高一数学《函数模型及其应用》教案

合集下载

高一数学教案:《函数模型及其应用》人教A版必修

高一数学教案:《函数模型及其应用》人教A版必修

教学目标:知识与技能:结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性.过程与方法:能够借助信息技术, 利用函数图象及数据表格, 对几种常见增长类型的函数的增长状况进行比较, 初步体会它们的增长差异性; 收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等), 了解函数模型的广泛应用.情感、态度、价值观:体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.教学重点:函数模型的建立教学难点:选择合适的数学模型分析解决实际问题.教学过程:一、激趣导学:1.复利把前一期的利息和本金加在一起做本金,再计算下一期的利息.(就是人们常说的“利滚利”).设本金为p ,每期利率为r ,存期为x ,则本金与利息和 . (1)x y p r =+2.单利在计算每一期的利息时,本金还是第一期的本金.设本金为p ,每期利率为r ,存期为x ,则本金与利息和 .(1)y p prx p rx =+=+3.在实际问题中,常常遇到有关平均增长率的问题,如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,可以用公式 表示.()1x y Np =+二、质疑讨论:1.某工厂的一种产品的年产量第二年比第一年增加21%,第三年比第二年增加44%,求这两年的平均增长率 .1.32132%x =-=2.在银行进行整存整取的定期储蓄,当到期时,银行会将本息和进行自动转存,某人2005年3月1日在银行存入10000元的一年定期,年利为2.25%,若他暂时不取这笔钱,当到2010年3月1日时,该笔存款的本息和为多少元?(精确到0.01元)3. 已知镭经过100年剩留原来质量的95.76%,计算经过多少年剩留原来质量的一半?三、反馈矫正:例1:物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是O T ,经过一定时间t 后的温度是T ,则1()()2t h a o a T T T T -=-⋅, 其中a T 表示环境温度,h 称为半衰期.现有一杯用88c o 热水冲的速容咖啡,放在24c o 的房间中,如果咖啡降到40c o 需要20min ,那么降温到35c o 时,需要多长时间?点评: 本题是利用已知的函数模型来解决物理问题,需由已知条件先确定函数式,然后再求解.本题的实质为已知自变量的值,求对应的函数值的数学问题,由于运算比较复杂,要求学生借助计算器进行计算.例2:现有某种细胞100个,其中有占总数12的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg 30.477,lg 20.301==).分析:现有细胞100个,先考虑经过1、2、3、4个小时后的细胞总数,点评:本例用归纳猜想的方法得出了细胞总数y 与时间x 之间的函数关系式;解类似x a b >这类的不等式,通常在不等式两边同时取对数,利用对数函数的单调性求解.这种通过观察几个特殊值的特征,从而归纳出函数一般表达式的方法叫做“不完全归纳法”,是高中数学中非常重要的一种方法.例3:某公司拟投资100万元,有两种获利的可能可供选择:一种是年利率10%,按单利计算,5年后收回本金和利息;另一种是年利率9%,按每年复利一次计算,5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年可多得利息多少元?参考数据:51.09 1.5386=,461.09 1.4116,1.09 1.6771==四、巩固迁移:1.向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形状是( )2.我国是水资源比较贫乏的国家之一,各地采用价格调控手段以达到节约用水的目的.某市用水收费方法是:水费=基本费+超额费+损耗费.该市规定:(1)若每户每月用水量不超过最低限量m 立方米时,只付基本费9元和每月的定额损耗费a 元;(2)若每户每月用水量超过m 立方米时,除了付基本费和损耗费外,超过部分每立方米付n 元的超额费;(3)每户每月的损耗费不超过5元.(Ⅰ)求每户月水费y (元)与月用水量x (立方米)的函数关系;(Ⅱ)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示,试分析一、二、三各月份的用水量是否超过最低限量,并求,,m n a 的值.。

人教版教材高中数学必修一《函数模型的应用实例》教案

人教版教材高中数学必修一《函数模型的应用实例》教案

3.2.3 函数模型的应用实例(一)(一)教学目标1.知识与技能:初步掌握一次和二次函数模型的应用,会解决较简单的实际应用问题.2.过程与方法:经历运用一次和二次函数模型解决实际问题,提高学生的数学建模能力.3.情感、态度与价值观:了解数学知识来源于生活,又服务于实际,从而培养学生的应用意识,提高学习数学的兴趣.(二)教学重点、难点一次和二次函数模型的应用是本节的重点,数学建模是本节的难点.(三)教学方法本节内容主要是例题教学,因此采用学生探究解题方法,总结解题规律,教师启发诱导的方法进行教学.(四)教学过程教学环节教学内容师生互动设计意图复习引入回顾一次函数和二次函数的有关知识.教师提出问题,学生回答.师:一次函数、二次函数的解析式及图象与性质.生:回答上述问题.以旧引新,激发兴趣.应用举例1.一次函数模型的应用例1 某列火车从北京西站开往石家庄,全程277km.火车出发10min开出13km后,以120km/h的速度匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系,并求火车离开北京2h内行驶的路程.教师提出问题,让学生读题,找关键字句,联想学过的函数模型,求出函数关系式.学生根据要求,完成例1的解答.例1 解:因为火车匀速运动的时间为(200 – 13)÷120 =115(h),所以115t≤≤.因为火车匀速行驶时间t h所行驶路程为120t,所以,火车运行总路程S与匀速行驶时间t之间的关系是11130120(0).5S t t=+≤≤2h内火车行驶的路程11131206S=+⨯=233(km).通过此问题背景,让学生恰当选择相应一次函数模型解决问题,加深对函数概念本质的认识和理解.让学生体验解决实际问题的过程和方法.解题方法:1.读题,找关键点;2.抽象成数学模型;3.求出数学模型的解;4.做答.学生总结,教师完善.培养学生分析归纳、概括能力.从而初步体验解应用题的规律和方法.2.二次函数模型的应让学生自己读题,并回答下列问题:解应用题用例2 某农家旅游公司有客房300间,每间日房租20元,每天都客满.公司欲提高档次,并提高租金.如果每间客房每日增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?①题目求什么,应怎样设未知量;②每天客房的租金收入与每间客房的租金、客房的出租数有怎样的关系;③学生完成题目.法一:用列表法求解.此法可作为学生探求思路的方法,但由于运算比较繁琐,一般不用,应以法二求解为重点.对法二让学生读题,回答问题.教师指导,学生自己动手解题.师生合作由实际问题建模,让学生尝试解答.例2 解答:方法一依题意可列表如下:x y0 300×20 = 60001 (300 – 10×1)(20 + 2×1) = 63802 (300 – 10×2)(20 + 2×2) = 67203 (300 – 10×3)(20 + 2×3) = 70204 (300 – 10×4)(20 + 2×4) = 72805 (300 – 10×5)(20 + 2×5) = 75006 (300 – 10×6)(20 + 2×6) = 76807 (300 – 10×7)(20 + 2×7) = 78208 (300 – 10×8)(20 + 2×8) =79209 (300 – 10×9)(20 + 2×9) = 798010 (300 – 10×10)(20 + 2×10) = 800011 (300 – 10×11)(20 + 2×11) = 798012 (300 – 10×12)(20 + 2×12) = 792013 (300 – 10×13)(20 + 2×13) = 7820……由上表容易得到,当x = 10,即每天租金为40元时,能出租客房200间,此时每天总租金最高,为8000元.再提高租金,总收入就要小于8000元了.方法二设客房租金每间提高x个2元,则将有10x间客房空出,客房租金的总收入为y = (20 + 2x) (300 – 10x )= –20x2 + 600x– 200x + 6000= –20(x2– 20x + 100 – 100) + 6000= –20(x– 10)2 + 8000.首先要读懂题意,设计出问题指导学生审题,建立正确的数学模型.同时,培养学生独立解决问题的能力.由此得到,当x = 10时,y max = 8000.即每间租金为20 + 10×2 = 40(元)时,客房租金的总收入最高,每天为8000元.3.分将函数模型的应用例 3 一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数解析式,并作出相应的图象.生:解答:(1)阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360.阴影部分的面积表示汽车在这5小时内行驶的路程为360km.(2)根据图,有502004,01,80(1)2054,12,90(2)2134,23,75(3)2224,34,65(4)2299,4 5.t tt ts t tt tt t+≤<⎧⎪-+≤<⎪⎪=-+≤<⎨⎪-+≤<⎪-+≤≤⎪⎩这个函数的图象如图所示.实际应用用问题解决的一般步骤:理解问题⇒简化假设⇒数学建模⇒解答模型⇒检验模型⇒评价与应用的进一步深体.巩固练习课堂练习习题1.如果一辆汽车匀速行驶,1.5h行驶路程为90km,求这辆汽车行驶路程与时间之间的函数关系,以及汽车3h所行驶的路程.习题2.已知某食品5kg价格为40元,求该食品价格与重量之间的函数关系,并求8kg食品的价格是多少元.习题3.有300m长的篱笆材料,如果利用已有的一面墙(设长度够用)作为一边,围成一块矩形菜地,问矩形的长、宽各为多少时,这块菜地的面学生练习,师生点评.1.设汽车行驶的时间为t h,则汽车行驶的路程S km与时间t h之间的函数关系为S = vt.当t = 1.5时,S = 90,则v = 60.因此所求的函数关系为S=60t,当t = 3时,S = 180,所以汽车3h所行驶的路程为180km.2.设食品的重量为x kg,则食品的价格y元与重量x kg之间的函数关系式为y=8x,当x = 8时,y = 64,所以当8kg食品的价格为64元.3.设矩形菜地与墙相对的一边长为x cm,则另一组对边的长为3002x-m,从而矩形菜地的面积为:学生动手实践、体验所学方法,从而提升解应用题的技能.积最大?习题4.某市一种出租车标价为1.20元/km ,但事实上的收费标准如下:最开始4km 内不管车行驶路程多少,均收费10元(即起步费),4km 后到15km 之间,每公里收费1.20元,15km 后每公里再加收50%,即每公里1.80元.试写出付费总数f 与打车路程x 之间的函数关系.21(300)21(150)11250(0300).2S x x x x =-=--+<<当x = 150时,S max = 11250. 即当矩形的长为150m ,宽为75m 时,菜地的面积最大. 4.解:所求函数的关系式为 100410 1.2(4)41523.2 1.8(15)15x y x x x x <≤⎧⎪=+-<≤⎨⎪+->⎩归纳小结课堂小结解决应用用问题的步骤:读题—列式—解答. 学生总结,师生完善使学生养成归纳总结的好习惯.让学生初步掌握数学建模的基本过程. 布置作业 习题2—3B 第1、3题: 教材第71页“思考与讨论”.学生练习使学生巩固本节所学知识与方法.例1 某游艺场每天的盈利额y 元与售出的门票数x 张之间的关系如图所示,试问盈利额为750元时,当天售出的门票数为多少?【解析】根据题意,每天的盈利额y 元与售出的门票数x 张之间的函数关系是:3.75(0400)1.251000(400600)x x y x x ≤≤⎧=⎨+≤≤⎩(1)当0≤x ≤400时,由3.75x =750,得x =200.(2)当400≤x ≤600时,由1.25x + 1000 = 750,得x = – 200 (舍去). 综合(1)和(2),盈利额为750元时,当天售出的门票数为200张. 答:当天售出的门票数为200张时盈利额为750元. 例2投资A 种商品金额(万元) 1 2 3 4 5 6 获纯利润 (万元) 0.65 1.39 1.85 2 1.84 1.40 投资B 种商品金额(万元) 1 2 3 4 5 6 获纯利润 (万元)0.250.490.7611.261.51该经营者准备下月投入12万元经营这两种产品,但不知投入A B 两种商品各多少才最合算. 请你帮助制定一个资金投入方案,使得该经营者获得最大的利润,并按你的方案求出该经营者下月可获得的最大纯利润(结果保留两位有效数字).【解析】以投资额为横坐标,纯利润为纵坐标,在直角坐标系中画出散点图:据此,可考虑用下列函数分别描述上述两组数据之间的对应关系.y = –a (x – 4)2 + 2 (a>0) ①y = bx②把x = 1,y = 0.65代入①式,得0.65 = –a (1 – 4)2 + 2,解得a = 0.15.故前六个月所获纯利润关于月投资A商品的金额的函数关系式可近似地用y = – 0.15(x– 4)2 + 2表示,再把x = 4,y = 1代入②式,得b = 0.25,故前六个月所获利润关于月投资B种商品的金额的函数关系可近似地用y = 0.25x表示.设下月投资A种商品x万元,则投资B种商品为(12 –x)万元,可获纯利润y = – 0.15 (x– 4)2 + 2 + 0.25 (12 –x)= – 0.15x2 + 0.95x + 2.6,当0.952(0.15)x-=⨯-≈3.2时,2max 4(0.15) 2.60.954(0.15)y⨯-⨯-=⨯-≈4.1.故下月分别投资A、B两种商品3.2万元和8.8万元,可获最大纯利润4.1万元.【评析】幂函数模型的应用题经常以二次函数的形式出现,要注意y = x2变换到y = a (x –m)2 + b后发生的变化.。

高中数学教案 第11讲 函数模型及其应用

高中数学教案 第11讲 函数模型及其应用

第11讲函数模型及其应用1.了解指数函数、对数函数与一次函数增长速度的差异.2.理解“指数爆炸”“对数增长”“直线上升”等术语的含义.3.能选择合适的函数模型刻画现实问题的变化规律,了解函数模型在社会生活中的广泛应用.1.指数、对数、幂函数模型性质比较函数性质y =a x (a >1)y =log a x (a >1)y =x n (n >0)在(0,+∞)上的增减性单调□1递增单调□2递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x 的增大逐渐表现为与□3y 轴平行随x 的增大逐渐表现为与□4x 轴平行随n 值变化而各有不同2.几种常见的函数模型函数模型函数解析式一次函数模型f (x )=ax +b (a ,b 为常数,a ≠0)二次函数模型f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0)与指数函数相关的模型f (x )=ba x +c (a ,b ,c 为常数,a >0且a ≠1,b ≠0)与对数函数相关的模型f (x )=b log a x +c (a ,b ,c 为常数,a >0且a ≠1,b ≠0)与幂函数相关的模型f (x )=ax n +b (a ,b ,n 为常数,a ≠0)实际问题中函数要有意义,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.常用结论1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,增长速度缓慢.2.“对勾”函数f (x )=x +ax (a >0)在(0,+∞)上的性质:在(0,a ]上单调递减,在[a ,+∞)上单调递增,当x =a 时f (x )取最小值2a .1.回源教材(1)已知甲、乙两种商品在过去一段时间内的价格走势如图所示,假设某商人持有资金120万元,他可以在t 1至t 4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t 4时刻卖出所有商品,那么他将获得的最大利润是()A.40万元B.60万元C.80万元D.120万元解析:D 当甲商品的价格为6元时,该商人全部买入甲商品,可以买120÷6=20(万份),在t 2时刻全部卖出,此时获利20×2=40(万元);当乙商品的价格为4元时,该商人买入乙商品,可以买(120+40)÷4=40(万份),在t 4时刻全部卖出,此时获利40×2=80(万元).故该商人共获利40+80=120(万元).(2)在数学课外活动中,小明同学进行了糖块溶于水的试验,将一块质量为7克的糖块放入到一定量的水中,测量不同时刻未溶解糖块的质量,得到若干组数据,其中在第5分钟末测得的未溶解糖块的质量为3.5克,同时小明发现可以用指数型函数S =a e -kt (a ,k 为常数)来描述以上糖块的溶解过程,其中S (单位:克)代表t 分钟末未溶解糖块的质量,则k =()A.ln 2 B.ln 3C.ln 25D.ln 35解析:C 由题意可得,当t =0时,S =a =7,因为在第5分钟末测得的未溶解糖块的质量为3.5克,所以3.5=7e -5k ,解得k =ln 25.2.易错自纠(1)已知f (x )=x 2,g (x )=2x ,h (x )=log 2x ,当x ∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是()A.f (x )>g (x )>h (x )B.g (x )>f (x )>h (x )C.g (x )>h (x )>f (x )D.f (x )>h (x )>g (x )解析:B在同一坐标系内,根据函数图象变化趋势,当x ∈(4,+∞)时,增长速度大小排列为g (x )>f (x )>h (x ).(2)当生物死亡后,其体内原有的碳14的含量大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是()A.8B.9C.10D.11解析:C设该死亡生物体内原有的碳14的含量为1,则经过n 个“半衰期”后的含量为(12)n ,由(12)n <11000,得n ≥10.所以,若某死亡生物体内的碳14用该放射性探测器探测不到,则它至少需要经过10个“半衰期”.利用函数图象刻画实际问题的变化过程1.某工厂6年来生产某种产品的情况是前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数图象正确的是()解析:A 前3年年产量的增长速度越来越快,说明呈高速增长,只有A ,C 图象符合要求,而后3年年产量保持不变,A 中总产量增长,C 中总产量不变,因此A 正确.2.如图所示,△OAB 是边长为2的等边三角形,直线x =t 截这个三角形位于此直线左方的图形面积为y (见图中阴影部分),则函数y =f (t )的大致图象为()解析:D 根据题意,△OAB 是边长为2的等边三角形,则A 点的坐标为(1,3),B 点的坐标为(2,0),所以直线OA 的方程为y =3x ,直线AB 的方程为y =-3(x -2),所以当0≤t ≤1时,y =f (t )=12×t ×3t =3t 22;当1<t ≤2时,y =f (t )=12×2×3-12(2-t )×3(2-t )=3-32(2-t )2;当t >2时,y =f (t )=12×2×3=3,它的图象如D 选项所示.故选D.反思感悟判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际情况的答案.已知函数模型解决实际问题例1(多选)(2024·德州模拟)在流行病学中,基本传染数是指每名感染者平均可传染的人数.假设某种传染病的基本传染数为R 0,1个感染者在每个传染期会接触到N 个新人,这N 个人中有V 个人接种过疫苗(VN 称为接种率),那么1个感染者传染人数为R 0N (N -V ).已知某种传染病在某地的基本传染数R 0=4,为了使1个感染者传染人数不超过1,则该地疫苗的接种率不可能为()A.45%B.55%C.65%D.75%解析:ABC 为了使1个感染者传染人数不超过1,只需R0N(N -V )≤1,即R 0·(1-VN)≤1,因为R 0=4,故1-V N ≤14,可得V N ≥34.反思感悟已知函数模型解决实际问题的关键(1)认清所给函数模型,弄清哪些量为待定系数.(2)根据已知利用待定系数法,确定模型中的待定系数.(3)利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验.训练1(2021·全国甲卷)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lg V .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(1010≈1.259)()A.1.5B.1.2C.0.8D.0.6解析:C 4.9=5+lg V ⇒lg V =-0.1⇒V =10-110=11010≈11.259≈0.8,所以该同学视力的小数记录法的数据约为0.8.构造函数模型解决实际问题构建二次函数模型例2某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是()A.10.5万元B.11万元C.43万元D.43.025万元解析:C设在A地销售该品牌的汽车x辆,则在B地销售该品牌的汽车(16-x)辆,所以可得利润y=4.1x-0.1x2+2(16-x)=-0.1x2+2.1x+32=-0.1(x-10.5)2+0.1×10.52+32.因为x∈[0,16]且x∈N,所以当x=10或11时,总利润取得最大值43万元.构建分段函数模型例3某村利用当地优势引进经济效益好、养殖密度高的“活水围网”养鱼技术.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x(单位:尾/立方米)的连续函数.当x不超过4尾/立方米时,v的值为2千克/年;当4<x≤20时,v是x的一次函数;当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年.(1)当0<x≤20时,求函数v关于x的函数解析式;(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.解:(1)由题意得当0<x≤4时,v=2,当4<x≤20时,设v=ax+b(a≠0),显然v=ax+b在(4,20]内是减函数,a+b=0,a+b=2,=-18,=52,所以v=-18x+52.故函数v,0<x≤4,-18x+52,4<x≤20.(x∈N*)(2)设年生长量为f(x)千克/立方米,依题意,由(1)得f(x)x,0<x≤4,-18x2+52x,4<x≤20.(x∈N*)当0<x≤4时,f(x)为增函数,故f(x)max=f(4)=4×2=8;当4<x≤20时,f(x)=-18x2+52x=-18(x2-20x)=-18(x-10)2+252.所以f(x)max=f(10)=12.5.所以当0<x≤20时,f(x)的最大值为12.5.故当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.构建对勾函数模型例4某汽车运输公司购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y(万元)与营运年数x的关系如图所示(抛物线的一段),则为使其营运年平均利润最大,每辆客车营运年数为.解析:根据图象求得y=-(x-6)2+11(x>0),∴年平均利润yx=12-(x+25x),∵x+25x≥10,当且仅当x=5时等号成立,∴要使营运年平均利润最大,每辆客车营运年数为5.答案:5反思感悟在应用函数解决实际问题时需注意以下4个步骤:(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择函数模型.(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的函数模型.(3)解模:求解函数模型,得出数学结论.(4)还原:将数学结论还原为实际意义的问题.训练2(2024·临沂测试)已知某公司生产某产品的年固定成本为100万元,每生产1千件需另投入27万元,设该公司一年内生产该产品x千件(0<x≤25)并全部销售完,每千件的销售收入为R(x)(单位:万元),且R(x)108-13x2,0<x≤10,-x+175x+57,10<x≤25.(1)写出年利润f(x)(单位:万元)关于年产量x(单位:千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一产品的生产中所获年利润最大?(注:年利润=年销售收入-年总成本)解:(1)当0<x≤10时,f(x)=xR(x)-(100+27x)=81x-x33-100;当10<x≤25时,f(x)=xR(x)-(100+27x)=-x2+30x+75.故f(x)81x-x33-100,0<x≤10,-x2+30x+75,10<x≤25.(2)当0<x≤10时,由f′(x)=81-x2=-(x+9)(x-9),得当x∈(0,9)时,f′(x)>0,f(x)单调递增;当x∈(9,10)时,f′(x)<0,f(x)单调递减.故f(x)max=f(9)=81×9-13×93-100=386.当10<x≤25时,f(x)=-x2+30x+75=-(x-15)2+300≤300.综上,当x=9时,年利润取最大值386.所以当年产量为9千件时,该公司在这一产品的生产中所获年利润最大.限时规范训练(十六)A 级基础落实练1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似表示这些数据的规律,其中最接近的一个是()x 1.99234 5.15 6.126y1.5174.04187.51218.01A.y =2x -2B.y =12(x 2-1)C.y =log 2xD.y =log 12x解析:B由题中表格可知函数在(0,+∞)上是增函数,且y 的变化随x 的增大而增大得越来越快,分析选项可知B 符合,故选B.2.据统计,第x 年某湿地公园越冬的白鹭数量y (只)近似满足y =k log 3(x +1),观测发现第2年有越冬白鹭1000只,估计第5年有越冬白鹭(ln 2≈0.7,ln 3≈1.1)()A.1530只 B.1636只C.1830只 D.1930只解析:B∵第x 年某湿地公园越冬的白鹭数量y (只)近似满足y =k log 3(x +1),且当x =2时,y =1000,∴1000=k log 33,解得k =1000,∴当x =5时,y =1000×log 36=1000×(log 33+log 32)=1000×(1+ln 2ln 3)≈1636.3.某商店每月按出厂价每瓶3元购进一种饮料,根据以前的统计数据,若零售价定为每瓶4元,每月可销售400瓶;若零售价每降低(升高)0.5元,则可多(少)销售40瓶,在每月的进货当月销售完的前提下,为获得最大利润,销售价应定为()A.3.75元/瓶B.7.5元/瓶C.12元/瓶D.6元/瓶解析:D设销售价每瓶定为x 元,利润为y 元,则y =(x -3)(400+4-x0.5×40)=80(x -3)·(9-x )=-80(x -6)2+720(x ≥3),所以x =6时,y 取得最大值.4.(多选)甲同学家到乙同学家的途中有一座公园,甲同学家到公园的距离与乙同学家到公园的距离都是2km.如图所示表示甲同学从家出发到乙同学家经过的路程y (km)与时间x (min)的关系,下列结论正确的是()A.甲同学从家出发到乙同学家走了60minB.甲从家到公园的时间是30minC.甲从家到公园的速度比从公园到乙同学家的速度快D.当0≤x ≤30时,y 与x 的关系式为y =115x 解析:BD在A 中,甲在公园休息的时间是10min ,所以只走了50min ,A错误;由题中图象知,甲从家到公园的时间是30min ,B 正确;甲从家到公园所用的时间比从公园到乙同学家所用的时间长,而距离相等,所以甲从家到公园的速度比从公园到乙同学家的速度慢,C 错误;当0≤x ≤30时,设y =kx (k ≠0),则2=30k ,解得k =115,D 正确.5.(2024·潍坊期末)由国家公安部提出,国家质量监督检验检疫总局发布的《车辆驾驶人员血液、呼气酒精含量阈值与检验标准》(GB/T19522-2010)于2011年7月1日正式实施.车辆驾驶人员饮酒后或者醉酒后驾车血液中的酒精含量阈值见表.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如图,且该图表示的函数模型为f (x )(π3x )+13,0≤x <2,-0.5x +14,x ≥2,则该人喝1瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:ln 15≈2.71,ln 30≈3.40)()车辆驾驶人员血液酒精含量阈值驾驶行为类型阈值(mg/100mL)饮酒后驾车≥20,<80醉酒后驾车≥80A.5hB.6hC.7hD.8h解析:B由题意可知当酒精含量阈值低于20时才可以开车,结合分段函数建立不等式90e -0.5x +14<20,解得x >5.42,取整数,故为6个小时.故选B.6.(2024·连云港质检)某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为()A.8 B.10C.12 D.13解析:B 设该企业需要更新设备的年数为x (x ∈N *),设备年平均费用为y万元,则x 年的设备维护费用为2+4+6+…+2x =x (2+2x )2=x (x +1),所以x 年的平均费用y =100+0.5x +x (x +1)x =x +100x +32≥2x ·100x +32=432(万元),当且仅当x =10时,等号成立,因此,为使该设备年平均费用最低,该企业需要更新设备的年数为10.7.如图所示,学校要建造一面靠墙(墙足够长)的2个面积相同的矩形花圃,如果可供建造围墙的材料总长是60m ,要所建造的每个花圃的面积最大,则宽x 应为m.解析:设每个花圃的面积为y,则y=x·60-3x2=-32x2+30x=-32(x-10)2+150(0<x<20),所以当x=10时,y最大.答案:108.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.可以享受折扣优惠金额折扣优惠率不超过500元的部分5%超过500元的部分10%某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为元.解析:由题可知:折扣金额y元与购物总金额x元之间的解析式,y 0,0<x≤600,0.05(x-600),600<x≤1100,0.1(x-1100)+25,x>1100,∵y=30>25,∴x>1100,∴0.1(x-1100)+25=30,解得x=1150,1150-30=1120,故此人购物实际所付金额为1120元.答案:11209.2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N随时间T(单位:年)的衰变规律满足N=N0·2-T5730(N0表示碳14原有的质量),则经过5730年后,碳14的质量变为原来的;经过测定,良渚古城遗址文物样本中碳14的质量是原来的3 7至12,据此推测良渚古城存在的时期距今约在5730年到年之间.(参考数据:lg 2≈0.3,lg 7≈0.84,lg 3≈0.48)解析:∵N =N 0·2-T5730,∴当T =5730时,N =N 0·2-1=12N 0,∴经过5730年后,碳14的质量变为原来的12.由题意可知2-T5730>37,两边同时取以2为底的对数得log 22-T5730>log 237,∴-T5730>lg 37lg 2=lg 3-lg 7lg 2≈-1.2,∴T <6876,∴推测良渚古城存在的时期距今约在5730年到6876年之间.答案:12687610.候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为v =a +b log 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止时其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s ,则其耗氧量至少要多少个单位?解:(1)由题意可知,当这种鸟类静止时,它的速度为0m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0.当耗氧量为90个单位时,速度为1m/s ,故有a +b log 39010=1,即a +2b =1.+b =0,+2b =1,=-1,=1.取a ,b 的值分别为-1和1.(2)由(1)知,v =-1+log 3Q10.所以要使飞行速度不低于2m/s,则有v≥2,故-1+log3Q10≥2,解得Q≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2m/s时,其耗氧量至少要270个单位.11.某公司生产某种电子仪器的固定成本为2万元,每生产一台仪器需增加投入100元,公司每月生产量为x(单位:台),已知总收入R(单位:元)满足函数:Rx-12x2-15000(0≤x≤200),000-25000000x(x>200).(1)将利润P表示为月产量x的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少万元?(总收入=总成本+利润)解:(1)由题知,利润P =-12x2+300x-35000,0≤x≤200,000-100x-25000000x,x>200.(2)当0≤x≤200时,P=-12(x-300)2+10000,所以当x=200时,P有最大值5000;当x>200时,P=150000-100x-25000000x≤150000-2100×25000000=50000,当且仅当x=500时,等号成立,所以当x=500时,P有最大值50000.综上,当月产量为500台时,公司所获利润最大,最大利润为5万元.B级能力提升练12.大气压强p=压力受力面积,它的单位是“帕斯卡”(Pa,1Pa=1N/m2),大气压强p(Pa)随海拔高度h(m)的变化规律是p=p0e-kh(k=0.000126m-1),p0是海平面大气压强.已知在某高山A1,A2两处测得的大气压强分别为p1,p2,p1p2=13,那么A 1,A 2两处的海拔高度的差约为(参考数据:ln 3≈1.099)()A.660mB.2340mC.6600mD.8722m解析:D 设A 1,A 2两处的海拔高度分别为h 1,h 2,则p 1p 2=13=p 0e -0.000126h 1p 0e -0.000126h 2=e0.000126(h 2-h 1),∴0.000126(h 2-h 1)=ln 13=-ln 3≈-1.099,得h 2-h 1=-1.0990.000126≈-8722(m).∴A 1,A 2两处的海拔高度的差约为8722m.13.医学家们为了揭示药物在人体内吸收、排出的规律,常借助恒速静脉滴注一室模型来进行描述.在该模型中,人体内药物含量x (单位:mg)与给药时间t (单位:h)近似满足函数关系式ln kx =ln k 0+ln(1-e -kt ),其中k 0,k 分别称为给药速率和药物消除速率(单位:mg/h).经测试发现,对于某种药物,给药时间12h 后,人体内的药物含量为3k 04k,则该药物的消除速率k 的值约为(参考数据:ln 2≈0.693)()A.0.1055B.0.1065C.0.1165D.0.1155解析:D 由题意,ln(k ·3k 04k )=ln k 0+ln(1-e -12k )⇒e -12k =14⇒-12k =-2ln 2,即6k =ln 2≈0.693,解得k ≈0.1155.14.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资240万元.根据行业规定,每个城市至少要投资80万元,由前期市场调研可知:甲城市收益P 与投入a (单位:万元)满足P =42a -6,乙城市收益Q 与投入a (单位:万元)满足Q =+2,80≤a ≤120,,120<a ≤160,设甲城市的投入为x (单位:万元),两个城市的总收益为f (x )(单位:万元).(1)当投资甲城市128万元时,求此时公司的总收益;(2)试问:如何安排甲、乙两个城市的投资,才能使公司总收益最大?解:(1)当x=128,即甲城市投资128万元时,乙城市投资112万元,所以f(128)=4×2×128-6+14×112+2=88(万元).因此,此时公司的总收益为88万元.(2)由题意知,甲城市投资x万元,则乙城市投资(240-x)万元,≥80,-x≥80,解得80≤x≤160,当80≤x<120,即120<240-x≤160时,f(x)=42x-6+32=42x+26<26+1615;当120≤x≤160,即80≤240-x≤120时,f(x)=42x-6+14(240-x)+2=-14x+42x+56.令t=x,则t∈[230,410],所以y=-14t2+42t+56=-14(t-82)2+88.当t=82,即x=128时,y取最大值88.因为88-(26+1615)=2×(31-815)>0,故f(x)的最大值为88.因此,当甲城市投资128万元,乙城市投资112万元时,总收益最大,且最大收益为88万元.。

《函数模型及其应用》教案

《函数模型及其应用》教案

芯衣州星海市涌泉学校函数模型及其应用教学目的:1.能根据图形、表格等实际问题的情境建立数学模型,并求解;进一步理解函数模型在解决简单的实际问题中的应用,理解函数模型在社会生活中的广泛应用2.在解决实际问题的过程中,培养学生数学地分析问题、探究问题、解决问题的才能,培养学生的应用意识,进步学习数学的兴趣. 教学重点:在解决以图、表等形式作为问题背景的实际问题中,读懂图表并求解. 教学难点: 对图、表的理解. 教学方法: 讲授法,尝试法. 教学过程: 一、情境创设矩形的长为4,宽为3,假设长增加x ,宽减少0.5x ,所得新矩形的面积为S . 〔1〕将S 表示成x 的函数;〔2〕求面积S 的最大值,并求此时x 的值. 二、学生活动 考虑并完成上述问题. 三、例题解析例1有一块半径为R 的半圆形钢板,方案剪裁成等腰梯形ABCD 的形状,它的下底AB 是⊙O 的直径,上底CD 的端点在圆周上,写出这个梯形周长y 和腰长x 间的函数关系式,并求出它的定义域.A BO C DE例2一家旅社有100间一样的客房,经过一段时间是是的经营理论,旅社经理发现每间客房每天的价格与住房率有如下关系:要使每天收入最高,每间客房定价为多少元?例3今年5月,荔枝上.由历年的场行情得知,从5月10日起的60天内,荔枝的场售价与上时间是是的关系大致可用如下列图的折线ABCD表示(场售价的单位为元/500g).请写出场售价S(t)(元)与上时间是是t(天)的函数关系式,并求出6月20日当天的荔枝场售价.练习:1.直角梯形OABC中,AB∥OC,AB=1,OC=BC=2,直线l:x=t截此梯形所得位于l左方图形的f(t)的大致图象为()状可能是()元一个销售,每天可卖200个.假设这种商品每涨价1元,〔2〕假设销售价必须为整数,要使利润最大,应如何定价?5.根据场调查,某商品在最近40天内的价格f(t)与时间是是t满足:l AC DBhH A B C DO 10 40 60f(t)=111(020)241(2040)t t t Nt t t N⎧+<∈⎪⎨⎪-+∈⎩≤,≤≤,,销售量g(t)与时间是是t满足:g(t)=14333t-+(0≤t≤40,t N),求这种商品日销售金额的最大值.四、小结利用图、表建模;分段建模.五、作业。

高中数学 3.4.2《函数模型及其应用(1)》教案 苏教版必修1

高中数学 3.4.2《函数模型及其应用(1)》教案 苏教版必修1

3.4.2 函数模型及其应用(1)教学目标:1.能根据实际问题的情境建立数学模型,利用计算工具,结合对函数性质的研究,给出问题的解答;2.通过实例,理解一次函数、二次函数等常见函数在解决一些简单的实际问题中的应用,了解函数模型在社会生活中的广泛应用;3.在解决实际问题的过程中,培养学生数学地分析问题、探索问题、解决问题的能力,培养学生的应用意识,提高学习数学的兴趣.教学重点:一次函数、二次函数以及指、对数函数等常见函数的应用.教学难点:从生活实例中抽象出数学模型.教学过程:一、问题情境某城市现有人口总数为100万,如果人口的年自然增长率为1.2﹪,问:(1)写出该城市人口数y(万人)与经历的年数x之间的函数关系式;(2)计算10年后该城市的人口数;(3)计算大约多少年后,该城市人口将达到120万?(4)如果20年后该城市人口数不超过120万,年人口自然增长率应该控制在多少?二、学生活动回答上述问题,并完成下列各题:1.等腰三角形顶角y(单位:度)与底角x的函数关系为.2.某种茶杯,每个0.5元,把买茶杯的钱数y(元)表示为茶杯个数x(个)的函数,其定义域为.三、数学应用例1 某计算机集团公司生产某种型号计算机的固定成本为200万元,生产每台计算机的可变成本为3000元,每台计算机的售价为5000元,分别写出总成本C(万元)、单位成本P(万元)、销售收入R(元)以及利润L(万元)关于总产量x台的函数关系式.例2 大气温度y(℃)随着离开地面的高度x(km)增大而降低,到上空11 km为止,大约每上升1 km,气温降低6℃,而在更高的上空气温却几乎没变(设地面温度为22℃).求:(1) y与x的函数关系式;(2)x=3.5 km以及x=12km处的气温.变式:在例2的条件下,某人在爬一座山的过程中,分别测得山脚和山顶的温度为26℃和14.6℃,试求山的高度.四、建构数学利用数学某型解决实际问题时,一般按照以下步骤进行:1.审题:理解问题的实际背景,概括出数学实质,尝试将抽象问题函数化;2.引进数学符号,建立数学模型,即根据所学知识建立函数关系式,并确定函数的定义域;3.用数学的方法对得到的数学模型予以解答,求出结果;4.将数学问题的解代入实际问题进行检验,舍去不合题意的解,并作答.五、巩固练习1.生产一定数量的商品时的全部支出称为生产成本,可表示为商品数量的函数,现知道一企业生产某种产品的数量为x件时的成本函数是C(x)=200+10x+0.5x2(元),若每售出一件这种商品的收入是200元,那么生产并销售这种商品的数量是200件时,该企业所得的利润可达到元.2.有m部同样的机器一起工作,需要m小时完成一项任务.设由x部机器(x为不大于m的正整数)完成同一任务,求所需时间y(小时)与机器的部数x的函数关系式.3.A,B两地相距150千米,某人以60千米/时的速度开车从A到B,在B地停留1小时后再以50千米/时的速度返回A,则汽车离开A地的距离x与时间t的函数关系式为.4.某车站有快、慢两种车,始发站距终点站7.2km,慢车到达终点需16min,快车比慢车晚发车3min,且行驶10min到达终点站.试分别写出两车所行路程关于慢车行驶时间的函数关系式.两车在何时相遇?相遇时距始发站多远?5.某产品总成本C(万元)与产量x(台)满足关系C=3000+20x-0.1x2,其中0<x<240.若每台产品售价25万元,要使厂家不亏本,则最少应生产多少台?六、要点归纳与方法小结1.利于函数模型解决实际问题的基本方法和步骤;2.一次函数、二次函数等常见函数的应用.七、作业课本P100-练习1,2,3.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

函数模型及其应用教案

函数模型及其应用教案

函数模型及其应用教案一、教学目标1. 理解函数的概念,了解函数模型的产生和应用;2. 学习两种常见函数模型的基本形式和参数,并能解决实际问题应用;3. 认识函数模型在现实生活和工程实践中的重要作用;4. 提高学生分析和解决实际问题的能力。

二、教学重点1. 函数的概念与应用;2. 两种常见函数模型的基本形式与参数;3. 实际问题中函数模型的应用。

三、教学难点1. 函数模型在数学联系与实际应用展示之间的联系;2. 如何将实际问题转化为基本形式的函数模型。

四、教学方法1. 讲授教学法;2. 课堂互动式教学法;3. 问题式教学法。

五、教学准备1. 多媒体教学设备;2. 函数模型案例资料。

六、教学过程1. 引入函数是一种重要的数学概念,也是自然科学、经济学、工程技术等领域的基础。

而函数模型则是在实际问题中应用函数的过程中,通过对数据和经验的分析产生的数学模型,可用于预测、控制、优化等目的。

今天我们将学习两种常见函数模型及其应用。

2. 基础知识讲解(1)函数的概念函数是一个输入输出关系的特殊情况。

数学上定义一个函数是指一组数对,其中第一个数(称为自变量)从一个特定集合中取任意一个值,;第二个数(称为因变量或函数值)则从另一集合中取一个值,这个取值完全由第一个数决定。

(2)线性函数模型线性函数模型可以写为 y=a*x+b 的形式,其中 a 称为斜率,b称为截距。

它的应用非常广泛,比如经济学中的供给函数、消费函数,工程学中的动力学方程等等,都可以通过线性函数模型来描述。

(3)指数函数模型指数函数模型可以用 y=a^x+b 的形式表示,其中 a 称为底数,b 称为位移。

指数函数具有非常广泛的应用,在物理学、天文学、化学、生物学、经济学等领域中都有其用途,比如放射性衰变过程、细胞增殖过程、经济增长过程等等都可以使用指数函数模型来描述。

3. 练习将下列实际问题转化为线性函数模型或指数函数模型,并求出相应的参数或曲线。

高一数学《函数模型及其应用》教案

高一数学《函数模型及其应用》教案

高一数学《函数模型及其应用》教课设计函数模型及其应用(1)【学习导航】知识网络学习要求1.认识解实质应用题的一般步骤;2.初步学会依据已知条件成立函数关系式的方法;3.浸透建模思想,初步拥有建模的能力.自学评论1.数学模型就是把实质问题用数学语言抽象归纳,再从数学角度来反应或近似地反应实质问题,得出对于实质问题的数学描绘 .2. 数学建模就是把实质问题加以抽象归纳成立相应的数学模型的过程,是数学地解决问题的重点.3. 实质应用问题成立函数关系式后一般都要观察定义域.【精模典范】例 1.写出等腰三角形顶角 (单位:度 )与底角的函数关系 . 例 2.某计算机企业企业生产某种型号计算机的固定成本为万元 ,生产每台计算机的可变为本为元,每台计算机的售价为元 .分别写出总成本(万元 )、单位成本(万元 )、销售收入(万元 )以及收益(万元 )对于总产量(台 )的函数关系式.剖析:销售收益销售收入成本,此中成本(固定成本可变成本 ).【解】总成本与总产量的关系为课本、报刊杂志中的成语、名言警语等俯首皆是 ,但学生写作文运用到文章中的甚少 ,即便运用也很难做到恰到好处。

为什么?仍是没有完全“记死”的缘由。

要解决这个问题 ,方法很简单,每天花3-5 分钟左右的时间记一条成语、一则名言警语即可。

能够写在后黑板的“累积专栏”上每天一换 ,能够在每天课前的3 分钟让学生轮番解说 ,也可让学生个人收集 ,每天往笔录本上抄录 ,教师按期检查等等。

这样 ,一年便可记 300 多条成语、300 多则名言警语 ,与日俱增 ,终归会成为一笔不小的财产。

这些成语典故“储藏”在学生脑中 ,自然会下笔成章 ,写作时便会为所欲为地“提取”出来 ,使文章添色添辉。

单位成本与总产量的关系为销售收入与总产量的关系为要练说,得练看。

看与说是一致的,看禁止就难以说得好。

练看,就是训练幼儿的察看能力,扩大幼儿的认知范围,让幼儿在察看事物、察看生活、察看自然的活动中,累积词汇、理解词义、发展语言。

函数模型及其应用的教学教案

函数模型及其应用的教学教案

函数模型及其应用的教学教案教学教案:函数模型及其应用一、教学目标1.了解函数模型的基本概念和特性;2.掌握函数模型在实际问题中的应用;3.培养学生的数学建模能力和问题解决能力。

二、教学重点和难点1.函数模型的基本概念和特性;2.函数模型在实际问题中的应用。

三、教学方法1.讲授与示范相结合;2.小组合作学习;3.课堂实践。

四、教学过程步骤一:导入新知识(10分钟)1.复习函数的基本概念和性质;2.提出问题:“函数模型是什么?它有什么特点?”;3.学生回答问题并进行讨论。

步骤二:讲解函数模型的基本概念(20分钟)1.介绍函数模型的定义和表示方法;2.引导学生理解函数模型的含义:根据已知条件,建立函数模型来描述一个实际问题;3.示范几个常见的函数模型。

步骤三:探究函数模型的特性(20分钟)1.引入函数模型的性质:单调性、奇偶性、周期性等;2.以实例为例,让学生观察并总结函数模型的特性;3.学生合作完成几个练习题。

步骤四:应用函数模型解决实际问题(30分钟)1.通过实例介绍函数模型在实际问题中的应用,如物体自由落体、物种数量增长等;2.让学生进行小组合作,选择一个实际问题,建立相应的函数模型并解决问题;3.学生展示他们的解决方案,进行评价和讨论。

步骤五:巩固与拓展(20分钟)1.让学生复习巩固所学的内容,完成一篇小结;2.引导学生思考:函数模型在其他学科中的应用;3.教师进行点评和总结。

五、教学评估1.课堂表现评价:学生是否积极参与讨论、是否能熟练运用函数模型解决实际问题等;2.书面作业评价:布置相关练习题,检查学生的掌握程度。

六、教学资源1.教材:《数学教材》;2.多媒体教学工具;3.实际问题的资料。

七、教学反思通过本节课的教学,学生能够理解函数模型的基本概念和特性,能够应用函数模型解决实际问题。

在教学过程中,我注重将知识与实际问题相结合,让学生能够在解决问题的过程中感受到函数模型的重要性和应用价值。

函数模型及其应用(1)教案(苏教版高一必修1).docx

函数模型及其应用(1)教案(苏教版高一必修1).docx

本户(万元)、销售收入R (万元)以及利润听课随笔L(万元)关于总产量x (台)的函数关系式.⑴【学习导航】知识网络1.了解解实际应用题的一般步骤;2.初步学会根据已知条件建立函数关系式的方法;3.渗透建模思想,初步具有建模的能力.自学评价1.数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题,得出关于实际问题的数学描述.2.数学建模就是把实际问题加以抽象概括建立相应的数学模型的过程,是数学地解决问题的关键.3.实际应用问题建立函数关系式后一般都要考察定义域【精典范例】例1.写出等腰二角形顶角y (单位:度)与底角X的函数关系.【解】y = 180-2x (0<x<90)点评:函数的定义域是函数关系的重要组成部分.实际问题中的函数的定义域,不仅要使函数表达式有意义,而且要使实际问题有意义.例2.某计算机集团公司生产某种型号计算机的固定成本为200万元,生产每台计算机的可变成本为3000元,每台计算机的售价为5000元.分别写出总成本C (万元)、单位成分析:销售利润L(x)=销售收入R(x)-成本C(x),其中成本C(x)=(固定成本+可变成本).【解】总成本与总产量的关系为C = 200 + 0.3x, x & N*.单位成本与总产量的关系为P = + 0.3, .r e N*.x销售收入与总产量的关系为R = 0.5x,x c N*.利润与总产量的关系为L = R-C = Q.2x-200,xeN* .例3.大气温度y(°C)随着离开地面的高度X(Z OT)增大而降低,到上空11km为止,大约每上升1km ,气温降低6°C,而在更高的上空气温却几乎没变(设地面温度为22°。

).求:(1) y与X的函数关系式;(2) x = 3.5km以及x = 12km处的气温. 【解】(1)由题意,当0 V x V 11 时,y = 22 - 6x ,...当x = l 1 时,y = 22 —6x11 = —44,从而当x〉11时,y = -44 .综上,所求函数关系为22 - 6x, x e [0,11]y =〈;-44, x e (11, +co)(2)山(1)矢n, x = 3.5km处的气温为y = 22 —6x3.5 = l °C ,第三十三课时函敏模型及其近用x = 12km处的气温为-44 °C .点评:由于自变量在不同的范围中函数的表达式不同,因此本例第1小题得到的是关于自变量的分段函数;第2小题是已知自变量的值,求函数值的问题.追踪训练一1.生产一定数量的商品时的全部支出称为生产成本,可表示为商品数量的函数,现知道一企业生产某种产品的数量为x件时的成本函数是C(x) = 200 + 10x + |x2(元), 若每售出一件这种商品的收入是200元,那么生产并销售这种商品的数量是200件时,该企业所得的利润可达到17800 元.2.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (微克)与时间f (小时)之间近似满足如图所示的曲线.(04为线段,AB 为某二次函数图象的一部分,O 为原点). (1)写出服药后y与f之间的函数关系式y = f ⑴;(2)据进一步测定:每毫升血液中含药量4不少于一微克时,对治疗有效,求服药一次9治疗疾病有效的时间.4t Q<t<l解:(1)由已知得y = \i , -a-5)2,i<?<54 1(2)当OMfMl 时,4t>-,得一MfMl;9 91 , 4 当1 <Y5时,一(—5)2〉一,4 9得〃以,或t<—,3 3, 11 ...1 < ? < —..31 11-<t<—,9 3H_j__32因此服药一次治疗疾病有效的时间约为3.5小时.【选修延伸】一、函数与图象高考热点1:(2002 年高考上海文,理16)一般地,家庭用电量(千瓦时)与气温(°C)有一定的关系,如图所示,图(1)表示某年12个月中每月的平均气温. 图(2)表示某家庭在这年12 个月中每个月的用电量.根据这些信息,以下关于该家听课随笔A.气温最高时,用电量最多B.气温最低时,用电量最少C.当气温大于某一值时,用电量随气温增高而增加D.当气温小于某一值时,用电量随气温渐低而增加答案:C分析:该题考查对图表的识别和理解能力. 【解】经比较可发现,2月份用电量最多,而2月份气温明显不是最高.因此A项错误. 同理可判断出3项错误.由5、6、7三个月的气温和用电量可得出C项正确.思维点拔:数学应用题的一般求解程序(1)审题:弄清题目意,分清条件和结论, 理顺数量关系;(2)建模:将题目条件的文字语言转化成数学语言,用数学知识建立相应的数学模型;(3)解模:求解数学模型,得到数学结论; (4)结论:将用数学方法得到的结论还原为实际问题的意义,并根据题意下结论.追踪训练二1.有一块半径为R的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底A3 是。

高中数学人教A版必修1教案-3.2_函数模型及其应用_教学设计_教案_1

高中数学人教A版必修1教案-3.2_函数模型及其应用_教学设计_教案_1

教学准备1. 教学目标求解函数应用问题的思路和方法2. 教学重点/难点求解函数应用问题的思路和方法3. 教学用具4. 标签教学过程知识归纳1.求解函数应用问题的思路和方法2.函数建模的基本流程误区警示求解函数应用题时,关键环节是审题,审题时:一要弄清问题的实际背景,注意隐含条件;二是将文字语言恰当准确的翻译为数学语言,用数学表达式加以表示;三是弄清给出什么条件,解决什么问题,通过何种数学模型加以解决;四是严格按各种数学模型的要求进行推理运算,并对运算结果作出实际解释.3.常见函数模型的理解次函数模型。

(5)分式(“勾”)函数模型:形如的函数模型,在现实生活中有着广泛的应用,常利用“基本不等式”解决,有时通过利用导数研究其单调性来求最值。

四.典例解析题型1:正比例、反比例、一次函数型和二次函数型例1.某种商品原来定价为每件a元时,每天可售出m件,现在把定价降低x个百分点(即x%)后,售出数量增加了y个百分点,且每天的销售额是原来的k倍。

(1)设y=nx,其中n是大于1的常数,试将k写成x的函数;(2)求销售额最大时x的值(结果可用喊n的式子表示);(3)当n=2时,要使销售额比原来有所增加,求x的取值范围。

故当销售商一次订购 500 个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.[名师指引]求解数学应用题必须突破三关:(1)阅读理解关:一般数学应用题的文字阅读量都比较大,要通过阅读审题,找出关键词、句,理解其意义.(2)建模关:即建立实际问题的数学模型,将其转化为数学问题.(3)数理关:运用恰当的数学方法去解决已建立的数学模型.题型3:指数、对数型函数五.思维总结1.将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

2.怎样选择数学模型分析解决实际问题数学应用问题形式多样,解法灵活。

函数模型及其应用教案

函数模型及其应用教案
例2.某公司为了实现1000万元利润的目标||,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时||,按销售利润进行奖励||,且奖金 (单位:万元)随销售利润 (单位:万元)的增加而增加但奖金不超过5万元||,同时奖金不超过利润的25%.现有三个奖励模型:

问:其中哪个模型能符合公司的要求?
生:仿照例题的探究方法||,选用具体函数进行研究、论证||,并进行交流总结||,形成结论性报告.
师:对学生的结论进行评析||,借助信息技术手段进行验证演示.





尝试练习:
1)教材P116练习1、2||;
2)教材P119练习.
小结与反思:
通过实例和计算机作图体会、认识直线上升、指数爆炸、对数增长等不同函数模型的增长的含义||,认识数学的价值||,认识数学与现实生活、与其他学科的密切联系||,从而体会数学的实用价值||,享受数学的应用美.
探究:
1)本例涉及了哪几类函数模型?
本例的实质是什么?
2)你能根据问题中的数据||,判定所给的奖励模型是否符合公司要求吗?
师:引导学生分析三种函数的不同增长情况对于奖励模型的影响||,使学生明确问题的实质就是比较三个函数的增长情况.
生:进一步体会三种基本函数模型在实际中的广泛应用||,体会它们的增长差异.
(1)求出a、b的值||;
(2)若这种鸟类为赶路程||,飞行的速度不能低于2 m/s||,则其耗氧量至少要多少个单位?
答案与解析
(1)由题意可知||,当这种鸟类静止时||,它的速度为0 m/s||,此时耗氧量为30个单位||,故有 =0||,
即a+b=0||;当耗氧量为90个单位时||,速度为1 m/s||,故 =1||,整理得a+2b=1.

高三数学高考考前复习:函数模型及其应用教案

高三数学高考考前复习:函数模型及其应用教案

第十节函数模型及其应用一、复习目标:1.了解指数函数、对数函数以及幂函数的增长特征。

知道直线上升、指数增长、对数增长等不同函数类型增长的含义。

2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。

3.能利用给定的函数模型解决简单的实际问题。

二、重难点:重点:掌握一次函数、二次函数、指数函数、对数函数等基本初等函数模型;培养阅读理解、建立数学模型和分析问题、解决问题的能力掌握解函数应用问题的基本步骤。

难点:建立数学模型和分析问题、解决问题的能力的培养。

三、教学方法:讲练结合,探析归纳。

四、教学过程(一)、谈新课标要求及考纲要求和高考命题考查情况,促使学生积极参与。

新课标要求及考纲要求:1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义;2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

高考命题考查情况及预测:函数应用问题是高考的热点,高考对应用题的考查即考小题又考大题,而且分值呈上升的趋势。

高考中重视对环境保护及数学课外的的综合性应用题等的考查。

出于“立意”和创设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考查,加大函数应用题、探索题、开放题和信息题的考查力度,从而使高考考题显得新颖、生动和灵活。

预测2010年的高考,将再现其独特的考查作用,而函数类应用题,是考查的重点,因而要认真准备应用题型、探索型和综合题型,加大训练力度,重视关于函数的数学建模问题,学会用数学和方法寻求规律找出解题策略。

(1)题型多以大题出现,以实际问题为背景,通过解决数学问题的过程,解释问题;(2)题目涉及的函数多以基本初等函数为载体,通过它们的性质(单调性、极值和最值等)来解释生活现象,主要涉计经济、环保、能源、健康等社会现象。

人教版高中必修13.2函数模型及其应用课程设计

人教版高中必修13.2函数模型及其应用课程设计

人教版高中必修13.2函数模型及其应用课程设计
一、前言
高中数学是一门广泛而深入的学科,数学与现实生活有着密不可分的联系。

本次课程设计着重于函数模型及其应用的教学设计,目的是加深学生对函数概念的理解,并引导学生建立函数与实际问题之间的联系,使学生能够学以致用。

二、教学目标
•理解函数概念及其表示方法
•掌握函数模型的建立方法
•运用函数模型解决实际问题
•加深学生对函数应用的认识和理解
三、教学重点难点
教学重点:函数表示方法与函数模型建立方法
教学难点:实际问题的函数模型建立
四、教学内容与安排
第一部分:函数概念及表示方法(1学时)
1.函数的定义和特征
(1)定义:函数是一种将一个集合的元素映射到另一个集合的元素的规律
(2)特征:单调性、奇偶性、周期性、对称性等
2.函数的表示方法
1。

高中数学教案 必修1 第十一讲:函数模型及其应用

高中数学教案 必修1 第十一讲:函数模型及其应用

博途教育学科教师辅导讲义(一)学员姓名: 年级:高一日期:辅导科目:数学学科教师:刘云丰时间:课题第十一讲:函数模型及其应用授课日期教学目标1、培养学生根据实际问题进行信息综合列出函数解析式;2、会利用函数图象性质对函数解析式进行处理得出数学结论.教学内容函数模型及其应用〖教学重点与难点〗◆教学重点:根据实际问题分析建立数学模型和根据实际问题拟合判断数学模型;◆教学难点:根据数学模型解决实际问题。

〖教学过程〗一、创设情境,导入课题在课本第三章的章头图中,有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚人头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.这段话道出了其中的意蕴:对于一个种群的数量,如果在理想状态(如没有天敌、食物充足等)下,那么它将呈指数增长;但在自然状态下,种群数量一般符合对数增长模型.二、提出问题,探索新知①我市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.设在甲家租一张球台开展活动x小时的收费为f(x)元(15≤x≤40),在乙家租一张球台开展活动x小时的收费为g(x)元(15≤x≤40),试求f(x)和g(x).②A 、B 两城相距100 km ,在两地之间距A 城x km 处D 地建一核电站给A 、B 两城供电,为保证城市安全.核电站距城市距离不得少于10 km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A 城供电量为20亿度/月,B 城为10亿度/月. 把月供电总费用y 表示成x 的函数,并求定义域.③分析以上实例属于那种函数模型. 讨论结果:①f(x)=5x(15≤x ≤40).g(x)=⎩⎨⎧≤<+≤≤4030,902,3015,90x x x②y=5x 2+25(100—x)2(10≤x ≤90);③分别属于一次函数模型、二次函数模型、分段函数模型.三、应用示例例1 一辆汽车在某段路程中的行驶速率与时间的关系如图所示. (1)求图3-2-2-1中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数s km 与时间t h 的函数解析式,并作出相应的图象.图3-2-2-1活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:图中横轴表示时间,纵轴表示速度,面积为路程;由于每个时间段速度不断变化,汽车里程表读数s km 与时间t h 的函数为分段函数.解:(1)阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360. 阴影部分的面积表示汽车在这5小时内行驶的路程为360 km.(2)根据图,有s=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤+-<≤+-<≤+-<≤+-<≤+.54,2299)4(65,43,2224)3(75,32.2134)2(90,21,2054)1(80,10,200450t t t t t t t t t t这个函数的图象如图3-2-2-2所示.图3-2-2-2变式训练电信局为了满足客户不同需要,设有A 、B 两种优惠方案,这两种方案应付话费(元)与通话时间(分钟)之间关系如下图(图3-2-2-3)所示(其中MN ∥CD).(1)分别求出方案A 、B 应付话费(元)与通话时间x(分钟)的函数表达式f(x)和g(x);(2)假如你是一位电信局推销人员,你是如何帮助客户选择A 、B 两种优惠方案?并说明理由.图3-2-2-3解:(1)先列出两种优惠方案所对应的函数解析式:f(x)=⎪⎩⎪⎨⎧>-≤≤,100,10103,1000,20x x x g(x)=⎪⎩⎪⎨⎧>-≤≤.500,100103,5000,50x x x(2)当f(x)=g(x)时,103x-10=50, ∴x=200.∴当客户通话时间为200分钟时,两种方案均可;当客户通话时间为0≤x <200分钟,g(x)>f(x),故选择方案A ; 当客户通话时间为x>200分钟时,g(x)<f(x),故选方案B.点评:在解决实际问题过程中,函数图象能够发挥很好的作用,因此,我们应当注意提高读图的能力.另外,本例题用到了分段函数,分段函数是刻画现实问题的重要模型.例 2 人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766~1834)就提出了自然状态下的人口增长模型: y=y 0e rt ,其中t 表示经过的时间,y 0表示t=0时的人口数,r 表示人口的年平均增长率. 下表是1950~1959年我国的人口数据资料:年份 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 人数/万人 55196 56300 57482 58796 60266 61456 62828 64563 65994 67207(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.000 1),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;(2)如果按表的增长趋势,大约在哪一年我国的人口达到13亿?解:(1)设1951~1959年的人口增长率分别为r1,r2,r3,…,r9.由55196(1+r1)=56300,可得1951年的人口增长率为r1≈0.020 0.同理,可得r2≈0.0210,r3≈0.0229,r4≈0.0250,r5≈0.0197,r6≈0.0223,r7≈0.0276,r 8≈0.0222,r9≈0.0184.于是,1950~1959年期间,我国人口的年平均增长率为r=(r1+r2+…+r9)÷9≈0.0221.令y=55 196,则我国在1951~1959年期间的人口增长模型为y=55 196e0.0221t,t∈N.根据表中的数据作出散点图,并作出函数y=55 196e0.0221t(t∈N)的图象(图3-2-2-4).图3-2-2-4由图可以看出,所得模型与1950~1959年的实际人口数据基本吻合.(2)将y=130000代入y=55 196e0.0221t,由计算器可得t≈38.76.所以,如果按表的增长趋势,那么大约在1950年后的第39年(即1989年)我国的人口就已达到13亿.由此可以看到,如果不实行计划生育,而是让人口自然增长,今天我国将面临难以承受的人口压力.变式训练一种放射性元素,最初的质量为500 g,按每年10%衰减.(1)求t年后,这种放射性元素质量ω的表达式;(2)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需的时间叫做半衰期).(精确到0.1.已知lg2=0.301 0,lg3=0.477 1)解:(1)最初的质量为500 g.经过1年后,ω=500(1-10%)=500×0.91;经过2年后,ω=500×0.9(1-10%)=500×0.92;由此推知,t年后,ω=500×0.9t.(2)解方程500×0.9t=250,则0.9t=0.5,所以t=9.0lg 5.0lg =13lg 22lg --≈6.6(年), 即这种放射性元素的半衰期约为6.6年.知能训练某电器公司生产A 型电脑.1993年这种电脑每台平均生产成本为5 000元,并以纯利润20%确定出厂价.从1994年开始,公司通过更新设备和加强管理,使生产成本逐年降低.到1997年,尽管A 型电脑出厂价仅是1993年出厂价的80%,但却实现了50%纯利润的高效益. (1)求1997年每台A 型电脑的生产成本;(2)以1993年的生产成本为基数,求1993年至1997年生产成本平均每年降低的百分数.(精确到0.01,以下数据可供参考:5=2.236,6=2.449)活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导. 出厂价=单位商品的成本+单位商品的利润.解:(1)设1997年每台电脑的生产成本为x 元,依题意,得 x(1+50%)=5000×(1+20%)×80%,解得x=3200(元).(2)设1993年至1997年间每年平均生产成本降低的百分率为y,则依题意,得5000(1-y)4=3200, 解得y 1=1-552,y 2=1+552(舍去). 所以y=1-552≈0.11=11%, 即1997年每台电脑的生产成本为3 200元,1993年至1997年生产成本平均每年降低11%. 点评:函数与方程的应用是本章的重点,请同学们体会它们的关系. 拓展提升某家电企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调、彩电、冰箱共360台,且冰箱至少生产60台.已知生产这些家电产品每台所需工时和每台产值如下表:家电名称 空调 彩电 冰箱每台所需工时21 31 41 每台产值(千元) 4 32 问每周应生产空调、彩电、冰箱各多少台,才能使周产值最高?最高产值是多少?(以千元为单位) 解:设每周生产空调、彩电、冰箱分别为x 台、y 台、z 台,每周产值为f 千元, 则f=4x+3y+2z ,其中⎪⎩⎪⎨⎧≥≥≥=++=++)3(,60,0,0)2(,120413121)1(,360z y x z y x z y x由①②可得y=360-3x,z=2x,代入③得⎪⎩⎪⎨⎧≥≥-≥,602,03360,0x x x 则有30≤x ≤120.故f=4x+3(360-3x)+2·2x=1080-x, 当x=30时,f max =1 080-30=1050. 此时y=360-3x=270,z=2x=60.答:每周应生产空调30台,彩电270台,冰箱60台,才能使每周产值最高,最高产值为1 050千元.点评:函数方程不等式有着密切的关系,它们相互转化组成一个有机的整体,请同学们借助上面的实例细心体会.四、课堂小结本节重点学习了函数模型的实例应用,包括一次函数模型、二次函数模型、分段函数模型等;另外还应关注函数方程不等式之间的相互关系.五、课后练习1.按复利计算利率的储蓄,银行整存一年,年息8%,零存每月利息2%,现把2万元存入银行3年半,取出后本利和应为人民币( ) A . 3.52(18%)+万元 B .362(18%)(12%)++万元 C .32(18%)22%5++⨯⨯万元D .3362(18%)2(18%)(12%)++⨯++万元解析:3年半本利和的计算问题,应转为3年按年息8%计算,而半年按6个月(月息2%)计算,又由于是复利问题,故只有选B .2.某学生离家去学校,为了锻炼身体,一开始跑步前进,跑累了再走余下的路,下图中,纵轴表示离学校的距离,横轴表示出发后的时间,则下列四个图形中较符合该生走法的是( )解析:由于d表示学生的家与学校的距离,因而首先排除A、C选项,又因为图中线段的斜率的绝对值表示前进速度的大小,因而排除B,故只能选择D。

高一数学必修一教案《函数模型及其应用》

高一数学必修一教案《函数模型及其应用》

精心整理高一数学必修一教案《函数模型及其应用》【篇一】【内容】建立函数模型刻画现实问题量的原始数据的处理,这可能会用到电脑和计算器以及图形工具,而我们的教学应更加关注的是通过实际问题的分析过程来选择适当的函数模型和函数模型的构建过程。

在这个过程中,要使学生着重体会的是模型的建立,同时体会模型建立的可操作性、有效性等特点,学习模型的建立以解决实际问题,培养发展有条理的思维和表达能力,提高逻辑思维能力。

【教学目标】(1)体现建立函数模型刻画现实问题的基本过程.态度了解函处理生的小组合作探究来突破本节课的难点,这样,在小组合作学习与探究过程中实现教学目标中对知识和能力的要求(目标1,2,3)在如何用函数建模刻画现实问题的基本过程中让学生亲身体验函数应用的广泛性,同时提高学生探究学习新知识的兴趣,培养学生主动参与、自主学习、勇于探索的科学态度,从而实现教学目标中的德育目标(目标4)【学生学习中预期的问题及解决方案预设】①描点的规范性;②实际操作的速度;③解析式的计算速度④计算结束后不进行检验这样以.教学前言:函数模型是应用最广泛的数学模型之一,许多实际问题一旦认定是函数关系,就可以通过研究函数的性质把握问题,使问题得到解决.教学内容师生活动设计意图探究新知引入:教师:大家觉得我胖吗?学生回答教师:我们在街上见到一个人总是会判断这个人的胖瘦,我们衡来衡量BMI 大于学生说,教师把相关数据填在用PPT展示的一张表格上教师:好,有了这些数据我们就可以来研究了,那接下来我们怎么来处理刚收集到的这些数据呢?学生回答(预期:画散点图——连线——找函数)教师:好,大家按小组先画图连线然后讨论一下你们小组认为哪个函数的图像符合学生活动并回答教师:好,那大家分一下工,你们几个小组来计算这个函数解析呢?教师:那大家来检验一下哪个模型更符合数据情况学生分小组进行检验教师:好了,我们利用刚才收集的数据通过我们的努力得出了一个式子,它也就是符合大家的情况的一个胖瘦的标准,既是我们班的一个标准,能用来衡量其它班的同学吗?那我们来计算一下老师的结果是什么样的.教师:可见用世界肥胖标准对老师的体重进行的评价和所建立的数学模型计算的结果是基本一致的。

《函数模型及其应用(第2课时)》教学设计与反思

《函数模型及其应用(第2课时)》教学设计与反思
量之 间的一种关 系,并给 出近似 的数学 表达式的一种方法 .
前面 学习过一次 函数 、二次 函数 、指数 函数 、对数 函数 以
遍基础较好 ,之前 已较系统地学 习了指数 函数 、对数 函数 、幂 及幂 函数,(几何画板 图像展示)它们都 与现实世 界有着 紧密
函数 等初 等 函数 ,对 其 图像 和性质 已掌 握较好 ,但 对如何 建 的联 系,有着 广泛 的应 用.数 学源 于生 活,又服务 于生 活,它
用第 4课时
学生认识 到函数是描 述客观世界变 化规律 的基本 数学模型,
【教学对象 】佛山市第一 中学高一 16班 (重点班学生) 并能初步运用 函数 思想解决现实生活 中的一些 简单问题,培
1教材 分 析
养学生应 用数学 的意识 和能力,提升学 生的数学 抽象 、数学
1.1教 材 内容 分 析
问题,是属 于数学 应用题 的范 畴,强 调利用 已知模 型解决 问
1.3.2过 程 与 方 法
题 ,但 例 4的价值 很容易发 挥不充 分,即仅仅 视作是 利用所
(1)经历解决 实 际问题 的全过程,初 步掌握 函数模 型 的
给与数 据来求参数,而没有进一步挖掘 自然增长 函数 的价值. 思想 和方法:
并对 上课教师提 出了教学及专业发 展的建议.何教授 的数学
1-3教 学 目标分 析
教 育情怀 、敬业爱 岗精神 深深感染 了与会 数学 同行们,何教
结合上述 的教材和 内容分 析,我们 认为 “3.2.2函数模 型
授专业 、幽默风趣而精彩 的点评更是不 时博得 与会教师们 的 的应用举例”的主要教学 目标是:
“函数模 型及其应 用”的同课异 构课 ,两节课都 获与会 同行们 的高度好评 .“同课异构”的教研方 式,可 以引发参与者智慧 的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学《函数模型及其应用》教案
函数模型及其应用(1)
【学习导航】
知识网络
学习要求
1.了解解实际应用题的一般步骤;
2.初步学会根据已知条件建立函数关系式的方法;
3.渗透建模思想,初步具有建模的能力.
自学评价
1.数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题,得出关于实际问题的数学描述.
2. 数学建模就是把实际问题加以抽象概括
建立相应的数学模型的过程,是数学地解决问题的关键.
3. 实际应用问题建立函数关系式后一般都要考察定义域. 【精典范例】
例1.写出等腰三角形顶角(单位:度)与底角的函数关系. 例2.某计算机集团公司生产某种型号计算机的固定成本为万元,生产每台计算机的可变成本为元,每台计算机的售价为元.分别写出总成本(万元)、单位成本(万元)、销售收入(万元)以及利润(万元)关于总产量(台)的函数关系式.
分析:销售利润销售收入成本,其中成本(固定成本可变
成本).
【解】总成本与总产量的关系为
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。

为什么?还是没有彻底“记死”的缘故。

要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。

可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。

这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。

这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。

单位成本与总产量的关系为
销售收入与总产量的关系为
要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。

在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。

我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟
句酌,琅琅上口,成为满腹经纶的文人。

为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。

特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。

知道“是这样”,就是讲不出“为什么”。

根本原因还是无“米”下“锅”。

于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。

所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。

要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。

利润与总产量的关系为。

相关文档
最新文档