最新部编人教版初中八年级下册数学知识点总结

合集下载

2023年部编版八年级下册数学必背公式(完整版)

2023年部编版八年级下册数学必背公式(完整版)

2023年部编版八年级下册数学必背公式(完整版)结论公式1. 相同数的乘积:- 相同数相乘,底数不变,指数相加:a^m * a^n = a^(m+n)- 多个相同数相乘,底数不变,指数相加:a^m * a^n * a^p = a^(m+n+p)2. 幂的乘法:- 幂的乘法,底数不变,指数相乘:(a^m)^n = a^(m * n)3. 幂的除法:- 幂的除法,底数不变,指数相除:(a^m) / (a^n) = a^(m - n)4. 幂的负指数:- 幂的负指数,底数不变,指数变为负数取倒数:a^(-n) = 1 / a^n5. 幂的零次方:- 幂的零次方等于1:a^0 = 16. 乘方的分配律:- 两个数相乘后再取乘方,等于各自取乘方再相乘:(a * b)^n = a^n * b^n几何公式1. 长方形的面积公式:- 长方形的面积等于长乘以宽:面积 = 长 * 宽2. 三角形的面积公式:- 三角形的面积等于底乘以高再除以2:面积 = (底 * 高) / 23. 圆的面积公式:- 圆的面积等于半径的平方乘以π:面积 = π * 半径^24. 梯形的面积公式:- 梯形的面积等于上底加下底的和乘以高再除以2:面积 = (上底 + 下底) * 高 / 2线性方程1. 一元一次方程:- 一元一次方程的一般形式:ax + b = 0- 求解一元一次方程:x = -b / a2. 一次函数:- 一次函数的一般形式:y = kx + b- 斜率:k = (y2 - y1) / (x2 - x1)- 平行直线的斜率相等:k1 = k2- 垂直直线的斜率乘积为-1:k1 * k2 = -1这些是2023年部编版八年级下册数学必背的重要公式,掌握这些公式能够帮助你更好地理解和解决数学问题。

人教版八年级下册数学知识点汇总

人教版八年级下册数学知识点汇总

人教版八年级下册数学知识点汇总第十六章二次根式。

1. 二次根式的概念。

- 形如√(a)(a≥slant0)的式子叫做二次根式。

其中“√()”称为二次根号,a叫做被开方数。

- 注意:被开方数a必须是非负数,否则√(a)无意义。

例如√(-2)就不是二次根式。

2. 二次根式的性质。

- √(a)(a≥slant0)是一个非负数,即√(a)≥slant0。

- (√(a))^2=a(a≥slant0)。

例如(√(5))^2 = 5。

- √(a^2)=| a|=a(a≥sl ant0) -a(a<0)。

如√(3^2) = 3,√((-3)^2)=| - 3|=3。

3. 二次根式的乘除。

- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0)。

例如√(2)×√(3)=√(2×3)=√(6)。

- 二次根式的除法法则:√(a)÷√(b)=√(frac{a){b}}(a≥slant0,b>0)。

如√(8)÷√(2)=√(frac{8){2}}=√(4) = 2。

4. 二次根式的加减。

- 最简二次根式:被开方数不含分母,被开方数中不含能开得尽方的因数或因式的二次根式。

例如√(8)不是最简二次根式,化简为2√(2)后是最简二次根式。

- 二次根式加减时,先将二次根式化为最简二次根式,然后合并同类二次根式(同类二次根式是指被开方数相同的二次根式)。

例如√(12)+√(27)=2√(3)+3√(3)=5√(3)。

第十七章勾股定理。

1. 勾股定理。

- 直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2。

- 例如在直角三角形中,两直角边分别为3和4,则斜边c=√(3^2)+4^{2}=√(9 + 16)=√(25)=5。

2. 勾股定理的逆定理。

- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。

八年级数学下册知识点总结(全)

八年级数学下册知识点总结(全)

八年级数学下册知识点总结(全)八年级数学下册知识点总结一、代数式1. 代数式的概念和基本性质。

2. 一元一次方程的概念、解法和实际应用。

3. 一元一次不等式的概念、解法和实际应用。

4. 一元二次方程的概念、解法和实际应用。

5. 代数式的加减乘除、化简和因式分解。

6. 二元一次方程组的概念、解法和实际应用。

7. 一元二次不等式的概念、解法和实际应用。

8. 质因数分解和最大公因数、最小公倍数的求法。

9. 分式的基本概念和运算方法。

二、几何1. 平面图形的基本性质和分类。

2. 勾股定理及其应用。

3. 三角形的相似性质和判定方法。

4. 三角形的内角和及其计算。

5. 空间图形的基本性质和分类。

6. 直线与平面的位置关系及其应用。

7. 圆的基本性质和相关定理。

8. 空间中直线与平面的交角问题和判定方法。

9. 圆锥曲线(椭圆、双曲线、抛物线)的基本性质。

三、概率统计1. 事件和概率的基本概念。

2. 古典概型和几何概型的概率计算。

3. 条件概率和独立性的概念和计算方法。

4. 排列和组合的概念和应用。

5. 随机变量和概率分布的定义和联系。

6. 统计分布(频数分布、累积频率分布)和直方图、折线图的绘制。

7. 样本统计量(平均数、中位数、众数、标准差)的概念和计算方法。

8. 正态分布的概念和应用。

9. 假设检验的基本概念和方法。

以上就是八年级数学下册的全部知识点总结。

在学习过程中,应该注意掌握基本概念和定理,并能够熟练地运用到实际问题中去。

同时,还应该注重应用能力的培养,多做一些与日常生活和实际问题有关的题目,提高自己的解决问题的能力。

人教版八年级下册数学知识点全面总结

人教版八年级下册数学知识点全面总结

人教版八年级下册数学知识点全面总结一、实数与代数式1.1 有理数- 概念:整数和分数的统称,包括正整数、0、负整数、正分数、负分数。

- 加减乘除法则:同号相加(减)取其相加(减)后的结果,并保留原来的符号;异号相加(减)取其相加(减)后的结果,并保留绝对值较大的数的符号。

乘法法则:同号得正,异号得负。

除法法则:除以一个不等于0的数等于乘这个数的倒数。

1.2 代数式- 概念:由数字、字母和运算符号组成的式子。

- 代数式的运算:加减乘除、乘方、开方等。

二、方程(组)与不等式(组)2.1 方程- 概念:含有未知数的等式。

- 一元一次方程:形式为ax+b=0,解法:移项、合并同类项、化系数为1。

- 二元一次方程:形式为ax+by=c,解法:消元法、代入法、矩阵法等。

2.2 不等式- 概念:含有不等号的式子。

- 一元一次不等式:形式为ax+b>0或ax+bc或ax+by<c,解法:同二元一次方程。

2.3 方程(组)与不等式(组)的应用- 线性方程组的解法:代入法、消元法、矩阵法等。

- 不等式组的解法:同线性方程组。

三、函数3.1 一次函数- 概念:形式为y=kx+b(k、b为常数,k≠0)的函数。

- 图像:一条直线。

- 性质:随着x的增大,y的值会按照k的正负和大小变化。

3.2 二次函数- 概念:形式为y=ax²+bx+c(a、b、c为常数,a≠0)的函数。

- 图像:一个开口向上或向下的抛物线。

- 性质:开口方向由a的正负决定,顶点坐标为(-b/2a, c-b²/4a)。

四、几何4.1 平面几何- 点、线、面的基本概念。

- 线段的性质:长度、中点、垂直平分线等。

- 角的性质:度量、分类、补角、对顶角等。

- 三角形的基本性质:边长、角度、高、中线、角平分线等。

- 四边形的基本性质:边长、对角线、内角和等。

4.2 立体几何- 空间点、线、面的基本概念。

- 三角形、四边形、圆锥、球等立体图形的性质和计算。

八年级数学人教版下册各章知识点

八年级数学人教版下册各章知识点

八年级数学人教版下册各章知识点一、有理数的加减运算1. 有理数的概念有理数是整数和分数的统称,包括正数、负数和零。

2. 有理数的加法同号两数相加,异号两数相减,绝对值大的数的符号作为和的符号。

3. 有理数的减法减去一个数等于加上这个数的相反数,即a-b=a+(-b)。

4. 有理数加减混合运算的简便法则先加同号数,再加异号数,同时考虑有括号的运算。

5. 有理数的加减法则的应用例如,温度的变化、海拔的高低、海水深度等都可以用有理数表示,可以考虑使用加减法则进行运算。

二、有理数的乘除运算1. 有理数的乘法同号两数相乘为正,异号两数相乘为负。

2. 有理数的除法被除数和除数同号,商为正;被除数和除数异号,商为负。

除数不能为0。

3. 有理数乘除法综合运用例如,计算温度的变化率、质量比等都可以用有理数的乘除法进行运算。

三、平方根与实数1. 平方数和非平方数2. 平方根的概念3. 二次根式的简化和化简4. 平方根的运算法则乘方和除方的运算法则。

四、一次函数与线性方程组1. 一次函数的概念2. 点斜式和斜截式方程3. 一次函数的分类和性质4. 线性方程组及其解法高斯消元法、分离变量法、克莱姆法则、作图法等。

五、相似形与比例1. 相似形的概念2. 相似比的概念3. 相似形的性质4. 相似形的判定5. 应用:几何建模、图形变换等。

六、几何运算1. 直角三角形的概念和性质勾股定理、正弦定理和余弦定理等。

2. 平行四边形的概念和性质3. 正方形、长方形和平行四边形的关系4. 圆的概念和性质圆的面积和周长、弧度制和角度制等。

七、统计图及其分析1. 统计调查的概念和方法2. 数据的整理和组织方式3. 统计图的分类和意义柱形图、折线图、饼图、散点图等。

4. 统计图的读取和分析如何根据图形信息提取数据特征和规律。

八、概率的概念与计算1. 实验和随机事件的概念2. 概率的定义和性质3. 事件的互斥和独立性质4. 基本概率计算公式的应用5. 事件的总概率和条件概率的计算。

八年级下册数学知识点归纳总结

八年级下册数学知识点归纳总结

八年级下册数学知识点归纳总结一、代数知识点1. 代数表达式- 单项式与多项式的定义- 合并同类项- 代数式的加减运算- 代数式的乘除运算2. 一元一次方程- 方程的建立与解法- 利用等式性质解方程- 解含有括号的一元一次方程- 解应用题3. 一元一次不等式- 不等式的概念与性质- 不等式的解集表示- 解一元一次不等式- 解一元一次不等式组4. 二元一次方程组- 方程组的建立- 代入法解方程组- 加减法解方程组- 应用题的解决二、几何知识点1. 平行线与角- 平行线的判定与性质- 同位角、内错角、同旁内角- 平行线间的角关系2. 三角形- 三角形的基本概念- 三角形的内角和定理- 三角形的外角性质- 等腰三角形与等边三角形的性质3. 四边形- 四边形的基本概念- 矩形、菱形、正方形的性质- 平行四边形的性质与判定- 四边形的面积计算4. 圆的基本性质- 圆的定义与性质- 圆的直径、弦、弧、切线- 圆周角与圆心角的关系- 切线长定理三、统计与概率知识点1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读(条形图、折线图、饼图)2. 概率- 随机事件的概率- 概率的计算方法- 等可能事件的概率四、数列知识点1. 数列的概念- 数列的定义- 常见的数列类型(等差数列、等比数列)2. 等差数列- 等差数列的定义与通项公式- 等差数列的前n项和公式- 等差数列的性质与应用3. 等比数列- 等比数列的定义与通项公式- 等比数列的前n项和公式- 等比数列的性质与应用五、函数知识点1. 函数的概念- 函数的定义- 函数的表示方法(解析式、图像、表格)2. 一次函数- 一次函数的定义与图像- 一次函数的性质- 一次函数的应用题3. 二次函数- 二次函数的定义与图像- 二次函数的性质- 二次函数的应用题六、实数与根式知识点1. 实数- 实数的基本概念- 有理数与无理数- 实数的运算2. 根式- 平方根与立方根的定义- 根式的运算- 无理数的估算七、解题技巧与策略1. 解题步骤的规范化- 理解题意- 制定解题计划- 执行解题过程- 检查验证结果2. 常见解题误区与避免方法- 忽略题目条件- 计算失误- 逻辑推理错误3. 提高解题效率的方法- 练习典型题目- 分类记忆公式与定理- 定期复习巩固以上是对八年级下册数学知识点的一个全面归纳总结。

人教版八年级下册数学知识点(精选5篇)

人教版八年级下册数学知识点(精选5篇)

人教版八年级下册数学知识点〔精选5篇〕篇1:八年级数学知识点下册人教版初二数学下册知识点归纳第一章一元一次不等式和一元一次不等式组一、一般地,用符号(或),(或)连接的式子叫做不等式.能使不等式成立的未知数的值,叫做不等式的解.不等式的解不,把所有满足不等式的解集合在一起,构成不等式的解集.求不等式解集的过程叫解不等式.由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组不等式组的解集:一元一次不等式组各个不等式的解集的公共局部.等式根本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.根本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的根本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变.)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的根本性质1、假设ab,那么a+cb+c;2、假设ab,c0那么acbc假设c0,那么ac不等式的其他性质:反射性:假设ab,那么bb,且bc,那么ac三、解不等式的步骤:1、去分母;2、去括号;3、移项合并同类项;4、系数化为1.四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集.五、列一元一次不等式组解实际问题的一般步骤:(1)审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答.六、常考题型:1、求4x-67x-12的非负数解.2、3(x-a)=x-a+1r的解合适2(x-5)8a,求a的范围.3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间.第二章分解因式一、公式:1、ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a22ab+b2=(ab)2二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形.三、把多项式的各项都含有的一样因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤:(1)假设各项系数是整系数,取系数的公约数;(2)取一样的字母,字母的指数取较低的;(3)取一样的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)假设有-先提取-,假设多项式各项有公因式,那么再提取公因式.(2)假设多项式各项没有公因式,那么根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.分解因式的方法:1、提公因式法.2、运用公式法.第三章分式注:1对于任意一个分式,分母都不能为零.2分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母.3分式的值为零含两层意思:分母不等于零;分子等于零.(中B0时,分式有意义;分式中,当B=0分式无意义;当A=0且B0时,分式的值为零.)常考知识点:1、分式的意义,分式的化简.2、分式的加减乘除运算.3、分式方程的解法及其利用分式方程解应用题.八年级数学知识点1、在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

全】人教版初中数学八年级下册知识点总结

全】人教版初中数学八年级下册知识点总结

全】人教版初中数学八年级下册知识点总结一、二次根式二次根式是指形如a(a≥0)的式子。

其中,a被称为被开方数。

最简二次根式是指被开方数中不含开方开的尽的因数或因式,且不含分母的二次根式。

如果两个二次根式的被开方数相同,那么它们就是同类二次根式。

二次根式具有一些性质,如a(a>0)的平方根是a,a的平方根和-a的平方根相等。

二、勾股定理勾股定理指的是直角三角形的两直角边长分别为a,b,斜边长为c时,a²+b²=c²。

应用勾股定理可以求出直角三角形的第三边长,或者判断一个三角形是否为直角三角形。

勾股定理的逆定理是指如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。

勾股数是指能够构成直角三角形的三边长的三个正整数,常见的勾股数有3,4,5;6,8,10;5,12,13;7,24,25等。

直角三角形还有一些其他的性质,需要我们认真研究和掌握。

1.直角三角形的两个锐角互余,即∠A+∠B=90°。

2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BC=AB/2.3.直角三角形斜边上的中线等于斜边的一半,即CD=AB=BD=AD,其中D为AB的中点。

4.三角形面积公式为AB•CD=AC•BC。

5.直角三角形的判定有三种:有一个角是直角的三角形是直角三角形;如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;勾股定理的逆定理也可以判定直角三角形。

6.命题是对某件事情做出判断的完整句子,分为真命题和假命题。

7.定理是用推理的方法判断为正确的命题,证明是判断命题正确性的推理过程。

8.证明命题的一般步骤是根据题意画出图形,写出已知和求证,找出由已知推出求证的途径并写出证明过程。

9.三角形的中位线平行于第三边,并且等于它的一半,有多种作用和常用结论。

10.数学口诀有助于记忆和理解数学知识,如“勾股三角形,斜边是对角线”等。

2024年八年级下册数学知识点总结归纳(2篇)

2024年八年级下册数学知识点总结归纳(2篇)

2024年八年级下册数学知识点总结归纳一、实数的认识与运算1. 数轴及实数的表示- 数轴的绘制及利用- 实数的表示及其在数轴上的位置2. 实数的相关性质- 加法运算的性质- 减法运算的性质- 乘法运算的性质- 除法运算的性质3. 实数的运算规则- 加法的运算法则- 减法的运算法则- 乘法的运算法则- 除法的运算法则4. 实数的逆运算- 加法逆元和减法逆元- 乘法逆元和除法逆元5. 有理数的认识与运算- 有理数的表示及其分类- 有理数的加法与减法- 有理数的乘法与除法6. 无理数的认识与运算- 无理数的表示及其性质- 无理数与有理数的关系7. 实数的运算律及运算顺序- 混合运算的顺序和运算律二、线性方程与不等式1. 一元一次方程- 一元一次方程的解的概念- 一元一次方程的解的判断- 一元一次方程的解的求法2. 一元一次方程的应用- 应用问题的方程建立- 使用方程解决实际问题3. 一元一次不等式- 一元一次不等式的解的概念- 一元一次不等式的解的判断- 一元一次不等式的解的求法4. 一元一次不等式的应用- 应用问题的不等式建立- 使用不等式解决实际问题三、平面图形与立体图形1. 平面图形的性质与判断- 五角星和六角星的性质- 四边形的性质- 三角形的性质- 直角三角形的性质2. 平面图形的分类与应用- 三角形的分类- 几何图形的应用3. 立体图形的认识与分类- 立体图形的基本概念- 空间几何图形的识别和分类4. 立体图形的体积与表面积- 直方体和正方体的体积和表面积- 柱体和锥体的体积和表面积四、统计与概率1. 数据的汇总与处理- 数据的收集和整理- 数据的图表表示2. 参数与统计量- 参数的含义与计算- 统计量的含义与计算3. 概率与事件- 概率的概念与性质- 事件与概率的计算4. 概率的应用- 简单事件的计算- 互斥事件的计算- 包含事件的计算五、函数与图像1. 函数的概念与表示- 函数的定义与表示- 函数的自变量和因变量2. 函数的性质与运算- 函数的奇偶性- 函数的增减性- 函数的周期性3. 函数的图像与应用- 函数的图像的绘制- 函数的应用问题解决4. 解析几何的初步认识- 直线的性质与方程- 圆的性质与方程总结:以上是____年八年级下册数学的知识点总结归纳,主要涵盖了实数的认识与运算、线性方程与不等式、平面图形与立体图形、统计与概率、函数与图像等重要内容。

部编版初中数学八年级下册必背几何公式汇总

部编版初中数学八年级下册必背几何公式汇总

部编版初中数学八年级下册必背几何公式汇总1. 三角形相关公式1.1 周长和面积公式- 三角形的周长公式为:周长 = 边长1 + 边长2 + 边长3。

- 三角形的面积公式为:面积 = (底边长 ×高)/ 2。

1.2 直角三角形相关公式- 直角三角形的斜边长度公式为:斜边长度 = 根号下(直角边1的平方 + 直角边2的平方)。

- 直角三角形的勾股定理公式为:直角边1的平方 + 直角边2的平方 = 斜边长度的平方。

2. 四边形相关公式2.1 矩形相关公式- 矩形的周长公式为:周长 = (长 + 宽)× 2。

- 矩形的面积公式为:面积 = 长 ×宽。

2.2 正方形相关公式- 正方形的周长公式为:周长 = 边长 × 4。

- 正方形的面积公式为:面积 = 边长 ×边长。

2.3 平行四边形相关公式- 平行四边形的周长公式为:周长 = (边长1 + 边长2)× 2。

- 平行四边形的面积公式为:面积 = 底边长 ×高。

3. 圆相关公式3.1 圆的周长和面积公式- 圆的周长公式为:周长= 2 × π × 半径。

- 圆的面积公式为:面积= π × 半径的平方。

3.2 扇形和弧长公式- 扇形的面积公式为:面积 = 1/2 ×扇形的圆心角度数× π × 半径的平方。

- 弧长的公式为:弧长 = 扇形的圆心角度数/360 × 2 × π × 半径。

以上是部编版初中数学八年级下册必背的几何公式汇总,希望对你有所帮助!。

新人教版数学八年级下册知识点汇总

新人教版数学八年级下册知识点汇总

新人教版数学八年级下册知识点汇总本文档汇总了新人教版数学八年级下册的知识点。

第一章函数与线性方程1. 函数的概念与性质2. 线性方程与函数3. 一次函数4. 函数图像与线性方程的解5. 函数关系与线性方程的解6. 函数的运算第二章四边形1. 任意四边形2. 平行四边形3. 矩形4. 正方形5. 菱形6. 梯形7. 三角形的面积第三章几何变换1. 平移与错切2. 原点对称与轴对称3. 尺规作图第四章图形的相似与尺寸1. 相似的概念与性质2. 相似三角形的判定3. 相似三角形与相似比例4. 对应边成比例与对应角相等第五章数据及其概率1. 数列的概念与表示2. 等差数列3. 概率的概念与计算第六章方程1. 方程的解2. 一元一次方程3. 一元一次方程的应用4. 两个变量的线性方程组5. 二次方程的概念与解法第七章平面直角坐标系中的图形1. 直角坐标系2. 线段的中点3. 相交线与平分线4. 解析几何中的实线和虚线5. 圆第八章有理数和实数1. 有理数2. 实数的简介第九章三角形1. 三角形的元素及其关系2. 三角形的相似判定3. 中线、垂线与高线4. 全等三角形及其判定5. 合同三角形的性质第十章配方法等式1. 用配方法解方程2. 一元二次方程第十一章平面图形的性质1. 线段的垂直平分线2. 过点作圆3. 正多边形4. 螺旋线第十二章多边形的面积1. 平行四边形的面积2. 三角形的面积3. 高度与四边形的面积第十三章浓度和密度1. 浓度与密度的计算第十四章投影与视图1. 平行投影2. 视图第十五章集合1. 集合的概念与表示2. 集合间的关系以上是数学八年级下册的知识点汇总。

请根据具体需求查阅相关章节,以帮助研究和复。

(此文档内容仅适用于新人教版数学八年级下册,不包含其他版本的内容)。

最新部编人教版初中八年级下册数学知识点总结

最新部编人教版初中八年级下册数学知识点总结

八年级数学(下册)知识点总结第十六章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。

2.二次根式有意义的条件: 大于或等于0。

3.二次根式的双重非负性:a :①0≥a ,②0≥a 附:具有非负性的式子:①0≥a ;②0≥a ;③02≥a4.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

5.同类二次根式:二次根式化成最简二次根式后,若被 相同,则这几个二次根式就是同类二次根式。

6.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 27.二次根式的运算:(1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a ≥0,b ≥0);=(b ≥0,a>0). (3)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.a (a >0)a -(a <0)0 (a =0);【典型例题】1、概念与性质 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)x x --+315; (2)22)-(x例3、 在根式1) 222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知:的值。

求代数式22,211881-+-+++-+-=x yy x xy y x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()ba b b a a b ++++,其中a=512,b=512.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值(1)、根式变形法当0,0a b >>时,①如果a b >a b >a b <a b < 例1、比较35与53的大小。

八年级数学下册知识点总结(全)

八年级数学下册知识点总结(全)

八年级数学下册知识点总结一、实数1.1 实数的定义及分类实数包括有理数和无理数。

有理数是可以表示为两个整数比的数,包括整数、分数、小数(有限小数和无限循环小数)。

无理数是不能表示为两个整数比的数,例如√2和π。

1.2 实数的性质(1)实数具有加法、减法、乘法、除法四种运算。

(2)实数具有相反数、倒数等概念。

(3)实数可以进行大小比较。

1.3 实数与数轴数轴是一条直线,规定了原点、正方向和单位长度,实数与数轴上的点一一对应。

二、整式与函数2.1 整式的定义及分类整式是只有加、减、乘运算,且运算对象为整数的代数式。

整式包括单项式和多项式。

2.2 整式的运算(1)单项式的运算:加、减、乘、除。

(2)多项式的运算:加、减、乘、除。

2.3 函数的定义及性质函数是一种对应关系,将一个集合(定义域)中的每个元素对应到另一个集合(值域)中的元素。

函数具有唯一性、连续性、单调性等性质。

2.4 一次函数一次函数是形如y=kx+b(k、b为常数,k≠0)的函数。

一次函数的图像是直线。

2.5 二次函数二次函数是形如y=ax2+bx+c(a、b、c为常数,a≠0)的函数。

二次函数的图像是一条抛物线。

三、三角形3.1 三角形的定义及性质三角形是由三条边和三个角组成的图形。

三角形的内角和为180∘,任意两边之和大于第三边。

3.2 三角形的分类(1)锐角三角形:三个内角都小于90∘。

(2)直角三角形:一个内角为90∘。

(3)钝角三角形:一个内角大于90∘。

3.3 三角形的判定(1)SSS 判定:三角形的三边分别相等,则这三个三角形全等。

(2)SAS 判定:三角形的两边和它们夹角分别相等,则这两个三角形全等。

(3)ASA 判定:三角形的两角和它们夹边分别相等,则这两个三角形全等。

(4)AAS 判定:三角形的两角和其中一边分别相等,则这两个三角形全等。

四、平行四边形4.1 平行四边形的定义及性质平行四边形是具有两对平行边的四边形。

人教版八年级下册数学各单元知识点归纳总结

人教版八年级下册数学各单元知识点归纳总结

人教版八年级下册数学各单元知识点归纳总结第一章算法初步- 整数、质数、合数、因数、倍数的概念- 分解因数,最大公因数,最小公倍数- 带余除法,求模运算,同余方程- 算术基本定理,一元一次方程,解方程的步骤第二章分数- 分数的基本概念,分数的大小比较- 分数的加减乘除,分数的化简- 分数的整数运算,带分数的简单四则运算- 分数运算的应用第三章代数式- 代数式的基本概念,同类项的概念- 代数式的加减乘除,开平方- 代数式乘法公式,因式分解- 代数式的应用第四章方程式初步- 方程组的基本概念- 二元一次方程组,三元一次方程组- 解方程组的方法- 方程的应用第五章图形初步- 轴对称图形,中心对称图形,旋转图形- 面积的应用- 三角形的分类,特殊的三角形- 四边形的分类,判断各种四边形第六章数据的收集与统计- 数据的收集,数据的整理,数据的描述- 中心值,散布度,直方图- 规律的总结,归纳,样本容量的选择- 无偏性,可靠性,误差分析第七章立体图形的计算- 立体图形的基本概念,正方体,长方体- 表面积,体积的计算- 圆锥、圆柱、金字塔、棱锥的表面积、体积的计算- 建立立体图形的模型第八章概率初步- 随机事件,样本空间的概念- 频率与概率,事件的独立性- 树形图与概率,基本统计数量- 离散型随机变量的分布总结本篇文章总结了人教版八年级下册数学各单元的知识点。

每章节都包括基本概念、计算方法和应用场景等内容。

阅读本文可以使学生更好地掌握知识点,提高学习效率,为考试打下基础。

人教版八年级下册数学知识点归纳

人教版八年级下册数学知识点归纳

人教版八年级下册数学知识点归纳人教版八年级下册数学教材包含了许多重要的数学知识点,本文将对这些知识点进行归纳总结,帮助学生更好地掌握数学知识。

一、代数运算1. 整式的加减运算:将同类项相加或相减,并保持式子的基本结构稳定。

2. 分配率与合并同类项:运用分配率简化式子,并合并同类项。

3. 方程的基本性质:等式两边同时加(减)或乘(除)同一个数仍然相等。

4. 一元一次方程与解的性质:利用等式的性质求解一元一次方程。

二、平面图形与立体图形1. 平面图形的分类:点、线、角以及常见的三角形、四边形等。

2. 直角三角形与勾股定理:利用勾股定理求解与直角三角形相关的问题。

3. 平行线与三角形:根据平行线与三角形的性质求解与线段长度、角度大小有关的问题。

4. 等腰三角形与等边三角形:利用等腰三角形和等边三角形的性质求解问题。

5. 空间几何体的特征:了解立体图形的特征及常见的几何体如立方体、圆柱体、球体等。

6. 空间坐标系:学会使用三维坐标系表示空间中的点的位置。

三、数据与概率1. 数据的整理与综合:对收集到的数据进行整理、分类和综合,作出相关的统计图表。

2. 概率实验与样本空间:通过进行概率实验,了解样本空间、事件的概念,并计算事件的概率。

3. 互斥事件与对立事件:理解互斥事件和对立事件的概念,并计算其概率。

4. 事件间的关系与概率计算:根据事件间的关系,利用概率进行计算,包括事件的和、差、积和商等。

四、函数与图像1. 平面直角坐标系:了解直角坐标系的概念与性质,能够描绘简单的函数图像。

2. 函数的概念与自变量、函数值的关系:通过数表、图象和图象像等表示函数的特征。

3. 函数的表示与求函数值:利用函数图象、函数的解析式等求函数值。

4. 线性函数与比例函数:认识线性函数和比例函数的特征与性质,并能够利用函数的特征解决实际问题。

五、数与式1. 数的性质:正数、负数、零的性质及其运算规则。

2. 分数的加减与乘除:理解分数的加减乘除运算,能够将分数化简为最简形式。

最新人教部编版初中八年级数学下册全册知识点总结

最新人教部编版初中八年级数学下册全册知识点总结

最新人教部编版初中八年级数学下册全册
知识点总结
本文档总结了最新人教部编版初中八年级数学下册全册的知识点。

下面是每个单元的主要内容:
第一单元:一元一次方程与应用
- 了解一元一次方程的基本概念和求解方法
- 掌握利用一元一次方程解决实际问题的方法
第二单元:不等式与应用
- 掌握不等式的基本概念和性质
- 学会利用不等式解决实际问题
第三单元:平面图形的认识
- 研究平面图形的基本概念
- 掌握平面图形的性质和判定方法
第四单元:图形的相似与尺寸
- 了解相似图形的定义和性质
- 学会应用相似图形解决问题
第五单元:三角形的面积
- 掌握计算三角形面积的方法
- 研究应用三角形的面积解决实际问题
第六单元:整式与分式
- 理解整式和分式的概念和性质
- 掌握整式和分式的运算方法
第七单元:统计与概率
- 了解统计学的基本概念和统计图表的绘制方法- 研究概率的基本理论和计算方法
第八单元:函数的认识
- 研究函数的定义和基本性质
- 掌握函数的图像和函数关系的表示方法
第九单元:一元二次方程
- 了解一元二次方程的定义和性质
- 学会利用一元二次方程解决实际问题
每个单元的知识点总结包括了基本概念、性质、解题方法和应用等方面的内容。

希望这份文档能帮助您更好地理解和应用八年级数学下册的知识点。

人教版八年级下册数学重点概念(全)

人教版八年级下册数学重点概念(全)

人教版八年级下册数学重点概念(全)一、整数1. 整数的定义:正整数、负整数和0的集合称为整数。

2. 整数的表示:用正整数和负整数表示整数,正整数用+号表示,负整数用-号表示。

3. 整数的比较:对于任意的两个整数a和b,如果a大于b,则记作a > b;如果a小于b,则记作a < b;如果a等于b,则记作a = b。

4. 整数的运算:整数之间可以进行加法、减法、乘法和除法运算。

二、有理数1. 有理数的概念:有理数包括整数和分数,是可以表示两个整数比值的数。

2. 有理数的运算规则:有理数之间可以进行加法、减法、乘法和除法运算,运算结果仍然是有理数。

3. 绝对值:有理数的绝对值是该有理数到0的距离,用|a|表示,其中a为有理数。

三、比例1. 比例的定义:比例是指两个比较相同量类型的比的相等关系。

2. 比例的性质:比例有三个重要性质,分别为比例交叉乘积相等、比例取倒数仍相等和比例成反比。

四、百分数1. 百分数的定义:百分数是以100为基准的分数,百分之一表示为1%,百分之十表示为10%。

2. 百分数的转化:百分数可以转化为小数和分数,小数可以转化为百分数。

五、简单方程与简单不等式1. 简单方程:简单方程是指只含有一个未知数的方程,如3x + 5 = 20。

2. 简单不等式:简单不等式是指只含有一个未知数的不等式,如2x - 7 < 15。

六、统计1. 统计的概念:统计是指通过收集、整理、分析数据来描述和解释现象的方法。

2. 统计图表:统计图表包括条形图、折线图、饼图等,用于直观地表示数据的分布和关系。

七、几何1. 几何的基本概念:几何研究的对象是点、线、面以及它们之间的关系。

2. 基本几何图形:基本几何图形包括直线、线段、射线、平行线、垂直线、角以及各种多边形等。

以上为人教版八年级下册数学的重点概念,希望能对学习有所帮助。

新人教版八年级数学下册知识点总结归纳

新人教版八年级数学下册知识点总结归纳

新人教版八年级数学下册知识点总结归纳八年级数学(下册)知识点总结:二次根式二次根式是指形如a(a≥0)的式子。

最简二次根式需要同时满足以下三个条件:(1)被开方数中不含开方开的尽的因数或因式;(2)被开方数中不含分母;(3)分母中不含根式。

同类二次根式是指被开方数相同的二次根式。

二次根式有以下性质:(1)a²=a(a≥0);(2)a=0时,a²=0;(3)a<0时,a²是正数。

二次根式的运算包括因式的外移和内移、加减法、乘除法。

在运算中,需要将二次根式化为最简二次根式,合并同类项,将乘除法转化为被开方数相乘(除)的形式,并将结果化为最简二次根式。

此外,二次根式的运算也适用于有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式。

勾股定理是指在直角三角形中,两直角边长分别为a、b,斜边长为c时,a²+b²=c²。

勾股定理逆定理是指如果三角形三边长a、b、c满足a²+b²=c²,那么这个三角形是直角三角形。

直角三角形的性质包括:(1)直角三角形的两个锐角互余,即∠A+∠B=90°;(2)在直角三角形中,30°角所对的直角边等于斜边的一半,即BC=1/2AB,且∠C=90°;(3)直角三角形斜边上的中线等于斜边的一半,即CD=1/2AB,且∠ACB=90°。

直角三角形的面积公式为(1/2)ab=ch,其中a、b是直角边,c是斜边,h是斜边上的高。

直角三角形的判定方法包括:(1)有一个角是直角的三角形是直角三角形;(2)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;(3)勾股定理的逆定理:如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形。

XXXA line XXX is called a median line of the triangle.1) A triangle has three median lines。

2023部编版数学八年级下册教材背诵内容

2023部编版数学八年级下册教材背诵内容

2023部编版数学八年级下册教材背诵内容本文档列举了2023年部编版数学八年级下册教材中需要背诵的内容。

以下是教材中重点内容的概述。

第一章:图形与位置本章主要介绍平面图形的分类、性质和位置关系。

需要重点背诵的内容包括:- 各种图形的名称和性质- 直线、射线、线段的定义与特点- 平行线、垂直线的判定方法- 平面图形的分类标准和对应图形的性质第二章:全等与相似本章讲解全等和相似的概念及判定方法。

需要重点背诵的内容包括:- 全等三角形的定义和全等判定条件- 直角三角形的判定方法及性质- 相似三角形的定义和相似判定条件- 相似三角形的性质和比例关系第三章:比例与变动本章介绍比例的概念和应用,并研究变动量的计算。

需要重点背诵的内容包括:- 比例的定义和性质- 比例的计算方法和应用- 百分数的计算和应用- 变动量的计算和应用第四章:一次函数与方程本章讲解一次函数和方程的概念、性质和应用。

需要重点背诵的内容包括:- 函数与方程的定义和性质- 一次函数的图象和特征- 一次方程的解的求解方法- 一次方程的应用问题解析第五章:数据的收集整理与分析本章主要介绍数据的收集、整理和分析的方法和技巧。

需要重点背诵的内容包括:- 统计调查和数据收集的方法- 数据的整理和处理方法- 数据的图表表示和分析方法- 统计图表的应用场景和解读第六章:圆的性质与应用本章讲解圆的性质和应用,并介绍与圆相关的内容。

需要重点背诵的内容包括:- 圆的定义和性质- 弧和弦的定义和特征- 圆的内切与外接关系- 圆的计算应用问题以上是2023年部编版数学八年级下册教材中需要背诵的内容的概述。

详细内容请参考教材,并结合课堂练习进行深入学习与掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学(下册)知识点总结第十六章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。

2.二次根式有意义的条件: 大于或等于0。

3.二次根式的双重非负性:a :①0≥a ,②0≥a 附:具有非负性的式子:①0≥a ;②0≥a ;③02≥a4.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

5.同类二次根式:二次根式化成最简二次根式后,若被 相同,则这几个二次根式就是同类二次根式。

6.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 27.二次根式的运算:(1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a ≥0,b ≥0);=(b ≥0,a>0). (3)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.a (a >0)a -(a <0)0 (a =0);【典型例题】1、概念与性质 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)x x --+315; (2)22)-(x例3、 在根式1) 222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知:的值。

求代数式22,211881-+-+++-+-=x yy x xy y x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()ba b b a a b ++++,其中a=512,b=512.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值(1)、根式变形法当0,0a b >>时,①如果a b >a b >a b <a b < 例1、比较35与53的大小。

(2)、平方法当0,0a b >>时,①如果22a b >,则a b >;②如果22a b <,则a b <。

例2、比较323 (3)、分母有理化法通过分母有理化,利用分子的大小来比较。

例3、31-21- (4)、分子有理化法通过分子有理化,利用分母的大小来比较。

例4、1514-1413 (5)、倒数法例57665 (6)、媒介传递法适当选择介于两个数之间的媒介值,利用传递性进行比较。

例6、73873的大小。

(7)、作差比较法在对两数比较大小时,经常运用如下性质: ①0a b a b ->⇔>;②0a b a b -<⇔< 例7、比较2131++与23的大小。

(8)、求商比较法它运用如下性质:当a>0,b>0时,则: ①1aa b b>⇔>; ②1aa b b<⇔<例8、比较53-与23+的大小。

5、规律性问题例1. 观察下列各式及其验证过程:, 验证:;验证:. (1)按照上述两个等式及其验证过程的基本思路,猜想4415(2)针对上述各式反映的规律,写出用n(n≥2,且n 是整数)表示的等式,并给出验证过程.第十七章 勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么c b a 222=+。

应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则22c a b +,22b c a -,22a c b =-)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边。

2.勾股定理逆定理:如果三角形三边长a ,b,c 满足c b a 222=+,那么这个三角形是直角三角形。

应用: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法。

(定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边) 3、勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③勾股数扩大相同的的倍数依然是一组新的勾股数。

如ka,kb,kc 4.直角三角形的性质(1)直角三角形的两个锐角互余。

可表示如下:∠C=90°⇒∠A+∠B=90° (2)在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30°⇒BC=21AB ∠C=90°(3)、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°⇒CD=21AB=BD=AD D 为AB 的中点5.经过证明被确认正确的命题叫做定理。

我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

(例:勾股定理与勾股定理逆定理)6、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒ AB AD AC •=2CD ⊥AB AB BD BC •=2 7、常用关系式由三角形面积公式可得:AB •CD=AC •BC8、直角三角形的判定1、有一个角是直角的三角形是直角三角形。

2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、勾股定理的逆定理:如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

9、命题、定理、证明 1、命题的概念判断一件事情的语句,叫做命题。

理解:命题的定义包括两层含义: (1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。

2、命题的分类(按正确、错误与否分) 真命题(正确的命题) 命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。

所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

3、公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。

4、定理用推理的方法判断为正确的命题叫做定理。

5、证明判断一个命题的正确性的推理过程叫做证明。

6、证明的一般步骤(1)根据题意,画出图形。

(2)根据题设、结论、结合图形,写出已知、求证。

(3)经过分析,找出由已知推出求证的途径,写出证明过程。

10、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

11、数学口诀.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

第十八章平行四边形一.平行四边形1、定义:两组对边分别平行的四边形是平行四边形.2.平行四边形的性质角:平行四边形的邻角互补,对角相等;边:平行四边形两组对边分别平行且相等;对角线:平行四边形的对角线互相平分;面积:①S=底 高=ah;3.平行四边形的判定方法:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形; 一组平行且相等的四边形是平行四边形;④两组对角分别相等的四边形是平行四边形;A BDOC⑤对角线互相平分的四边形是平行四边形;二、特殊的平行四边形 (一)矩形1、矩形的定义:有一个角是直角的平行四边形是矩形2、矩形的性质①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等; 3、矩形的判定:⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321⇒四边形ABCD 是矩形. (二)菱形1、定义:有一组邻边相等的平行四边形是菱形。

2、菱形的性质:①边:四条边都相等;②角:对角相等、邻角互补; ③对角线:对角线互相垂直平分且每条对角线平分每组对角; 3、菱形的判定方法:⎪⎭⎪⎬⎫+行四边形)对角线互相垂直的平()四个边都相等(一组邻边等)平行四边形(321⇒四边形四边形ABCD 是菱形. (三)正方形1、定义:有一组邻边相等且有一个直角的平行四边形叫做正方形2、正方形的性质:①边:四条边都相等;②角:四角都是直角; ③对角线:对角线互相垂直平分且相等,每条对角线平分每组对角。

3、正方形的判定方法:A D BCA DBCOCDBAOCDAB⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321⇒四边形ABCD 是正方形.(四)三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半. 如图:∵DE 是△ABC 的中位线∴DE ∥BC ,DE=21BC(五)几种特殊四边形的面积问题① 设矩形ABCD 的两邻边长分别为a ,b ,则S 矩形=ab .② 设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;若菱形的两对角线的长分别为b ,c ,则S 菱形=bc 21③ 设正方形ABCD 的一边长为a ,则a S 2=正方形;若正方形的对角线的长为b ,则bS 221=正方形四边形E DCBA一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二 定理:中心对称的有关定理 ※1.关于中心对称的两个图形是全等形.※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. ※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式:1.S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高)3.S 梯形 =21(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:※1.若n 是多边形的边数,则对角线条数公式是:2)3n (n . 2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系.4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:平行四边形矩形菱形正方形线段、矩形、菱形、正方形、正偶边形、圆…… .注意:线段有两条对称轴.第十九章一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。

相关文档
最新文档