0.05,求下列事件的概率事件D=“抽到的是一等品或二等品”事件E=“抽到的是二等品或三等品”15.从含有两件正品a,b和一件次品c的3件产品中每次任取一件,连续取两次,求取出的两件产品中恰有一件是次品的概率 .每次取出不放回;每次取出后放回.16.在某次数学考试中,甲、乙、丙三人及格的概率0.4、0.2、0.5,考试结束后,最容易出现几个人及格?17.设甲袋装有m个白球,n个黑球,乙袋装有m个黑球,n个白球,从甲、乙袋中各摸一球,设事件A:“两球相同”,事件B:“两球异色”,试比较P与P的大小.高一数学概率测试题及参考答案1.选2.选3.选4.选5.选6.选7.选8.选1310.答案:1711.答案:59.答案:12:答案:a?[?2,2]13.“三位数中至多出现两个不同数字”事件包含三位数中“恰好出现两个不同的数字”与“三个数全相同”两个互斥事件,故所求概率为2?3?337??727914.由题知A、B、C彼此互斥,且D=A+B,E=B+C P=P=P+P=0.7+0.1=0.8P=P=P+P=0.1+0.05=0.1515. 每次取出不放回的所有结果有每次取出后放回的所有结果:三人都及格的概率p1?0.4?0.2?0.5?0.04 三个人都不及格的概率p2?0.6?0.8?0.5?0.24恰有两人及格的概率p3?0.4?0.2?0.5?0.4?0.8?0.5?0.6?0.2?0.5?0.26 恰有1人及格的概率p4?1?0.04?0.24?0.26?0.46由此可知,最容易出现的是恰有1人及格的情况17.基本事件总数为2,“两球同色”可分为“两球皆白”或“两球皆黑”则P?mnmn2mn,“两球异色”可分为“一白一黑”或“一黑??222m2一白”则P?2?n2m2?n22?2,显然P≤P,当且仅当“m=n”时取等号第三章检测题班级学号一、选择题:1.下列说法正确的是.A.如果一事件发生的概率为十万分之一,说明此事件不可能发生 B.如果一事件不是不可能事件,说明此事件是必然事件 C.概率的大小与不确定事件有关D.如果一事件发生的概率为99.999%,说明此事件必然发生2.从一个不透明的口袋中摸出红球的概率为1/5,已知袋中红球有3个,则袋中共有除颜色外完全相同的球的个数为.A.5个 B.8个 C.10个 D.15个.下列事件为确定事件的有.在一标准大气压下,20℃的纯水结冰平时的百分制考试中,小白的考试成绩为105分抛一枚硬币,落下后正面朝上边长为a,b的长方形面积为abA.1个B.2个 C.3个 D.4个4.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是.A.至少有1个白球,都是白球B.至少有1个白球,至少有1个红球 C.恰有1个白球,恰有2个白球 D.至少有1个白球,都是红球5.从数字1,2,3,4,5中任取三个数字,组成没有重复数字的三位数,则这个三位数大于400的概率是.A.2/5B、2/3C.2/7D.3/.从一副扑克牌中抽取一张牌,抽到牌“K”的概率是. A.1/5 B.1/C.1/1 D.2/27.同时掷两枚骰子,所得点数之和为5的概率为.A.1/B.1/C.1/D.1/128.在所有的两位数中,任取一个数,则这个数能被2或3整除的概率是.A.5/B.4/C.2/D.1/29.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为.A.60%B.30% C.10%D.50%10.根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为.A.0.6B.0.5 C.0.35D.0.75二、填空题:11.对于①“一定发生的”,②“很可能发生的”,③“可能发生的”,④“不可能发生的”,⑤“不太可能发生的”这5种生活现象,发生的概率由小到大排列为。
高中数学必修三第三章《概率》单元测试题
高中数学必修三第三章《概率》单元测试题(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在某学校2015年的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4℃时结冰.A.1B.2C.3D.42.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=,则“出现1点或2点”的概率为( )A. B. C. D.【延伸探究】若本题条件不变,则“出现的点数大于2”的概率为.3.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是( )A. B. C. D.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球5.先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则( )A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P16.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A. B. C. D.【一题多解】所有的基本事件有10种,而甲、乙都不被录用的情况只有(丙丁戊)一种,故甲或乙被录用的概率为1-=.8.在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为( )A. B. C. D.9.在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-10.在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )A.恰有2件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品11.记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为( )A. B. C. D.12.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:所用时间[0,20) [20,40) [40,60) [60,80) [80,100) (分钟)人数25 50 15 5 5公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘市时间t(分钟)的关系是y=200+40,其中表示不超过的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为( )A.0.5B.0.7C.0.8D.0.9二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得为红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)= .(结果用最简分数表示)14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.15.将号码分别为1,2,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于.16.两人相约在0时到1时之间相遇,早到者应等迟到者20分钟方可离去.如果两人出发是各自独立的,且在0时到1时之间的任何时刻相遇是等概率的,问两人相遇的概率为.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率.(1)所得的三位数大于400.(2)所得的三位数是偶数.18.(12分)某地区的年降水量在下列范围内的概率如表所示:(1)求年降水量在100~200(mm)范围内的概率.(2)求年降水量在150~300(mm)范围内的概率.19.(12分)已知集合M={(x,y)|x∈[0,2],y∈[-1,1]}(1)若x,y∈Z,求x+y≥0的概率.(2)若x,y∈R,求x+y≥0的概率.20.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如表(单位:人)(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率.(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.21.(12分)甲、乙两人相约于下午1:00~2:00之间到某车站乘公共汽车外出,他们到达车站的时间是随机的.设在下午1:00~2:00之间该车站有四班公共汽车开出,开车时间分别是1:15,1:30,1:45,2:00.求他们在下述情况下乘同一班车的概率:(1)约定见车就乘.(2)约定最多等一班车.22.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.高中数学必修三第三章《概率》单元测试题参考答案(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在某学校2015年的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4℃时结冰.A.1B.2C.3D.4【解析】选C.①在某学校2015年的田径运动会上,学生张涛有可能获得100米短跑冠军,也有可能未获得冠军,是随机事件;②在体育课上,体育老师随机抽取一名学生去拿体育器材,李凯不一定被抽到,是随机事件;③从标有1,2,3,4的4张号签中任取一张,不一定恰为1号签,是随机事件;④在标准大气压下,水在4℃时结冰是不可能事件.2.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=,则“出现1点或2点”的概率为( )A. B. C. D.【解析】选B.因为A,B为互斥事件,故采用概率的加法公式P(A∪B)=P(A)+(B)=+=.【延伸探究】若本题条件不变,则“出现的点数大于2”的概率为.【解析】A,B为互斥事件,故采用概率的加法公式得P(A∪B)=,所以出现的点数大于2的概率为1-P(A∪B)=.答案:3.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是( )A. B. C. D.【解析】选D.基本事件总数Ω={甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲}.“甲、乙两人站在一起”的可能结果有“甲乙丙”“丙甲乙”“乙甲丙”“丙乙甲”4种.所以甲、乙两人站在一起的概率P==.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球【解析】选D.根据题意,从8个球中任取3个球包括事件事件5红3白一 3 0二 2 1三 1 2四0 3对于A中的两个事件不互斥,对于B中两个事件互斥且对立,对于C中两个事件不互斥,对于D中的两个事件互斥而不对立.5.先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则( )A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P1【解题指南】列出先后抛掷两枚骰子出现的点数的所有的基本事件个数,再分别求出点数之和是12,11,10的基本事件个数,进而求出点数之和是12,11,10的概率P1,P2,P3,即可得到它们的大小关系.【解析】选B.先后抛掷两枚骰子,出现的点数共有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共36种,其中点数之和是12的有1种,故P1=;点数之和是11的有2种,故P2=;点数之和是10的有3种,故P3=,故P1<P2<P3,故选B.6.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )【解题指南】增加中奖机会应选择概率高的对应的游戏盘.【解析】选A.P(A)=,P(B)=,P(C)=,P(D)=,所以P(A)>P(C)=P(D)>P(B).7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A. B. C. D.【解题指南】根据条件可用列举法列出所有基本事件和甲或乙被录用的基本事件,采用古典概型求概率.【解析】选D.所有被录用的情况有(甲乙丙),(甲乙丁),(甲乙戊),(甲丙丁),(甲丙戊),(甲丁戊),(乙丙丁),(乙丙戊),(乙丁戊),(丙丁戊)共10种,其中甲或乙被录用的基本事件有9种,故概率P=.【一题多解】所有的基本事件有10种,而甲、乙都不被录用的情况只有(丙丁戊)一种,故甲或乙被录用的概率为1-=.8.在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为( )A. B. C. D.【解析】选B.由于区间[1,6]的长度是6-1=5,由2x∈[2,4],则x∈[1,2],长度为2-1=1,故在区间[1,6]上随机取一实数,则该实数使得2x∈[2,4]的概率P=.9.(2015·东营高一检测)在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-【解析】选B.若使函数有零点,必须Δ=(2a)2-4(-b2+π2)≥0,即a2+b2≥π2.在坐标轴上将a,b的取值范围标出,如图所示.当a,b满足函数有零点时,以(a,b)为坐标的点位于正方形内、圆外的部分(如阴影部分所示),于是所求的概率为1-=1-.10.(2015·石家庄高一检测)在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )A.恰有2件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品【解析】选C.将3件一等品编号为1,2,3;2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P1=,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P2=,其对立事件是“至多有一件一等品”,概率为P3=1-P2=1-=.11.记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为( )A. B. C. D.【解析】选A.区域Ω1为圆心在原点,半径为4的圆,区域Ω2为等腰直角三角形,两腰长为4,所以P===.12.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:所用时间(分钟)[0,20) [20,40) [40,60) [60,80) [80,100) 人数25 50 15 5 5公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘市时间t(分钟)的关系是y=200+40,其中表示不超过的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为( )A.0.5B.0.7C.0.8D.0.9【解析】选D.当0≤t<60时,y≤300.记事件“公司1人每月用于路途补贴不超过300元”为事件A.则P(A)=++=0.9.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得为红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)= .(结果用最简分数表示)【解析】由互斥事件概率公式得P(A∪B)=+=.答案:14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.【解析】从长度为2,3,4,5的四条线段中任意取出3条共有4种不同的取法,其中可构成三角形的有(2,3,4),(2,4,5),(3,4,5)三种,故所求概率P=.答案:15.将号码分别为1,2,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于.【解析】甲、乙两人每人摸出一个小球都有9种不同的结果,故基本事件为(1,1),(1,2),(1,3),…,(9,7),(9,8),(9,9),共81个.由不等式a-2b+10>0得2b<a+10,于是,当b=1,2,3,4,5时,每种情形a可取1,2,…,9中每个值,使不等式成立,则共有45种;当b=6时,a可取3,4…,9中每个值,有7种;当b=7时,a可取5,6,7,8,9中每个值,有5种;当b=8时,a可取7,8,9中每一个值,有3种;当b=9时,a只能取9,有1种.于是,所求事件的概率为=.答案:16.两人相约在0时到1时之间相遇,早到者应等迟到者20分钟方可离去.如果两人出发是各自独立的,且在0时到1时之间的任何时刻相遇是等概率的,问两人相遇的概率为. 【解析】假设两人分别在x时与y时到达,依题意:|x-y|≤才能相遇.显然到达时间的全部可能结果均匀分布在如图的单位正方形I内,而相遇现象,则发生在图中阴影区域G中,由几何概型的概率公式:P===.所以,两人相遇的可能性为.答案:三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率.(1)所得的三位数大于400.(2)所得的三位数是偶数.【解析】1,5,6三个数字可以排成156,165,516,561,615,651,共6个不同的三位数.(1)大于400的三位数的个数为4,所以P==.(2)三位数为偶数的有156,516,共2个,所以所求的概率为P==.18.(12分)某地区的年降水量在下列范围内的概率如表所示:年降水量100~150 150~200 200~250 250~300 (单位:mm)概率0.12 0.25 0.16 0.14(1)求年降水量在100~200(mm)范围内的概率.(2)求年降水量在150~300(mm)范围内的概率.【解析】记这个地区的年降水量在100~150(mm),150~200(mm),200~250(mm),250~300(mm)范围内分别为事件A,B,C,D.这四个事件是彼此互斥的,根据互斥事件的概率加法公式,有(1)年降水量在100~200(mm)范围内的概率是P(A∪B)=P(A)+P(B)=0.12+0.25=0.37.(2)年降水量在150~300(mm)范围内的概率是P(B∪C∪D)=P(B)+P(C)+P(D)=0.25+0.16+0.14=0.55.19.(12分)已知集合M={(x,y)|x∈[0,2],y∈[-1,1]}(1)若x,y∈Z,求x+y≥0的概率.(2)若x,y∈R,求x+y≥0的概率.【解析】(1)设“x+y≥0,x,y∈Z”为事件A,x,y∈Z,x∈[0,2],即x=0,1,2;y∈[-1,1],即y=-1,0,1.则基本事件有:(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)共9个.其中满足“x+y≥0”的基本事件有8个,所以P(A)=.故x,y∈Z,x+y≥0的概率为.(2)设“x+y≥0,x,y∈R”为事件B,因为x∈[0,2],y∈[-1,1],则基本事件为如图四边形ABCD区域,事件B包括的区域为其中的阴影部分.所以P(B)====,故x,y∈R,x+y≥0的概率为.20.(12分)(2015·山东高考)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如表(单位:人)参加书法社团未参加书法社团参加演讲社团8 5未参加演讲社团 2 30(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率.(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.【解题指南】将符合要求的基本事件一一列出.【解析】(1)记“该同学至少参加上述一个社团为事件A”,则P(A)==.所以该同学至少参加上述一个社团的概率为.(2)从5名男同学和3名女同学中各随机选1人的所有基本事件有(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3),(A4,B1),(A4,B2),(A4,B3),(A5,B1),(A5,B2),(A5,B3)共15个,其中A1被选中且B1未被选中的有(A1,B2),(A1,B3)共2个,所以A1被选中且B1未被选中的概率为P=.21.(12分)甲、乙两人相约于下午1:00~2:00之间到某车站乘公共汽车外出,他们到达车站的时间是随机的.设在下午1:00~2:00之间该车站有四班公共汽车开出,开车时间分别是1:15,1:30,1:45,2:00.求他们在下述情况下乘同一班车的概率:(1)约定见车就乘.(2)约定最多等一班车.【解题指南】本题是几何概型.解题关键是充分理解题意,画出示意图,明确总的基本事件和符合条件的基本事件构成的空间,然后利用几何概型概率计算公式计算求解即可.【解析】设甲、乙到站的时间分别是x,y,则1≤x≤2,1≤y≤2.试验区域D为点(x,y)所形成的正方形,以16个小方格表示,示意图如图a所示.(1)如图b所示,约定见车就乘的事件所表示的区域如图b中4个加阴影的小方格所示,于是所求的概率为=.(2)如图c所示,约定最多等一班车的事件所示的区域如图c中的10个加阴影的小方格所示,于是所求的概率为=.22.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.【解析】(1)由题意可知:=,解得n=2.(2)①不放回地随机抽取2个小球的所有基本事件为:(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,事件A包含的基本事件为:(0,21),(0,22),(21,0),(22,0),共4个.所以P(A)==.②记“x2+y2>(a-b)2恒成立”为事件B,则事件B等价于“x2+y2>4”,(x,y)可以看成平面中的点,则全部结果所构成的区域Ω={(x,y)|0≤x≤2,0≤y≤2,x,y∈R},而事件B所构成的区域B={(x,y)|x2+y2>4,(x,y)∈Ω},所以P(B)===1-.。
数学必修3第三章概率测试题(附答案)
高中数学必修3第三章 概率单元检测一、选择题1.任取两个不同的1位正整数,它们的和是8的概率是( ). A .241 B .61C .83D .121 2.在区间⎥⎦⎤⎢⎣⎡2π2π ,-上随机取一个数x ,cos x 的值介于0到21之间的概率为( ).A .31B .π2C .21D .32 3.从集合{1,2,3,4,5}中,选出由3个数组成子集,使得这3个数中任何两个数的和不等于6,则取出这样的子集的概率为( ).A .103B .107C .53D .52 4.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ).A .103B .51C .101D .121 5.从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( ).A .12513B .12516C .12518D .12519 6.若在圆(x -2)2+(y +1)2=16内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( ).A .21B .31C .41D .161 7.已知直线y =x +b ,b ∈[-2,3],则该直线在y 轴上的截距大于1的概率是( ).A .51 B .52 C .53D .54 8.在正方体ABCD -A 1B 1C 1D 1中随机取点,则点落在四棱锥O -ABCD (O 为正方体体对角线的交点)内的概率是( ).A .61 B .31C .21D .32 9.抛掷一骰子,观察出现的点数,设事件A 为“出现1点”,事件B 为“出现2点”.已知P (A )=P (B )=61,则“出现1点或2点”的概率为( ). A .21 B .31C .61D .121 二、填空题10.某人午觉醒来,发觉表停了,他打开收音机想听电台报时,假定电台每小时报时一次,则他等待的时间短于10分钟的概率为___________.11.有A ,B ,C 三台机床,一个工人一分钟内可照看其中任意两台,在一分钟内A 未被照看的概率是 .12.抛掷一枚均匀的骰子(每面分别有1~6点),设事件A 为“出现1点”,事件B 为“出现2点”,则“出现的点数大于2”的概率为 .13.已知函数f (x )=log 2x , x ∈⎥⎦⎤⎢⎣⎡221 ,,在区间⎥⎦⎤⎢⎣⎡221 ,上任取一点x 0,使f (x 0)≥0的概率为 .14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是 .15.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b .则a +b 能被3整除的概率为 .三、解答题16.射手张强在一次射击中射中10环、9环、8环、7环、7环以下的概率分别是0.24、0.28、0.19、0.16、0.13.计算这个射手在一次射击中:(1)射中10环或9环的概率;(2)至少射中7环的概率;(3)射中环数小于8环的概率.17.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h,乙船停泊时间为2 h,求它们中的任意一艘都不需要等待码头空出的概率.18.同时抛掷两枚相同的骰子(每个面上分别刻有1~6个点数,抛掷后,以向上一面的点数为准),试计算出现两个点数之和为6点、7点、8点的概率分别是多少?19.从含有两件正品a1,a2和一件次品b的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.参考答案一、选择题 1.D解析:1位正整数是从1到9共9个数,其中任意两个不同的正整数求和有8+7+6+5+4+3+2+1=36种情况,和是8的共有3种情况,即(1,7),(2,6),(3,5),所以和是8的概率是121. 2.A解析: 在区间⎥⎦⎤⎢⎣⎡2π2π- ,上随机取一个数x ,即x ∈⎥⎦⎤⎢⎣⎡2π2π- ,时,要使cos x 的值介于0到21之间,需使-2π≤x ≤-3π或3π≤x ≤2π,两区间长度之和为3π,由几何概型知cos x 的值介于0到21之间的概率为π3π=31.故选A.3.D解析:从5个数中选出3个数的选法种数有10种,列举出各种情形后可发现,和等于6的两个数有1和5,2和4两种情况,故选出的3个数中任何两个数的和不等于6的选法有(10-3×2)种,故所求概率为104=52. 4.A解析:从五个球中任取两个共有10种情形,而取出的小球标注的数字之和为3或6的只有3种情况:即1+2=3,2+4=6,1+5=6,,故取出的小球标注的数字之和为3或6的概率为103. 5.D解析:由于一个三位数,各位数字之和等于9,9是一个奇数,因此这三个数必然是“三个奇数”或“一个奇数两个偶数”.又由于每位数字从1,2,3,4,5中抽取,且允许重复,因此,三个奇数的情况有两种:(1)由1,3,5组成的三位数,共有6种;(2)由三个3组成的三位数,共有1种.一个奇数两个偶数有两种:(1)由1,4,4组成的三位数,共有3种;(2)由3,2,4组成的三位数,共有6种;(3)由5,2,2组成的三位数,共有3种.再将以上各种情况组成的三位数的个数加起来,得到各位数字之和等于9的三位数,共有19种.又知从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数共有53=125种.因此,所求概率为12519. 6.D解析:所求概率为224π1π⨯⨯ =161. 7.B解析:区域Ω为区间[-2,3],子区域A 为区间(1,3],而两个区间的长度分别为5,2. 8.A解析:所求概率即为四棱锥O -ABCD 与正方体的体积之比. 9.B解析:A ,B 为互斥事件,故采用概率的加法公式P (A +B )=P (A )+(B )=61+61=31. 二、填空题 10.61. 解析:因为电台每小时报时一次,我们自然认为这个人打开收音机时处于两次报时之间,例如(13∶00,14∶00),而且取各点的可能性一样,要遇到等待时间短于10分钟,只有当他打开收音机的时间正好处于13∶50至14∶00之间才有可能,相应的概率是6010=61. 11.31.解析:基本事件有A ,B ;A ,C ;B ,C 共3个,A 未被照看的事件是B ,C ,所以A未被照看的概率为31.12.32. 解析:A ,B 为互斥事件,故采用概率的加法公式得P (A +B )=31,1-P (A +B )=32.13.32. 解析:因为f (x )≥0,即log 2 x 0≥0,得x 0≥1,故使f (x )≥0的x 0的区域为[1,2]. 14.34. 解析:从长度为2,3,4,5的四条线段中任意取出3条共有4种不同的取法,其中可构成三角形的有(2,3,4),(2,4,5),(3,4,5)三种,故所求概率P =43. 15.13.解析:把一颗骰子抛掷2次,共有36个基本事件.设“a +b 能被3整除”为事件A ,有(1,2),(2,1),(1,5),(2,4),(3,3),(4,2),(5,1),(3,6),(4,5),(5,4),(6,3),(6,6),共12个.P (A )=13.三、解答题16.解:设“射中10环”、“射中9环”、“射中8环”、“射中7环”、“射中7环以下”的事件分别为A ,B ,C ,D ,E ,则(1)P (A ∪B )=P (A )+P (B )=0.24+0.28=0.52. 所以,射中10环或9环的概率为0.52.(2)P (A ∪B ∪C ∪D )= P (A )+P (B )+P (C )+P (D )=0.24+0.28+0.19+0.16=0.87. 所以,至少射中7环的概率为0.87.(3)P (D ∪E )=P (D )+P (E )=0.16+0.13=0.29. 所以,射中环数小于8环的概率为0.29.17.解:这是一个几何概型问题.设甲、乙两艘船 到达码头的时刻分别为x 与y ,A 为“两船都不需要等待 码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要 等待码头空出,当且仅当甲比乙早到达1h 以上或乙比甲 早到达2h 以上,即y -x ≥1或x -y ≥2.故所求事件构 成集合A ={(x ,y )| y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 对应图中阴影部分,全部结果构成集合Ω为边长是24的正方形. 由几何概型定义,所求概率为P (A )=的面积的面积ΩA =22224212-24211-24⨯⨯+)()(=5765.506=0.879 34.18.解:将两只骰子编号为1号、2号,同时抛掷,则可能出现的情况有6×6=36种,即n =36.出现6点的情况有(1,5),(5,1),(2,4),(4,2),(3,3).∴m 1=5, ∴概率为P 1=n m 1=365. 出现7点的情况有(1,6),(6,1),(2,5),(5,2),(3,4),(4,3).23 22∴m 2=6, ∴概率为P 2=n m 2=366=61. 出现8点的情况有(2,6),(6,2),(3,5),(5,3),(4,4). ∴m 3=5, ∴概率为P 3=n m 3=365. 19.解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a 1,a 2),(a 1,b ),(a 2,a 1),(a 2,b ),(b ,a 1),(b ,a 2)。
高中数学概率统计专题练习题及答案
高中数学概率统计专题练习题及答案一、选择题1. 掷一枚骰子,结果为奇数的概率是多少?A. 1/2B. 1/6C. 2/3D. 1/32. 从1至20这20个数字中随机选出一个数,选出的数是素数的概率是多少?A. 1/5B. 1/4C. 1/2D. 2/53. 一只盒子中有5张红牌和3张蓝牌,从中随机抽取2张牌,同时放回,再随机抽取2张牌,求两次抽取都是红牌的概率是多少?A. 1/16B. 3/8C. 1/4D. 1/8二、计算题1. 一次考试中,甲乙丙三位同学都有70%的概率通过考试。
求三位同学中至少有一位通过考试的概率。
答案:1 - (1 - 0.7)^3 = 0.9732. 从1至100这100个数字中随机选出一个数,选出的数是2的倍数且小于等于50的概率是多少?答案:50/100 = 0.53. 有A、B两个车站,A车站开往B车站的列车间隔是15分钟,B车站开往A车站的列车间隔是10分钟。
现在一个人随机到达A车站,请问他至少要等待几分钟才能搭乘到开往B车站的列车?答案:最小公倍数(15, 10) = 30分钟三、应用题1. 每个学生参加一次足球比赛的概率是0.4,问一个班级20个同学中至少有10个学生参加比赛的概率是多少?答案:利用二项分布公式,计算P(X≥10),其中n=20,p=0.4,k≥10。
答案约为0.599。
2. 一批产品有10%的次品率,现从中随机抽取20个产品,求其中恰好有3个次品的概率。
答案:利用二项分布公式,计算P(X=3),其中n=20,p=0.1,k=3。
答案约为0.201。
3. 一支篮球队最近10场比赛中获胜的概率是0.8,在下一场比赛中,求该队至少获胜8次的概率。
答案:利用二项分布公式,计算P(X≥8),其中n=10,p=0.8,k≥8。
答案约为0.967。
以上为高中数学概率统计专题练习题及答案。
希望对您的学习有所帮助!。
高二数学概率试题
高二数学概率试题1.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则A.n=8,p=0.2B.n=4,p=0.4C.n=5,p=.32D.n=7,p=0.45【答案】A【解析】由二项分布的均值和方差得,解的【考点】二项分布的均值和方差.2.某校举行综合知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有6次答题的机会,选手累计答对4题或答错3题即终止其初赛的比赛,答对4题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题连续两次答错的概率为(已知甲回答每道题的正确率相同,并且相互之间没有影响).(Ⅰ)求选手甲回答一个问题的正确率;(Ⅱ)求选手甲可以进入决赛的概率.【答案】(Ⅰ);(Ⅱ);(Ⅲ).【解析】解题思路:(Ⅰ)利用对立事件的概率求解;(Ⅱ)利用相互独立事件同时发生的概率公式求解(Ⅲ)利用二项分布的概率公式和互斥事件的概率公式求解.规律总结:涉及概率的求法,要掌握好基本的概率模型,正确判断概率类型,合理选择概率公式. 试题解析:(1)(Ⅰ)设选手甲答对一个问题的正确率为,则故选手甲回答一个问题的正确率(Ⅱ)选手甲答了4道题进入决赛的概率为;(Ⅲ)选手甲答了5道题进入决赛的概率为;选手甲答了6道题进入决赛的概率为;故选手甲可进入决赛的概率.【考点】1.互斥事件与对立事件;2.二项分布.3.将二颗骰子各掷一次,设事件A=“二个点数不相同”,B=“至少出现一个6点”,则概率等于()A.B.C.D.【答案】A【解析】由条件概率计算公式:,,要求点数至少含有6且点数不同,含有6有11中,而其中相同的就一种,故,【考点】条件概率的计算.4.为了解某班学生关注NBA是否与性别有关,对本班48人进行了问卷调查得到如下的列联表:已知在全班48人中随机抽取1人,抽到关注NBA 的学生的概率为2/3 ⑴请将上面列连表补充完整,并判断是否有的把握认为关注NBA 与性别有关?⑵现从女生中抽取2人进一步调查,设其中关注NBA 的女生人数为X ,求X 的分布列与数学期望. 附:,其中【答案】(1)关注NBA 与性别有关;(2)分布列(略),E (X )=1.【解析】(1)本小题独立性检测的应用,本小题的关键是计算出的观测值,和对应的临界值,根据关注NBA 的学生的概率为,可知关注NBA 的学生为32(估计值).根据条件填满表格,然后计算出,并判断其与的大小关系,得出结论.(2)对于分布列问题:首先应弄清随机变量是谁以及随机变量的取值范围,然后就是每个随机变量下概率的取值,最后列表计算期望. 试题解析:(1)将列联表补充完整有:由,计算可得4分因此,在犯错的概率不超过0.05的前提下认为学生关注NBA 与性别有关,即有把握认为关注NBA 与性别有关 6分 (2)由题意可知,X 的取值为0,1,2,,,9分所以X 的分布列为)=1. 12分【考点】(1)独立性检测应用;(2)随机变量的分布列与期望.5.实验北校举行运动会,组委会招墓了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10 人和6人喜爱运动,其余不喜爱.(1)根据以上数据完成以下列联表:(2)根据列联表的独立性检验,有多大的把握认为性别与喜爱运动有关?(3)从不喜爱运动的女志愿者中和喜爱运动的女志愿者中各选1人,求其中不喜爱运动的女生甲及喜爱运动的女生乙至少有一人被选取的概率.参考公式:(其中)没有关联90%95%99%【答案】(1)见解析;(2)性别与喜爱运动没有关联;(3).【解析】(1)独立性检验关键是计算出,并同概率表作对比,选择适合的临界值,得出是否具有相关性结论;(2)古典概型概率的计算,间接法:“1”减去既没有甲乙的概率.试题解析:(1)由已知得:喜爱运动不喜爱运动总计(2)由已知得:,则:(选择第一个).则:性别与喜爱运动没有关联. 8分(3)记不喜爱运动的女生甲及喜爱运动的女生乙至少有一人被选取为事件A,由已知得:从不喜爱运动的女志愿者中和喜爱运动的女志愿者中各抽取1人共有种方法,其中不喜爱运动的女生甲及喜爱运动的女生乙没有一人被选取的共有种方法,则:12分【考点】(1)独立性检测;(2)古典概型.6.一个口袋中装有大小形状完全相同的红色球个、黄色球个、蓝色球个.现进行从口袋中摸球的游戏:摸到红球得分、摸到黄球得分、摸到蓝球得分.若从这个口袋中随机地摸出个球,恰有一个是黄色球的概率是.⑴求的值;⑵从口袋中随机摸出个球,设表示所摸球的得分之和,求的分布列和数学期望.【答案】(1),(2)的分布列为:.【解析】(1)本小题为古典概型,基本事件的种数为:,事件:从口袋中随机地摸出个球,有一个是黄色球的方法数为:,即可构建关于的方程;(2)易知取值为,利用古典概型概率公式,易求的每个取值对应的概率,从而可列出分布列,并求出数学期望.试题解析:⑴由题意有,即,解得;⑵取值为.则,,,,的分布列为:故.【考点】古典概型概率公式,分布列,数学期望公式.7.设随机变量服从,则的值是()A.B.C.D.【答案】A【解析】因为随机变量服从,所以,故选A.【考点】二项分布.8.某学校从4名男生和2名女生中任选3人作为参加上海世博会的志愿者,设随机变量X表示所选3人中女生的人数,则P(X≥1)=________.【答案】【解析】P(X≥1)=P(X=1)+P(X=2)=+=9.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100 天玫瑰花的日需求量(单位:枝),整理得下表:(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.【答案】(1)76.4 (2)0.7【解析】解:(Ⅰ).(Ⅱ)(i)这100天的平均利润为(ii) 销量为16枝时,利润为75元,故当天的利润不少于75元的概率为【考点】函数与概率点评:主要是考查了分段函数与均值以及概率的求解,属于中档题。
(典型题)高中数学必修三第三章《概率》测试题(有答案解析)(1)
一、选择题1.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是A .316B .38C .14D .182.福建省第十六届运动会将于2018年在宁德召开,组委会预备在会议期间从3女2男共5名志愿者中任选2名志愿者参考接待工作,则选到的都是女性志愿者的概率为( )A .110B .310C .12D .353.如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )A .8πB .16π C .18π-D .116π-4.中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1-9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数中,能被3整除的概率是( )A .518B .718C .716D .5165.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为( ) A .35B .79C .715D .31456.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级,若给获得巨大贡献的7人进行封爵,要求每个等级至少有一人,至多有两人,则伯爵恰有两人的概率为( ) A .310B .25C .825D .357.将一枚质地均匀的硬币连掷三次,设事件A :恰有1次正面向上;事件B :恰有2次正面向上,则()P A B +=( ) A .23B .14C .38D .348.如图,正方形ABNH 、DEFM 的面积相等,23CN NG AB ==,向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为( )A .12B .34C .27D .389.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .41310.已知三棱锥P ﹣ABC 的6条棱中,有2条长为1,有4条长为2,则从中任意取出的两条,这两条棱长度相等的概率为( ) A .815B .715C .45D .3511.从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为 A .0.24B .0.26C .0.288D .0.29212.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A .()23323ππ-- B .()323π-C .()323π+ D .()23323ππ-+二、填空题13.如图,在边长为1的正方形中随机撒一粒黄豆,则它落在阴影部分的概率为_______.14.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.15.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.16.五位德国游客与七位英国游客在游船上任意站成一排拍照,则五位德国游客互不相邻的概率为_______.17.在区间[2,4]-上随机地取一个实数x ,若实数x 满足||x m ≤的概率为23,则m =_______.18.已知四棱锥P ABCD -的所有顶点都在球O 的球面上,PA ⊥底面ABCD ,底面ABCD 为正方形, 2.PA AB ==现在球O 的内部任取一点,则该点取自四棱锥P ABCD -的内部的概率为______.19.从1,2,3,4中任取两个不同的数,则取出的2个数之差的绝对值小于或等于2的概率为__________.20.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是________三、解答题21.某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是23,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X 的分布列. (3)求这位挑战者闯关成功的概率.22.新冠病毒肆虐全球,尽快结束疫情是人类共同的期待,疫苗是终结新冠疫情最有力的科技武器,为确保疫苗安全性和有效性,任何疫苗在投入使用前都要经过一系列的检测及临床试验,周期较长.我国某院士领衔开发的重组新冠疫苗在动物猕猴身上进行首次临床试验.相关试验数据统计如下:已知从所有参加试验的猕猴中任取一只,取到“注射重组新冠疫苗”猕猴的概率为5 12.(1)根据以上试验数据判断,能否有99.9%以上的把握认为“注射重组新冠疫苗”有效?(2)若从上述已感染新冠病毒的猕猴中任取三只进行病理分析,求至少取到两只注射了重组新冠疫苗的猕猴的概率.附:22(),()()()()n ad bcK n a b c da b a c c d b d-==+++ ++++23.一个盒子里装有m个均匀的红球和n个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为13,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为10 11.(1)求m,n的值;(2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率. 24.一次考试结束后,随机抽查了某校高三(1)班5名同学的数学与物理成绩如下表:(Ⅰ)分别求这5名同学数学与物理成绩的平均分与方差,并估计该班数学与物理成绩那科更稳定;(Ⅱ)从以上5名同学中选2人参加一项活动,求选中的学生中至少有一个物理成绩高于90分的概率.25.为了弘扬中华民族传统文化,某中学高二年级举行了“爱我中华,传诵经典”的考试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.(1)若该年级共有1000名学生,试利用样本估计该年级这次考试中优秀生人数; (2)试估计这次参加考试的学生的平均成绩(同一组数据用该组区间中点值作代表); (3)若在样本中,利用分层抽样从成绩不低于70分的学生中随机抽取6人,再从中抽取2人赠送一套国学经典典籍,试求恰好抽中2名优秀生的概率.26.2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课辅导,每天共200分钟.教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了80名学生(其中男女生恰好各占一半)进行问卷调查,按男女生分为两组,再将每组学生在线学习时间(分钟)分为5组[0,40],(40,80],(80,120],(120,160],(160,200]得到如图所示的频率分布直方图.全区高三学生有3000人(男女生人数大致相等),以频率估计概率回答下列问题:(1)估计全区高三学生中网上学习时间不超过40分钟的人数;(2)在调查的80名高三学生且学习时间不超过40分钟的学生中,男女生按分层抽样的方法抽取6人.若从这6人中随机抽取2人进行电话访谈,求至少抽到1名男生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】设2AB =,则1BC CD DE EF ====.∴1124BCI S ∆==,112242BCI EFGHS S ∆==⨯=平行四边形 ∴所求的概率为113422216P +==⨯ 故选A. 2.B解析:B 【解析】设3名女志愿者为,,A B C ,2名男志愿者为,a b ,任取2人共有,,,,,,,,,Aa Ab Ba Bb Ca Cb AB AC BC ab ,共10种情况,都是女性的情况有,,AB AC BC三种情况,故选到的都是女性志愿者的概率为310,故选B. 3.C解析:C 【分析】设黑色小圆的半径为r ,则黑色大圆的半径为2r ,由题意求得r ,进一步求出黑色区域的面积,由测度比是面积比得答案. 【详解】解:设黑色小圆的半径为r ,则黑色大圆的半径为2r , 由题意可知,88r =,即1r =.∴图中黑色区域的面积为222884412648ππππ⨯-⨯+⨯⨯+⨯=-,又正方形的面积为64.∴在正方形图案上随机取一点,则该点取自黑色区域的概率为6481648ππ-=-. 故选:C . 【点睛】本题考查几何概型的概率的求法,考查数形结合的解题思想方法,属于中档题.4.D解析:D 【分析】根据题意把6根算筹所能表示的两位数列举出来后,计算哪些能被3整除即可得概率. 【详解】1根算筹只能表示1,2根根算筹可以表示2和6,3根算筹可以表示3和7,4根算筹可以表示4和8,5根算筹可以表示5和9,因此6根算筹表示的两位数有15,19,51,91,24,28,64,68,42,82,46,86,37,33,73,77共16个,其中15,51,24,42,33共5个可以被3整除, 所以所求概率为516P =.故选:D.【点睛】本题考查古典概型,考查中国古代数学文化,解题关键是用列举法写出6根算筹所能表示的两位数.5.A解析:A【分析】若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:139 25P=⨯,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:237 59P=⨯,由此能求出再从盒中取出一个球,则此时取出黄色球的概率.【详解】盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:1329 515 2P=⨯=,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:2377 5915P=⨯=,∴再从盒中取出一个球,则此时取出黄色球的概率为:1221573155P P P=+=+=,故选:A.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式、互斥事件概率计算公式等基础知识,考查运算求解能力,属于中档题.6.B解析:B【分析】根据部分平均分组分配的方法可求得分法总数和伯爵恰有两人的分法数,根据古典概型概率公式可求得结果.【详解】7人进行封爵,每个等级至少一人,至多两人,则共有2211225575327555322322C C C C C C AAA A A⋅=种分法;其中伯爵恰有两人的分法有2211142247532247543232C C C CC A C C AA A⋅=种分法,∴伯爵恰有两人的概率2247542257552225C C A p C C A A ==.故选:B . 【点睛】本题考查数学史与古典概型概率问题的求解,关键是能够利用排列组合中不平均分组分配的方法确定分法总数和符合题意的分法数.7.D解析:D 【分析】根据题意,列举出所有的基本事件,再分别找出满足事件A 与事件B 的事件个数,分别求出其概率,最后再相加即可. 【详解】根据题意,将一枚质地均匀的硬币连掷三次,可能出现的情况有以下8种:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反).满足事件A :恰有1次正面向上的基本事件有(正反反),(反正反),(反反正)三种,故3()8P A =;满足事件B :恰有2次正面向上的基本事件有(正正反),(正反正),(反正正)三种,故3()8P B =;因此,3()()()4P A B P A P B +=+=. 故选:D. 【点睛】本题主要考查利用列举法计算基本事件的个数以及求解事件发生的概率.8.C解析:C 【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH 的面积,由测度比为面积比得答案. 【详解】如图所示,由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等, 设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2, 则阴影部分的面积为224⨯=,多边形ABCDEFGH 的面积为2332214⨯⨯-⨯=. 则向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为42147=. 故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH 的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.9.C解析:C 【分析】 由题意求出7AB BD =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即7AB BD =,所以7AB FD =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.10.B解析:B 【分析】从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=,由此能求出这两条棱长度相等的概率. 【详解】解:三棱锥P ABC -的6条棱中,有2条长为1,有4条长为2,从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=, ∴这两条棱长度相等的概率715m p n ==. 故选:B .【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.11.C解析:C 【分析】首先分析可能的情况:(白,非白,白)、(白,白,非白)、(非白,白,白),然后计算相应概率. 【详解】因为摸一次球,是白球的概率是0.4,不是白球的概率是0.6, 所以0.40.60.40.40.40.60.60.40.40.288P =⨯⨯+⨯⨯+⨯⨯=, 故选C. 【点睛】本题考查有放回问题的概率计算,难度一般.12.A解析:A 【分析】设2BC =,将圆心角为3π的扇形面积减去等边三角形的面积可得出弓形的面积,由此计算出图中“勒洛三角形”的面积,然后利用几何概型的概率公式可计算出所求事件的概率. 【详解】如下图所示,设2BC =,则以点B 为圆心的扇形面积为2122=233ππ⨯⨯, 等边ABC ∆的面积为212sin 323π⨯⨯=,其中一个弓形的面积为233π-, 所以,勒洛三角形的面积可视为一个扇形面积加上两个弓形的面积,即222322333πππ⎛⎫+⨯-=- ⎪⎝⎭, ∴在勒洛三角形中随机取一点,此点取自正三角形外部的概率()()323312323πππ--=--,故选A.【点睛】本题考查几何概型概率的计算,解题的关键就是要求出图形相应区域的面积,解题时要熟悉一些常见平面图形的面积计算方法,考查计算能力,属于中等题.二、填空题13.【分析】利用定积分求得阴影部分的面积然后利用几何概型的概率计算公式即可求解【详解】由题意结合定积分可得阴影部分的面积为由几何概型的计算公式可得黄豆在阴影部分的概率为【点睛】本题主要考查了定积分的几何解析:1 3【分析】利用定积分求得阴影部分的面积,然后利用几何概型的概率计算公式,即可求解.【详解】由题意,结合定积分可得阴影部分的面积为311221 (1()|33S dx x x=-=-=⎰,由几何概型的计算公式可得,黄豆在阴影部分的概率为113113 p==⨯.【点睛】本题主要考查了定积分的几何意义求解阴影部分的面积,以及几何概型及其概率的计算问题,其中解答中利用定积分的几何意义求得阴影部分的面积是解答的关键,着重考查了推理与计算能力,属于基础题.14.【分析】基本事件总数选中的都是男医生包含的基本事件个数根据对立事件的概率能求出选中的至少有1名女医生的概率【详解】因为医疗团队从3名男医生和2名女医生志愿者所以随机选取2名医生赴湖北支援共有个基本事解析:7 10【分析】基本事件总数2510n C==,选中的都是男医生包含的基本事件个数233m C==,根据对立事件的概率能求出选中的至少有1名女医生的概率.【详解】因为医疗团队从3名男医生和2名女医生志愿者,所以随机选取2名医生赴湖北支援共有2510n C==个基本事件,又因为选中的都是男医生包含的基本事件个数233m C==,所以至少有1名女医生被选中的概率为3711010 P=-=.故答案为:7 10【点睛】本题主要考查了排列组合,古典概型,对立事件,属于中档题.15.【解析】基本事件总数为36点数之和小于10的基本事件共有30种所以所求概率为【考点】古典概型【名师点睛】概率问题的考查侧重于对古典概型和对立事件的概率的考查属于简单题江苏对古典概型概率的考查注重事件解析:56【解析】基本事件总数为36,点数之和小于10的基本事件共有30种,所以所求概率为305.366= 【考点】古典概型【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率的考查,属于简单题.江苏对古典概型概率的考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往利用对立事件的概率公式进行求解.16.【分析】基本事件总数五位德国游客互不相邻包含的基本事件个数为:由此能求出五位德国游客互不相邻的概率【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照基本事件总数五位德国游客互不相邻包含的 解析:799【分析】基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =,由此能求出五位德国游客互不相邻的概率. 【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照,基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =, ∴五位德国游客互不相邻的概率为75781212799A A m p n A ===.故答案为:799.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题.17.2【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识点有长度解析:2 【分析】画出数轴,利用x 满足||x m ≤的概率,可以求出m 的值即可.【详解】 如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x , 若x 满足||x m ≤的概率为23, 则有2263m =,解得2m =, 故答案是:2. 【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.18.【分析】根据条件求出四棱锥的条件和球的体积结合几何概型的概率公式进行求解即可【详解】四棱锥扩展为正方体则正方体的对角线的长是外接球的直径即即则四棱锥的条件球的体积为则该点取自四棱锥的内部的概率故答案 23【分析】根据条件求出四棱锥的条件和球的体积,结合几何概型的概率公式进行求解即可. 【详解】四棱锥P ABCD -扩展为正方体, 则正方体的对角线的长是外接球的直径, 即32R =,即3R =则四棱锥的条件1822233V =⨯⨯⨯=,球的体积为34(3)433ππ⨯=, 则该点取自四棱锥P ABCD -的内部的概率823343P π==, 故答案为239π【点睛】本题主要考查几何概型的概率的计算,结合条件求出四棱锥和球的体积是解决本题的关键.本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.19.【解析】【分析】由题意从中任取两个不同的数共有中不同的取法再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法利用对立事件的概率计算公式即可求解【详解】由题意从中任取两个不同的数共有中解析:5 6【解析】【分析】由题意,从1,2,3,4中任取两个不同的数,共有246C=中不同的取法,再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法,利用对立事件的概率计算公式,即可求解.【详解】由题意,从1,2,3,4中任取两个不同的数,共有246C=中不同的取法,其中取出的2个数之差的绝对值大于2的只有取得到两个数为1,4时,只有一种取法,所以取出的2个数之差的绝对值小于或等于2的概率为15166 P=-=.【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中认真审题,找出基本时间的总数和所求事件的对立事件的个数,利用对立时间的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力.20.78【分析】求得4位同学各自在周六周日两天中任选一天参加公益活动周六周日都有同学参加公益活动的情况利用古典概型概率公式求解即可【详解】4位同学各自在周六周日两天中任选一天参加公益活动共有24=16种解析:【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【详解】4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故答案为:.【点睛】有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数:1.基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;2.注意区分排列与组合,以及计数原理的正确使用.三、解答题21.(Ⅰ)1718;(Ⅱ)见解析;(Ⅲ)1318.【解析】试题分析:(Ⅰ)由题意结合对立事件概率公式可得至少回答对一个问题的概率为17 18.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.计算各个分值相应的概率值即可求得总得分X的分布列;(Ⅲ)结合(Ⅱ)中计算得出的概率值可得这位挑战者闯关成功的概率值为13 18.试题(Ⅰ)设至少回答对一个问题为事件A,则()11117 133218P A=-⨯⨯=.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.根据题意,()11111033218P X=-=⨯⨯=, ()2112023329P X==⨯⨯⨯=,()2212103329P X==⨯⨯=,()11112033218P X==⨯⨯=,()21123023329P X==⨯⨯⨯=,()2212403329P X==⨯⨯=.随机变量X的分布列是:(Ⅲ)设这位挑战者闯关成功为事件B ,则()2122139189918P B =+++=. 22.(1)有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)13203. 【分析】(1)先求出,x y ,再根据独立性检验可得结论; (2)由组合的应用和古典概率公式可求得其概率. 【详解】 (1)由题知2056012y +=,即5y =,∴25x =,35A =,25B =, ∴2260(1052520)10815.42910.828352530307K ⨯⨯-⨯==≈>⨯⨯⨯,故有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)由题知试验样本中已感染新冠病毒的猕猴有30只,其中注射了重组新冠疫苗的猕猴有5只,则213525533013203C C C P C +==. 【点睛】本题考查补全列联表,独立性检验,以及组合的应用和古典概率公式,求解时注意“至少”,“至多”等,属于中档题. 23.(1)4m =,8n =(2)4255【分析】(1)设该盒子里有红球m 个,白球n 个,利用古典概型、对立事件概率计算公式列出方程组,能求出m ,n .(2) “一次从盒子里任取3个球,取到的白球个数不少于红球个数”分为“一次从盒子里任取3个球,取到的白球个数为3个”和“一次从盒子里任取3个球,取到的白球个数为2个,红球数为1个”,由此能求出取到的白球个数不小于红球个数的概率. 【详解】解:(1)设该盒子里有红球m 个,白球n 个.根据题意得221310111m m n m m n C C +⎧=⎪+⎪⎨⎪-=⎪⎩, 解方程组得4m =,8n =, 故红球有4个,白球有8个.(2)设“一次从盒子里任取3个球,取到的白球个数不少于红球个数”为事件A .设“一次从盒子里任取3个球,取到的白球个数为3个”为事件B ,则3831214()55C P B C ==设“一次从盒子里任取3个球,取到的白球个数为2个,红球个数为1个”为事件C ,则。
高中数学概率测评含解析
第七章测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列对古典概型的说法中正确的是()①试验中所有可能出现的样本点个数是有限的;②每个事件出现的可能性相等;③每个样本点出现的可能性相等;④样本点总数为n,若随机事件A包含k个样本点,则P(A)=kn.B.①③④C.①④D.③④2.下列事件:①物体在重力作用下会自由下落;②方程x2-2x+3=0有两个不相等的实数根;③下周日会下雨;④某寻呼台某天某一时段内收到传呼的次数少于10次.其中随机事件的个数为()B.2C.3D.43.已知定义在(-∞,0)∪(0,+∞)的四个函数y1=x-1,y2=x2,y3=3x,y4=3x,从四个函数中任取两个函数相乘,所得函数为奇函数的概率是()A.12B.13C.35D.34y1y2,y1y3,y1y4,y2y3,y2y4,y3y4,其中是奇函数的有y1y2,y2y4,故所求概率为26=13.4.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.110B.15C.310D.25,表中每组数据中的第一个数表示第一次取到的数,第二个数表示第二次取到的数.总计有25种情况,满足条件的有10种,所以所求概率为1025=25.5.设集合P={b,1},Q={c,1,2},P⊆Q,若b,c∈{2,3,4,5,6,7,8,9},则b=c的概率是()A.18B.14C.12D.34P={b,1},Q={c,1,2},P⊆Q, 所以b=c≠2或b=2,c≠2.又b,c∈{2,3,4,5,6,7,8,9},当b=c≠2时,b,c的取法共有7种,当b=2,c≠2时,c的取法共有7种.所以集合P,Q的构成共有14种,其中b=c的情况有7种.所以b=c的概率为714=12.6.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,则摸出黑球的概率是()B.0.28C.0.3D.0.77.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()A.49B.13C.29D.19,则个位数与十位数中必有一个奇数一个偶数,所以可以分两类:(1)当个位为奇数时,有5×4=20(个)符合条件的两位数.(2)当个位为偶数时,有5×5=25(个)符合条件的两位数.因此共有20+25=45(个)符合条件的两位数,其中个位数为0的两位数有5个,所以所求概率为P=545=19.8.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,他们“心有灵犀”的概率为()A.19B.29C.718D.49“心有灵犀”的实质是|a-b|≤1.由于a,b∈{1,2,3,4,5,6},则满足要求的事件可能的结果有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(4,5),(5,4),(5,5),(5,6),(6,5),(6,6),共16种,而依题意得样本空间的样本点总数为36.因此他们“心有灵犀”的概率为1636=49.故选D.9.有两张卡片,一张的正反面分别画着老鼠和小鸡,另一张的正反面分别画着老鹰和蛇,现在有两个小孩随机地将两张卡片排在一起放在桌面上,不考虑顺序,则向上的图案是老鹰和小鸡的概率是()A.12B.13C.14D.16,其中向上的图案是鸡鹰的概率为14.故选C.10.若a∈{1,2},b∈{-2,-1,0,1,2},则关于x的方程x2+ax+b=0有实数根的概率为()A.35B.710C.14D.38,则a2-4b≥0,即a2≥4b.则满足条件的样本点有(1,0),(1,-1),(1,-2),(2,-1),(2,0),(2,-2),(2,1)共7个,而样本空间的样本点总数为10,故所求概率为710.11.甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是()A.318B.418C.518D.6186条直线,甲、乙各自任选一条共有36个样本点.两条直线相互垂直的情况有5种(4组邻边和1组对角线),所以包含10个样本点.故所求概率为518.12.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就能获得冠军,乙队需要再赢两局才能获得冠军.若两队赢每局的概率相同,则甲队获得冠军的概率为()A.34B.23C.35D.12:情形一,第一局甲赢,其概率P1=12;情形二,需比赛2局,第一局甲负,第二局甲赢,其概率P2=12×12=14.故甲队获得冠军的概率为P1+P2=34.二、填空题(本大题共4小题,每小题5分,共20分.把答案写在题中的横线上)13.口袋中装有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为.摸出红球的概率为45100=0.45,因为摸出红球、白球和黑球是互斥事件,因此摸出黑球的概率为1-0.45-0.23=0.32..3214.三张卡片上分别写有字母E,E,B,将三张卡片随机地排成一行,恰好排成英语单词BEE的概率是.15.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得乒乓球单打冠军的概率为.“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以由互斥事件概率的加法公式得,中国队夺得女子乒乓球冠军的概率为37+14=1928.“剪刀、石头、布”游戏,随机出手一次,则甲不输的概率是 .,如图所示.从树形图可以看出,所有可能的结果共有9种,这些结果出现的可能性相等,P (甲获胜)=13;P (平局)=13,则玩一局甲不输的概率是13+13=23.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)对一批(1)计算表中各次品率;U 盘中任取一个是次品的概率约是多少?表中次品率从左到右依次为0.06,0.04,0.025,0.02,0.02,0.018.(2)由(1)计算得到的次品率知,当抽取件数a 越来越大时,出现次品的频率在0.02附近摆动,所以从这批U 盘中任抽一个是次品的概率约是0.02.18.(12分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率: (1)所得的三位数大于400; .1,5,6可得三位数:156,165,516,561,615,651,共6个.设“所得的三位数大于400”为事件A ,“所得的三位数是偶数”为事件B. 由古典概型的概率公式可得 (1)P (A )=46=23.(2)P (B )=26=13.19.(12分)已知关于x 的一元二次方程x 2-2(a-2)x-b 2+16=0,若a ,b 是一枚骰子连续抛掷两次所得到的点数,求方程有两个不相等的正实根的概率.36个,且a ,b ∈{1,2,3,4,5,6}.方程有两个不相等的正实数根等价于a-2>0,16-b 2>0,Δ>0,即a>2,-4<b<4,(a-2)2+b 2>16. 设“一元二次方程有两个正实数根”为事件A ,则事件A 所包含的样本点为(5,3),(6,1),(6,2),(6,3),共4个.故所求概率为P (A )=436=19.20.(12分)甲、乙两人玩一种游戏,每次甲、乙各出1到5根手指,若和为偶数,则甲赢,否则乙赢. (1)若以A 表示和为6的事件,求P (A );(2)现连玩三次,若以B 表示甲至少赢一次的事件,C 表示乙至少赢两次的事件,试问事件B 与C 是否为互斥事件?为什么?(3)这种游戏规则公平吗?试说明理由.样本空间与点集S={(x,y)|x∈N+,y∈N+,1≤x≤5,1≤y≤5}中的元素一一对应,因为S中点的总数为5×5=25(个),所以样本空间的样本点总数n=25.事件A包含的样本点共5个:(1,5),(2,4),(3,3),(4,2),(5,1),所以P(A)=525=15.(2)B与C不是互斥事件,因为事件B与C可以同时发生,如甲赢一次,乙赢两次.(3)这种游戏规则不公平.由(1)知,事件“和为偶数”包含的样本点有13个,所以甲赢的概率为1325>12,乙赢的概率为1225<12.因此,这种游戏规则不公平.21.(12分)如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.小明和小红利用它们做游戏,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域内的数字之和小于9,小明获胜;指针所指区域内的数字之和等于9,为平局;指针所指区域内的数字之和大于9,小红获胜(如果指针恰好指在分割线上,那么再转一次,直到指针指向一个数字为止).(1)请你通过画树状图或列表法求小明获胜的概率;(2)你认为该游戏规则是否公平?若游戏规则公平,请说明理由;若游戏规则不公平,请你设计一种公平的游戏规则.列表法:或树状图:根据列表或树状图可知,共有12种等可能的结果,其中和小于9的可能结果有6种,故小明获胜的概率为P1=612=12.(2)这个游戏不公平.因为小明获胜的概率为P1=12,小红获胜的概率为P2=312=14,显然12≠14,所以,这个游戏规则对小红不公平.设计一种公平的游戏规则:当指针所指区域内的数字之和小于9时,小明获胜;当指针所指区域内的数字之和不小于9时,小红获胜.22.(12分)某公司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79根据用户满意度评分,将用户的满意度从低到高分为三个等级:设事件C 表示“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求事件C 的概率.C A1表示:“A 地区的用户满意度为满意或非常满意”; 事件C A2表示:“A 地区用户的满意度等级为非常满意”; 事件C B1表示:“B 地区用户的满意度等级为不满意”; 事件C B2表示:“B 地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2.P (C )=P (C B1C A1∪C B2C A2)=P (C B1C A1)+P (C B2C A2)=P (C B1)P (C A1)+P (C B2)P (C A2). 由所给数据,得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,所以P (C A1)=1620,P (C A2)=420,P (C B1)=1020,P (C B2)=820. 所以P (C )=1020×1620+820×420=0.48.。
高中数学人教A版必修三 第三章 概率 学业分层测评15 Word版含答案
随机事件的概率一、选择题1.一个家庭中先后有两个小孩,则他(她)们的性别情况可能为( )A .男女、男男、女女B .男女、女男C .男男、男女、女男、女女D .男男、女女【解析】 用列举法知C 正确. 【答案】 C2.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码12 3 4 5 6 7 8 9 10 取到的次数 101188610189119则取到号码为奇数的频率是( ) A .053 B .05 C .047D .037【解析】 取到号码为奇数的频率是10+8+6+18+11100=053 【答案】 A3.给出下列三种说法:①设有一大批产品,已知其次品率为01,则从中任取100件,必有10件是次品;②作7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是n m =37;③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数是( )A .0B .1C .2D .3【解析】 由频率与概率之间的联系与区别知①②③均不正确. 【答案】 A 二、填空题6.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A ,则事件A 出现的频数为________,事件A 出现的频率为________ 【28750049】【解析】 100次试验中有48次正面朝上,则52次反面朝上,则频率=频数试验次数=52100=052【答案】 52 0527.已知随机事件A 发生的频率是002,事件A 出现了10次,那么共进行了________次试验.【解析】 设进行了n 次试验,则有10n =002,得n =500,故进行了500次试验.【答案】 5008.从100个同类产品中(其中有2个次品)任取3个.①三个正品;②两个正品,一个次品;③一个正品,两个次品;④三个次品;⑤至少一个次品;⑥至少一个正品.其中必然事件是________,不可能事件是________,随机事件是________.【解析】从100个产品(其中2个次品)中取3个可能结果是:“三个全是正品”,“两个正品,一个次品”,“一个正品,两个次品”.【答案】⑥④①②③⑤三、解答题9.(1)从甲、乙、丙、丁四名同学中选2名代表学校参加一项活动,可能的选法有哪些?(2)试写出从集合A={a,b,c,d}中任取3个元素构成集合.【解】(1)可能的选法为:(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁).(2)可能的集合为{a,b,c},{a,b,d},{a,c,d},{b,c,d}.10.一个地区从某年起几年之内的新生婴儿数及其中的男婴数如下:(1)计算男婴出生的频率;(保留4位小数)(2)这一地区男婴出生的频率是否稳定在一个常数上?【解】(1)男婴出生的频率依次是:0520 0,0517 3,0517 3,0517 3(2)各个频率均稳定在常数0517 3上.[能力提升]1.掷一枚硬币,反面向上的概率是12,若连续抛掷同一枚硬币10次,则有( )A .一定有5次反面向上B .一定有6次反面向上C .一定有4次反面向上D .可能有5次反面向上【解析】 掷一枚硬币,“正面向上”和“反面向上”的概率为12,连掷10次,并不一定有5次反面向上,可能有5次反面向上.【答案】 D2.总数为10万张的彩票,中奖率是11 000,对于下列说法正确的是( )A .买1张一定不中奖B .买1 000张一定中奖C .买2 000张不一定中奖D .买20 000张不中奖【解析】 由题意,彩票中奖属于随机事件, ∴买一张也可能中奖,买2 000张也不一定中奖. 【答案】 C3.一袋中装有10个红球,8个白球,7个黑球,现在把球随机地一个一个摸出来,为了保证在第k 次或第k 次之前能首次摸出红球,则k 的最小值为________.【解析】 至少需摸完黑球和白球共15个. 【答案】 164.某教授为了测试贫困地区和发达地区的同龄儿童的智力,出了10个智力题,每个题10分.然后作了统计,下表是统计结果.贫困地区:发达地区:(1)利用计算器计算两地区参加测试的儿童中得60分以上的频率;(2)求两个地区参加测试的儿童得60分以上的概率;(3)分析贫富差距为什么会带来人的智力的差别?【解】(1)贫困地区依次填:0533,0540,0520,0.520,0512,0503发达地区依次填:0567,0580,0560,0555,0552,0550(2)贫困地区和发达地区参加测试的儿童得60分以上的频率逐渐趋于05和055,故概率分别为05和055(3)经济上的贫困导致贫困地区生活水平落后,儿童的健康和发育会受到一定的影响;另外经济落后也会使教育事业发展落后,导致智力出现差别.。
高中数学概率大题(经典一)
高中数学概率大题(经典一)一.解答题(共10小题)1.在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.(1)如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X 的数学期望;(2)若主力队员中有2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有2名队员身材相对矮小,也不宜同时上场;那么为了场上参加比赛的5名队员中至少有3名主力队员,教练员有多少种组队方案?2.某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如表:办理业务所需的时间1 2 3 4 5(分)频率0.1 0.4 0.3 0.1 0.1从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.3.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.(1)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张?(2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值.4.一袋中有m(m∈N*)个红球,3个黑球和2个白球,现从中任取2个球.(1)当m=4时,求取出的2个球颜色相同的概率;(2)当m=3时,设ξ表示取出的2个球中黑球的个数,求ξ的概率分布及数学期望;(3)如果取出的2个球颜色不相同的概率小于,求m的最小值.5.某商场为促销设计了一个抽奖模型,一定数额的消费可以获得一张抽奖券,每张抽奖券可以从一个装有大小相同的4个白球和2个红球的口袋中一次性摸出3个球,至少摸到一个红球则中奖.(Ⅰ)求一次抽奖中奖的概率;(Ⅱ)若每次中奖可获得10元的奖金,一位顾客获得两张抽奖券,求两次抽奖所得的奖金额之和X(元)的概率分布和期望E(X).6.将一枚硬币连续抛掷15次,每次抛掷互不影响.记正面向上的次数为奇数的概率为P1,正面向上的次数为偶数的概率为P2.(Ⅰ)若该硬币均匀,试求P1与P2;(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较P1与P2的大小.7.某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:方案1:运走设备,此时需花费4000元;方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56000元;方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.(1)试求方案3中损失费ξ(随机变量)的分布列;(2)试比较哪一种方案好.8.2009年10月1日,为庆祝中华人们共和国成立60周年,来自北京大学和清华大学的共计6名大学生志愿服务者被随机平均分配到天安门广场运送矿泉水、清扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有一名北京大学志愿者的概率是.(1)求6名志愿者中来自北京大学、清华大学的各几人;(2)求清扫卫生岗位恰好北京大学、清华大学人各一人的概率;(3)设随机变量ζ为在维持秩序岗位服务的北京大学志愿者的人数,求ζ分布列及期望.9.在1,2,3,…9这9个自然数中,任取3个不同的数.(1)求这3个数中至少有1个是偶数的概率;(2)求这3个数和为18的概率;(3)设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.10.某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.(Ⅰ)求3个景区都有部门选择的概率;(Ⅱ)求恰有2个景区有部门选择的概率.参考答案与试题解析一.解答题(共10小题)1.(2016•南通模拟)在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.(1)如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X 的数学期望;(2)若主力队员中有2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有2名队员身材相对矮小,也不宜同时上场;那么为了场上参加比赛的5名队员中至少有3名主力队员,教练员有多少种组队方案?【解答】解:(1)由题意知随机变量X的取值是0、1、2、3、4、5,∵当X=0时,表示主力队员参加比赛的人数为0,以此类推,∴P(X=0)=;P(X=1)=;P(X=2)=;P(X=3)=;P(X=4)=;P(X=5)=.∴随机变量X的概率分布如下表:E(X)=0×+1×+2×+3×+4×+5×=≈2.73(2)由题意知①上场队员有3名主力,方案有:(C63﹣C41)(C52﹣C22)=144(种)②上场队员有4名主力,方案有:(C64﹣C42)C51=45(种)③上场队员有5名主力,方案有:(C65﹣C43)C50=C44C21=2(种)教练员组队方案共有144+45+2=191种.2.(2012•陕西)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如表:1 2 3 4 5办理业务所需的时间(分)频率0.1 0.4 0.3 0.1 0.1从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.【解答】解:设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布如下:Y 1 2 3 4 5P 0.1 0.4 0.3 0.1 0.1(1)A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则时间A对应三种情形:①第一个顾客办理业务所需时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以 P(A)=0.1×0.3+0.3×0.1+0.4×0.4=0.22(2)X所有可能的取值为:0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P(X=1)=0.1×0.9+0.4=0.49;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=0.1×0.1=0.01;所以X的分布列为X 0 1 2P 0.5 0.49 0.01EX=0×0.5+1×0.49+2×0.01=0.51.3.(2012•海安县校级模拟)某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.(1)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张?(2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值.【解答】解:(1)记至少一人获奖事件为A,则都不获奖的事件,设“海宝”卡n张,则任一人获奖的概率,∴,由题意:,∴n≥7.至少7张“海宝”卡,(2)ξ~的分布列为;,.4.(2011•江苏模拟)一袋中有m(m∈N*)个红球,3个黑球和2个白球,现从中任取2个球.(1)当m=4时,求取出的2个球颜色相同的概率;(2)当m=3时,设ξ表示取出的2个球中黑球的个数,求ξ的概率分布及数学期望;(3)如果取出的2个球颜色不相同的概率小于,求m的最小值.【解答】解:(1)由题意知本题是一个等可能事件的概率,∵试验发生包含的事件是从9个球中任取2个,共有C92=36种结果,满足条件的事件是取出的2个球的颜色相同,包括三种情况,共有C42+C32+C22=10设“取出的2个球颜色相同”为事件A,∴P(A)==.(2)由题意知黑球的个数可能是0,1,2P(ξ=0)=P(ξ=1)=,P(ξ=2)=∴ξ的分布列是∴Eξ=0×+1×+2×=.(3)由题意知本题是一个等可能事件的概率,事件发生所包含的事件数C x+52,满足条件的事件是C x1C31+C x1C21+C31C21,设“取出的2个球中颜色不相同”为事件B,则P(B)=<,∴x2﹣6x+2>0,∴x>3+或x<3﹣,x的最小值为6.5.(2010•鼓楼区校级模拟)某商场为促销设计了一个抽奖模型,一定数额的消费可以获得一张抽奖券,每张抽奖券可以从一个装有大小相同的4个白球和2个红球的口袋中一次性摸出3个球,至少摸到一个红球则中奖.(Ⅰ)求一次抽奖中奖的概率;(Ⅱ)若每次中奖可获得10元的奖金,一位顾客获得两张抽奖券,求两次抽奖所得的奖金额之和X(元)的概率分布和期望E(X).【解答】解:(1)由题意知本题是一个等可能事件的概率,试验发生的所有事件是从6个球中取三个,共有C63种结果,而满足条件的事件是摸到一个红球或摸到两个红球,共有C21C42+C22C41设“一次抽奖中奖”为事件A,∴即一次抽奖中奖的概率为;(2)X可取0,10,20,P(X=0)=(0.2)2=0.04,P(X=10)=C21×0.8×0.2=0.32,P(X=20)=(0.8)2=0.64,∴X的概率分布列为∴E(X)=0×0.04+10×0.32+20×0.64=16.6.(2010•盐城三模)将一枚硬币连续抛掷15次,每次抛掷互不影响.记正面向上的次数为奇数的概率为P1,正面向上的次数为偶数的概率为P2.(Ⅰ)若该硬币均匀,试求P1与P2;(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较P1与P2的大小.【解答】解:(Ⅰ)抛硬币一次正面向上的概率为,∴正面向上的次数为奇数次的概率为P1=P15(1)+P15(3)+…+P15(15)=∴(Ⅱ)∵P1=C151p1(1﹣p)14+C153p3(1﹣p)12+…+C1515p15,P2=C150p0(1﹣p)15+C152p2(1﹣p)13+…+C1514p14(1﹣p)1则P2﹣P1=C150p0(1﹣p)15﹣C151p1(1﹣p)14+C152p2(1﹣p)13+…+C1514p14(1﹣p)1﹣C1515p15=[(1﹣p)﹣p]15=(1﹣2p)15,而,∴1﹣2p>0,∴P2>P17.(2010•南通模拟)某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:方案1:运走设备,此时需花费4000元;方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56000元;方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.(1)试求方案3中损失费ξ(随机变量)的分布列;(2)试比较哪一种方案好.【解答】解:(1)在方案3中,记“甲河流发生洪水”为事件A,“乙河流发生洪水”为事件B,则P(A)=0.25,P(B)=0.18,所以,有且只有一条河流发生洪水的概率为P(A•+•B)=P(A)•P()+P()•P(B)=0.34,两河流同时发生洪水的概率为P(A•B)=0.045,都不发生洪水的概率为P(•)=0.75×0.82=0.615,设损失费为随机变量ξ,则ξ的分布列为:ξ10000 60000 0P 0.340.045 0.615(2)对方案1来说,花费4000元;对方案2来说,建围墙需花费1000元,它只能抵御一条河流的洪水,但当两河流都发生洪水时,损失约56000元,而两河流同时发生洪水的概率为P=0.25×0.18=0.045.所以,该方案中可能的花费为:1000+56000×0.045=3520(元).对于方案来说,损失费的数学期望为:Eξ=10000×0.34+60000×0.045=6100(元),比较可知,方案2最好,方案1次之,方案3最差.8.(2010•海安县校级模拟)2009年10月1日,为庆祝中华人们共和国成立60周年,来自北京大学和清华大学的共计6名大学生志愿服务者被随机平均分配到天安门广场运送矿泉水、清扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有一名北京大学志愿者的概率是.(1)求6名志愿者中来自北京大学、清华大学的各几人;(2)求清扫卫生岗位恰好北京大学、清华大学人各一人的概率;(3)设随机变量ζ为在维持秩序岗位服务的北京大学志愿者的人数,求ζ分布列及期望.【解答】解:(1)记“至少一名北京大学志愿者被分到运送矿泉水岗位”为事件A,则A的对立事件为“没有北京大学志愿者被分到运送矿泉水岗位”设有北京大学志愿者x个,1≤x<6,那么P(A)=,解得x=2,即来自北京大学的志愿者有2人,来自清华大学志愿者4人;(2)记“清扫卫生岗位恰好北京大学、清华大学志愿者各有一人”为事件E,那么P(E)=,所以清扫卫生岗位恰好北京大学、清华大学志愿者各一人的概率是;(3)ξ的所有可能值为0,1,2,P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,所以ξ的分布列为Eξ=9.(2010•苏州模拟)在1,2,3,…9这9个自然数中,任取3个不同的数.(1)求这3个数中至少有1个是偶数的概率;(2)求这3个数和为18的概率;(3)设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.【解答】解:(1)由题意知本题是一个等可能事件的概率,试验发生所包含的事件数C93,满足条件的事件3个数中至少有1个是偶数,包含三种情况一个偶数,两个偶数,三个偶数,这三种情况是互斥的,根据等可能和互斥事件的概率公式得到;(2)记“这3个数之和为18”为事件B,考虑三数由大到小排列后的中间数只有可能为5、6、7、8,分别为459,567,468,369,279,378,189七种情况,∴;(3)随机变量ξ的取值为0,1,2,P(ξ=0)=P(ξ=1)=P(ξ=2)=∴ξ的分布列为∴ξ的数学期望为.10.(2005•湖南)某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.(Ⅰ)求3个景区都有部门选择的概率;(Ⅱ)求恰有2个景区有部门选择的概率.【解答】解:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等.(I)从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有C42=6种分法,每组选择不同的景区,共有3!种选法,∴3个景区都有部门选择可能出现的结果数为C42•3!记“3个景区都有部门选择”为事件A1,∴事件A1的概率为P(A1)==.(II)先从3个景区任意选定2个,共有C32=3种选法,再让4个部门来选择这2个景区,分两种情况:第一种情况,从4个部门中任取1个作为1组,另外3个部门作为1组,共2组,每组选择2个不同的景区,共有C41•2!种不同选法.第二种情况,从4个部门中任选2个部门到1个景区,另外2个部门在另1个景区,共有C42种不同选法,∴恰有2个景区有部门选择可能的结果为3(C41•2!+C42).∴P(A2)==.。
人教A版高中数学必修三试卷第三章 概率阶段测试.docx
第三章 概率阶段测试一.选择题1.下课以后,教室里最后还剩下2位男同学,2位女同学.如果没有2位同学一块儿走,则第2位走的是男同学的概率是( ) A. 12 B. 13 C. 14 D. 152.盒中有10只螺丝钉,其中有3只是不合格的,现从盒中随机地抽取4个,那么恰有两只不合格的概率是( )A .130B .310C . 13 D .123.取一根长度为5米的绳子,拉直后在任意位置剪断,则剪得两段的长度都不小于1米,且以剪得的两段绳为两边的矩形的面积都不大于6平方米的概率为( ) A.31 B.41 C.52 D.534.有3个相识的人某天各自乘火车外出,假设火车有10节车厢,那么至少有2人在同一车厢内相遇的概率为( ) A.29200 B.725 C.29144 D.7185.甲乙两人一起去游“2010上海世博会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )A.136B.19C.536D.166.一个盒子内部有如图所示的六个小格子,现有桔子、苹果和香蕉各两个,将这六个水果随机放在这六个格子里,每个格子放一个,放好之后每行每列的水果种类各不相同的概率( )A. 215B. 29C. 15D. 137.若连续抛掷两次骰子得到的点数分别为m ,n ,则点P(m ,n)在直线x +y =4上的概率是( ) A. 13 B. 14 C. 16 D. 1128.一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A. 481π B . 81481π- C.127 D. 8279.向等腰直角三角形()ABC AC BC =其中内任意投一点M , 则AM 小于AC 的概率为( ) A .22 B .212- C . 8π D .4π 10.某农科院在3×3的9块试验田中选出3块种植某品种水稻进行试验,则每行每列都有一块试验田种植水稻的概率为( )A .156 B .114 C .17 D .314二.填空题11.甲、乙等五名社区志愿者被随机分配到D C B A 、、、四个不同岗位服务,每个岗位至少有一名志愿者,则甲、乙两人同时参加岗位A 服务的概率是_________.12.在区间(0,1)中随机地取出两个数,则两数之和小于65的概率是_________.13.在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.求取出的两个球上标号为相邻整数的概率_________.14.某旅游公司有甲、乙、丙三种特色产品,其数量分别为,,a b c (单位:件),且,,a b c成等差数列。
高中数学概率测试试题
精品试卷,请参考使用,祝老师、同学们取得好成绩!高中数学概率问题测试试卷学校:___________姓名:___________班级:___________考号:___________一.单选题(共__小题)1.从甲乙丙三人中任选两名代表,甲被选中的概率为()A.B.C.D.12.下列计算S的值的选项中,不能设计算法求解的是()A.S=1+2+3+…+90B.S=1+2+3+4C.S=1+2+3+…+n(n≥2且n∈N)D.S=12+22+32+…+10023.任何一个算法都离不开的基本结构为()A.逻辑结构B.选择结构C.循环结构D.顺序结构4.若将两个数a=8,b=17交换,使a=17,b=8,下面语句正确的一组是()A.B.C.D.二.填空题(共__小题)5.下列关于算法的说法,正确的是______.①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.6.小红帮助母亲预算家庭4月份电费开支情况,下表是小红家4月初连续8天每天早上电表显示的读数.若每度电收取电费0.42元,估计小红家4月份(按30天计)的电费是______元.(注:电表计数器上先后两次显示读数之差就是这段时间内消耗电能的度数)7.在区间[0,9]上随机取一实数,则该实数在区间[4,7]上的概率为.8.对于多项式p(x)=a n x n+a n-1x n-1+…+a1x+a0,用秦九韶算法求P(x0)可做加法和乘法的次数分别记为m,r,则当n=25时,m+r=______.9.甲、乙、丙三人在同一办公室工作,办公室只有一部电话机,给该机打进的电话是打给甲、乙、丙的概率分别是,在一段时间内该电话机共打进三个电话,且各个电话之间相互独立,则这三个电话中恰有两个是打给乙的概率是______(用分数作答)10.(2015秋•孝义市期末)已知b1是[0,1]上的均匀随机数,b=(b1-0.5)*6,则b是区间______上的均匀随机数.如图,沿田字型的路线从A往N走,且只能向右或向下走,随机地选一种走法,则经过点C的概率是______.12.三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,则有且仅有两人选择的项目相同的概率是______(结果用最简分数表示)13.每次抛掷一枚骰子(六个面上分别标以1,2,3,4,5,6).连续抛掷2次,则2次向上的数之和不小于10的概率为______.14.乡镇农技站在永丰村进行某优质高产水稻品种推广实验,在秋收时对所有试验种植户开展了调查.在前30户中有28户的单位面积产量在800kg以上,以后每9户有8户的单位面积产量在800kg以上.在已调查的种植户中单位面积产量在800kg以上的频率不小于0.9,试估计种植这种水稻的试验户最多有______户.15.已知集合A={0,3,6,9},从中任取两个元素分别作为点P(x,y)的横坐标与纵坐标,则点P恰好落入圆x2+y2=100内的概率是______.16.从5名男生和5名女生中选取4人参加比赛,要求男女生都有,那么两女生小张和小李同时被选中的概率为______.三.简答题(共__小题)17.设函数,若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,(1)求f(x)的最小值;(2)求f(x)>b恒成立的概率.18.用秦九韶算法求多项式f(x)=5x6+3x4+2x+1当x=2时的值.19.一个口袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为A,B(1)从以上五张卡片中任取两张,求这两张卡片颜色不同的概率;(2)现袋中再放入一张标号为a的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色相同的概率.20.(2015秋•黄冈期末)某射击运动员进行射击训练,前三次射击在靶上的着弹点A、B、C刚好是边长为3cm的等边三角形的三个顶点.(Ⅰ)该运动员前三次射击的成绩(环数)都在区间[7.5,8.5)内,调整一下后,又连打三枪,其成绩(环数)都在区间[9.5,10.5)内.现从这6次射击成绩中随机抽取两次射击的成绩(记为a和b)进行技术分析.求事件“|a-b|>1”的概率.(Ⅱ)第四次射击时,该运动员瞄准△ABC区域射击(不会打到△ABC外),则此次射击的着弹点距A、B、C的距离都超过1cm的概率为多少?(弹孔大小忽略不计)21.已知8人组成的抢险小分队中有3名医务人员,将这8人分为A、B两组,每组4人.(Ⅰ)求A组中恰有一名医务人员的概率;(Ⅱ)求A组中至少有两名医务人员的概率.若空气质量分为1、2、3三个等级.某市7天的空气质量等级相应的天数如图所示.(Ⅰ)从7天中任选2天,求这2天空气质量等级一样的概率;(Ⅱ)从7天中任选2天,求这2天空气质量等级数之差的绝对值为1的概率.23.已知二次函数f(x)=ax2-bx+1,A={x|1≤x≤3},B={x|1≤x≤4}(1)若a是从集合A中任取的一个整数,b是从集合B中任取的一个整数,求函数y=f(x)有零点的概率.(Ⅱ)若a是从集合A中任取的一个实数,b是从集合A中任取的一个实数,求关于x的方程f(x)=0一根在区间(0,1)内,另一根在区间(1,2)内的概率.24.已知集合A={x|x2+2x-3<0},.(1)在区间(-4,4)上任取一个实数x,求“x∈A∩B”的概率;(2)设(a,b)为有序实数对,其中a是从集合A中任取的一个整数,b是从集合B中任取的一个整数,求“b-a∈A∪B”的概率.25.设个人月收入在5000元以内的个人所得税档次为(单位:元):设某人的月收入为x元,试编一段程序,计算他应交的个人所得税.26.设关于x的一元二次方程x2+2ax+4-b2=0.(1)如果a∈{0,1,2,3},b∈{0,1,2},求方程有实根的概率;(2)如果a∈[0,3],b∈[0,2],求方程有实根的概率;(3)由(2),并结合课本“撒豆子”试验,请你设计一个估算圆周率π的实验,并给出计算公式.27.从一个装有2黄2绿的袋子里有放回的两次摸球,两次摸到的都是绿球的概率是多少?28.在等腰Rt△ABC中,(1)在斜边AB上任取一点M,求AM的长小于AC的长的概率;(2)过C点任做射线CP,交斜边AB于点P,求AP的长小于AC的长的概率.29.任意向x轴上(0,1)这一区间内掷一个点,问(1)该点落在区间(0,)内的概率是多少?(2)在(1)的条件下,求该点落在(,1)内的概率.30.写出1×2×3×4×5×6的一个算法.高中数学学科测试试卷学校:___________姓名:___________班级:___________考号:___________一.单选题(共__小题)1.从甲乙丙三人中任选两名代表,甲被选中的概率为()A.B.C.D.1答案:C解析:解:从3个人中选出2个人当代表,则所有的选法共有3种,即:甲乙、甲丙、乙丙,其中含有甲的选法有两种,故甲被选中的概率是,故选C.2.下列计算S的值的选项中,不能设计算法求解的是()A.S=1+2+3+…+90B.S=1+2+3+4C.S=1+2+3+…+n(n≥2且n∈N)D.S=12+22+32+…+1002答案:C解析:解:算法可以理解为按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题.它的一个特点为有穷性,是指算法必须能在执行有限个步骤之后终止,因为S=1+2+3+…+n(n≥2且n∈N)为求数列的前n项和,不能通过有限的步骤完成故选C3.任何一个算法都离不开的基本结构为()A.逻辑结构B.选择结构C.循环结构D.顺序结构答案:D解析:解:根据算法的特点如果在执行过程中,不需要分类讨论,则不需要有条件结构;如果不需要重复执行某些操作,则不需要循环结构;算法的基本结构不包括逻辑结构.但任何一个算法都必须有顺序结构故选D.4.若将两个数a=8,b=17交换,使a=17,b=8,下面语句正确的一组是()A.B.C.D.答案:B解析:解:先把b的值赋给中间变量c,这样c=17,再把a的值赋给变量b,这样b=8,把c的值赋给变量a,这样a=17.故选B二.填空题(共__小题)5.下列关于算法的说法,正确的是______.①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.答案:②③④解析:解:由算法的概念可知:求解某一类问题的算法不是唯一的,所以①不正确.②③④是正确的.故答案为:②③④.6.小红帮助母亲预算家庭4月份电费开支情况,下表是小红家4月初连续8天每天早上电表显示的读数.若每度电收取电费0.42元,估计小红家4月份(按30天计)的电费是______元.(注:电表计数器上先后两次显示读数之差就是这段时间内消耗电能的度数)答案:50.4解析:解:这七天每天用电的度数==4,4月份用电度数=4×30=120(度),∴小红家4月份(按30天计)的电费=120×0.42=50.4(元).7.在区间[0,9]上随机取一实数,则该实数在区间[4,7]上的概率为.答案:解析:解:由于试验的全部结果构成的区域长度为9-0=9,构成该事件的区域长度为7-4=3,所以概率为.则该实数在区间[4,7]上的概率为:.8.对于多项式p(x)=a n x n+a n-1x n-1+…+a1x+a0,用秦九韶算法求P(x0)可做加法和乘法的次数分别记为m,r,则当n=25时,m+r=______.答案:50解析:解:由秦九韶算法可以知道,要进行的乘法运算的次数与最高次项的指数相等,要进行的加法运算,若多项式中有常数项,则与乘法的次数相同,∴当n=25时,本题共进行了25次乘法运算和25次加法运算,∴m+r=25+25=50,故答案为:509.甲、乙、丙三人在同一办公室工作,办公室只有一部电话机,给该机打进的电话是打给甲、乙、丙的概率分别是,在一段时间内该电话机共打进三个电话,且各个电话之间相互独立,则这三个电话中恰有两个是打给乙的概率是______(用分数作答)答案:解析:解:由于电话打给乙的概率为,故电话不是打给乙的概率为1-=,故这三个电话中恰有两个是打给乙的概率是••=,故答案为.10.(2015秋•孝义市期末)已知b1是[0,1]上的均匀随机数,b=(b1-0.5)*6,则b是区间______上的均匀随机数.答案:[-3,3]解析:解:∵b1是[0,1]上的均匀随机数,∴b1-是[-,]上的均匀随机数,∴b=(b1-0.5)*6是[-3,3]上的均匀随机数,故答案为:[-3,3]如图,沿田字型的路线从A往N走,且只能向右或向下走,随机地选一种走法,则经过点C的概率是______.答案:解析:解:沿田字型的路线从A往N走,且只能向右或向下走,共分4步完成,其中有2步向右,有2步向下,故所有的走法共有•=6种方法.其中经过点C的走法有2×2=4种,故经过点C的概率是=,故答案为.12.三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,则有且仅有两人选择的项目相同的概率是______(结果用最简分数表示)答案:解析:解:每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种有且仅有两人选择的项目完全相同有××=18种其中表示3个同学中选2个同学选择相同的项目,表示从三种组合中选一个,表示剩下的一个同学有2种选择故有且仅有两人选择的项目完全相同的概率是=故答案为:13.每次抛掷一枚骰子(六个面上分别标以1,2,3,4,5,6).连续抛掷2次,则2次向上的数之和不小于10的概率为______.答案:解析:解:由题意知本题是一个古典概型,∵试验发生包含的事件是每次抛掷一枚骰子,连续抛掷2次,共有6×6=36种结果,满足条件的事件是2次向上的数之和不小于10,可以列举出所有的事件,(6,6)(6,5)(6,4)(5,6)(5,5)(4,6)共有6种结果,∴2次向上的数之和不小于10的概率为P==,故答案为:.14.乡镇农技站在永丰村进行某优质高产水稻品种推广实验,在秋收时对所有试验种植户开展了调查.在前30户中有28户的单位面积产量在800kg以上,以后每9户有8户的单位面积产量在800kg以上.在已调查的种植户中单位面积产量在800kg以上的频率不小于0.9,试估计种植这种水稻的试验户最多有______户.答案:120解析:解:设种植这种水稻的试验户有x户.由题意,得≥0.9,解这个不等式,得x≤120.故试验户不超过120户.15.已知集合A={0,3,6,9},从中任取两个元素分别作为点P(x,y)的横坐标与纵坐标,则点P恰好落入圆x2+y2=100内的概率是______.答案:解析:解:由题意知本题是一个古典概型,并且试验包含的所有事件总数为12,满足条件的事件有(0,3)(0,6)(0,9)(3,6)(3,9)(3,0)(6,0)(9,0)(6,3)(9,3)共有10种结果,记点(x,y)在圆x2+y2=100的内部记为事件A,∴P(A)=故答案为:.16.从5名男生和5名女生中选取4人参加比赛,要求男女生都有,那么两女生小张和小李同时被选中的概率为______.答案:解析:解:5名男生和5名女生中选取4人参加比赛,要求男女生都有包含三中情况①一男三女;•=50②两男两女;•=100③三男一女.•=50而两女生小张和小李同时被选中是①②中的特殊情况,满足条件的有:••+=25.∴两女生小张和小李同时被选中的概率为:=.故答案为:.三.简答题(共__小题)17.设函数,若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,(1)求f(x)的最小值;(2)求f(x)>b恒成立的概率.答案:解:(1)x>1,a>0,=…(2分)=,当且仅当a(x-1)=时,等号成立.…(4分)故f(x)的最小值为.…(6分)(2)f(x)>b恒成立就转化为成立.则所有的基本事件总数为12个,即(1,2),(1,3),(1,4),(1,5);(2,2),(2,3),(2,4),(2,5);(3,2),(3,3),(3,4),(3,5);…(8分)设事件A:“f(x)>b恒成立”,事件A包含事件:(1,2),(1,3);(2,2),(2,3),(2,4),(2,5),(3,2),(3,3),(3,4),(3,5),共10个.…(10分)由古典概型得.…(12分)解析:解:(1)x>1,a>0,=…(2分)=,当且仅当a(x-1)=时,等号成立.…(4分)故f(x)的最小值为.…(6分)(2)f(x)>b恒成立就转化为成立.则所有的基本事件总数为12个,即(1,2),(1,3),(1,4),(1,5);(2,2),(2,3),(2,4),(2,5);(3,2),(3,3),(3,4),(3,5);…(8分)设事件A:“f(x)>b恒成立”,事件A包含事件:(1,2),(1,3);(2,2),(2,3),(2,4),(2,5),(3,2),(3,3),(3,4),(3,5),共10个.…(10分)由古典概型得.…(12分)18.用秦九韶算法求多项式f(x)=5x6+3x4+2x+1当x=2时的值.答案:解:∵f(x)=(((((5x)x+3)x)x)x+2)x+1,∴v0=5,v1=5×2=10,v2=10×2+3=23.v3=23×2=46,v4=46×2=92.v5=92×2+2=186,v6=186×2+1=373.∴f(2)=373.解析:解:∵f(x)=(((((5x)x+3)x)x)x+2)x+1,∴v0=5,v1=5×2=10,v2=10×2+3=23.v3=23×2=46,v4=46×2=92.v5=92×2+2=186,v6=186×2+1=373.∴f(2)=373.19.一个口袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为A,B(1)从以上五张卡片中任取两张,求这两张卡片颜色不同的概率;(2)现袋中再放入一张标号为a的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色相同的概率.答案:解:(1)从这5张卡片中任意选出2张,所有的取法共有=10种,其中,满足这两张卡片颜色不同的取法有3×2=6种,由此求得这两张卡片颜色不同的概率为=.(2)现袋中再放入一张标号为a的绿色卡片,从这六张卡片中任取两张,所有的取法共有=15种,其中,这两张卡片颜色相同的取法有+=4种,故这两张卡片颜色相同的概率为.解析:解:(1)从这5张卡片中任意选出2张,所有的取法共有=10种,其中,满足这两张卡片颜色不同的取法有3×2=6种,由此求得这两张卡片颜色不同的概率为=.(2)现袋中再放入一张标号为a的绿色卡片,从这六张卡片中任取两张,所有的取法共有=15种,其中,这两张卡片颜色相同的取法有+=4种,故这两张卡片颜色相同的概率为.20.(2015秋•黄冈期末)某射击运动员进行射击训练,前三次射击在靶上的着弹点A、B、C刚好是边长为3cm的等边三角形的三个顶点.(Ⅰ)该运动员前三次射击的成绩(环数)都在区间[7.5,8.5)内,调整一下后,又连打三枪,其成绩(环数)都在区间[9.5,10.5)内.现从这6次射击成绩中随机抽取两次射击的成绩(记为a和b)进行技术分析.求事件“|a-b|>1”的概率.(Ⅱ)第四次射击时,该运动员瞄准△ABC区域射击(不会打到△ABC外),则此次射击的着弹点距A、B、C的距离都超过1cm的概率为多少?(弹孔大小忽略不计)答案:解:(Ⅰ)前三次射击成绩依次记为x1,x2,x3,后三次成绩依次记为y1,y2,y3,从这6次射击成绩中随机抽取两个,基本事件是:{x1,x2},{x1,x3},{x2,x3},{y1,y2},{y1,y3},{y2,y3},{x1,y1},{x1,y2},{x1,y3},{x2,y1},{x2,y2},{x2,y3},},{x3,y1},{x3,y2},{x3,y3},共15个…(3分)其中可使|a-b|>1发生的是后9个基本事件.故.…(6分)(Ⅱ)因为着弹点若与A、B、C的距离都超过1cm,则着弹点就不能落在分别以A,B,C为中心,半径为1cm的三个扇形区域内,只能落在扇形外.…(7分)因为…(8分)部分的面积为,…(10分)故所求概率为P=.…(12分)解析:解:(Ⅰ)前三次射击成绩依次记为x1,x2,x3,后三次成绩依次记为y1,y2,y3,从这6次射击成绩中随机抽取两个,基本事件是:{x1,x2},{x1,x3},{x2,x3},{y1,y2},{y1,y3},{y2,y3},{x1,y1},{x1,y2},{x1,y3},{x2,y1},{x2,y2},{x2,y3},},{x3,y1},{x3,y2},{x3,y3},共15个…(3分)其中可使|a-b|>1发生的是后9个基本事件.故.…(6分)(Ⅱ)因为着弹点若与A、B、C的距离都超过1cm,则着弹点就不能落在分别以A,B,C为中心,半径为1cm的三个扇形区域内,只能落在扇形外.…(7分)因为…(8分)部分的面积为,…(10分)故所求概率为P=.…(12分)21.已知8人组成的抢险小分队中有3名医务人员,将这8人分为A、B两组,每组4人.(Ⅰ)求A组中恰有一名医务人员的概率;(Ⅱ)求A组中至少有两名医务人员的概率.答案:解:(Ⅰ)由题意知本题是一个古典概型,设“A组中恰有一名医务人员”为事件A1∵试验发生的所有事件是从8人中选4个人共有C84种结果,而满足条件的事件是A组中恰有一名医务人员共有C31C53种结果,∴根据古典概型概率公式得到P(A1)=.(Ⅱ)由题意知本题是一个古典概型,设“A组中至少有两名医务人员”为事件A2,∵试验发生的所有事件是从8人中选4个人共有C84种结果,A组中至少有两名医务人员包括有两名医务人员和有一名医务人员共有C32C52+C33C51种结果,∴P(A2)=.解析:解:(Ⅰ)由题意知本题是一个古典概型,设“A组中恰有一名医务人员”为事件A1∵试验发生的所有事件是从8人中选4个人共有C84种结果,而满足条件的事件是A组中恰有一名医务人员共有C31C53种结果,∴根据古典概型概率公式得到P(A1)=.(Ⅱ)由题意知本题是一个古典概型,设“A组中至少有两名医务人员”为事件A2,∵试验发生的所有事件是从8人中选4个人共有C84种结果,A组中至少有两名医务人员包括有两名医务人员和有一名医务人员共有C32C52+C33C51种结果,∴P(A2)=.若空气质量分为1、2、3三个等级.某市7天的空气质量等级相应的天数如图所示.(Ⅰ)从7天中任选2天,求这2天空气质量等级一样的概率;(Ⅱ)从7天中任选2天,求这2天空气质量等级数之差的绝对值为1的概率.答案:解:(Ⅰ)由频率分布直方图可得在这7天中,空气质量为一等的有2天,二等的有3天,3等的有2天.从7天中任选2天,所有的取法共有=21种,而这2天空气质量等级一样的取法有+ +=5天,故这2天空气质量等级一样的概率为.(Ⅱ)从7天中任选2天,求这2天空气质量等级数之差的绝对值为1的情况是,这2天中,有一天的空气质量为二等,另一天的空气质量为一等或三等,故这2天空气质量等级数之差的绝对值为1的概率为=.解析:解:(Ⅰ)由频率分布直方图可得在这7天中,空气质量为一等的有2天,二等的有3天,3等的有2天.从7天中任选2天,所有的取法共有=21种,而这2天空气质量等级一样的取法有+ +=5天,故这2天空气质量等级一样的概率为.(Ⅱ)从7天中任选2天,求这2天空气质量等级数之差的绝对值为1的情况是,这2天中,有一天的空气质量为二等,另一天的空气质量为一等或三等,故这2天空气质量等级数之差的绝对值为1的概率为=.23.已知二次函数f(x)=ax2-bx+1,A={x|1≤x≤3},B={x|1≤x≤4}(1)若a是从集合A中任取的一个整数,b是从集合B中任取的一个整数,求函数y=f(x)有零点的概率.(Ⅱ)若a是从集合A中任取的一个实数,b是从集合A中任取的一个实数,求关于x的方程f(x)=0一根在区间(0,1)内,另一根在区间(1,2)内的概率.答案:解:(1)(a,b)共有12种情况.函数y=f(x)有零点,△=b2-4a≥0,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况所以函数y=f(x)有零点的概率为=.(2)设事件A为“关于x的方程f(x)=0一根在区间(0,1)内,另一根在区间(1,2)内”.试验的全部结束所构成的区域为{(a,b)|1≤a≤3,1≤b≤4}.构成事件A的区域为{(a,b)|a-b+1<0,4a-2b+1>0}.所以所求的概率为=.解析:解:(1)(a,b)共有12种情况.函数y=f(x)有零点,△=b2-4a≥0,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况所以函数y=f(x)有零点的概率为=.(2)设事件A为“关于x的方程f(x)=0一根在区间(0,1)内,另一根在区间(1,2)内”.试验的全部结束所构成的区域为{(a,b)|1≤a≤3,1≤b≤4}.构成事件A的区域为{(a,b)|a-b+1<0,4a-2b+1>0}.所以所求的概率为=.24.已知集合A={x|x2+2x-3<0},.(1)在区间(-4,4)上任取一个实数x,求“x∈A∩B”的概率;(2)设(a,b)为有序实数对,其中a是从集合A中任取的一个整数,b是从集合B中任取的一个整数,求“b-a∈A∪B”的概率.答案:解:(Ⅰ)由已知A=x|-3<x<1B=x|-2<x<3,(2分)设事件“x∈A∩B”的概率为P1,这是一个几何概型,则.(5分)(2)因为a,b∈Z,且a∈A,b∈B,所以,基本事件共12个:(-2,-1),(-2,0),(-2,1),(-2,2),(-1,-1),(-1,0),(-1,1),(-1,2),(0,-1),(0,0),(0,1),(0,2).(9分)设事件E为“b-a∈A∪B”,则事件E中包含9个基本事件,(11分)事件E的概率.(12分)解析:解:(Ⅰ)由已知A=x|-3<x<1B=x|-2<x<3,(2分)设事件“x∈A∩B”的概率为P1,这是一个几何概型,则.(5分)(2)因为a,b∈Z,且a∈A,b∈B,所以,基本事件共12个:(-2,-1),(-2,0),(-2,1),(-2,2),(-1,-1),(-1,0),(-1,1),(-1,2),(0,-1),(0,0),(0,1),(0,2).(9分)设事件E为“b-a∈A∪B”,则事件E中包含9个基本事件,(11分)事件E的概率.(12分)25.设个人月收入在5000元以内的个人所得税档次为(单位:元):设某人的月收入为x元,试编一段程序,计算他应交的个人所得税.答案:解:INPUT“请输入个人月收入X=?”;XIF x>0AND X<=1000THENy=0ELSEIF x>1000AND x<=3000THENy=(x-1000)*0.1ELSEIF x>3000AND x<=5000THENy=(3000-1000)*0.1+(x-3000)*0.25 END IFEND IFEND IFPRINT“个人月收入X=”;XPRINT“个人所得税y=”;yEND解析:解:INPUT“请输入个人月收入X=?”;XIF x>0AND X<=1000THENy=0ELSEIF x>1000AND x<=3000THENy=(x-1000)*0.1ELSEIF x>3000AND x<=5000THENy=(3000-1000)*0.1+(x-3000)*0.25 END IFEND IFEND IFPRINT“个人月收入X=”;XPRINT“个人所得税y=”;yEND26.设关于x的一元二次方程x2+2ax+4-b2=0.(1)如果a∈{0,1,2,3},b∈{0,1,2},求方程有实根的概率;(2)如果a∈[0,3],b∈[0,2],求方程有实根的概率;(3)由(2),并结合课本“撒豆子”试验,请你设计一个估算圆周率π的实验,并给出计算公式.答案:(本小题满分15分)解:由方程有实根,则△≥0,得,a2+b2≥4(1)记“方程有实根”为事件A,则.答:方程有实根的概率为.…(5分)(2)记“方程有实根”为事件B,则.答:方程有实根的概率为.…(10分)(3)向矩形内撒n颗豆子,其中落在圆内的豆子数为m,由(2)知,豆子落入圆内的概率,那么,当n很大时,比值,即频率应接近于概率P,于是有.由此得到…(15分)解析:(本小题满分15分)解:由方程有实根,则△≥0,得,a2+b2≥4(1)记“方程有实根”为事件A,则.答:方程有实根的概率为.…(5分)(2)记“方程有实根”为事件B,则.答:方程有实根的概率为.…(10分)(3)向矩形内撒n颗豆子,其中落在圆内的豆子数为m,由(2)知,豆子落入圆内的概率,那么,当n很大时,比值,即频率应接近于概率P,于是有.由此得到…(15分)27.从一个装有2黄2绿的袋子里有放回的两次摸球,两次摸到的都是绿球的概率是多少?答案:解:第一次摸出绿球的概率为=,第二次也摸出绿球的概率为=,故两次摸到的都是绿球的概率是×=.解析:解:第一次摸出绿球的概率为=,第二次也摸出绿球的概率为=,故两次摸到的都是绿球的概率是×=.28.在等腰Rt△ABC中,(1)在斜边AB上任取一点M,求AM的长小于AC的长的概率;(2)过C点任做射线CP,交斜边AB于点P,求AP的长小于AC的长的概率.答案:解:设等腰Rt△ABC中,AC=BC=1,AB=,在AC上存在一点M0,满足AM0=1(1)∵在斜边AB上任取一点M,∴当点M在点A与点M0之间运动时,满足AM的长小于AC的长可得AM的长小于AC的长的概率为P1==;(2)∵△AM0C中,∠A=45°,AC=AM0,∴∠ACM0=(180°-∠A)=67.5°,过C点任做射线CP,交斜边AB于点P,当CP位于∠ACM0内部时AP的长小于AC的长,因此AP的长小于AC的长的概率为P2===.解析:解:设等腰Rt△ABC中,AC=BC=1,AB=,在AC上存在一点M0,满足AM0=1(1)∵在斜边AB上任取一点M,∴当点M在点A与点M0之间运动时,满足AM的长小于AC的长可得AM的长小于AC的长的概率为P1==;(2)∵△AM0C中,∠A=45°,AC=AM0,∴∠ACM0=(180°-∠A)=67.5°,过C点任做射线CP,交斜边AB于点P,当CP位于∠ACM0内部时AP的长小于AC的长,因此AP的长小于AC的长的概率为P2===.29.任意向x轴上(0,1)这一区间内掷一个点,问(1)该点落在区间(0,)内的概率是多少?(2)在(1)的条件下,求该点落在(,1)内的概率.答案:解:(1)由几何概型得该点落在区间(0,)内的概率是区间的长度比为;(2)在(1)的条件下,求该点落在(,1)内的概率等于区间长度比为.解析:解:(1)由几何概型得该点落在区间(0,)内的概率是区间的长度比为;(2)在(1)的条件下,求该点落在(,1)内的概率等于区间长度比为.30.写出1×2×3×4×5×6的一个算法.答案:解:按照逐一相乘的程序进行第一步:计算1×2,得到2;第二步:将第一步的运算结果2与3相乘,得到6;第三步:将第二步的运算结果6与4相乘,得到24;第四步:将第三步的运算结果24与5相乘,得到120;第五步:将第四的运算结果120与6相乘,得到720;第六步:输出结果.解析:解:按照逐一相乘的程序进行第一步:计算1×2,得到2;第二步:将第一步的运算结果2与3相乘,得到6;第三步:将第二步的运算结果6与4相乘,得到24;第四步:将第三步的运算结果24与5相乘,得到120;第五步:将第四的运算结果120与6相乘,得到720;第六步:输出结果.。
高中数学概率试题及答案
高中数学概率试题及答案一、选择题(每题5分,共20分)1. 从5个红球和3个蓝球中随机抽取一个球,抽到红球的概率是:A. 1/2B. 2/5C. 3/5D. 4/52. 一个袋子里有3个白球和2个黑球,不放回地连续抽取两个球,抽到两个白球的概率是:A. 1/5B. 3/10C. 1/2D. 2/53. 一枚均匀的硬币连续抛掷两次,出现至少一次正面朝上的概率是:A. 1/2B. 3/4C. 1/4D. 14. 一个班级有20名学生,其中10名男生和10名女生。
随机选取3名学生,至少有一名女生的概率是:A. 1/2B. 3/5C. 1D. 2/3二、填空题(每题5分,共20分)5. 一个袋子里有5个红球和5个黑球,随机抽取3个球,抽到至少2个红球的概率是______。
6. 一个骰子有6个面,每个面上的点数从1到6。
连续投掷两次骰子,两次点数之和为7的概率是______。
7. 一个班级有30名学生,其中15名男生和15名女生。
随机选取5名学生,恰好有2名男生和3名女生的概率是______。
8. 一个袋子里有10个球,其中3个红球,7个蓝球。
不放回地抽取3个球,抽到3个红球的概率是______。
三、解答题(每题10分,共20分)9. 一个袋子里有10个球,其中2个红球,8个蓝球。
随机抽取3个球,求抽到至少一个红球的概率。
10. 一个袋子里有5个红球和5个蓝球,不放回地抽取3个球,求抽到2个红球和1个蓝球的概率。
答案:一、选择题1. C2. B3. B4. C二、填空题5. 11/206. 1/67. 3/88. 1/10三、解答题9. 抽到至少一个红球的概率是1 - 抽到3个蓝球的概率 = 1 - (8/10 * 7/9 * 6/8) = 1 - 7/15 = 8/15。
10. 抽到2个红球和1个蓝球的概率是(2/10 * 1/9 * 5/8) + (1/10 * 2/9 * 5/8) = 1/18 + 1/36 = 5/36。
高中数学概率试题及答案
高中数学概率试题及答案一、选择题(每题3分,共15分)1. 一个袋子里装有5个红球和3个蓝球,随机取出一个球,取出红球的概率是多少?A. 1/2B. 3/8C. 5/8D. 1/82. 抛一枚硬币两次,出现两次正面的概率是多少?A. 1/4B. 1/2C. 1/8D. 1/163. 一个班级有30名学生,其中10名男生和20名女生。
随机选取一名学生,该学生是女生的概率是多少?A. 1/3B. 2/3C. 1/2D. 3/54. 一个骰子连续抛掷两次,两次点数之和为7的概率是多少?A. 1/6B. 1/9C. 1/36D. 2/95. 一个盒子里有3个白球和2个黑球,不放回地连续取出两个球,取出的都是白球的概率是多少?A. 1/10B. 1/5C. 3/10D. 1/4二、填空题(每题2分,共10分)6. 一个事件的概率P(A) = _______,如果这个事件是必然事件。
7. 一个事件的概率P(B) = _______,如果这个事件是不可能事件。
8. 如果事件A和事件B是互斥事件,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B) = _______。
9. 一个事件的概率P(C) = 0.05,它的对立事件P(C') = _______。
10. 如果一个随机变量X服从二项分布B(n, p),其中n = 10,p = 0.2,那么P(X=2) = _______。
三、解答题(每题5分,共20分)11. 一个袋子里有7个白球和3个黑球,不放回地随机取出两个球。
求第一个取出的是白球,第二个取出的是黑球的概率。
12. 在一个班级中,有40名学生,其中20名男生和20名女生。
随机选取两名学生,求至少有一名是女生的概率。
13. 一个工厂生产一批零件,其中有5%的次品率。
如果随机抽取5个零件进行检查,求至少有1个是次品的概率。
14. 一个骰子连续抛掷三次,求至少出现一次6点的概率。
四、综合题(每题10分,共10分)15. 一个盒子里有5个红球和5个蓝球,随机取出两个球。
高中数学概率大题(经典一)
高中数学概率大题(经典一).doc
1.给出以下三个命题:
D将一枚硬币抛掷两次,记事件A:两次都出现正面,事件B:两次都出现反面,则事件A与事件B 是对立事件:@在命题中,事件 A 与事件 B 是斥事件;3在 10 件产品中有 3件是次品从中任取 3 件记事件 A:所取 3 件中最多有 2 件是次品事件 B:所取件中至少有 2件是次品,则事件 A 与.事件 B 是互斥事件其中真命题的个数是()
A.0
B.1
c.2
D.3
2.一个袋中装有6个形状大小完全相同的小球,球的编号分别为1,23,4,56
(1)若从袋中随机抽取1个球,求取到3号球的率
若从袋中随机抽取2个球,求取到3号球的概率;(2)
若从袋中每次随机抽取1个球,有放回的抽取3次,求恰好有一次取到(3)3号球的概率;
若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率;
若从袋中每次随机抽取2个球,有放回的抽取3次,求恰有2次抽到3号球的概率;
(6)若一次从袋中随机抽取3个球,记球的最大编号为,求随机
变量X的分布列.
一个袋子中装有6个大小相同的球,其中有4个黑球,2个白球;(1)若一次取出2个球,求恰好有1个白球的概率;
(2)若一次取出2个球,求取到白球的概率;
(3)若一次取出2个球,取出查看颜色后再放回。
像这样连续抽取3次求恰好有2次取到白球的概率。
某校组织“上海世博会”知识竞赛,已知学生答对第一题的概率是0.6,答对第二题的概率是0.5,并且他们回答问题相互之间没有影响.(I)求一名学生至少答对第一、二两题中一题的概率;
3
(II)记为三名学生中至少答对第一、二两题中一题的人数,求的分布列及数学期望EE。
高一数学必修3第三章《概率》测试题(北师
高一数学必修3第三章《概率》测试题(北师一、选择题(每小题5分,共计50分)1、下列说法正确的是()A、任何事件的概率总是在(0,1)之间B、频率是客观存在的,与试验次数无关C、随着试验次数的增加,频率一般会越来越接近概率D、概率是随机的,在试验前不能确定2、掷一枚骰子,则掷得奇数点的概率是()A、B、C、D、3、从装有个红球和个黒球的口袋内任取个球,那么互斥而不对立的两个事件是()A、至少有一个黒球与都是黒球B、至少有一个黒球与都是黒球C、至少有一个黒球与至少有个红球D、恰有个黒球与恰有个黒球4、在根纤维中,有根的长度超过,从中任取一根,取到长度超过的纤维的概率是()A、B、C、D、以上都不对5、从一批羽毛球产品中任取一个,其质量小于4、8g的概率为0、3,质量小于4、85g的概率为0、32,那么质量在[4、8,4、85]( g )范围内的概率是()A、0、62B、0、38C、0、02D、0、686、同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是()A、B、C、D、7、甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是()A、B、C、D、无法确定8、从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是()A、 1B、C、D、9、一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率是()A、B、C、D、10、现有五个球分别记为A,C,J,K,S,随机放进三个盒子,每个盒子只能放一个球,则K或S在盒中的概率是()A、B、C、D、二、填空题(每小题5分,共计20分)11、在件产品中,有件一级品,件二级品,则下列事件:①在这件产品中任意选出件,全部是一级品;②在这件产品中任意选出件,全部是二级品;③在这件产品中任意选出件,不全是一级品;④在这件产品中任意选出件,其中不是一级品的件数小于,其中是必然事件;是不可能事件;是随机事件。
高中概率试题及答案
高中概率试题及答案一、选择题1. 某工厂生产的产品中,次品率为0.05,合格品率为0.95。
从这批产品中随机抽取一件,抽到次品的概率是:A. 0.05B. 0.95C. 0.50D. 0.10答案:A2. 抛一枚均匀硬币,正面朝上的概率是:A. 0.5B. 1C. 0.25D. 0.75答案:A二、填空题3. 一个袋子里有5个红球和3个蓝球,如果随机摸出一个球,那么摸到红球的概率是_________。
答案:\(\frac{5}{8}\)4. 某班有50名学生,其中男生30人,女生20人。
随机选取一名学生,该学生是女生的概率是_________。
答案:\(\frac{2}{5}\)三、简答题5. 某学校有100名学生,其中60名学生参加数学竞赛,40名学生参加物理竞赛,同时参加数学和物理竞赛的学生有10人。
求至少参加一项竞赛的学生的概率。
答案:至少参加一项竞赛的学生数为60+40-10=90人,概率为\(\frac{90}{100}=0.9\)。
四、计算题6. 甲、乙两人进行射击比赛,甲的命中率为0.7,乙的命中率为0.6。
如果两人同时射击,求两人都击中目标的概率。
答案:两人都击中目标的概率为甲击中目标的概率乘以乙击中目标的概率,即\(0.7 \times 0.6 = 0.42\)。
7. 某工厂生产的产品中,有95%的产品是合格的。
如果从这批产品中随机抽取10件,求至少有8件是合格品的概率。
答案:这是一个二项分布问题,设X为10件产品中有k件是合格品的随机变量,X~B(10, 0.95)。
至少有8件合格品的概率为:\[P(X \geq 8) = P(X=8) + P(X=9) + P(X=10)\]使用二项分布公式计算,得到:\[P(X \geq 8) = \binom{10}{8}(0.95)^8(0.05)^2 +\binom{10}{9}(0.95)^9(0.05)^1 + (0.95)^{10}\]计算得到具体数值。
高中数学-概率与统计测试题
高中数学概率与统计测试题一、选择题:(本题共10小题,每小题给出的四个选项中,只有一项是符合题目要求的) 1.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件 ②“当x 为某一实数时可使02x ”是不可能事件 ③“明天广州要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件, 其中正确命题的个数是 ( ) A .0 B. 1 C. 2 D. 32.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a ,中位数为b ,众数为c ,则有( ).A .a>b>cB .b>c>aC .c>a>bD .c>b>a 3. 下列说法一定正确的是 ( )A .一名篮球运动员,号称“百发百中”,若罚球三次,不会出现三投都不中的情况B .一枚硬币掷一次得到正面的概率是21,那么掷两次一定会出现一次正面的情况 C .如买彩票中奖的概率是万分之一,则买一万元的彩票一定会中奖一元 D .随机事件发生的概率与试验次数无关 4.下列说法中,正确的是( ). A .数据5,4,4,3,5,2的众数是4 B .一组数据的标准差是这组数据的方差的平方C .数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半D .频率分布直方图中各小长方形的面积等于相应各组的频数6.从一副扑克牌(54张)中抽取一张牌,抽到牌“K ”的概率是( ). A .154B .127C .118D .2275.同时掷两枚骰子,所得点数之和为5的概率为( ).A .14 B .19 C .16 D .112 6.在所有的两位数(10~99)中,任取一个数,则这个数能被2或3整除的概率是( ).A .56 B .45 C .23 D .127.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为A .60%B .30%C .10%D .50% 8.下列说法正确的是A .某厂一批产品的次品率为110,则任意抽取其中10件产品一定会发现一件次品 B .气象部门预报明天下雨的概率是90﹪,说明明天该地区90﹪的地方要下雨,其余10﹪的地方不会下雨C .某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈D .掷一枚硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为0.5.9.如果一组数中每个数减去同一个非零常数,则这一组数的( ).A .平均数不变,方差不变B .平均数改变,方差不变C .平均数不变,方差改变D .平均数改变,方差改变10.某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数 为10,方差为2,则|x -y |的值为( ).(A )1 (B )2 (C )3 (D )4二、填空题:(本题共4小题,每小题3分,共12分,请把答案填写在答题纸上)11. 对于①“一定发生的”,②“很可能发生的”,③“可能发生的”,④“不可能发生的”,⑤“不太可能发生的”这5种生活现象,发生的概率由小到大排列为(填序号) 。
高中数学必修三第三章《概率》章节练习题(含答案)
高中数学必修三第三章《概率》章节练习题(含答案)高中数学必修三第三章《概率》章节练题一、选择题(每小题3分,共18分)1.下列试验属于古典概型的有()。
A.1个B.2个C.3个D.4个2.任取两个不同的1位正整数,它们的和是8的概率是()。
A。
B。
C。
D。
补偿训练】一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为()。
A。
B。
C。
D。
3.在全运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手。
若从中任选3人,则选出的火炬手的编号相连的概率为()。
A。
B。
C。
D。
4.任意抛掷两颗骰子,得到的点数分别为a,b,则点P(a,b)落在区域|x|+|y|≤3中的概率为()。
A。
B。
C。
D。
5.在棱长为a的正方体ABCD-A1B1C1D1中随机地取一点P,则点P与正方体各表面的距离都大于的概率为()。
A。
B。
C。
D。
6.如图,两个正方形的边长均为2a,左边正方形内四个半径为的圆依次相切,右边正方形内有一个半径为a的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P1,P2,则P1,P2的大小关系是()。
A。
P1=P2 B。
P1>P2 C。
P1<P2 D。
无法比较二、填空题(每小题4分,共12分)7.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则a+b能被3整除的概率为()。
8.已知函数f(x)=log2x,x∈R。
在区间[1,8]上任取一点x,使f(x)≥-2的概率为()。
补偿训练】已知直线y=x+b,b∈[-2,3],则该直线在y轴上的截距大于1的概率是()。
A。
B。
C。
D。
9.如图,利用随机模拟的方法可以估计图中由曲线y=√(x)与两直线x=2及y=0所围成的阴影部分的面积S:①先产生两组[0,1]的均匀随机数,a=RAND,b=RAND;②做变换,令x=4a,y=√(b);③判断(x,y)是否在阴影部分中,若是则计数器加1;④重复上述步骤n次,估计S≈n×计数器/.则利用上述方法,当n=时,估计得到的阴影部分的面积S≈()。
高中数学概率大题(经典)
高中数学概率大题(经典)高考大题概率训练1、在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起,若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……6)。
求:(1)甲、乙两单位的演出序号至少有一个为奇数的概率:(Ⅱ)甲、乙两单位之间的演出单位个数的分布列与期望。
2、某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门。
首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫:若是2号、3号通道,则分别需要2小时、3小时返回智能门。
再次到达智能门时,系统会随机打开一个你未到过的通道,直至走完迷宫为止。
令ξ表示走出迷宫所需的时间。
(1)求ξ的分布列:(2)求ξ的数学期望。
3、一个袋中有大小相同的标有1,2,3,4,5,6的6个小球。
某人做如下游戏,每次从袋中拿一个球(拿后放回),记下标号。
若拿出球的标号是3的倍数,则得1分,否则得-1分。
(1)求拿4次至少得2分的概率:(2)求拿4次所得分数ξ的分布列和数学期望。
4、质地均匀的正四面体玩具的4个面上分别刻着数字1,2,3,4。
将4个这样的玩具同时抛掷于桌面上。
(1)求与桌面接触的4个面上的4个数的乘积能被4整除的概率:(2)设ξ为与桌面接触的4个面上数字中偶数的个数,求ξ的分布列及期望Eξ。
5、在2006年多哈娅运会中,中国女排与日本女排以“五局三胜”制进行决.已知比赛中,第一局日本女排先赛,根据以往战况,中国女排每一局赢的概率为35胜一局,在这个条件下,(1)求中国女排取胜的概率:(Ⅱ)设决赛中比赛总的局数为ξ,求ξ的分布列及Eξ。
(两问均用分数作答)6、甲、乙两人进行摸球游戏,一袋中装有2个黑球和1个红球。
规则如下:若一方摸中红球,将此球放入袋中,此人继续摸球:若一方没有摸到红球,将摸到的球放入袋中,则由对方摸彩球。
现甲进行第一次摸球。
(1)在前三次模球中,甲恰好摸中一次红球的所有情况,(Ⅱ)在前四次摸球中,甲恰好摸中两次红球的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学概率测试题
高中数学概率测试题一、选择题(本题有8个小题,每小题5分,共40分)
1. 给出下列四个命题:
①三个球全部放入两个盒子,其中必有一个盒子有一个以上的球是必然事件
②当x为某一实数时可使x 0 是不可能事件③明天广州要下雨是必然事件
④从100个灯泡中取出5个,5个都是次品是随机事件,
其中正确命题的个数是( )
A.0
B. 1
C. 2
D. 3
2. 某人在比赛(没有和局)中赢的概率为0.6,那么他输的概率是( )
A.0.4
B. 0.6
C. 0.36
D. 0.16
3. 下列说法一定正确的是( )
A.一名篮球运动员,号称百发百中,若罚球三次,不会出现三投都不中的情况
B.一枚硬币掷一次得到正面的概率是21,那么掷两次一定会出现一次正面的情况2
C.如买彩票中奖的概率是万分之一,则买一万元的彩票一定会中奖一元
D.随机事件发生的概率与试验次数无关
4.某个班级内有40名学生,抽10名同学去参加某项活动,每个同学被抽到的概率是
其中解释正确的是( )
A.4个人中必有一个被抽到
B. 每个人被抽到的可能性是
C.由于抽到与不被抽到有两种情况,不被抽到的概率为1,
41 41 D.以上说话都不正确4
5.投掷两粒均匀的骰子,则出现两个5点的概率为( )
A.1115
B.
C.
D. 1861236
3211 B. C. D. 55486.从{a,b,c,d,e}的所有子集中任取一个,这个集合恰是集合{a,b,c}的子集的概率是( ) A.
7.若A与B是互斥事件,其发生的概率分别为p1,p2,则A、B同时发生的概率为( )
A.p1 p2
B. p1 p2
C. 1 p1 p2
D. 0
8.在等腰直角三角形ABC中,在斜边AB上任取一点D,则AD的长小于AC的长的概
率为( )
A.122
B. 1
C.
D. 222
高中数学概率测试题二、填空题(共4个小题,每小题5分,共20分)
9.如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心的概率是方片的概率是1,取到41,则取到黑色牌的概率是_____________ 4
10.同时抛掷3枚硬币,恰好有两枚正面向上的概率为_______________
11.10件产品中有两件次品,从中任取两件检验,则至少有1件次品的概率为_________
12.已知集合A {(x,y)|x2 y2 1},集合B {(x,y)|x y a 0},若A
B 的概率为1,则a的取值范围是______________
高中数学概率测试题三、解答题(共5个小题,每小题8分,共40分)
13.由数据1,2,3组成可重复数字的三位数,试求三位数中至多出现两个不同数字的概率.
14.从一箱产品中随机地抽取一件产品,设事件A= 抽到的一等品,事件B= 抽到的二等品,事件C= 抽到的三等品,且已知P(A)=0.7,P(B)=0.1,P(C)=0.05,求下列事件的概率
(1)事件D= 抽到的是一等品或二等品
(2)事件E= 抽到的是二等品或三等品
15.从含有两件正品a,b和一件次品c的3件产品中每次任取一件,连续取两次,求取出的两件产品中恰有一件是次品的概率.
(1)每次取出不放回;
(2)每次取出后放回.
16.在某次数学考试中,甲、乙、丙三人及格(互不影响)的概率0.4、0.2、0.5,考试结束后,最容易出现几个人及格?
17.设甲袋装有m个白球,n个黑球,乙袋装有m个黑球,n个白球,从甲、乙袋中各摸一球,设事件A:两球相同,事件B:两球异色,试比较P(A)与P(B)的大小.。